Files
MLPproject/.venv/lib/python3.12/site-packages/nvidia_nccl_cu12-2.28.7.dist-info/METADATA
2025-10-23 15:44:32 +02:00

46 lines
2.0 KiB
Plaintext

Metadata-Version: 2.4
Name: nvidia-nccl-cu12
Version: 2.28.7
Summary: NVIDIA Collective Communication Library (NCCL) Runtime
Home-page: https://developer.nvidia.com/cuda-zone
Author: Nvidia CUDA Installer Team
Author-email: compute_installer@nvidia.com
License-Expression: LicenseRef-NVIDIA-Proprietary
Keywords: cuda,nvidia,runtime,machine learning,deep learning
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development
Classifier: Topic :: Software Development :: Libraries
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX :: Linux
Requires-Python: >=3
License-File: License.txt
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: license-file
Dynamic: license-expression
Dynamic: requires-python
Dynamic: summary
NCCL (pronounced "Nickel") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on any platform using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets.