Files
MLPproject/.venv/lib/python3.12/site-packages/skimage/feature/tests/test_util.py
2025-10-23 15:44:32 +02:00

224 lines
6.0 KiB
Python

import numpy as np
import pytest
from skimage._shared._dependency_checks import has_mpl
from skimage.feature.util import (
FeatureDetector,
DescriptorExtractor,
_prepare_grayscale_input_2D,
_mask_border_keypoints,
plot_matched_features,
)
def test_feature_detector():
with pytest.raises(NotImplementedError):
FeatureDetector().detect(None)
def test_descriptor_extractor():
with pytest.raises(NotImplementedError):
DescriptorExtractor().extract(None, None)
def test_prepare_grayscale_input_2D():
with pytest.raises(ValueError):
_prepare_grayscale_input_2D(np.zeros((3, 3, 3)))
with pytest.raises(ValueError):
_prepare_grayscale_input_2D(np.zeros((3, 1)))
with pytest.raises(ValueError):
_prepare_grayscale_input_2D(np.zeros((3, 1, 1)))
_prepare_grayscale_input_2D(np.zeros((3, 3)))
_prepare_grayscale_input_2D(np.zeros((3, 3, 1)))
_prepare_grayscale_input_2D(np.zeros((1, 3, 3)))
def test_mask_border_keypoints():
keypoints = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4]])
np.testing.assert_equal(
_mask_border_keypoints((10, 10), keypoints, 0), [1, 1, 1, 1, 1]
)
np.testing.assert_equal(
_mask_border_keypoints((10, 10), keypoints, 2), [0, 0, 1, 1, 1]
)
np.testing.assert_equal(
_mask_border_keypoints((4, 4), keypoints, 2), [0, 0, 1, 0, 0]
)
np.testing.assert_equal(
_mask_border_keypoints((10, 10), keypoints, 5), [0, 0, 0, 0, 0]
)
np.testing.assert_equal(
_mask_border_keypoints((10, 10), keypoints, 4), [0, 0, 0, 0, 1]
)
@pytest.mark.skipif(not has_mpl, reason="Matplotlib not installed")
@pytest.mark.parametrize(
"shapes",
[
((10, 10), (10, 10)),
((10, 10), (12, 10)),
((10, 10), (10, 12)),
((10, 10), (12, 12)),
((12, 10), (10, 10)),
((10, 12), (10, 10)),
((12, 12), (10, 10)),
],
)
def test_plot_matched_features(shapes):
from matplotlib import pyplot as plt
from matplotlib import use
use('Agg')
fig, ax = plt.subplots()
rng = np.random.default_rng(202410101501)
keypoints0 = 10 * rng.random((10, 2))
keypoints1 = 10 * rng.random((10, 2))
idxs0 = rng.integers(10, size=10)
idxs1 = rng.integers(10, size=10)
matches = np.column_stack((idxs0, idxs1))
shape0, shape1 = shapes
img0 = np.zeros(shape0)
img1 = np.zeros(shape1)
plot_matched_features(
img0,
img1,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
ax=ax,
)
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
only_matches=True,
)
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
keypoints_color='r',
)
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
matches_color='r',
)
# Pass colors as random list of color strings
rng = np.random.default_rng(202409281822)
random_matches_color = [
rng.choice(['C0', '#abc', 'aquamarine']) for _ in range(len(matches))
]
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
matches_color=random_matches_color,
)
# Pass colors as single array of shape (len(matches), 3)
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
matches_color=np.linspace((0, 0, 0), (1, 1, 1), num=len(matches)),
)
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
alignment='vertical',
)
plt.close()
@pytest.mark.skipif(not has_mpl, reason="Matplotlib not installed")
@pytest.mark.parametrize("matches_color", ([], ["C0"], ["C0", "C1"], np.arange(30)))
def test_plot_matched_features_color_error(matches_color):
from matplotlib import pyplot as plt
from matplotlib import use
use('Agg')
_, ax = plt.subplots()
keypoints0 = 10 * np.random.rand(10, 2)
keypoints1 = 10 * np.random.rand(10, 2)
idxs0 = np.random.randint(10, size=10)
idxs1 = np.random.randint(10, size=10)
matches = np.column_stack((idxs0, idxs1))
assert len(matches_color) != len(matches)
img0 = np.zeros((10, 10))
img1 = np.zeros_like(img0)
regex = (
'`matches_color` needs to be a single color '
'or a sequence of length equal to the number of matches'
)
with pytest.raises(ValueError, match=regex):
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
matches_color=matches_color,
)
@pytest.mark.skipif(not has_mpl, reason="Matplotlib not installed")
def test_plot_matched_features_matplotlib_color_error():
# Error is raised from matplotlib itself if we pass a sequence of correct length
# but with values that aren't colors
from matplotlib import pyplot as plt
from matplotlib import use
use('Agg')
_, ax = plt.subplots()
keypoints0 = 10 * np.random.rand(10, 2)
keypoints1 = 10 * np.random.rand(10, 2)
idxs0 = np.random.randint(10, size=10)
idxs1 = np.random.randint(10, size=10)
matches = np.column_stack((idxs0, idxs1))
img0 = np.zeros((10, 10))
img1 = np.zeros_like(img0)
with pytest.raises(ValueError, match=".* not a valid value for color"):
plot_matched_features(
img0,
img1,
ax=ax,
keypoints0=keypoints0,
keypoints1=keypoints1,
matches=matches,
matches_color=np.arange(len(matches)),
)