Files
MLPproject/.venv/lib/python3.12/site-packages/skimage/feature/util.py
2025-10-23 15:44:32 +02:00

233 lines
6.9 KiB
Python

import numpy as np
from ..util import img_as_float
from .._shared.utils import (
_supported_float_type,
check_nD,
)
class FeatureDetector:
def __init__(self):
self.keypoints_ = np.array([])
def detect(self, image):
"""Detect keypoints in image.
Parameters
----------
image : 2D array
Input image.
"""
raise NotImplementedError()
class DescriptorExtractor:
def __init__(self):
self.descriptors_ = np.array([])
def extract(self, image, keypoints):
"""Extract feature descriptors in image for given keypoints.
Parameters
----------
image : 2D array
Input image.
keypoints : (N, 2) array
Keypoint locations as ``(row, col)``.
"""
raise NotImplementedError()
def plot_matched_features(
image0,
image1,
*,
keypoints0,
keypoints1,
matches,
ax,
keypoints_color='k',
matches_color=None,
only_matches=False,
alignment='horizontal',
):
"""Plot matched features between two images.
.. versionadded:: 0.23
Parameters
----------
image0 : (N, M [, 3]) array
First image.
image1 : (N, M [, 3]) array
Second image.
keypoints0 : (K1, 2) array
First keypoint coordinates as ``(row, col)``.
keypoints1 : (K2, 2) array
Second keypoint coordinates as ``(row, col)``.
matches : (Q, 2) array
Indices of corresponding matches in first and second sets of
descriptors, where `matches[:, 0]` (resp. `matches[:, 1]`) contains
the indices in the first (resp. second) set of descriptors.
ax : matplotlib.axes.Axes
The Axes object where the images and their matched features are drawn.
keypoints_color : matplotlib color, optional
Color for keypoint locations.
matches_color : matplotlib color or sequence thereof, optional
Single color or sequence of colors for each line defined by `matches`,
which connect keypoint matches. See [1]_ for an overview of supported
color formats. By default, colors are picked randomly.
only_matches : bool, optional
Set to True to plot matches only and not the keypoint locations.
alignment : {'horizontal', 'vertical'}, optional
Whether to show the two images side by side (`'horizontal'`), or one above
the other (`'vertical'`).
References
----------
.. [1] https://matplotlib.org/stable/users/explain/colors/colors.html#specifying-colors
Notes
-----
To make a sequence of colors passed to `matches_color` work for any number of
`matches`, you can wrap that sequence in :func:`itertools.cycle`.
"""
image0 = img_as_float(image0)
image1 = img_as_float(image1)
new_shape0 = list(image0.shape)
new_shape1 = list(image1.shape)
if image0.shape[0] < image1.shape[0]:
new_shape0[0] = image1.shape[0]
elif image0.shape[0] > image1.shape[0]:
new_shape1[0] = image0.shape[0]
if image0.shape[1] < image1.shape[1]:
new_shape0[1] = image1.shape[1]
elif image0.shape[1] > image1.shape[1]:
new_shape1[1] = image0.shape[1]
if new_shape0 != image0.shape:
new_image0 = np.zeros(new_shape0, dtype=image0.dtype)
new_image0[: image0.shape[0], : image0.shape[1]] = image0
image0 = new_image0
if new_shape1 != image1.shape:
new_image1 = np.zeros(new_shape1, dtype=image1.dtype)
new_image1[: image1.shape[0], : image1.shape[1]] = image1
image1 = new_image1
offset = np.array(image0.shape)
if alignment == 'horizontal':
image = np.concatenate([image0, image1], axis=1)
offset[0] = 0
elif alignment == 'vertical':
image = np.concatenate([image0, image1], axis=0)
offset[1] = 0
else:
mesg = (
f"`plot_matched_features` accepts either 'horizontal' or 'vertical' for "
f"alignment, but '{alignment}' was given. See "
f"https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.plot_matched_features "
f"for details."
)
raise ValueError(mesg)
if not only_matches:
ax.scatter(
keypoints0[:, 1],
keypoints0[:, 0],
facecolors='none',
edgecolors=keypoints_color,
)
ax.scatter(
keypoints1[:, 1] + offset[1],
keypoints1[:, 0] + offset[0],
facecolors='none',
edgecolors=keypoints_color,
)
ax.imshow(image, cmap='gray')
ax.axis((0, image0.shape[1] + offset[1], image0.shape[0] + offset[0], 0))
number_of_matches = matches.shape[0]
from matplotlib.colors import is_color_like
if matches_color is None:
rng = np.random.default_rng(seed=0)
colors = [rng.random(3) for _ in range(number_of_matches)]
elif is_color_like(matches_color):
colors = [matches_color for _ in range(number_of_matches)]
elif hasattr(matches_color, "__len__") and len(matches_color) == number_of_matches:
# No need to check each color, matplotlib does so for us
colors = matches_color
else:
error_message = (
'`matches_color` needs to be a single color '
'or a sequence of length equal to the number of matches.'
)
raise ValueError(error_message)
for i, match in enumerate(matches):
idx0, idx1 = match
ax.plot(
(keypoints0[idx0, 1], keypoints1[idx1, 1] + offset[1]),
(keypoints0[idx0, 0], keypoints1[idx1, 0] + offset[0]),
'-',
color=colors[i],
)
def _prepare_grayscale_input_2D(image):
image = np.squeeze(image)
check_nD(image, 2)
image = img_as_float(image)
float_dtype = _supported_float_type(image.dtype)
return image.astype(float_dtype, copy=False)
def _prepare_grayscale_input_nD(image):
image = np.squeeze(image)
check_nD(image, range(2, 6))
image = img_as_float(image)
float_dtype = _supported_float_type(image.dtype)
return image.astype(float_dtype, copy=False)
def _mask_border_keypoints(image_shape, keypoints, distance):
"""Mask coordinates that are within certain distance from the image border.
Parameters
----------
image_shape : (2,) array_like
Shape of the image as ``(rows, cols)``.
keypoints : (N, 2) array
Keypoint coordinates as ``(rows, cols)``.
distance : int
Image border distance.
Returns
-------
mask : (N,) bool array
Mask indicating if pixels are within the image (``True``) or in the
border region of the image (``False``).
"""
rows = image_shape[0]
cols = image_shape[1]
mask = (
((distance - 1) < keypoints[:, 0])
& (keypoints[:, 0] < (rows - distance + 1))
& ((distance - 1) < keypoints[:, 1])
& (keypoints[:, 1] < (cols - distance + 1))
)
return mask