Files
MLPproject/.venv/lib/python3.12/site-packages/xgboost/testing/data.py
2025-10-23 15:44:32 +02:00

1163 lines
34 KiB
Python

# pylint: disable=invalid-name, too-many-lines
"""Utilities for data generation."""
import gc
import multiprocessing
import os
import string
import zipfile
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generator,
List,
NamedTuple,
Optional,
Sequence,
Set,
Tuple,
Type,
Union,
)
from urllib import request
import numpy as np
import pytest
from numpy import typing as npt
from numpy.random import Generator as RNG
from scipy import sparse
from ..core import DataIter, DMatrix, QuantileDMatrix
from ..data import is_pd_cat_dtype, pandas_pyarrow_mapper
from ..sklearn import ArrayLike, XGBRanker
from ..training import train as train_fn
if TYPE_CHECKING:
from pandas import DataFrame as DataFrameT
else:
DataFrameT = Any
joblib = pytest.importorskip("joblib")
memory = joblib.Memory("./cachedir", verbose=0)
def np_dtypes(
n_samples: int, n_features: int
) -> Generator[Union[Tuple[np.ndarray, np.ndarray], Tuple[list, list]], None, None]:
"""Enumerate all supported dtypes from numpy."""
pd = pytest.importorskip("pandas")
rng = np.random.RandomState(1994)
# Integer and float.
orig = rng.randint(low=0, high=127, size=n_samples * n_features).reshape(
n_samples, n_features
)
dtypes = [
np.int32,
np.int64,
np.byte,
np.short,
np.intc,
np.int_,
np.longlong,
np.uint32,
np.uint64,
np.ubyte,
np.ushort,
np.uintc,
np.uint,
np.ulonglong,
np.float16,
np.float32,
np.float64,
np.half,
np.single,
np.double,
]
for dtype in dtypes:
X = np.array(orig, dtype=dtype)
yield orig, X
yield orig.tolist(), X.tolist()
for dtype in dtypes:
X = np.array(orig, dtype=dtype)
df_orig = pd.DataFrame(orig)
df = pd.DataFrame(X)
yield df_orig, df
# Boolean
orig = rng.binomial(1, 0.5, size=n_samples * n_features).reshape(
n_samples, n_features
)
for dtype1 in [np.bool_, bool]:
X = np.array(orig, dtype=dtype1)
yield orig, X
for dtype2 in [np.bool_, bool]:
X = np.array(orig, dtype=dtype2)
df_orig = pd.DataFrame(orig)
df = pd.DataFrame(X)
yield df_orig, df
def pd_dtypes() -> Generator:
"""Enumerate all supported pandas extension types."""
pd = pytest.importorskip("pandas")
# Integer
dtypes = [
pd.UInt8Dtype(),
pd.UInt16Dtype(),
pd.UInt32Dtype(),
pd.UInt64Dtype(),
pd.Int8Dtype(),
pd.Int16Dtype(),
pd.Int32Dtype(),
pd.Int64Dtype(),
]
Null: Union[float, None, Any] = np.nan
orig = pd.DataFrame(
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=np.float32
)
for Null in (np.nan, None, pd.NA):
for dtype in dtypes:
df = pd.DataFrame(
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=dtype
)
yield orig, df
# Float
Null = np.nan
dtypes = [pd.Float32Dtype(), pd.Float64Dtype()]
orig = pd.DataFrame(
{"f0": [1.0, 2.0, Null, 3.0], "f1": [3.0, 2.0, Null, 1.0]}, dtype=np.float32
)
for Null in (np.nan, None, pd.NA):
for dtype in dtypes:
df = pd.DataFrame(
{"f0": [1.0, 2.0, Null, 3.0], "f1": [3.0, 2.0, Null, 1.0]}, dtype=dtype
)
yield orig, df
ser_orig = orig["f0"]
ser = df["f0"]
assert isinstance(ser, pd.Series)
assert isinstance(ser_orig, pd.Series)
yield ser_orig, ser
# Categorical
orig = orig.astype("category")
for c in orig.columns:
orig[c] = orig[c].cat.rename_categories(int)
for Null in (np.nan, None, pd.NA):
df = pd.DataFrame(
{"f0": [1, 2, Null, 3], "f1": [3, 2, Null, 1]},
dtype=pd.CategoricalDtype(),
)
yield orig, df
# Boolean
for Null in [None, pd.NA]:
data = {"f0": [True, False, Null, True], "f1": [False, True, Null, True]}
# pd.NA is not convertible to bool.
orig = pd.DataFrame(data, dtype=np.bool_ if Null is None else pd.BooleanDtype())
df = pd.DataFrame(data, dtype=pd.BooleanDtype())
yield orig, df
def pd_arrow_dtypes() -> Generator:
"""Pandas DataFrame with pyarrow backed type."""
