183 lines
6.5 KiB
Python
183 lines
6.5 KiB
Python
from random import shuffle
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_allclose
|
|
from numpy.testing import assert_array_equal
|
|
|
|
from skimage.transform import integral_image
|
|
from skimage.feature import haar_like_feature
|
|
from skimage.feature import haar_like_feature_coord
|
|
from skimage.feature import draw_haar_like_feature
|
|
|
|
|
|
def test_haar_like_feature_error():
|
|
img = np.ones((5, 5), dtype=np.float32)
|
|
img_ii = integral_image(img)
|
|
|
|
feature_type = 'unknown_type'
|
|
with pytest.raises(ValueError):
|
|
haar_like_feature(img_ii, 0, 0, 5, 5, feature_type=feature_type)
|
|
haar_like_feature_coord(5, 5, feature_type=feature_type)
|
|
draw_haar_like_feature(img, 0, 0, 5, 5, feature_type=feature_type)
|
|
|
|
feat_coord, feat_type = haar_like_feature_coord(5, 5, 'type-2-x')
|
|
with pytest.raises(ValueError):
|
|
haar_like_feature(
|
|
img_ii, 0, 0, 5, 5, feature_type=feat_type[:3], feature_coord=feat_coord
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.uint8, np.int8, np.float32, np.float64])
|
|
@pytest.mark.parametrize(
|
|
"feature_type,shape_feature,expected_feature_value",
|
|
[
|
|
('type-2-x', (84,), [0.0]),
|
|
('type-2-y', (84,), [0.0]),
|
|
('type-3-x', (42,), [-5, -4.0, -3.0, -2.0, -1.0]),
|
|
('type-3-y', (42,), [-5, -4.0, -3.0, -2.0, -1.0]),
|
|
('type-4', (36,), [0.0]),
|
|
],
|
|
)
|
|
def test_haar_like_feature(feature_type, shape_feature, expected_feature_value, dtype):
|
|
# test Haar-like feature on a basic one image
|
|
img = np.ones((5, 5), dtype=dtype)
|
|
img_ii = integral_image(img)
|
|
haar_feature = haar_like_feature(img_ii, 0, 0, 5, 5, feature_type=feature_type)
|
|
assert_allclose(np.sort(np.unique(haar_feature)), expected_feature_value)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.uint8, np.int8, np.float32, np.float64])
|
|
@pytest.mark.parametrize(
|
|
"feature_type", ['type-2-x', 'type-2-y', 'type-3-x', 'type-3-y', 'type-4']
|
|
)
|
|
def test_haar_like_feature_fused_type(dtype, feature_type):
|
|
# check that the input type is kept
|
|
img = np.ones((5, 5), dtype=dtype)
|
|
img_ii = integral_image(img)
|
|
expected_dtype = img_ii.dtype
|
|
# to avoid overflow, unsigned type are converted to signed
|
|
if 'uint' in expected_dtype.name:
|
|
expected_dtype = np.dtype(expected_dtype.name.replace('u', ''))
|
|
haar_feature = haar_like_feature(img_ii, 0, 0, 5, 5, feature_type=feature_type)
|
|
assert haar_feature.dtype == expected_dtype
|
|
|
|
|
|
def test_haar_like_feature_list():
|
|
img = np.ones((5, 5), dtype=np.int8)
|
|
img_ii = integral_image(img)
|
|
feature_type = ['type-2-x', 'type-2-y', 'type-3-x', 'type-3-y', 'type-4']
|
|
haar_list = haar_like_feature(img_ii, 0, 0, 5, 5, feature_type=feature_type)
|
|
haar_all = haar_like_feature(img_ii, 0, 0, 5, 5)
|
|
assert_array_equal(haar_list, haar_all)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"feature_type",
|
|
[
|
|
'type-2-x',
|
|
'type-2-y',
|
|
'type-3-x',
|
|
'type-3-y',
|
|
'type-4',
|
|
['type-2-y', 'type-3-x', 'type-4'],
|
|
],
|
|
)
|
|
def test_haar_like_feature_precomputed(feature_type):
