Files
MLPproject/.venv/lib/python3.12/site-packages/xgboost/testing/__init__.py
2025-10-23 15:44:32 +02:00

796 lines
22 KiB
Python

"""Utilities for defining Python tests. The module is private and subject to frequent
change without notice.
"""
# pylint: disable=invalid-name,missing-function-docstring
import importlib.util
import os
import platform
import queue
import socket
import sys
import threading
from contextlib import contextmanager
from io import StringIO
from platform import system
from typing import (
Any,
Callable,
Dict,
Generator,
List,
Optional,
Sequence,
Set,
Tuple,
TypedDict,
TypeVar,
Union,
)
import numpy as np
import pytest
from scipy import sparse
import xgboost as xgb
from xgboost import RabitTracker
from xgboost.core import ArrayLike
from xgboost.sklearn import SklObjective
from .._typing import PathLike
from .data import (
IteratorForTest,
get_california_housing,
get_cancer,
get_digits,
get_sparse,
make_batches,
make_categorical,
make_sparse_regression,
)
hypothesis = pytest.importorskip("hypothesis")
# pylint:disable=wrong-import-position,wrong-import-order
from hypothesis import strategies
from hypothesis.extra.numpy import arrays
datasets = pytest.importorskip("sklearn.datasets")
PytestSkip = TypedDict("PytestSkip", {"condition": bool, "reason": str})
def has_ipv6() -> bool:
"""Check whether IPv6 is enabled on this host."""
# connection error in macos, still need some fixes.
if system() not in ("Linux", "Windows"):
return False
if socket.has_ipv6:
try:
with socket.socket(
socket.AF_INET6, socket.SOCK_STREAM
) as server, socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as client:
server.bind(("::1", 0))
port = server.getsockname()[1]
server.listen()
client.connect(("::1", port))
conn, _ = server.accept()
client.sendall("abc".encode())
msg = conn.recv(3).decode()
# if the code can be executed to this point, the message should be
# correct.
assert msg == "abc"
return True
except OSError:
pass
return False
def no_mod(name: str) -> PytestSkip:
spec = importlib.util.find_spec(name)
return {"condition": spec is None, "reason": f"{name} is not installed."}
def no_ipv6() -> PytestSkip:
"""PyTest skip mark for IPv6."""
return {"condition": not has_ipv6(), "reason": "IPv6 is required to be enabled."}
def not_linux() -> PytestSkip:
return {"condition": system() != "Linux", "reason": "Linux is required."}
def no_ubjson() -> PytestSkip:
return no_mod("ubjson")
def no_sklearn() -> PytestSkip:
return no_mod("sklearn")
def no_dask() -> PytestSkip:
return no_mod("dask")
def no_loky() -> PytestSkip:
return no_mod("loky")
def no_dask_ml() -> PytestSkip:
if sys.platform.startswith("win"):
return {"reason": "Unsupported platform.", "condition": True}
return no_mod("dask_ml")
def no_spark() -> PytestSkip:
if sys.platform.startswith("win") or sys.platform.startswith("darwin"):
return {"reason": "Unsupported platform.", "condition": True}
return no_mod("pyspark")
def no_pandas() -> PytestSkip:
return no_mod("pandas")
def no_arrow() -> PytestSkip:
return no_mod("pyarrow")
def no_polars() -> PytestSkip:
return no_mod("polars")
def no_modin() -> PytestSkip:
try:
import modin.pandas as md
md.DataFrame([[1, 2.0, True], [2, 3.0, False]], columns=["a", "b", "c"])
except ImportError:
return {"reason": "Failed import modin.", "condition": True}
return {"reason": "Failed import modin.", "condition": True}
def no_matplotlib() -> PytestSkip:
reason = "Matplotlib is not installed."
try:
import matplotlib.pyplot as _ # noqa
return {"condition": False, "reason": reason}
except ImportError:
return {"condition": True, "reason": reason}
def no_dask_cuda() -> PytestSkip:
return no_mod("dask_cuda")
def no_cudf() -> PytestSkip:
return no_mod("cudf")
def no_cupy() -> PytestSkip:
skip_cupy = no_mod("cupy")
if not skip_cupy["condition"] and system() == "Windows":
import cupy as cp
# Cupy might run into issue on Windows due to missing compiler
try:
cp.array([1, 2, 3]).sum()
except Exception: # pylint: disable=broad-except
skip_cupy["condition"] = True
return skip_cupy
def no_dask_cudf() -> PytestSkip:
return no_mod("dask_cudf")
def no_json_schema() -> PytestSkip:
return no_mod("jsonschema")
def no_graphviz() -> PytestSkip:
return no_mod("graphviz")
def no_rmm() -> PytestSkip:
return no_mod("rmm")
def no_multiple(*args: Any) -> PytestSkip:
condition = False
reason = ""
for arg in args:
condition = condition or arg["condition"]
if arg["condition"]:
reason = arg["reason"]
break
return {"condition": condition, "reason": reason}
def skip_win() -> PytestSkip:
return {"reason": "Unsupported platform.", "condition": is_windows()}
def make_regression(
n_samples: int, n_features: int, use_cupy: bool
) -> Tuple[ArrayLike, ArrayLike, ArrayLike]:
"""Make a simple regression dataset."""
X, y, w = make_batches(n_samples, n_features, 1, use_cupy)
return X[0], y[0], w[0]
def make_batches_sparse(
n_samples_per_batch: int, n_features: int, n_batches: int, sparsity: float
) -> Tuple[List[sparse.csr_matrix], List[np.ndarray], List[np.ndarray]]:
X = []
y = []
w = []
rng = np.random.RandomState(1994)
for _ in range(n_batches):
_X = sparse.random(
n_samples_per_batch,
n_features,
1.0 - sparsity,
format="csr",
dtype=np.float32,
random_state=rng,
)
_y = rng.randn(n_samples_per_batch)
_w = rng.uniform(low=0, high=1, size=n_samples_per_batch)
X.append(_X)
y.append(_y)
w.append(_w)
return X, y, w
class TestDataset:
"""Contains a dataset in numpy format as well as the relevant objective and metric."""
def __init__(
self, name: str, get_dataset: Callable, objective: str, metric: str
) -> None:
self.name = name
self.objective = objective
self.metric = metric
self.X, self.y = get_dataset()
self.w: Optional[np.ndarray] = None
self.margin: Optional[np.ndarray] = None
def set_params(self, params_in: Dict[str, Any]) -> Dict[str, Any]:
params_in["objective"] = self.objective
params_in["eval_metric"] = self.metric
if self.objective == "multi:softmax":
params_in["num_class"] = int(np.max(self.y) + 1)
return params_in
def get_dmat(self) -> xgb.DMatrix:
return xgb.DMatrix(
self.X,
self.y,
weight=self.w,
base_margin=self.margin,
enable_categorical=True,
)
def get_device_dmat(self, max_bin: Optional[int]) -> xgb.QuantileDMatrix:
import cupy as cp
w = None if self.w is None else cp.array(self.w)
X = cp.array(self.X, dtype=np.float32)
y = cp.array(self.y, dtype=np.float32)
return xgb.QuantileDMatrix(
X, y, weight=w, base_margin=self.margin, max_bin=max_bin
)
def get_external_dmat(self) -> xgb.DMatrix:
n_samples = self.X.shape[0]
n_batches = 10
per_batch = n_samples // n_batches + 1
predictor = []
response = []
weight = []
for i in range(n_batches):
beg = i * per_batch
end = min((i + 1) * per_batch, n_samples)
assert end != beg
X = self.X[beg:end, ...]
y = self.y[beg:end]
w = self.w[beg:end] if self.w is not None else None
predictor.append(X)
response.append(y)
if w is not None:
weight.append(w)
it = IteratorForTest(
predictor,
response,
weight if weight else None,
cache="cache",
on_host=False,
)
return xgb.DMatrix(it)
def __repr__(self) -> str:
return self.name
def make_ltr(
n_samples: int,
n_features: int,
n_query_groups: int,
max_rel: int,
sort_qid: bool = True,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Make a dataset for testing LTR."""
rng = np.random.default_rng(1994)
X = rng.normal(0, 1.0, size=n_samples * n_features).reshape(n_samples, n_features)
y = np.sum(X, axis=1)
y -= y.min()
y = np.round(y / y.max() * max_rel).astype(np.int32)
qid = rng.integers(0, n_query_groups, size=n_samples, dtype=np.int32)
w = rng.normal(0, 1.0, size=n_query_groups)
w -= np.min(w)
w /= np.max(w)
if sort_qid:
qid = np.sort(qid)
return X, y, qid, w
def _cat_sampled_from() -> strategies.SearchStrategy:
@strategies.composite
def _make_cat(draw: Callable) -> Tuple[int, int, int, float]:
n_samples = draw(strategies.integers(2, 512))
n_features = draw(strategies.integers(1, 4))
n_cats = draw(strategies.integers(1, 128))
sparsity = draw(
strategies.floats(
min_value=0,
max_value=1,
allow_nan=False,
allow_infinity=False,
allow_subnormal=False,
)
)
return n_samples, n_features, n_cats, sparsity
def _build(args: Tuple[int, int, int, float]) -> TestDataset:
n_samples = args[0]
n_features = args[1]
n_cats = args[2]
sparsity = args[3]
return TestDataset(
f"{n_samples}x{n_features}-{n_cats}-{sparsity}",
lambda: make_categorical(
n_samples, n_features, n_cats, onehot=False, sparsity=sparsity
),
"reg:squarederror",
"rmse",
)
return _make_cat().map(_build) # pylint: disable=no-member
categorical_dataset_strategy: strategies.SearchStrategy = _cat_sampled_from()
sparse_datasets_strategy = strategies.sampled_from(
[
TestDataset(
"1e5x8-0.95-csr",
lambda: make_sparse_regression(int(1e5), 8, 0.95, False),
"reg:squarederror",
"rmse",
),
TestDataset(
"1e5x8-0.5-csr",
lambda: make_sparse_regression(int(1e5), 8, 0.5, False),
"reg:squarederror",
"rmse",
),
TestDataset(
"1e5x8-0.5-dense",
lambda: make_sparse_regression(int(1e5), 8, 0.5, True),
"reg:squarederror",
"rmse",
),
TestDataset(
"1e5x8-0.05-csr",
lambda: make_sparse_regression(int(1e5), 8, 0.05, False),
"reg:squarederror",
"rmse",
),
TestDataset(
"1e5x8-0.05-dense",
lambda: make_sparse_regression(int(1e5), 8, 0.05, True),
"reg:squarederror",
"rmse",
),
]
)
def make_datasets_with_margin(
unweighted_strategy: strategies.SearchStrategy,
) -> Callable[[], strategies.SearchStrategy[TestDataset]]:
"""Factory function for creating strategies that generates datasets with weight and
base margin.
"""
@strategies.composite
def weight_margin(draw: Callable) -> TestDataset:
data: TestDataset = draw(unweighted_strategy)
if draw(strategies.booleans()):
data.w = draw(
arrays(np.float64, (len(data.y)), elements=strategies.floats(0.1, 2.0))
)
if draw(strategies.booleans()):
num_class = 1
if data.objective == "multi:softmax":
num_class = int(np.max(data.y) + 1)
elif data.name.startswith("mtreg"):
num_class = data.y.shape[1]
data.margin = draw(
arrays(
np.float64,
(data.y.shape[0] * num_class),
elements=strategies.floats(0.5, 1.0),
)
)
assert data.margin is not None
if num_class != 1:
data.margin = data.margin.reshape(data.y.shape[0], num_class)
return data
return weight_margin
# A strategy for drawing from a set of example datasets. May add random weights to the
# dataset
def make_dataset_strategy() -> strategies.SearchStrategy[TestDataset]:
_unweighted_datasets_strategy = strategies.sampled_from(
[
TestDataset(
"calif_housing", get_california_housing, "reg:squarederror", "rmse"
),
TestDataset(
"calif_housing-l1", get_california_housing, "reg:absoluteerror", "mae"
),
TestDataset("cancer", get_cancer, "binary:logistic", "logloss"),
TestDataset("sparse", get_sparse, "reg:squarederror", "rmse"),
TestDataset("sparse-l1", get_sparse, "reg:absoluteerror", "mae"),
TestDataset(
"empty",
lambda: (np.empty((0, 100)), np.empty(0)),
"reg:squarederror",
"rmse",
),
]
)
return make_datasets_with_margin(_unweighted_datasets_strategy)()
_unweighted_multi_datasets_strategy = strategies.sampled_from(
[
TestDataset("digits", get_digits, "multi:softmax", "mlogloss"),
TestDataset(
"mtreg",
lambda: datasets.make_regression(n_samples=128, n_features=2, n_targets=3),
"reg:squarederror",
"rmse",
),
TestDataset(
"mtreg-l1",
lambda: datasets.make_regression(n_samples=128, n_features=2, n_targets=3),
"reg:absoluteerror",
"mae",
),
]
)
# A strategy for drawing from a set of multi-target/multi-class datasets.
multi_dataset_strategy = make_datasets_with_margin(
_unweighted_multi_datasets_strategy
)()
def non_increasing(L: Sequence[float], tolerance: float = 1e-4) -> bool:
return all((y - x) < tolerance for x, y in zip(L, L[1:]))
def non_decreasing(L: Sequence[float], tolerance: float = 1e-4) -> bool:
return all((y - x) >= -tolerance for x, y in zip(L, L[1:]))
M = TypeVar("M", xgb.Booster, xgb.XGBModel)
def logregobj(preds: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[np.ndarray, np.ndarray]:
"""Binary regression custom objective."""
labels = dtrain.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
grad = preds - labels
hess = preds * (1.0 - preds)
return grad, hess
def eval_error_metric(
predt: np.ndarray, dtrain: xgb.DMatrix, rev_link: bool
) -> Tuple[str, np.float64]:
"""Evaluation metric for xgb.train.
Parameters
----------
rev_link : Whether the metric needs to apply the reverse link function (activation).
"""
label = dtrain.get_label()
if rev_link:
predt = 1.0 / (1.0 + np.exp(-predt))
assert (0.0 <= predt).all() and (predt <= 1.0).all()
r = np.zeros(predt.shape)
gt = predt > 0.5
if predt.size == 0:
return "CustomErr", np.float64(0.0)
r[gt] = 1 - label[gt]
le = predt <= 0.5
r[le] = label[le]
return "CustomErr", np.sum(r)
def eval_error_metric_skl(
y_true: np.ndarray, y_score: np.ndarray, rev_link: bool = False
) -> np.float64:
"""Evaluation metric that looks like metrics provided by sklearn."""
if rev_link:
y_score = 1.0 / (1.0 + np.exp(-y_score))
assert (0.0 <= y_score).all() and (y_score <= 1.0).all()
r = np.zeros(y_score.shape)
gt = y_score > 0.5
r[gt] = 1 - y_true[gt]
le = y_score <= 0.5
r[le] = y_true[le]
return np.sum(r)
def root_mean_square(y_true: np.ndarray, y_score: np.ndarray) -> float:
err = y_score - y_true
rmse = np.sqrt(np.dot(err, err) / y_score.size)
return rmse
def softmax(x: np.ndarray) -> np.ndarray:
e = np.exp(x)
return e / np.sum(e)
def softprob_obj(
classes: int, use_cupy: bool = False, order: str = "C", gdtype: str = "float32"
) -> SklObjective:
"""Custom softprob objective for testing.
Parameters
----------
use_cupy :
Whether the objective should return cupy arrays.
order :
The order of gradient matrices. "C" or "F".
gdtype :
DType for gradient. Hessian is not set. This is for testing asymmetric types.
"""
if use_cupy:
import cupy as backend
else:
backend = np
def objective(
labels: backend.ndarray, predt: backend.ndarray
) -> Tuple[backend.ndarray, backend.ndarray]:
rows = labels.shape[0]
grad = backend.zeros((rows, classes), dtype=np.float32)
hess = backend.zeros((rows, classes), dtype=np.float32)
eps = 1e-6
for r in range(predt.shape[0]):
target = labels[r]
p = softmax(predt[r, :])
for c in range(predt.shape[1]):
assert target >= 0 or target <= classes
g = p[c] - 1.0 if c == target else p[c]
h = max((2.0 * p[c] * (1.0 - p[c])).item(), eps)
grad[r, c] = g
hess[r, c] = h
grad = grad.reshape((rows, classes))
hess = hess.reshape((rows, classes))
grad = backend.require(grad, requirements=order, dtype=gdtype)
hess = backend.require(hess, requirements=order)
return grad, hess
return objective
def ls_obj(
y_true: np.ndarray, y_pred: np.ndarray, sample_weight: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray]:
"""Least squared error."""
grad = y_pred - y_true
hess = np.ones(len(y_true))
if sample_weight is not None:
grad *= sample_weight
hess *= sample_weight
return grad, hess
class DirectoryExcursion:
"""Change directory. Change back and optionally cleaning up the directory when
exit.
