Files
MLPproject/.venv/lib/python3.12/site-packages/xgboost/data.py
2025-10-23 15:44:32 +02:00

1743 lines
53 KiB
Python

# pylint: disable=too-many-arguments, too-many-branches, too-many-lines
# pylint: disable=too-many-return-statements
"""Data dispatching for DMatrix."""
import ctypes
import functools
import json
import os
import warnings
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Optional,
Sequence,
Tuple,
TypeAlias,
TypeGuard,
Union,
)
import numpy as np
from ._data_utils import (
AifType,
Categories,
DfCatAccessor,
TransformedDf,
_arrow_array_inf,
_ensure_np_dtype,
_is_df_cat,
array_hasobject,
array_interface,
array_interface_dict,
arrow_cat_inf,
check_cudf_meta,
cuda_array_interface,
cuda_array_interface_dict,
cudf_cat_inf,
get_ref_categories,
is_arrow_dict,
pd_cat_inf,
)
from ._typing import (
CupyT,
DataType,
FeatureNames,
FeatureTypes,
FloatCompatible,
NumpyDType,
PandasDType,
PathLike,
TransformedData,
c_bst_ulong,
)
from .compat import (
_is_arrow,
_is_cudf_df,
_is_cudf_pandas,
_is_cudf_ser,
_is_modin_df,
_is_modin_series,
_is_pandas_df,
_is_pandas_series,
_is_polars,
_is_polars_lazyframe,
_is_polars_series,
import_pandas,
import_polars,
import_pyarrow,
is_pyarrow_available,
lazy_isinstance,
)
from .core import (
_LIB,
DataIter,
DataSplitMode,
DMatrix,
_check_call,
_ProxyDMatrix,
c_str,
make_jcargs,
)
if TYPE_CHECKING:
import pyarrow as pa
from pandas import DataFrame as PdDataFrame
from pandas import Series as PdSeries
DispatchedDataBackendReturnType: TypeAlias = Tuple[
ctypes.c_void_p, Optional[FeatureNames], Optional[FeatureTypes]
]
CAT_T = "c"
# meta info that can be a matrix instead of vector.
_matrix_meta = {"base_margin", "label"}
def _warn_unused_missing(data: DataType, missing: Optional[FloatCompatible]) -> None:
if (missing is not None) and (not np.isnan(missing)):
warnings.warn(
"`missing` is not used for current input data type:" + str(type(data)),
UserWarning,
)
def _check_data_shape(data: DataType) -> None:
if hasattr(data, "shape") and len(data.shape) != 2:
raise ValueError("Please reshape the input data into 2-dimensional matrix.")
def is_scipy_csr(data: DataType) -> bool:
"""Predicate for scipy CSR input."""
is_array = False
is_matrix = False
try:
from scipy.sparse import csr_array
is_array = isinstance(data, csr_array)
except ImportError:
pass
try:
from scipy.sparse import csr_matrix
is_matrix = isinstance(data, csr_matrix)
except ImportError:
pass
return is_array or is_matrix
def transform_scipy_sparse(data: DataType, is_csr: bool) -> DataType:
"""Ensure correct data alignment and data type for scipy sparse inputs. Input should
be either csr or csc matrix.
"""
from scipy.sparse import csc_matrix, csr_matrix
if len(data.indices) != len(data.data):
raise ValueError(f"length mismatch: {len(data.indices)} vs {len(data.data)}")
indptr, _ = _ensure_np_dtype(data.indptr, data.indptr.dtype)
indices, _ = _ensure_np_dtype(data.indices, data.indices.dtype)
values, _ = _ensure_np_dtype(data.data, data.data.dtype)
if (
indptr is not data.indptr
or indices is not data.indices
or values is not data.data
):
if is_csr:
data = csr_matrix((values, indices, indptr), shape=data.shape)
else:
data = csc_matrix((values, indices, indptr), shape=data.shape)
return data
def _from_scipy_csr(
*,
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
"""Initialize data from a CSR matrix."""
handle = ctypes.c_void_p()
data = transform_scipy_sparse(data, True)
_check_call(
_LIB.XGDMatrixCreateFromCSR(
array_interface(data.indptr),
array_interface(data.indices),
array_interface(data.data),
c_bst_ulong(data.shape[1]),
make_jcargs(
missing=float(missing),
nthread=int(nthread),
data_split_mode=int(data_split_mode),
),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def is_scipy_csc(data: DataType) -> bool:
"""Predicate for scipy CSC input."""
is_array = False
is_matrix = False
try:
from scipy.sparse import csc_array
is_array = isinstance(data, csc_array)
except ImportError:
pass
try:
from scipy.sparse import csc_matrix
is_matrix = isinstance(data, csc_matrix)
except ImportError:
pass
return is_array or is_matrix
def _from_scipy_csc(
*,
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
"""Initialize data from a CSC matrix."""
handle = ctypes.c_void_p()
transform_scipy_sparse(data, False)
_check_call(
_LIB.XGDMatrixCreateFromCSC(
array_interface(data.indptr),
array_interface(data.indices),
array_interface(data.data),
c_bst_ulong(data.shape[0]),
make_jcargs(
missing=float(missing),
nthread=int(nthread),
data_split_mode=int(data_split_mode),
),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def is_scipy_coo(data: DataType) -> bool:
"""Predicate for scipy COO input."""
is_array = False
is_matrix = False
try:
from scipy.sparse import coo_array
is_array = isinstance(data, coo_array)
except ImportError:
pass
try:
from scipy.sparse import coo_matrix
is_matrix = isinstance(data, coo_matrix)
except ImportError:
pass
return is_array or is_matrix
def _is_np_array_like(data: DataType) -> TypeGuard[np.ndarray]:
return hasattr(data, "__array_interface__")
def _maybe_np_slice(data: DataType, dtype: Optional[NumpyDType]) -> np.ndarray:
"""Handle numpy slice. This can be removed if we use __array_interface__."""
try:
if not data.flags.c_contiguous:
data = np.array(data, copy=True, dtype=dtype)
else:
data = np.asarray(data, dtype=dtype)
except AttributeError:
data = np.asarray(data, dtype=dtype)
data, dtype = _ensure_np_dtype(data, dtype)
return data
def _from_numpy_array(
*,
data: np.ndarray,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
"""Initialize data from a 2-D numpy matrix."""