|
|
img = np.ones((5, 5), dtype=np.int8)
|
|
img_ii = integral_image(img)
|
|
if isinstance(feature_type, list):
|
|
# shuffle the index of the feature to be sure that we are output
|
|
# the features in the same order
|
|
shuffle(feature_type)
|
|
feat_coord, feat_type = zip(
|
|
*[haar_like_feature_coord(5, 5, feat_t) for feat_t in feature_type]
|
|
)
|
|
feat_coord = np.concatenate(feat_coord)
|
|
feat_type = np.concatenate(feat_type)
|
|
else:
|
|
feat_coord, feat_type = haar_like_feature_coord(5, 5, feature_type)
|
|
haar_feature_precomputed = haar_like_feature(
|
|
img_ii, 0, 0, 5, 5, feature_type=feat_type, feature_coord=feat_coord
|
|
)
|
|
haar_feature = haar_like_feature(img_ii, 0, 0, 5, 5, feature_type)
|
|
assert_array_equal(haar_feature_precomputed, haar_feature)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"feature_type,height,width,expected_coord",
|
|
[
|
|
(
|
|
'type-2-x',
|
|
2,
|
|
2,
|
|
[
|
|
[[(0, 0), (0, 0)], [(0, 1), (0, 1)]],
|
|
[[(0, 0), (1, 0)], [(0, 1), (1, 1)]],
|
|
[[(1, 0), (1, 0)], [(1, 1), (1, 1)]],
|
|
],
|
|
),
|
|
(
|
|
'type-2-y',
|
|
2,
|
|
2,
|
|
[
|
|
[[(0, 0), (0, 0)], [(1, 0), (1, 0)]],
|
|
[[(0, 0), (0, 1)], [(1, 0), (1, 1)]],
|
|
[[(0, 1), (0, 1)], [(1, 1), (1, 1)]],
|
|
],
|
|
),
|
|
(
|
|
'type-3-x',
|
|
3,
|
|
3,
|
|
[
|
|
[[(0, 0), (0, 0)], [(0, 1), (0, 1)], [(0, 2), (0, 2)]],
|
|
[[(0, 0), (1, 0)], [(0, 1), (1, 1)], [(0, 2), (1, 2)]],
|
|
[[(0, 0), (2, 0)], [(0, 1), (2, 1)], [(0, 2), (2, 2)]],
|
|
[[(1, 0), (1, 0)], [(1, 1), (1, 1)], [(1, 2), (1, 2)]],
|
|
[[(1, 0), (2, 0)], [(1, 1), (2, 1)], [(1, 2), (2, 2)]],
|
|
[[(2, 0), (2, 0)], [(2, 1), (2, 1)], [(2, 2), (2, 2)]],
|
|
],
|
|
),
|
|
(
|
|
'type-3-y',
|
|
3,
|
|
3,
|
|
[
|
|
[[(0, 0), (0, 0)], [(1, 0), (1, 0)], [(2, 0), (2, 0)]],
|
|
[[(0, 0), (0, 1)], [(1, 0), (1, 1)], [(2, 0), (2, 1)]],
|
|
[[(0, 0), (0, 2)], [(1, 0), (1, 2)], [(2, 0), (2, 2)]],
|
|
[[(0, 1), (0, 1)], [(1, 1), (1, 1)], [(2, 1), (2, 1)]],
|
|
[[(0, 1), (0, 2)], [(1, 1), (1, 2)], [(2, 1), (2, 2)]],
|
|
[[(0, 2), (0, 2)], [(1, 2), (1, 2)], [(2, 2), (2, 2)]],
|
|
],
|
|
),
|
|
(
|
|
'type-4',
|
|
2,
|
|
2,
|
|
[[[(0, 0), (0, 0)], [(0, 1), (0, 1)], [(1, 1), (1, 1)], [(1, 0), (1, 0)]]],
|
|
),
|
|
],
|
|
)
|
|
def test_haar_like_feature_coord(feature_type, height, width, expected_coord):
|
|
feat_coord, feat_type = haar_like_feature_coord(width, height, feature_type)
|
|
# convert the output to a full numpy array just for comparison
|
|
feat_coord = np.array([hf for hf in feat_coord])
|
|
assert_array_equal(feat_coord, expected_coord)
|
|
assert np.all(feat_type == feature_type)
|
|
|
|
|
|
@pytest.mark.parametrize("max_n_features,nnz_values", [(None, 46), (1, 4)])
|
|
def test_draw_haar_like_feature(max_n_features, nnz_values):
|
|
img = np.zeros((5, 5), dtype=np.float32)
|
|
coord, _ = haar_like_feature_coord(5, 5, 'type-4')
|
|
image = draw_haar_like_feature(
|
|
img, 0, 0, 5, 5, coord, max_n_features=max_n_features, rng=0
|
|
)
|
|
draw_haar_like_feature(img, 0, 0, 5, 5, coord, max_n_features=max_n_features, rng=0)
|
|
assert image.shape == (5, 5, 3)
|
|
assert np.count_nonzero(image) == nnz_values
|