Files
MLPproject/.venv/lib/python3.12/site-packages/skimage/draw/draw3d.py
2025-10-23 15:44:32 +02:00

108 lines
3.2 KiB
Python

import numpy as np
from scipy.special import elliprg
def ellipsoid(a, b, c, spacing=(1.0, 1.0, 1.0), levelset=False):
"""Generate ellipsoid for given semi-axis lengths.
The respective semi-axis lengths are given along three dimensions in
Cartesian coordinates. Each dimension may use a different grid spacing.
Parameters
----------
a : float
Length of semi-axis along x-axis.
b : float
Length of semi-axis along y-axis.
c : float
Length of semi-axis along z-axis.
spacing : 3-tuple of floats
Grid spacing in three spatial dimensions.
levelset : bool
If True, returns the level set for this ellipsoid (signed level
set about zero, with positive denoting interior) as np.float64.
False returns a binarized version of said level set.
Returns
-------
ellipsoid : (M, N, P) array
Ellipsoid centered in a correctly sized array for given `spacing`.
Boolean dtype unless `levelset=True`, in which case a float array is
returned with the level set above 0.0 representing the ellipsoid.
"""
if (a <= 0) or (b <= 0) or (c <= 0):
raise ValueError('Parameters a, b, and c must all be > 0')
offset = np.r_[1, 1, 1] * np.r_[spacing]
# Calculate limits, and ensure output volume is odd & symmetric
low = np.ceil(-np.r_[a, b, c] - offset)
high = np.floor(np.r_[a, b, c] + offset + 1)
for dim in range(3):
if (high[dim] - low[dim]) % 2 == 0:
low[dim] -= 1
num = np.arange(low[dim], high[dim], spacing[dim])
if 0 not in num:
low[dim] -= np.max(num[num < 0])
# Generate (anisotropic) spatial grid
x, y, z = np.mgrid[
low[0] : high[0] : spacing[0],
low[1] : high[1] : spacing[1],
low[2] : high[2] : spacing[2],
]
if not levelset:
arr = ((x / float(a)) ** 2 + (y / float(b)) ** 2 + (z / float(c)) ** 2) <= 1
else:
arr = ((x / float(a)) ** 2 + (y / float(b)) ** 2 + (z / float(c)) ** 2) - 1
return arr
def ellipsoid_stats(a, b, c):
"""Calculate analytical volume and surface area of an ellipsoid.
The surface area of an ellipsoid is given by
.. math:: S=4\\pi b c R_G\\!\\left(1, \\frac{a^2}{b^2}, \\frac{a^2}{c^2}\\right)
where :math:`R_G` is Carlson's completely symmetric elliptic integral of
the second kind [1]_. The latter is implemented as
:py:func:`scipy.special.elliprg`.
Parameters
----------
a : float
Length of semi-axis along x-axis.
b : float
Length of semi-axis along y-axis.
c : float
Length of semi-axis along z-axis.
Returns
-------
vol : float
Calculated volume of ellipsoid.
surf : float
Calculated surface area of ellipsoid.
References
----------
.. [1] Paul Masson (2020). Surface Area of an Ellipsoid.
https://analyticphysics.com/Mathematical%20Methods/Surface%20Area%20of%20an%20Ellipsoid.htm
"""
if (a <= 0) or (b <= 0) or (c <= 0):
raise ValueError('Parameters a, b, and c must all be > 0')
# Volume
vol = 4 / 3.0 * np.pi * a * b * c
# Surface area
surf = 3 * vol * elliprg(1 / a**2, 1 / b**2, 1 / c**2)
return vol, surf