Files
MLPproject/.venv/lib/python3.12/site-packages/skimage/registration/tests/test_tvl1.py
2025-10-23 15:44:32 +02:00

119 lines
3.5 KiB
Python

import numpy as np
import pytest
from skimage._shared.utils import _supported_float_type
from skimage.registration import optical_flow_tvl1
from skimage.transform import warp
def _sin_flow_gen(image0, max_motion=4.5, npics=5):
"""Generate a synthetic ground truth optical flow with a sinusoid as
first component.
Parameters
----------
image0: ndarray
The base image to be warped.
max_motion: float
Maximum flow magnitude.
npics: int
Number of sinusoid pics.
Returns
-------
flow, image1 : ndarray
The synthetic ground truth optical flow with a sinusoid as
first component and the corresponding warped image.
"""
grid = np.meshgrid(*[np.arange(n) for n in image0.shape], indexing='ij')
grid = np.stack(grid)
gt_flow = np.zeros_like(grid, dtype=float)
gt_flow[0, ...] = max_motion * np.sin(grid[0] / grid[0].max() * npics * np.pi)
image1 = warp(image0, grid - gt_flow, mode='edge')
return gt_flow, image1
@pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
def test_2d_motion(dtype):
# Generate synthetic data
rng = np.random.default_rng(0)
image0 = rng.normal(size=(256, 256))
gt_flow, image1 = _sin_flow_gen(image0)
image1 = image1.astype(dtype, copy=False)
float_dtype = _supported_float_type(dtype)
# Estimate the flow
flow = optical_flow_tvl1(image0, image1, attachment=5, dtype=float_dtype)
assert flow.dtype == float_dtype
# Assert that the average absolute error is less then half a pixel
assert abs(flow - gt_flow).mean() < 0.5
if dtype != float_dtype:
with pytest.raises(ValueError):
optical_flow_tvl1(image0, image1, attachment=5, dtype=dtype)
def test_3d_motion():
# Generate synthetic data
rng = np.random.default_rng(0)
image0 = rng.normal(size=(100, 100, 100))
gt_flow, image1 = _sin_flow_gen(image0)
# Estimate the flow
flow = optical_flow_tvl1(image0, image1, attachment=10)
# Assert that the average absolute error is less then half a pixel
assert abs(flow - gt_flow).mean() < 0.5
def test_no_motion_2d():
rng = np.random.default_rng(0)
img = rng.normal(size=(256, 256))
flow = optical_flow_tvl1(img, img)
assert np.all(flow == 0)
def test_no_motion_3d():
rng = np.random.default_rng(0)
img = rng.normal(size=(64, 64, 64))
flow = optical_flow_tvl1(img, img)
assert np.all(flow == 0)
def test_optical_flow_dtype():
# Generate synthetic data
rng = np.random.default_rng(0)
image0 = rng.normal(size=(256, 256))
gt_flow, image1 = _sin_flow_gen(image0)
# Estimate the flow at double precision
flow_f64 = optical_flow_tvl1(image0, image1, attachment=5, dtype=np.float64)
assert flow_f64.dtype == np.float64
# Estimate the flow at single precision
flow_f32 = optical_flow_tvl1(image0, image1, attachment=5, dtype=np.float32)
assert flow_f32.dtype == np.float32
# Assert that floating point precision does not affect the quality
# of the estimated flow
assert np.abs(flow_f64 - flow_f32).mean() < 1e-3
def test_incompatible_shapes():
rng = np.random.default_rng(0)
I0 = rng.normal(size=(256, 256))
I1 = rng.normal(size=(128, 256))
with pytest.raises(ValueError):
u, v = optical_flow_tvl1(I0, I1)
def test_wrong_dtype():
rng = np.random.default_rng(0)
img = rng.normal(size=(256, 256))
with pytest.raises(ValueError):
u, v = optical_flow_tvl1(img, img, dtype=np.int64)