pd = pytest.importorskip("pandas")
pa = pytest.importorskip("pyarrow")
# Integer
dtypes = pandas_pyarrow_mapper
# Create a dictionary-backed dataframe, enable this when the roundtrip is
# implemented in pandas/pyarrow
#
# category = pd.ArrowDtype(pa.dictionary(pa.int32(), pa.int32(), ordered=True))
# df = pd.DataFrame({"f0": [0, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=category)
# Error:
# >>> df.astype("category")
# Function 'dictionary_encode' has no kernel matching input types
# (array[dictionary<values=int32, indices=int32, ordered=0>])
# Error:
# pd_cat_df = pd.DataFrame(
# {"f0": [0, 2, Null, 3], "f1": [4, 3, Null, 1]},
# dtype="category"
# )
# pa_catcodes = (
# df["f1"].array.__arrow_array__().combine_chunks().to_pandas().cat.codes
# )
# pd_catcodes = pd_cat_df["f1"].cat.codes
# assert pd_catcodes.equals(pa_catcodes)
for Null in (None, pd.NA, 0):
for dtype in dtypes:
if dtype.startswith("float16") or dtype.startswith("bool"):
continue
# Use np.nan is a baseline
orig_null = Null if not pd.isna(Null) and Null == 0 else np.nan
orig = pd.DataFrame(
{"f0": [1, 2, orig_null, 3], "f1": [4, 3, orig_null, 1]},
dtype=np.float32,
)
df = pd.DataFrame(
{"f0": [1, 2, Null, 3], "f1": [4, 3, Null, 1]}, dtype=dtype
)
yield orig, df
# If Null is `False`, then there's no missing value.
for Null in (pd.NA, False):
orig = pd.DataFrame(
{"f0": [True, False, Null, True], "f1": [False, True, Null, True]},
dtype=pd.BooleanDtype(),
)
df = pd.DataFrame(
{"f0": [True, False, Null, True], "f1": [False, True, Null, True]},
dtype=pd.ArrowDtype(pa.bool_()),
)
yield orig, df
def check_inf(rng: RNG) -> None:
"""Validate there's no inf in X."""
X = rng.random(size=32).reshape(8, 4)
y = rng.random(size=8)
X[5, 2] = np.inf
with pytest.raises(ValueError, match="Input data contains `inf`"):
QuantileDMatrix(X, y)
with pytest.raises(ValueError, match="Input data contains `inf`"):
DMatrix(X, y)
@memory.cache
def get_california_housing() -> Tuple[np.ndarray, np.ndarray]:
"""Synthesize a dataset similar to the sklearn California housing dataset.
The real one can be obtained via:
.. code-block::
import sklearn.datasets
X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
"""
n_samples = 20640
rng = np.random.default_rng(2025)
pd = pytest.importorskip("pandas")
def mixture_2comp(
means: List[float], sigmas: List[float], weights: List[float]
) -> np.ndarray:
l0 = rng.normal(
size=(int(n_samples * weights[0])), loc=means[0], scale=sigmas[0]
)
l1 = rng.normal(size=(n_samples - l0.shape[0]), loc=means[1], scale=sigmas[1])
return np.concatenate([l0, l1], axis=0)
def norm(mean: float, std: float) -> np.ndarray:
return rng.normal(loc=mean, scale=std, size=(n_samples,))
df = pd.DataFrame(
{
"Longitude": mixture_2comp(
[-118.0703597, -121.85682825],
[0.7897320650373969, 0.7248398629412008],
[0.60402556, 0.39597444],
),
"Latitude": mixture_2comp(
[37.84266317, 33.86030848],
[1.0643911549736087, 0.5049274656834589],
[0.44485062, 0.55514938],
),
"MedInc": norm(mean=3.8706710029069766, std=1.8997756945748738),
"HouseAge": norm(mean=28.639486434108527, std=12.585252725724606),
"AveRooms": norm(mean=5.428999742190376, std=2.474113202333516),
"AveBedrms": norm(mean=1.096675149606208, std=0.47389937625774475),
"Population": norm(mean=1425.4767441860465, std=1132.434687757615),
"AveOccup": norm(mean=3.0706551594363742, std=10.385797959128219),
"MedHouseVal": norm(mean=2.068558169089147, std=1.1539282040412253),
}
)
X = df[df.columns.difference(["MedHouseVal"])].to_numpy()
y = df["MedHouseVal"].to_numpy()
return X, y
@memory.cache
def get_digits() -> Tuple[np.ndarray, np.ndarray]:
"""Fetch the digits dataset from sklearn."""