_check_data_shape(data)
data, _ = _ensure_np_dtype(data, data.dtype)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromDense(
array_interface(data),
make_jcargs(
missing=float(missing),
nthread=int(nthread),
data_split_mode=int(data_split_mode),
),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
_pandas_dtype_mapper = {
"int8": "int",
"int16": "int",
"int32": "int",
"int64": "int",
"uint8": "int",
"uint16": "int",
"uint32": "int",
"uint64": "int",
"float16": "float",
"float32": "float",
"float64": "float",
"bool": "i",
}
# nullable types
pandas_nullable_mapper = {
"Int8": "int",
"Int16": "int",
"Int32": "int",
"Int64": "int",
"UInt8": "int",
"UInt16": "int",
"UInt32": "int",
"UInt64": "int",
"Float32": "float",
"Float64": "float",
"boolean": "i",
}
pandas_pyarrow_mapper = {
"int8[pyarrow]": "int",
"int16[pyarrow]": "int",
"int32[pyarrow]": "int",
"int64[pyarrow]": "int",
"uint8[pyarrow]": "int",
"uint16[pyarrow]": "int",
"uint32[pyarrow]": "int",
"uint64[pyarrow]": "int",
"float[pyarrow]": "float",
"float32[pyarrow]": "float",
"double[pyarrow]": "float",
"float64[pyarrow]": "float",
"bool[pyarrow]": "i",
}
_pandas_dtype_mapper.update(pandas_nullable_mapper)
_pandas_dtype_mapper.update(pandas_pyarrow_mapper)
_ENABLE_CAT_ERR = (
"When categorical type is supplied, the experimental DMatrix parameter"
"`enable_categorical` must be set to `True`."
)
def _invalid_dataframe_dtype(data: DataType) -> None:
# pandas series has `dtypes` but it's just a single object
# cudf series doesn't have `dtypes`.
if hasattr(data, "dtypes") and hasattr(data.dtypes, "__iter__"):
bad_fields = [
f"{data.columns[i]}: {dtype}"
for i, dtype in enumerate(data.dtypes)
if dtype.name not in _pandas_dtype_mapper
]
err = " Invalid columns:" + ", ".join(bad_fields)
else:
err = ""
type_err = "DataFrame.dtypes for data must be int, float, bool or category."
msg = f"""{type_err} {_ENABLE_CAT_ERR} {err}"""
raise ValueError(msg)
def pandas_feature_info(
data: "PdDataFrame",
meta: Optional[str],
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> Tuple[Optional[FeatureNames], Optional[FeatureTypes]]:
"""Handle feature info for pandas dataframe."""
pd = import_pandas()
# handle feature names
if feature_names is None and meta is None:
if isinstance(data.columns, pd.MultiIndex):
feature_names = [" ".join([str(x) for x in i]) for i in data.columns]
else:
feature_names = list(data.columns.map(str))
# handle feature types and dtype validation
new_feature_types = []
need_sparse_extension_warn = True
for dtype in data.dtypes:
if is_pd_sparse_dtype(dtype):
new_feature_types.append(_pandas_dtype_mapper[dtype.subtype.name])
if need_sparse_extension_warn:
warnings.warn("Sparse arrays from pandas are converted into dense.")
need_sparse_extension_warn = False
elif (
is_pd_cat_dtype(dtype) or is_pa_ext_categorical_dtype(dtype)
) and enable_categorical:
new_feature_types.append(CAT_T)
else:
try:
new_feature_types.append(_pandas_dtype_mapper[dtype.name])
except KeyError:
_invalid_dataframe_dtype(data)
if feature_types is None and meta is None:
feature_types = new_feature_types
return feature_names, feature_types
def is_nullable_dtype(dtype: PandasDType) -> bool:
"""Whether dtype is a pandas nullable type."""
from pandas.api.extensions import ExtensionDtype
if not isinstance(dtype, ExtensionDtype):
return False
from pandas.api.types import is_bool_dtype, is_float_dtype, is_integer_dtype
is_int = is_integer_dtype(dtype) and dtype.name in pandas_nullable_mapper
# np.bool has alias `bool`, while pd.BooleanDtype has `boolean`.
is_bool = is_bool_dtype(dtype) and dtype.name == "boolean"
is_float = is_float_dtype(dtype) and dtype.name in pandas_nullable_mapper
return is_int or is_bool or is_float or is_pd_cat_dtype(dtype)
def is_pa_ext_dtype(dtype: Any) -> bool:
"""Return whether dtype is a pyarrow extension type for pandas"""
return hasattr(dtype, "pyarrow_dtype")
def is_pa_ext_categorical_dtype(dtype: Any) -> bool:
"""Check whether dtype is a dictionary type."""
