160 lines
5.1 KiB
Python
160 lines
5.1 KiB
Python
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_array_equal, assert_allclose
|
|
|
|
from skimage._shared.utils import _supported_float_type
|
|
from skimage.segmentation import find_boundaries, mark_boundaries
|
|
|
|
|
|
white = (1, 1, 1)
|
|
|
|
|
|
def test_find_boundaries():
|
|
image = np.zeros((10, 10), dtype=np.uint8)
|
|
image[2:7, 2:7] = 1
|
|
|
|
ref = np.array(
|
|
[
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
]
|
|
)
|
|
|
|
result = find_boundaries(image)
|
|
assert_array_equal(result, ref)
|
|
|
|
|
|
def test_find_boundaries_bool():
|
|
image = np.zeros((5, 5), dtype=bool)
|
|
image[2:5, 2:5] = True
|
|
|
|
ref = np.array(
|
|
[
|
|
[False, False, False, False, False],
|
|
[False, False, True, True, True],
|
|
[False, True, True, True, True],
|
|
[False, True, True, False, False],
|
|
[False, True, True, False, False],
|
|
],
|
|
dtype=bool,
|
|
)
|
|
result = find_boundaries(image)
|
|
assert_array_equal(result, ref)
|
|
|
|
|
|
@pytest.mark.parametrize('dtype', [np.uint8, np.float16, np.float32, np.float64])
|
|
def test_mark_boundaries(dtype):
|
|
image = np.zeros((10, 10), dtype=dtype)
|
|
label_image = np.zeros((10, 10), dtype=np.uint8)
|
|
label_image[2:7, 2:7] = 1
|
|
|
|
ref = np.array(
|
|
[
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
]
|
|
)
|
|
|
|
marked = mark_boundaries(image, label_image, color=white, mode='thick')
|
|
assert marked.dtype == _supported_float_type(dtype)
|
|
result = np.mean(marked, axis=-1)
|
|
assert_array_equal(result, ref)
|
|
|
|
ref = np.array(
|
|
[
|
|
[0, 2, 2, 2, 2, 2, 2, 2, 0, 0],
|
|
[2, 2, 1, 1, 1, 1, 1, 2, 2, 0],
|
|
[2, 1, 1, 1, 1, 1, 1, 1, 2, 0],
|
|
[2, 1, 1, 2, 2, 2, 1, 1, 2, 0],
|
|
[2, 1, 1, 2, 0, 2, 1, 1, 2, 0],
|
|
[2, 1, 1, 2, 2, 2, 1, 1, 2, 0],
|
|
[2, 1, 1, 1, 1, 1, 1, 1, 2, 0],
|
|
[2, 2, 1, 1, 1, 1, 1, 2, 2, 0],
|
|
[0, 2, 2, 2, 2, 2, 2, 2, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
]
|
|
)
|
|
marked = mark_boundaries(
|
|
image, label_image, color=white, outline_color=(2, 2, 2), mode='thick'
|
|
)
|
|
result = np.mean(marked, axis=-1)
|
|
assert_array_equal(result, ref)
|
|
|
|
|
|
def test_mark_boundaries_bool():
|
|
image = np.zeros((10, 10), dtype=bool)
|
|
label_image = np.zeros((10, 10), dtype=np.uint8)
|
|
label_image[2:7, 2:7] = 1
|
|
|
|
ref = np.array(
|
|
[
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
|
|
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
]
|
|
)
|
|
|
|
marked = mark_boundaries(image, label_image, color=white, mode='thick')
|
|
result = np.mean(marked, axis=-1)
|
|
assert_array_equal(result, ref)
|
|
|
|
|
|
@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
|
|
def test_mark_boundaries_subpixel(dtype):
|
|
labels = np.array(
|
|
[[0, 0, 0, 0], [0, 0, 5, 0], [0, 1, 5, 0], [0, 0, 5, 0], [0, 0, 0, 0]],
|
|
dtype=np.uint8,
|
|
)
|
|
np.random.seed(0)
|
|
image = np.round(np.random.rand(*labels.shape), 2)
|
|
image = image.astype(dtype, copy=False)
|
|
marked = mark_boundaries(image, labels, color=white, mode='subpixel')
|
|
assert marked.dtype == _supported_float_type(dtype)
|
|
marked_proj = np.round(np.mean(marked, axis=-1), 2)
|
|
|
|
ref_result = np.array(
|
|
[
|
|
[0.55, 0.63, 0.72, 0.69, 0.6, 0.55, 0.54],
|
|
[0.45, 0.58, 0.72, 1.0, 1.0, 1.0, 0.69],
|
|
[0.42, 0.54, 0.65, 1.0, 0.44, 1.0, 0.89],
|
|
[0.69, 1.0, 1.0, 1.0, 0.69, 1.0, 0.83],
|
|
[0.96, 1.0, 0.38, 1.0, 0.79, 1.0, 0.53],
|
|
[0.89, 1.0, 1.0, 1.0, 0.38, 1.0, 0.16],
|
|
[0.57, 0.78, 0.93, 1.0, 0.07, 1.0, 0.09],
|
|
[0.2, 0.52, 0.92, 1.0, 1.0, 1.0, 0.54],
|
|
[0.02, 0.35, 0.83, 0.9, 0.78, 0.81, 0.87],
|
|
]
|
|
)
|
|
assert_allclose(marked_proj, ref_result, atol=0.01)
|
|
|
|
|
|
@pytest.mark.parametrize('mode', ['thick', 'inner', 'outer', 'subpixel'])
|
|
def test_boundaries_constant_image(mode):
|
|
"""A constant-valued image has not boundaries."""
|
|
ones = np.ones((8, 8), dtype=int)
|
|
b = find_boundaries(ones, mode=mode)
|
|
assert np.all(b == 0)
|