96 lines
3.1 KiB
Python
96 lines
3.1 KiB
Python
import numpy as np
|
|
from skimage._shared.testing import assert_array_equal
|
|
from skimage.data import moon
|
|
from skimage.feature import CENSURE
|
|
from skimage._shared.testing import run_in_parallel
|
|
from skimage._shared import testing
|
|
from skimage.transform import rescale
|
|
|
|
|
|
img = moon()
|
|
np.random.seed(0)
|
|
|
|
|
|
def test_censure_on_rectangular_images():
|
|
"""Censure feature detector should work on 2D image of any shape."""
|
|
rect_image = np.random.rand(300, 200)
|
|
square_image = np.random.rand(200, 200)
|
|
CENSURE().detect(square_image)
|
|
CENSURE().detect(rect_image)
|
|
|
|
|
|
def test_keypoints_censure_color_image_unsupported_error():
|
|
"""Censure keypoints can be extracted from gray-scale images only."""
|
|
with testing.raises(ValueError):
|
|
CENSURE().detect(np.zeros((20, 20, 3)))
|
|
|
|
|
|
def test_keypoints_censure_mode_validity_error():
|
|
"""Mode argument in keypoints_censure can be either DoB, Octagon or
|
|
STAR."""
|
|
with testing.raises(ValueError):
|
|
CENSURE(mode='dummy')
|
|
|
|
|
|
def test_keypoints_censure_scale_range_error():
|
|
"""Difference between the the max_scale and min_scale parameters in
|
|
keypoints_censure should be greater than or equal to two."""
|
|
with testing.raises(ValueError):
|
|
CENSURE(min_scale=1, max_scale=2)
|
|
|
|
|
|
def test_keypoints_censure_moon_image_dob():
|
|
"""Verify the actual Censure keypoints and their corresponding scale with
|
|
the expected values for DoB filter."""
|
|
detector = CENSURE()
|
|
detector.detect(img)
|
|
expected_keypoints = np.array(
|
|
[
|
|
[21, 497],
|
|
[36, 46],
|
|
[119, 350],
|
|
[185, 177],
|
|
[287, 250],
|
|
[357, 239],
|
|
[463, 116],
|
|
[464, 132],
|
|
[467, 260],
|
|
]
|
|
)
|
|
expected_scales = np.array([3, 4, 4, 2, 2, 3, 2, 2, 2])
|
|
|
|
assert_array_equal(expected_keypoints, detector.keypoints)
|
|
assert_array_equal(expected_scales, detector.scales)
|
|
|
|
|
|
@run_in_parallel()
|
|
def test_keypoints_censure_moon_image_octagon():
|
|
"""Verify the actual Censure keypoints and their corresponding scale with
|
|
the expected values for Octagon filter."""
|
|
|
|
detector = CENSURE(mode='octagon')
|
|
# quarter scale image for speed
|
|
detector.detect(rescale(img, 0.25, anti_aliasing=False, mode='constant'))
|
|
expected_keypoints = np.array([[23, 27], [29, 89], [31, 87], [106, 59], [111, 67]])
|
|
|
|
expected_scales = np.array([3, 2, 5, 2, 4])
|
|
|
|
assert_array_equal(expected_keypoints, detector.keypoints)
|
|
assert_array_equal(expected_scales, detector.scales)
|
|
|
|
|
|
def test_keypoints_censure_moon_image_star():
|
|
"""Verify the actual Censure keypoints and their corresponding scale with
|
|
the expected values for STAR filter."""
|
|
detector = CENSURE(mode='star')
|
|
# quarter scale image for speed
|
|
detector.detect(rescale(img, 0.25, anti_aliasing=False, mode='constant'))
|
|
expected_keypoints = np.array(
|
|
[[23, 27], [29, 89], [30, 86], [107, 59], [109, 64], [111, 67], [113, 70]]
|
|
)
|
|
|
|
expected_scales = np.array([3, 2, 4, 2, 5, 3, 2])
|
|
|
|
assert_array_equal(expected_keypoints, detector.keypoints)
|
|
assert_array_equal(expected_scales, detector.scales)
|