return lazy_isinstance(
getattr(dtype, "pyarrow_dtype", None), "pyarrow.lib", "DictionaryType"
)
@functools.cache
def _lazy_load_pd_is_cat() -> Callable[[PandasDType], bool]:
pd = import_pandas()
if hasattr(pd.util, "version") and hasattr(pd.util.version, "Version"):
Version = pd.util.version.Version
if Version(pd.__version__) >= Version("2.1.0"):
from pandas import CategoricalDtype
def pd_is_cat_210(dtype: PandasDType) -> bool:
return isinstance(dtype, CategoricalDtype)
return pd_is_cat_210
from pandas.api.types import is_categorical_dtype # type: ignore
return is_categorical_dtype
def is_pd_cat_dtype(dtype: PandasDType) -> bool:
"""Wrapper for testing pandas category type."""
is_cat = _lazy_load_pd_is_cat()
return is_cat(dtype)
@functools.cache
def _lazy_load_pd_is_sparse() -> Callable[[PandasDType], bool]:
pd = import_pandas()
if hasattr(pd.util, "version") and hasattr(pd.util.version, "Version"):
Version = pd.util.version.Version
if Version(pd.__version__) >= Version("2.1.0"):
from pandas import SparseDtype
def pd_is_sparse_210(dtype: PandasDType) -> bool:
return isinstance(dtype, SparseDtype)
return pd_is_sparse_210
from pandas.api.types import is_sparse # type: ignore
return is_sparse
def is_pd_sparse_dtype(dtype: PandasDType) -> bool:
"""Wrapper for testing pandas sparse type."""
is_sparse = _lazy_load_pd_is_sparse()
return is_sparse(dtype)
def pandas_pa_type(ser: Any) -> np.ndarray:
"""Handle pandas pyarrow extention."""
pd = import_pandas()
if TYPE_CHECKING:
import pyarrow as pa
else:
pa = import_pyarrow()
# No copy, callstack:
# pandas.core.internals.managers.SingleBlockManager.array_values()
# pandas.core.internals.blocks.EABackedBlock.values
d_array: pd.arrays.ArrowExtensionArray = ser.array # type: ignore
# no copy in __arrow_array__
# ArrowExtensionArray._data is a chunked array
aa: "pa.ChunkedArray" = d_array.__arrow_array__()
# combine_chunks takes the most significant amount of time
chunk: "pa.Array" = aa.combine_chunks()
# When there's null value, we have to use copy
zero_copy = chunk.null_count == 0 and not pa.types.is_boolean(chunk.type)
# Alternately, we can use chunk.buffers(), which returns a list of buffers and
# we need to concatenate them ourselves.
# FIXME(jiamingy): Is there a better way to access the arrow buffer along with
# its mask?
# Buffers from chunk.buffers() have the address attribute, but don't expose the
# mask.
arr: np.ndarray = chunk.to_numpy(zero_copy_only=zero_copy, writable=False)
arr, _ = _ensure_np_dtype(arr, arr.dtype)
return arr
@functools.cache
def _lazy_has_npdtypes() -> bool:
return np.lib.NumpyVersion(np.__version__) > np.lib.NumpyVersion("1.25.0")
@functools.cache
def _lazy_load_pd_floats() -> tuple:
from pandas import Float32Dtype, Float64Dtype
return Float32Dtype, Float64Dtype
def pandas_transform_data(
data: "PdDataFrame",
) -> List[Union[np.ndarray, DfCatAccessor]]:
"""Handle categorical dtype and extension types from pandas."""
Float32Dtype, Float64Dtype = _lazy_load_pd_floats()
result: List[Union[np.ndarray, DfCatAccessor]] = []
np_dtypes = _lazy_has_npdtypes()
def cat_codes(ser: "PdSeries") -> DfCatAccessor:
return ser.cat
def nu_type(ser: "PdSeries") -> np.ndarray:
# Avoid conversion when possible
if isinstance(dtype, Float32Dtype):
res_dtype: NumpyDType = np.float32
elif isinstance(dtype, Float64Dtype):
res_dtype = np.float64
else:
res_dtype = np.float32
return _ensure_np_dtype(
ser.to_numpy(dtype=res_dtype, na_value=np.nan), res_dtype
)[0]
def oth_type(ser: "PdSeries") -> np.ndarray:
# The dtypes module is added in 1.25.
npdtypes = np_dtypes and isinstance(
ser.dtype,
(
# pylint: disable=no-member
np.dtypes.Float32DType, # type: ignore
# pylint: disable=no-member
np.dtypes.Float64DType, # type: ignore
),
)
if npdtypes or dtype in {np.float32, np.float64}:
array = ser.to_numpy()
else:
# Specifying the dtype can significantly slow down the conversion (about
# 15% slow down for dense inplace-predict)
array = ser.to_numpy(dtype=np.float32, na_value=np.nan)
return _ensure_np_dtype(array, array.dtype)[0]
for col, dtype in zip(data.columns, data.dtypes):
if is_pa_ext_categorical_dtype(dtype):
raise ValueError(
"pyarrow dictionary type is not supported. Use pandas category instead."