datasets = pytest.importorskip("sklearn.datasets")
data = datasets.load_digits()
return data.data, data.target
@memory.cache
def get_cancer() -> Tuple[np.ndarray, np.ndarray]:
"""Fetch the breast cancer dataset from sklearn."""
datasets = pytest.importorskip("sklearn.datasets")
return datasets.load_breast_cancer(return_X_y=True)
@memory.cache
def get_sparse() -> Tuple[np.ndarray, np.ndarray]:
"""Generate a sparse dataset."""
datasets = pytest.importorskip("sklearn.datasets")
rng = np.random.RandomState(199)
n = 2000
sparsity = 0.75
X, y = datasets.make_regression(n, random_state=rng)
flag = rng.binomial(1, sparsity, X.shape)
for i in range(X.shape[0]):
for j in range(X.shape[1]):
if flag[i, j]:
X[i, j] = np.nan
return X, y
# pylint: disable=too-many-statements
@memory.cache
def get_ames_housing() -> Tuple[DataFrameT, np.ndarray]:
"""Get a synthetic version of the amse housing dataset.
The real one can be obtained via:
.. code-block::
from sklearn import datasets
datasets.fetch_openml(data_id=42165, as_frame=True, return_X_y=True)
Number of samples: 1460
Number of features: 20
Number of categorical features: 10
Number of numerical features: 10
"""
if TYPE_CHECKING:
import pandas as pd
else:
pd = pytest.importorskip("pandas")
rng = np.random.default_rng(1994)
n_samples = 1460
df = pd.DataFrame()
def synth_cat(
name_proba: Dict[Union[str, float], float], density: float
) -> pd.Series:
n_nulls = int(n_samples * (1 - density))
has_nan = np.abs(1.0 - density) > 1e-6 and n_nulls > 0
if has_nan:
sparsity = 1.0 - density
name_proba[np.nan] = sparsity
keys = list(name_proba.keys())
p = list(name_proba.values())
p[-1] += 1.0 - np.sum(p) # Fix floating point error
x = rng.choice(keys, size=n_samples, p=p)
series = pd.Series(
x,
dtype=pd.CategoricalDtype(
# not NA
filter(lambda x: isinstance(x, str), keys)
),
)
return series
df["BldgType"] = synth_cat(
{
"1Fam": 0.835616,
"2fmCon": 0.078082,
"Duplex": 0.035616,
"Twnhs": 0.029452,
"TwnhsE": 0.021233,
},
1.0,
)
df["GarageFinish"] = synth_cat(
{"Unf": 0.414384, "RFn": 0.289041, "Fin": 0.241096}, 0.94452
)
df["LotConfig"] = synth_cat(
{
"Corner": 0.180137,
"CulDSac": 0.064384,
"FR2": 0.032192,
"FR3": 0.002740,
},
1.0,
)
df["Functional"] = synth_cat(
{
"Typ": 0.931506,
"Min2": 0.023287,
"Min1": 0.021232,
"Mod": 0.010273,
"Maj1": 0.009589,
"Maj2": 0.003424,
"Sev": 0.000684,
},
1.0,
)
df["MasVnrType"] = synth_cat(
{
"None": 0.591780,
"BrkFace": 0.304794,
"Stone": 0.087671,
"BrkCmn": 0.010273,
},
0.99452,
)
df["HouseStyle"] = synth_cat(
{
"1Story": 0.497260,
"2Story": 0.304794,
"1.5Fin": 0.105479,
"SLvl": 0.044520,
"SFoyer": 0.025342,
"1.5Unf": 0.009589,
"2.5Unf": 0.007534,
"2.5Fin": 0.005479,
},
1.0,
)
df["FireplaceQu"] = synth_cat(
{
"Gd": 0.260273,
"TA": 0.214383,
"Fa": 0.022602,
"Ex": 0.016438,
"Po": 0.013698,
},
0.527397,
)
df["ExterCond"] = synth_cat(
{
"TA": 0.878082,
"Gd": 0.1,
"Fa": 0.019178,
"Ex": 0.002054,
"Po": 0.000684,
},
1.0,
)
df["ExterQual"] = synth_cat(
{
"TA": 0.620547,
"Gd": 0.334246,
"Ex": 0.035616,
"Fa": 0.009589,
},
1.0,
)
df["PoolQC"] = synth_cat(
{
"Gd": 0.002054,
"Ex": 0.001369,
"Fa": 0.001369,
},
0.004794,
)
# We focus on the cateogircal values here, for numerical features, simple normal
# distribution is used, which doesn't match the original data.
def synth_num(loc: float, std: float, density: float) -> pd.Series:
x = rng.normal(loc=loc, scale=std, size=n_samples)
n_nulls = int(n_samples * (1 - density))
if np.abs(1.0 - density) > 1e-6 and n_nulls > 0:
null_idx = rng.choice(n_samples, size=n_nulls, replace=False)
x[null_idx] = np.nan
return pd.Series(x, dtype=np.float64)
df["3SsnPorch"] = synth_num(3.4095890410958902, 29.31733055678188, 1.0)
df["Fireplaces"] = synth_num(0.613013698630137, 0.6446663863122295, 1.0)
df["BsmtHalfBath"] = synth_num(0.057534246575342465, 0.23875264627921178, 1.0)
df["HalfBath"] = synth_num(0.38287671232876713, 0.5028853810928914, 1.0)
df["GarageCars"] = synth_num(1.7671232876712328, 0.7473150101111095, 1.0)
df["TotRmsAbvGrd"] = synth_num(6.517808219178082, 1.6253932905840505, 1.0)
df["BsmtFinSF1"] = synth_num(443.6397260273973, 456.0980908409277, 1.0)
df["BsmtFinSF2"] = synth_num(46.54931506849315, 161.31927280654173, 1.0)
df["GrLivArea"] = synth_num(1515.463698630137, 525.4803834232025, 1.0)
df["ScreenPorch"] = synth_num(15.060958904109588, 55.757415281874174, 1.0)
columns = list(df.columns)
rng.shuffle(columns)
df = df[columns]
# linear interaction for testing purposes.
y = np.zeros(shape=(n_samples,))
for c in df.columns:
if isinstance(df[c].dtype, pd.CategoricalDtype):
y += df[c].cat.codes.astype(np.float64)
else:
y += df[c].values
# Shift and scale to match the original y.
y *= 79442.50288288662 / y.std()
y += 180921.19589041095 - y.mean()
return df, y
@memory.cache
def get_mq2008(
dpath: str,
) -> Tuple[
sparse.csr_matrix,
np.ndarray,
np.ndarray,
sparse.csr_matrix,
np.ndarray,
np.ndarray,
sparse.csr_matrix,
np.ndarray,
np.ndarray,
]:
"""Fetch the mq2008 dataset."""
datasets = pytest.importorskip("sklearn.datasets")
src = "https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip"
target = os.path.join(dpath, "MQ2008.zip")
if not os.path.exists(target):
request.urlretrieve(url=src, filename=target)
with zipfile.ZipFile(target, "r") as f:
f.extractall(path=dpath)
(
x_train,
y_train,
qid_train,
x_test,
y_test,
qid_test,
x_valid,
y_valid,
qid_valid,
) = datasets.load_svmlight_files(
(
os.path.join(dpath, "MQ2008/Fold1/train.txt"),
os.path.join(dpath, "MQ2008/Fold1/test.txt"),
os.path.join(dpath, "MQ2008/Fold1/vali.txt"),
),
query_id=True,
zero_based=False,
)
return (
x_train,
y_train,
qid_train,
x_test,
y_test,
qid_test,
x_valid,
y_valid,
qid_valid,
)
def make_batches( # pylint: disable=too-many-arguments,too-many-locals
n_samples_per_batch: int,
n_features: int,
n_batches: int,
use_cupy: bool = False,
*,
vary_size: bool = False,
random_state: int = 1994,
) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
"""Make batches of dense data."""
X = []
y = []
w = []
if use_cupy:
import cupy
rng = cupy.random.RandomState(np.uint64(random_state))
else:
rng = np.random.RandomState(random_state)
for i in range(n_batches):
n_samples = n_samples_per_batch + i * 10 if vary_size else n_samples_per_batch
_X = rng.randn(n_samples, n_features)
_y = rng.randn(n_samples)
_w = rng.uniform(low=0, high=1, size=n_samples)
X.append(_X)
y.append(_y)
w.append(_w)
return X, y, w
RelData = Tuple[sparse.csr_matrix, npt.NDArray[np.int32], npt.NDArray[np.int32]]
@dataclass
class ClickFold:
"""A structure containing information about generated user-click data."""