"""
def __init__(self, path: PathLike, cleanup: bool = False):
self.path = path
self.curdir = os.path.normpath(os.path.abspath(os.path.curdir))
self.cleanup = cleanup
self.files: Set[str] = set()
def __enter__(self) -> None:
os.chdir(self.path)
if self.cleanup:
self.files = {
os.path.join(root, f)
for root, subdir, files in os.walk(os.path.expanduser(self.path))
for f in files
}
def __exit__(self, *args: Any) -> None:
os.chdir(self.curdir)
if self.cleanup:
files = {
os.path.join(root, f)
for root, subdir, files in os.walk(os.path.expanduser(self.path))
for f in files
}
diff = files.difference(self.files)
for f in diff:
os.remove(f)
@contextmanager
def captured_output() -> Generator[Tuple[StringIO, StringIO], None, None]:
"""Reassign stdout temporarily in order to test printed statements
Taken from:
https://stackoverflow.com/questions/4219717/how-to-assert-output-with-nosetest-unittest-in-python
Also works for pytest.
"""
new_out, new_err = StringIO(), StringIO()
old_out, old_err = sys.stdout, sys.stderr
try:
sys.stdout, sys.stderr = new_out, new_err
yield sys.stdout, sys.stderr
finally:
sys.stdout, sys.stderr = old_out, old_err
def timeout(sec: int, *args: Any, enable: bool = True, **kwargs: Any) -> Any:
"""Make a pytest mark for the `pytest-timeout` package.
Parameters
----------
sec :
Timeout seconds.
enable :
Control whether timeout should be applied, used for debugging.
Returns
-------
pytest.mark.timeout
"""
if enable:
return pytest.mark.timeout(sec, *args, **kwargs)
return pytest.mark.timeout(None, *args, **kwargs)
def setup_rmm_pool(_: Any, pytestconfig: pytest.Config) -> None:
if pytestconfig.getoption("--use-rmm-pool"):
if no_rmm()["condition"]:
raise ImportError("The --use-rmm-pool option requires the RMM package")
if no_dask_cuda()["condition"]:
raise ImportError(
"The --use-rmm-pool option requires the dask_cuda package"
)
import rmm
from dask_cuda.utils import get_n_gpus
rmm.reinitialize(
pool_allocator=True,
initial_pool_size=1024 * 1024 * 1024,
devices=list(range(get_n_gpus())),
)
def demo_dir(path: str) -> str:
"""Look for the demo directory based on the test file name."""
path = normpath(os.path.dirname(path))
while True:
subdirs = [f.path for f in os.scandir(path) if f.is_dir()]
subdirs = [os.path.basename(d) for d in subdirs]
if "demo" in subdirs:
return os.path.join(path, "demo")
new_path = normpath(os.path.join(path, os.path.pardir))
assert new_path != path
path = new_path
def normpath(path: str) -> str:
return os.path.normpath(os.path.abspath(path))
def data_dir(path: str) -> str:
return os.path.join(demo_dir(path), "data")
def load_agaricus(path: str) -> Tuple[xgb.DMatrix, xgb.DMatrix]:
dpath = data_dir(path)
dtrain = xgb.DMatrix(os.path.join(dpath, "agaricus.txt.train?format=libsvm"))
dtest = xgb.DMatrix(os.path.join(dpath, "agaricus.txt.test?format=libsvm"))
return dtrain, dtest
def project_root(path: str) -> str:
return normpath(os.path.join(demo_dir(path), os.path.pardir))
def run_with_rabit(
world_size: int, test_fn: Callable[..., Any], *args: Any, **kwargs: Any
) -> None:
exception_queue: queue.Queue = queue.Queue()
def run_worker(rabit_env: Dict[str, Union[str, int]]) -> None:
try:
with xgb.collective.CommunicatorContext(**rabit_env):
test_fn(*args, **kwargs)
except Exception as e: # pylint: disable=broad-except
exception_queue.put(e)
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size)
tracker.start()
workers = []
for _ in range(world_size):
worker = threading.Thread(target=run_worker, args=(tracker.worker_args(),))
workers.append(worker)
worker.start()
for worker in workers:
worker.join()
assert exception_queue.empty(), f"Worker failed: {exception_queue.get()}"
tracker.wait_for()
def column_split_feature_names(
feature_names: List[Union[str, int]], world_size: int
) -> List[str]:
"""Get the global list of feature names from the local feature names."""
return [
f"{rank}.{feature}" for rank in range(world_size) for feature in feature_names
]
def is_windows() -> bool:
"""Check if the current platform is Windows."""
return platform.system() == "Windows"