)
if is_pd_cat_dtype(dtype):
result.append(cat_codes(data[col]))
elif is_pa_ext_dtype(dtype):
result.append(pandas_pa_type(data[col]))
elif is_nullable_dtype(dtype):
result.append(nu_type(data[col]))
elif is_pd_sparse_dtype(dtype):
arr = data[col].values
arr = arr.to_dense()
if _is_np_array_like(arr):
arr, _ = _ensure_np_dtype(arr, arr.dtype)
result.append(arr)
else:
result.append(oth_type(data[col]))
# FIXME(jiamingy): Investigate the possibility of using dataframe protocol or arrow
# IPC format for pandas so that we can apply the data transformation inside XGBoost
# for better memory efficiency.
return result
class PandasTransformed(TransformedDf):
"""A storage class for transformed pandas DataFrame."""
def __init__(
self,
columns: List[Union[np.ndarray, DfCatAccessor]],
ref_categories: Optional[Categories],
) -> None:
self.columns = columns
aitfs: AifType = []
# Get the array interface representation for each column.
for col in self.columns:
if _is_df_cat(col):
# Categorical column
jnames, jcodes, buf = pd_cat_inf(col.categories, col.codes)
self.temporary_buffers.append(buf)
aitfs.append((jnames, jcodes))
else:
assert isinstance(col, np.ndarray)
inf = array_interface_dict(col)
# Numeric column
aitfs.append(inf)
super().__init__(ref_categories=ref_categories, aitfs=aitfs)
@property
def shape(self) -> Tuple[int, int]:
"""Return shape of the transformed DataFrame."""
if is_arrow_dict(self.columns[0]):
# When input is arrow.
n_samples = len(self.columns[0].indices)
elif _is_df_cat(self.columns[0]):
# When input is pandas.
n_samples = self.columns[0].codes.shape[0]
else:
# Anything else, TypeGuard is ignored by mypy 1.15.0 for some reason
n_samples = self.columns[0].shape[0] # type: ignore
return n_samples, len(self.columns)
def _transform_pandas_df(
data: "PdDataFrame",
enable_categorical: bool,
feature_names: Optional[FeatureNames] = None,
feature_types: Optional[Union[FeatureTypes, Categories]] = None,
meta: Optional[str] = None,
) -> Tuple[PandasTransformed, Optional[FeatureNames], Optional[FeatureTypes]]:
if meta and len(data.columns) > 1 and meta not in _matrix_meta:
raise ValueError(f"DataFrame for {meta} cannot have multiple columns")
feature_types, ref_categories = get_ref_categories(feature_types)
feature_names, feature_types = pandas_feature_info(
data, meta, feature_names, feature_types, enable_categorical
)
arrays = pandas_transform_data(data)
return (
PandasTransformed(arrays, ref_categories=ref_categories),
feature_names,
feature_types,
)
def _meta_from_pandas_df(
data: DataType,
name: str,
dtype: Optional[NumpyDType],
handle: ctypes.c_void_p,
) -> None:
data, _, _ = _transform_pandas_df(data, False, meta=name)
if len(data.columns) == 1:
array = data.columns[0]
else:
array = np.stack(data.columns).T
array, dtype = _ensure_np_dtype(array, dtype)
_meta_from_numpy(array, name, dtype, handle)
def _from_pandas_df(
*,
data: "PdDataFrame",
enable_categorical: bool,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
df, feature_names, feature_types = _transform_pandas_df(
data, enable_categorical, feature_names, feature_types
)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromColumnar(
df.array_interface(),
make_jcargs(
nthread=nthread, missing=missing, data_split_mode=data_split_mode
),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def _meta_from_pandas_series(
data: DataType, name: str, dtype: Optional[NumpyDType], handle: ctypes.c_void_p
) -> None:
"""Help transform pandas series for meta data like labels"""
if is_pd_sparse_dtype(data.dtype):
data = data.values.to_dense().astype(np.float32)
elif is_pa_ext_dtype(data.dtype):
data = pandas_pa_type(data)
else:
data = data.to_numpy(np.float32, na_value=np.nan)
if is_pd_sparse_dtype(getattr(data, "dtype", data)):
data = data.to_dense() # type: ignore
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
_meta_from_numpy(data, name, dtype, handle)
def _from_pandas_series(
*,
data: DataType,
missing: FloatCompatible,
nthread: int,
enable_categorical: bool,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
if (data.dtype.name not in _pandas_dtype_mapper) and not (
is_pd_cat_dtype(data.dtype) and enable_categorical
):
_invalid_dataframe_dtype(data)
if enable_categorical and is_pd_cat_dtype(data.dtype):
data = data.cat.codes
return _from_numpy_array(
data=data.values.reshape(data.shape[0], 1).astype("float"),
missing=missing,
nthread=nthread,
feature_names=feature_names,
feature_types=feature_types,
)
class ArrowTransformed(TransformedDf):
"""A storage class for transformed arrow table."""
def __init__(
self,
columns: List[Union["pa.NumericArray", "pa.DictionaryArray"]],
ref_categories: Optional[Categories] = None,
) -> None:
self.columns = columns
self.temporary_buffers: List[Tuple] = []
if TYPE_CHECKING:
import pyarrow as pa
else:
pa = import_pyarrow()
aitfs: AifType = []
def push_series(col: Union["pa.NumericArray", "pa.DictionaryArray"]) -> None:
if isinstance(col, pa.DictionaryArray):
cats = col.dictionary
codes = col.indices
if not isinstance(cats, (pa.StringArray, pa.LargeStringArray)):
raise TypeError(
"Only string-based categorical index is supported for arrow."