X: sparse.csr_matrix
y: npt.NDArray[np.int32]
qid: npt.NDArray[np.int32]
score: npt.NDArray[np.float32]
click: npt.NDArray[np.int32]
pos: npt.NDArray[np.int64]
class RelDataCV(NamedTuple):
"""Simple data struct for holding a train-test split of a learning to rank dataset."""
train: RelData
test: RelData
max_rel: int
def is_binary(self) -> bool:
"""Whether the label consists of binary relevance degree."""
return self.max_rel == 1
class PBM:
"""Simulate click data with position bias model. There are other models available in
`ULTRA <https://github.com/ULTR-Community/ULTRA.git>`_ like the cascading model.
References
----------
Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm
"""
def __init__(self, eta: float) -> None:
# click probability for each relevance degree. (from 0 to 4)
self.click_prob = np.array([0.1, 0.16, 0.28, 0.52, 1.0])
exam_prob = np.array(
[0.68, 0.61, 0.48, 0.34, 0.28, 0.20, 0.11, 0.10, 0.08, 0.06]
)
# Observation probability, encoding positional bias for each position
self.exam_prob = np.power(exam_prob, eta)
def sample_clicks_for_query(
self, labels: npt.NDArray[np.int32], position: npt.NDArray[np.int64]
) -> npt.NDArray[np.int32]:
"""Sample clicks for one query based on input relevance degree and position.
Parameters
----------
labels :
relevance_degree
"""
labels = np.array(labels, copy=True)
click_prob = np.zeros(labels.shape)
# minimum
labels[labels < 0] = 0
# maximum
labels[labels >= len(self.click_prob)] = -1
click_prob = self.click_prob[labels]
exam_prob = np.zeros(labels.shape)
assert position.size == labels.size
ranks = np.array(position, copy=True)
# maximum
ranks[ranks >= self.exam_prob.size] = -1
exam_prob = self.exam_prob[ranks]
rng = np.random.default_rng(1994)
prob = rng.random(size=labels.shape[0], dtype=np.float32)
clicks: npt.NDArray[np.int32] = np.zeros(labels.shape, dtype=np.int32)
clicks[prob < exam_prob * click_prob] = 1
return clicks
def rlencode(x: npt.NDArray[np.int32]) -> Tuple[npt.NDArray, npt.NDArray, npt.NDArray]:
"""Run length encoding using numpy, modified from:
https://gist.github.com/nvictus/66627b580c13068589957d6ab0919e66
"""
x = np.asarray(x)
n = x.size
starts = np.r_[0, np.flatnonzero(~np.isclose(x[1:], x[:-1], equal_nan=True)) + 1]
lengths = np.diff(np.r_[starts, n])
values = x[starts]
indptr = np.append(starts, np.array([x.size]))
return indptr, lengths, values
def init_rank_score(
X: sparse.csr_matrix,
y: npt.NDArray[np.int32],
qid: npt.NDArray[np.int32],
sample_rate: float = 0.1,
) -> npt.NDArray[np.float32]:
"""We use XGBoost to generate the initial score instead of SVMRank for
simplicity. Sample rate is set to 0.1 by default so that we can test with small
datasets.
"""
# random sample
rng = np.random.default_rng(1994)
n_samples = int(X.shape[0] * sample_rate)
index: npt.NDArray = np.arange(0, X.shape[0], dtype=np.uint64)
rng.shuffle(index)
index = index[:n_samples]
X_train = X[index]
y_train = y[index]
qid_train = qid[index]
# Sort training data based on query id, required by XGBoost.
sorted_idx = np.argsort(qid_train)
X_train = X_train[sorted_idx]
y_train = y_train[sorted_idx]
qid_train = qid_train[sorted_idx]
ltr = XGBRanker(objective="rank:ndcg", tree_method="hist")
ltr.fit(X_train, y_train, qid=qid_train)
# Use the original order of the data.
scores = ltr.predict(X)
return scores
def simulate_one_fold(
fold: Tuple[sparse.csr_matrix, npt.NDArray[np.int32], npt.NDArray[np.int32]],
scores_fold: npt.NDArray[np.float32],
) -> ClickFold:
"""Simulate clicks for one fold."""