)
jnames, jcodes, buf = arrow_cat_inf(cats, codes)
self.temporary_buffers.append(buf)
aitfs.append((jnames, jcodes))
else:
jdata = _arrow_array_inf(col)
aitfs.append(jdata)
for col in self.columns:
push_series(col)
super().__init__(ref_categories=ref_categories, aitfs=aitfs)
@property
def shape(self) -> Tuple[int, int]:
"""Return shape of the transformed DataFrame."""
return len(self.columns[0]), len(self.columns)
def _transform_arrow_table(
data: "pa.Table",
enable_categorical: bool,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
) -> Tuple[ArrowTransformed, Optional[FeatureNames], Optional[FeatureTypes]]:
if TYPE_CHECKING:
import pyarrow as pa
else:
pa = import_pyarrow()
t_names, t_types = _arrow_feature_info(data)
feature_types, ref_categories = get_ref_categories(feature_types)
if feature_names is None:
feature_names = t_names
if feature_types is None:
feature_types = t_types
columns = []
for cname in feature_names:
col0 = data.column(cname)
col: Union["pa.NumericArray", "pa.DictionaryArray"] = col0.combine_chunks()
if isinstance(col, pa.BooleanArray):
col = col.cast(pa.int8()) # bit-compressed array, not supported.
if is_arrow_dict(col) and not enable_categorical:
# None because the function doesn't know how to get the type info from arrow
# table.
_invalid_dataframe_dtype(None)
columns.append(col)
df_t = ArrowTransformed(columns, ref_categories=ref_categories)
return df_t, feature_names, feature_types
def _from_arrow_table( # pylint: disable=too-many-positional-arguments
data: DataType,
enable_categorical: bool,
missing: FloatCompatible,
n_threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
df_t, feature_names, feature_types = _transform_arrow_table(
data, enable_categorical, feature_names, feature_types
)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromColumnar(
df_t.array_interface(),
make_jcargs(
nthread=n_threads, missing=missing, data_split_mode=data_split_mode
),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
@functools.cache
def _arrow_dtype() -> Dict[DataType, str]:
import pyarrow as pa
mapping = {
pa.int8(): "int",
pa.int16(): "int",
pa.int32(): "int",
pa.int64(): "int",
pa.uint8(): "int",
pa.uint16(): "int",
pa.uint32(): "int",
pa.uint64(): "int",
pa.float16(): "float",
pa.float32(): "float",
pa.float64(): "float",
pa.bool_(): "i",
}
return mapping
def _arrow_feature_info(data: DataType) -> Tuple[List[str], List]:
if TYPE_CHECKING:
import pyarrow as pa
else:
pa = import_pyarrow()
table: "pa.Table" = data
names = table.column_names
def map_type(name: str) -> str:
col = table.column(name)
if isinstance(col.type, pa.DictionaryType):
return CAT_T # pylint: disable=unreachable
return _arrow_dtype()[col.type]
types = list(map(map_type, names))
return names, types
def _meta_from_arrow_table(
data: DataType,
name: str,
dtype: Optional[NumpyDType],
handle: ctypes.c_void_p,
) -> None:
table: "pa.Table" = data
_meta_from_pandas_df(table.to_pandas(), name=name, dtype=dtype, handle=handle)
def _check_pyarrow_for_polars() -> None:
if not is_pyarrow_available():
raise ImportError("`pyarrow` is required for polars.")
def _transform_polars_df(
data: DataType,
enable_categorical: bool,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
) -> Tuple[ArrowTransformed, Optional[FeatureNames], Optional[FeatureTypes]]:
if _is_polars_lazyframe(data):
df = data.collect()
warnings.warn(
"Using the default parameters for the polars `LazyFrame.collect`. Consider"
" passing a realized `DataFrame` or `Series` instead.",
UserWarning,
)
else:
df = data
_check_pyarrow_for_polars()
table = df.to_arrow()
return _transform_arrow_table(
table, enable_categorical, feature_names, feature_types
)
def _from_polars_df( # pylint: disable=too-many-positional-arguments
data: DataType,
enable_categorical: bool,
missing: FloatCompatible,
n_threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
df_t, feature_names, feature_types = _transform_polars_df(
data, enable_categorical, feature_names, feature_types
)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromColumnar(
df_t.array_interface(),
make_jcargs(
nthread=n_threads, missing=missing, data_split_mode=data_split_mode
),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
@functools.cache
def _lazy_load_cudf_is_cat() -> Callable[[Any], bool]:
try:
from cudf import CategoricalDtype
def is_categorical_dtype(dtype: Any) -> bool:
return isinstance(dtype, CategoricalDtype)
except ImportError:
try:
from cudf.api.types import is_categorical_dtype # type: ignore
except ImportError:
from cudf.utils.dtypes import is_categorical_dtype # type: ignore
return is_categorical_dtype
@functools.cache
def _lazy_load_cudf_is_bool() -> Callable[[Any], bool]:
from cudf.api.types import is_bool_dtype
return is_bool_dtype
class CudfTransformed(TransformedDf):
"""A storage class for transformed cuDF dataframe."""
def __init__(
self,
columns: List[Union["PdSeries", DfCatAccessor]],
ref_categories: Optional[Categories],
) -> None:
self.columns = columns
# Buffers for temporary data that cannot be freed until the data is consumed by
# the DMatrix or the booster.
aitfs: AifType = []
def push_series(ser: Any) -> None:
if _is_df_cat(ser):
cats, codes = ser.categories, ser.codes
cats_ainf, codes_ainf, buf = cudf_cat_inf(cats, codes)
self.temporary_buffers.append(buf)
aitfs.append((cats_ainf, codes_ainf))
else:
# numeric column
ainf = cuda_array_interface_dict(ser)
aitfs.append(ainf)
for col in self.columns:
push_series(col)
super().__init__(ref_categories=ref_categories, aitfs=aitfs)
@property
def shape(self) -> Tuple[int, int]:
"""Return shape of the transformed DataFrame."""
if _is_df_cat(self.columns[0]):
n_samples = self.columns[0].codes.shape[0]
else:
n_samples = self.columns[0].shape[0] # type: ignore
return n_samples, len(self.columns)
def _transform_cudf_df(
data: DataType,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
enable_categorical: bool,
) -> Tuple[
CudfTransformed,
Optional[FeatureNames],
Optional[FeatureTypes],
]:
is_bool_dtype = _lazy_load_cudf_is_bool()
is_categorical_dtype = _lazy_load_cudf_is_cat()
# Work around https://github.com/dmlc/xgboost/issues/10181
if _is_cudf_ser(data):
if is_bool_dtype(data.dtype):
data = data.astype(np.uint8)
dtypes = [data.dtype]
else:
data = data.astype(
{col: np.uint8 for col in data.select_dtypes(include="bool")}
)
dtypes = data.dtypes
if not all(
dtype.name in _pandas_dtype_mapper
or (is_categorical_dtype(dtype) and enable_categorical)
for dtype in dtypes
):
_invalid_dataframe_dtype(data)
# handle feature names
if feature_names is None:
if _is_cudf_ser(data):
feature_names = [data.name]
elif lazy_isinstance(data.columns, "cudf.core.multiindex", "MultiIndex"):
feature_names = [" ".join([str(x) for x in i]) for i in data.columns]
else:
feature_names = list(data.columns.map(str))
# handle feature types
feature_types, ref_categories = get_ref_categories(feature_types)
if feature_types is None:
feature_types = []
for dtype in dtypes:
if is_categorical_dtype(dtype) and enable_categorical:
feature_types.append(CAT_T)
else:
feature_types.append(_pandas_dtype_mapper[dtype.name])
# handle categorical data
result = []
if _is_cudf_ser(data):
# unlike pandas, cuDF uses NA for missing data.
if is_categorical_dtype(data.dtype) and enable_categorical:
result.append(data.cat)
elif enable_categorical:
raise ValueError(_ENABLE_CAT_ERR)
else:
result.append(data)
else:
for col, dtype in zip(data.columns, data.dtypes):
series = data[col]
if is_categorical_dtype(dtype) and enable_categorical:
result.append(series.cat)
elif is_categorical_dtype(dtype):
raise ValueError(_ENABLE_CAT_ERR)
else:
result.append(series)
return (
CudfTransformed(result, ref_categories=ref_categories),
feature_names,
feature_types,
)
def _from_cudf_df(
*,
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
enable_categorical: bool,
) -> DispatchedDataBackendReturnType:
df, feature_names, feature_types = _transform_cudf_df(
data, feature_names, feature_types, enable_categorical
)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromCudaColumnar(
df.array_interface(),
make_jcargs(nthread=nthread, missing=missing),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def _is_cupy_alike(data: DataType) -> bool:
return hasattr(data, "__cuda_array_interface__")
def _transform_cupy_array(data: DataType) -> CupyT:
import cupy
if not hasattr(data, "__cuda_array_interface__") and hasattr(data, "__array__"):
data = cupy.array(data, copy=False)
if array_hasobject(data) or data.dtype in [cupy.bool_]:
data = data.astype(cupy.float32, copy=False)
return data
def _from_cupy_array(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
"""Initialize DMatrix from cupy ndarray."""
data = _transform_cupy_array(data)
interface_str = cuda_array_interface(data)
handle = ctypes.c_void_p()
config = bytes(json.dumps({"missing": missing, "nthread": nthread}), "utf-8")
_check_call(
_LIB.XGDMatrixCreateFromCudaArrayInterface(
interface_str, config, ctypes.byref(handle)
)
)
return handle, feature_names, feature_types
def _is_cupy_csr(data: DataType) -> bool:
try:
import cupyx
except ImportError:
return False
return isinstance(data, cupyx.scipy.sparse.csr_matrix)
def _is_cupy_csc(data: DataType) -> bool:
try:
import cupyx
except ImportError:
return False
return isinstance(data, cupyx.scipy.sparse.csc_matrix)
def _is_dlpack(data: DataType) -> bool:
return "PyCapsule" in str(type(data)) and "dltensor" in str(data)
def _transform_dlpack(data: DataType) -> bool:
from cupy import from_dlpack # pylint: disable=E0401
assert "used_dltensor" not in str(data)
data = from_dlpack(data)
return data
def _from_dlpack(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
data = _transform_dlpack(data)
return _from_cupy_array(data, missing, nthread, feature_names, feature_types)
def _is_uri(data: DataType) -> TypeGuard[PathLike]:
return isinstance(data, (str, os.PathLike))
def _from_uri(
data: PathLike,
missing: Optional[FloatCompatible],
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
_warn_unused_missing(data, missing)
handle = ctypes.c_void_p()
data = os.fspath(os.path.expanduser(data))
config = make_jcargs(uri=str(data), data_split_mode=int(data_split_mode))
_check_call(_LIB.XGDMatrixCreateFromURI(config, ctypes.byref(handle)))
return handle, feature_names, feature_types
def _is_list(data: DataType) -> TypeGuard[list]:
return isinstance(data, list)
def _from_list(
*,
data: Sequence,
missing: FloatCompatible,
n_threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
array = np.array(data)
_check_data_shape(data)
return _from_numpy_array(
data=array,
missing=missing,
nthread=n_threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
def _is_tuple(data: DataType) -> TypeGuard[tuple]:
return isinstance(data, tuple)
def _from_tuple(
*,
data: Sequence,
missing: FloatCompatible,
n_threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
return _from_list(
data=data,
missing=missing,
n_threads=n_threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
def _is_iter(data: DataType) -> TypeGuard[DataIter]:
return isinstance(data, DataIter)
def _has_array_protocol(data: DataType) -> bool:
return hasattr(data, "__array__")
def _convert_unknown_data(data: DataType) -> DataType:
warnings.warn(
f"Unknown data type: {type(data)}, trying to convert it to csr_matrix",
UserWarning,
)
try:
import scipy.sparse
except ImportError:
return None
try:
data = scipy.sparse.csr_matrix(data)
except Exception: # pylint: disable=broad-except
return None
return data
def dispatch_data_backend(
*,
data: DataType,
missing: FloatCompatible, # Or Optional[Float]
threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[Union[FeatureTypes, Categories]],
enable_categorical: bool = False,
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
"""Dispatch data for DMatrix."""
def check_cats(
feature_types: Optional[Union[FeatureTypes, Categories]],
) -> TypeGuard[Optional[FeatureTypes]]:
if isinstance(feature_types, Categories):
raise ValueError(
"Reference category is only supported by DataFrame inputs."
)
return True
if (
not _is_cudf_ser(data)
and not _is_pandas_series(data)
and not _is_polars_series(data)
):
_check_data_shape(data)
if is_scipy_csr(data):
assert check_cats(feature_types)
return _from_scipy_csr(
data=data,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if is_scipy_csc(data):
assert check_cats(feature_types)
return _from_scipy_csc(
data=data,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if is_scipy_coo(data):
assert check_cats(feature_types)
return _from_scipy_csr(
data=data.tocsr(),
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if _is_np_array_like(data):
assert check_cats(feature_types)
return _from_numpy_array(
data=data,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if _is_uri(data):
assert check_cats(feature_types)
return _from_uri(data, missing, feature_names, feature_types, data_split_mode)
if _is_list(data):
assert check_cats(feature_types)
return _from_list(
data=data,
missing=missing,
n_threads=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if _is_tuple(data):
assert check_cats(feature_types)
return _from_tuple(
data=data,
missing=missing,
n_threads=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if _is_polars_series(data):
pl = import_polars()
data = pl.DataFrame({data.name: data})
if _is_polars(data):
return _from_polars_df(
data,
enable_categorical,
missing=missing,
n_threads=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if _is_arrow(data):
return _from_arrow_table(
data,
enable_categorical,
missing=missing,
n_threads=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if _is_cudf_pandas(data):
data = data._fsproxy_fast # pylint: disable=protected-access
if _is_pandas_series(data):
pd = import_pandas()
data = pd.DataFrame(data)
if _is_pandas_df(data):
return _from_pandas_df(
data=data,
enable_categorical=enable_categorical,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
data_split_mode=data_split_mode,
)
if _is_cudf_df(data) or _is_cudf_ser(data):
return _from_cudf_df(
data=data,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
enable_categorical=enable_categorical,
)
if _is_cupy_alike(data):
assert check_cats(feature_types)
return _from_cupy_array(data, missing, threads, feature_names, feature_types)
if _is_cupy_csr(data):
raise TypeError("cupyx CSR is not supported yet.")
if _is_cupy_csc(data):
raise TypeError("cupyx CSC is not supported yet.")
if _is_dlpack(data):
assert check_cats(feature_types)
return _from_dlpack(data, missing, threads, feature_names, feature_types)
if _is_modin_series(data):
pd = import_pandas()
data = pd.DataFrame(data)
if _is_modin_df(data):
return _from_pandas_df(
data=data,
enable_categorical=enable_categorical,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
)
if _has_array_protocol(data):
assert check_cats(feature_types)
array = np.asarray(data)
return _from_numpy_array(
data=array,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
)
converted = _convert_unknown_data(data)
if converted is not None:
assert check_cats(feature_types)
return _from_scipy_csr(
data=converted,
missing=missing,
nthread=threads,
feature_names=feature_names,
feature_types=feature_types,
)
raise TypeError("Not supported type for data." + str(type(data)))
def _validate_meta_shape(data: DataType, name: str) -> None:
if hasattr(data, "shape"):
msg = f"Invalid shape: {data.shape} for {name}"
if name in _matrix_meta:
if len(data.shape) > 2:
raise ValueError(msg)
return
if len(data.shape) > 2 or (
len(data.shape) == 2 and (data.shape[1] != 0 and data.shape[1] != 1)
):
raise ValueError(f"Invalid shape: {data.shape} for {name}")
def _meta_from_numpy(
data: np.ndarray,
field: str,
dtype: Optional[NumpyDType],
handle: ctypes.c_void_p,
) -> None:
data, dtype = _ensure_np_dtype(data, dtype)
interface = data.__array_interface__
if interface.get("mask", None) is not None:
raise ValueError("Masked array is not supported.")
interface_str = array_interface(data)
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface_str))
def _meta_from_list(
data: Sequence, field: str, dtype: Optional[NumpyDType], handle: ctypes.c_void_p
) -> None:
data_np = np.array(data)
_meta_from_numpy(data_np, field, dtype, handle)
def _meta_from_tuple(
data: Sequence, field: str, dtype: Optional[NumpyDType], handle: ctypes.c_void_p
) -> None:
return _meta_from_list(data, field, dtype, handle)
def _meta_from_cudf_df(data: DataType, field: str, handle: ctypes.c_void_p) -> None:
if field not in _matrix_meta:
_meta_from_cudf_series(data.iloc[:, 0], field, handle)
else:
data = data.values
interface = cuda_array_interface(data)
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface))
def _meta_from_cudf_series(data: DataType, field: str, handle: ctypes.c_void_p) -> None:
check_cudf_meta(data, field)
inf = cuda_array_interface(data)
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), inf))
def _meta_from_cupy_array(data: DataType, field: str, handle: ctypes.c_void_p) -> None:
data = _transform_cupy_array(data)
inf = cuda_array_interface(data)
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), inf))
def dispatch_meta_backend(
matrix: DMatrix, data: DataType, name: str, dtype: Optional[NumpyDType] = None
) -> None:
"""Dispatch for meta info."""