X_fold, y_fold, qid_fold = fold
assert qid_fold.dtype == np.int32
qids = np.unique(qid_fold)
position = np.empty((y_fold.size,), dtype=np.int64)
clicks = np.empty((y_fold.size,), dtype=np.int32)
pbm = PBM(eta=1.0)
# Avoid grouping by qid as we want to preserve the original data partition by
# the dataset authors.
for q in qids:
qid_mask = q == qid_fold
qid_mask = qid_mask.reshape(qid_mask.shape[0])
query_scores = scores_fold[qid_mask]
# Initial rank list, scores sorted to decreasing order
query_position = np.argsort(query_scores)[::-1]
position[qid_mask] = query_position
# get labels
relevance_degrees = y_fold[qid_mask]
query_clicks = pbm.sample_clicks_for_query(relevance_degrees, query_position)
clicks[qid_mask] = query_clicks
assert X_fold.shape[0] == qid_fold.shape[0], (X_fold.shape, qid_fold.shape)
assert X_fold.shape[0] == clicks.shape[0], (X_fold.shape, clicks.shape)
return ClickFold(X_fold, y_fold, qid_fold, scores_fold, clicks, position)
# pylint: disable=too-many-locals
def simulate_clicks(cv_data: RelDataCV) -> Tuple[ClickFold, Optional[ClickFold]]:
"""Simulate click data using position biased model (PBM)."""
X, y, qid = list(zip(cv_data.train, cv_data.test))
# ptr to train-test split
indptr = np.array([0] + [v.shape[0] for v in X])
indptr = np.cumsum(indptr)
assert len(indptr) == 2 + 1 # train, test
X_full = sparse.vstack(X)
y_full = np.concatenate(y)
qid_full = np.concatenate(qid)
# Obtain initial relevance score for click simulation
scores_full = init_rank_score(X_full, y_full, qid_full)
# partition it back to (train, test) tuple
scores = [scores_full[indptr[i - 1] : indptr[i]] for i in range(1, indptr.size)]
X_lst, y_lst, q_lst, s_lst, c_lst, p_lst = [], [], [], [], [], []
for i in range(indptr.size - 1):
fold = simulate_one_fold((X[i], y[i], qid[i]), scores[i])
X_lst.append(fold.X)
y_lst.append(fold.y)
q_lst.append(fold.qid)
s_lst.append(fold.score)
c_lst.append(fold.click)
p_lst.append(fold.pos)
scores_check_1 = [s_lst[i] for i in range(indptr.size - 1)]
for i in range(2):
assert (scores_check_1[i] == scores[i]).all()
if len(X_lst) == 1:
train = ClickFold(X_lst[0], y_lst[0], q_lst[0], s_lst[0], c_lst[0], p_lst[0])
test = None
else:
train, test = (
ClickFold(X_lst[i], y_lst[i], q_lst[i], s_lst[i], c_lst[i], p_lst[i])
for i in range(len(X_lst))
)
return train, test
def sort_ltr_samples(
X: sparse.csr_matrix,
y: npt.NDArray[np.int32],
qid: npt.NDArray[np.int32],
clicks: npt.NDArray[np.int32],
pos: npt.NDArray[np.int64],
) -> Tuple[
sparse.csr_matrix,
npt.NDArray[np.int32],
npt.NDArray[np.int32],
npt.NDArray[np.int32],
]:
"""Sort data based on query index and position."""
sorted_idx = np.argsort(qid)
X = X[sorted_idx]
clicks = clicks[sorted_idx]
qid = qid[sorted_idx]
pos = pos[sorted_idx]
indptr, _, _ = rlencode(qid)
for i in range(1, indptr.size):
beg = indptr[i - 1]
end = indptr[i]
assert beg < end, (beg, end)
assert np.unique(qid[beg:end]).size == 1, (beg, end)
query_pos = pos[beg:end]
assert query_pos.min() == 0, query_pos.min()
assert query_pos.max() >= query_pos.size - 1, (
query_pos.max(),
query_pos.size,
i,
np.unique(qid[beg:end]),
)
sorted_idx = np.argsort(query_pos)
X[beg:end] = X[beg:end][sorted_idx]
clicks[beg:end] = clicks[beg:end][sorted_idx]
y[beg:end] = y[beg:end][sorted_idx]
# not necessary
qid[beg:end] = qid[beg:end][sorted_idx]
data = X, clicks, y, qid
return data
def run_base_margin_info(DType: Callable, DMatrixT: Type[DMatrix], device: str) -> None:
"""Run tests for base margin."""