handle = matrix.handle
assert handle is not None
_validate_meta_shape(data, name)
if data is None:
return
if _is_list(data):
_meta_from_list(data, name, dtype, handle)
return
if _is_tuple(data):
_meta_from_tuple(data, name, dtype, handle)
return
if _is_np_array_like(data):
_meta_from_numpy(data, name, dtype, handle)
return
if _is_arrow(data):
_meta_from_arrow_table(data, name, dtype, handle)
return
if _is_cudf_pandas(data):
data = data._fsproxy_fast # pylint: disable=protected-access
if _is_polars(data):
if _is_polars_lazyframe(data):
data = data.collect()
_check_pyarrow_for_polars()
_meta_from_arrow_table(data.to_arrow(), name, dtype, handle)
return
if _is_pandas_df(data):
_meta_from_pandas_df(data, name, dtype=dtype, handle=handle)
return
if _is_pandas_series(data):
_meta_from_pandas_series(data, name, dtype, handle)
return
if _is_dlpack(data):
data = _transform_dlpack(data)
_meta_from_cupy_array(data, name, handle)
return
if _is_cudf_ser(data):
_meta_from_cudf_series(data, name, handle)
return
if _is_cudf_df(data):
_meta_from_cudf_df(data, name, handle)
return
if _is_cupy_alike(data):
_meta_from_cupy_array(data, name, handle)
return
if _is_modin_df(data):
_meta_from_pandas_df(data, name, dtype=dtype, handle=handle)
return
if _is_modin_series(data):
data = data.values.astype("float")
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
_meta_from_numpy(data, name, dtype, handle)
return
if _has_array_protocol(data):
# pyarrow goes here.
array = np.asarray(data)
_meta_from_numpy(array, name, dtype, handle)
return
raise TypeError("Unsupported type for " + name, str(type(data)))
class SingleBatchInternalIter(DataIter): # pylint: disable=R0902
"""An iterator for single batch data to help creating device DMatrix.
Transforming input directly to histogram with normal single batch data API
can not access weight for sketching. So this iterator acts as a staging
area for meta info.
"""
def __init__(self, **kwargs: Any) -> None:
self.kwargs = kwargs
self.it = 0 # pylint: disable=invalid-name
# This does not necessarily increase memory usage as the data transformation
# might use memory.
super().__init__(release_data=False)
def next(self, input_data: Callable) -> bool:
if self.it == 1:
return False
self.it += 1
input_data(**self.kwargs)
return True
def reset(self) -> None:
self.it = 0
def _proxy_transform(
data: DataType,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> TransformedData:
if _is_cudf_pandas(data):
data = data._fsproxy_fast # pylint: disable=protected-access
if _is_cudf_df(data) or _is_cudf_ser(data):
return _transform_cudf_df(
data, feature_names, feature_types, enable_categorical
)
if _is_cupy_alike(data):
data = _transform_cupy_array(data)
return data, feature_names, feature_types
if _is_dlpack(data):
return _transform_dlpack(data), feature_names, feature_types
if _is_list(data) or _is_tuple(data):
data = np.array(data)
if _is_np_array_like(data):
data, _ = _ensure_np_dtype(data, data.dtype)
return data, feature_names, feature_types
if is_scipy_csr(data):
data = transform_scipy_sparse(data, True)
return data, feature_names, feature_types
if is_scipy_csc(data):
data = transform_scipy_sparse(data.tocsr(), True)
return data, feature_names, feature_types
if is_scipy_coo(data):
data = transform_scipy_sparse(data.tocsr(), True)
return data, feature_names, feature_types
if _is_polars(data):
df_pl, feature_names, feature_types = _transform_polars_df(
data, enable_categorical, feature_names, feature_types
)
return df_pl, feature_names, feature_types
if _is_pandas_series(data):
pd = import_pandas()
data = pd.DataFrame(data)
if _is_arrow(data):
df_pa, feature_names, feature_types = _transform_arrow_table(
data, enable_categorical, feature_names, feature_types
)
return df_pa, feature_names, feature_types
if _is_pandas_df(data):
df, feature_names, feature_types = _transform_pandas_df(
data, enable_categorical, feature_names, feature_types
)
return df, feature_names, feature_types
raise TypeError("Value type is not supported for data iterator:" + str(type(data)))
def is_on_cuda(data: Any) -> bool:
"""Whether the data is a CUDA-based data structure."""
return any(
p(data)
for p in (
_is_cudf_df,
_is_cudf_ser,
_is_cudf_pandas,
_is_cupy_alike,
_is_dlpack,
)
)
def dispatch_proxy_set_data(
proxy: _ProxyDMatrix,
data: DataType,
) -> None:
"""Dispatch for QuantileDMatrix."""
if (
not _is_cudf_ser(data)
and not _is_pandas_series(data)
and not _is_polars_series(data)
):
_check_data_shape(data)
if isinstance(data, CudfTransformed):
# pylint: disable=W0212
proxy._ref_data_from_cuda_columnar(data)
return
if _is_cupy_alike(data):
proxy._ref_data_from_cuda_interface(data) # pylint: disable=W0212
return
if _is_dlpack(data):
data = _transform_dlpack(data)
proxy._ref_data_from_cuda_interface(data) # pylint: disable=W0212
return
# Host
if isinstance(data, (ArrowTransformed, PandasTransformed)):
proxy._ref_data_from_columnar(data) # pylint: disable=W0212
return
if _is_np_array_like(data):
_check_data_shape(data)
proxy._ref_data_from_array(data) # pylint: disable=W0212
return
if is_scipy_csr(data):
proxy._ref_data_from_csr(data) # pylint: disable=W0212
return
err = TypeError("Value type is not supported for data iterator:" + str(type(data)))
raise err