rng = np.random.default_rng()
X = DType(rng.normal(0, 1.0, size=100).astype(np.float32).reshape(50, 2))
if hasattr(X, "iloc"):
y = X.iloc[:, 0]
else:
y = X[:, 0]
base_margin = X
# no error at set
Xy = DMatrixT(X, y, base_margin=base_margin)
# Error at train, caused by check in predictor.
with pytest.raises(ValueError, match=r".*base_margin.*"):
train_fn({"tree_method": "hist", "device": device}, Xy)
if not hasattr(X, "iloc"):
# column major matrix
got = DType(Xy.get_base_margin().reshape(50, 2))
assert (got == base_margin).all()
assert base_margin.T.flags.c_contiguous is False
assert base_margin.T.flags.f_contiguous is True
Xy.set_info(base_margin=base_margin.T)
got = DType(Xy.get_base_margin().reshape(2, 50))
assert (got == base_margin.T).all()
# Row vs col vec.
base_margin = y
Xy.set_base_margin(base_margin)
bm_col = Xy.get_base_margin()
Xy.set_base_margin(base_margin.reshape(1, base_margin.size))
bm_row = Xy.get_base_margin()
assert (bm_row == bm_col).all()
# type
base_margin = base_margin.astype(np.float64)
Xy.set_base_margin(base_margin)
bm_f64 = Xy.get_base_margin()
assert (bm_f64 == bm_col).all()
# too many dimensions
base_margin = X.reshape(2, 5, 2, 5)
with pytest.raises(ValueError, match=r".*base_margin.*"):
Xy.set_base_margin(base_margin)
# pylint: disable=too-many-locals
@memory.cache
def make_sparse_regression(
n_samples: int, n_features: int, sparsity: float, as_dense: bool
) -> Tuple[Union[sparse.csr_matrix], np.ndarray]:
"""Make sparse matrix.
Parameters
----------
as_dense:
Return the matrix as np.ndarray with missing values filled by NaN
"""
if not hasattr(np.random, "default_rng"):
rng = np.random.RandomState(1994)
X = sparse.random(
m=n_samples,
n=n_features,
density=1.0 - sparsity,
random_state=rng,
format="csr",
)
y = rng.normal(loc=0.0, scale=1.0, size=n_samples)
return X, y
# Use multi-thread to speed up the generation, convenient if you use this function
# for benchmarking.
n_threads = min(multiprocessing.cpu_count(), n_features)
def random_csc(t_id: int) -> sparse.csc_matrix:
rng = np.random.default_rng(1994 * t_id)
thread_size = n_features // n_threads
if t_id == n_threads - 1:
n_features_tloc = n_features - t_id * thread_size
else:
n_features_tloc = thread_size
X = sparse.random(
m=n_samples,
n=n_features_tloc,
density=1.0 - sparsity,
random_state=rng,
).tocsc()
y = np.zeros((n_samples, 1))
for i in range(X.shape[1]):
size = X.indptr[i + 1] - X.indptr[i]
if size != 0:
y += X[:, i].toarray() * rng.random((n_samples, 1)) * 0.2
return X, y
futures = []
with ThreadPoolExecutor(max_workers=n_threads) as executor:
for i in range(n_threads):
futures.append(executor.submit(random_csc, i))
X_results = []
y_results = []
for f in futures:
X, y = f.result()
X_results.append(X)
y_results.append(y)
assert len(y_results) == n_threads
csr: sparse.csr_matrix = sparse.hstack(X_results, format="csr")
y = np.asarray(y_results)
y = y.reshape((y.shape[0], y.shape[1])).T
y = np.sum(y, axis=1)
assert csr.shape[0] == n_samples
assert csr.shape[1] == n_features
assert y.shape[0] == n_samples
if as_dense:
arr = csr.toarray()
assert arr.shape[0] == n_samples
assert arr.shape[1] == n_features
arr[arr == 0] = np.nan
return arr, y
return csr, y
def unique_random_strings(n_strings: int, seed: int) -> List[str]:
"""Generate n unique strings."""
name_len = 8 # hardcoded, should be more than enough
unique_strings: Set[str] = set()
rng = np.random.default_rng(seed)
while len(unique_strings) < n_strings:
random_str = "".join(
rng.choice(list(string.ascii_letters), size=name_len, replace=True)
)
unique_strings.add(random_str)
return list(unique_strings)
# pylint: disable=too-many-arguments,too-many-locals,too-many-branches
def make_categorical(
n_samples: int,
n_features: int,
n_categories: int,
*,
onehot: bool,
sparsity: float = 0.0,
cat_ratio: float = 1.0,
shuffle: bool = False,
random_state: int = 1994,
cat_dtype: np.typing.DTypeLike = np.int64,
device: str = "cpu",
) -> Tuple[ArrayLike, np.ndarray]:
"""Generate categorical features for test.
Parameters
----------
n_categories:
Number of categories for categorical features.
onehot:
Should we apply one-hot encoding to the data?
sparsity:
The ratio of the amount of missing values over the number of all entries.
cat_ratio:
The ratio of features that are categorical.
shuffle:
Whether we should shuffle the columns.
cat_dtype :
The dtype for categorical features, might be string or numeric.
Returns
-------
X, y
"""
pd = pytest.importorskip("pandas")
# Use different rngs for column and rows. We can change the `n_samples` without
# changing the column type.
rng = np.random.RandomState(random_state)
row_rng = np.random.RandomState(random_state + 1)
df = pd.DataFrame()
for i in range(n_features):
choice = rng.binomial(1, cat_ratio, size=1)[0]
if choice == 1:
if np.issubdtype(cat_dtype, np.str_):
# we rely on using the feature index as the seed to generate the same
# categories for multiple calls to `make_categorical`.
categories = np.array(unique_random_strings(n_categories, i))
c = row_rng.choice(categories, size=n_samples, replace=True)
else:
categories = np.arange(0, n_categories)
c = row_rng.randint(low=0, high=n_categories, size=n_samples)
df[str(i)] = pd.Series(c, dtype="category")
df[str(i)] = df[str(i)].cat.set_categories(categories)
else:
num = row_rng.randint(low=0, high=n_categories, size=n_samples)
df[str(i)] = pd.Series(num, dtype=num.dtype)
label = np.zeros(shape=(n_samples,))
for col in df.columns:
if isinstance(df[col].dtype, pd.CategoricalDtype):
label += df[col].cat.codes
else:
label += df[col]
label += 1
if sparsity > 0.0:
for i in range(n_features):
index = row_rng.randint(
low=0, high=n_samples - 1, size=int(n_samples * sparsity)
)
df.iloc[index, i] = np.nan
if is_pd_cat_dtype(df.dtypes.iloc[i]):
assert n_categories == np.unique(df.dtypes.iloc[i].categories).size
assert df.shape[1] == n_features
if onehot:
df = pd.get_dummies(df)
if shuffle:
columns = list(df.columns)
row_rng.shuffle(columns)
df = df[columns]
if device != "cpu":
assert device in ["cuda", "gpu"]
import cudf
import cupy
df = cudf.from_pandas(df)
label = cupy.array(label)
return df, label
class IteratorForTest(DataIter):
"""Iterator for testing streaming DMatrix. (external memory, quantile)"""
def __init__( # pylint: disable=too-many-arguments
self,
X: Sequence,
y: Sequence,
w: Optional[Sequence],
*,
cache: Optional[str],
on_host: bool = False,
min_cache_page_bytes: Optional[int] = None,
) -> None:
assert len(X) == len(y)
self.X = X
self.y = y
self.w = w
self.it = 0
super().__init__(
cache_prefix=cache,
on_host=on_host,
min_cache_page_bytes=min_cache_page_bytes,
)
def next(self, input_data: Callable) -> bool:
if self.it == len(self.X):
return False
with pytest.raises(TypeError, match="Keyword argument"):
input_data(self.X[self.it], self.y[self.it], None)
# Use copy to make sure the iterator doesn't hold a reference to the data.
input_data(
data=self.X[self.it].copy(),
label=self.y[self.it].copy(),
weight=self.w[self.it].copy() if self.w else None,
)
gc.collect() # clear up the copy, see if XGBoost access freed memory.
self.it += 1
return True
def reset(self) -> None:
self.it = 0
def as_arrays(
self,
) -> Tuple[Union[np.ndarray, sparse.csr_matrix], ArrayLike, Optional[ArrayLike]]:
"""Return concatenated arrays."""
if isinstance(self.X[0], sparse.csr_matrix):
X = sparse.vstack(self.X, format="csr")
else:
X = np.concatenate(self.X, axis=0)
y = np.concatenate(self.y, axis=0)
if self.w:
w = np.concatenate(self.w, axis=0)
else:
w = None
return X, y, w