59 lines
1.5 KiB
Python
59 lines
1.5 KiB
Python
# coding: utf-8
|
|
"""LightGBM, Light Gradient Boosting Machine.
|
|
|
|
Contributors: https://github.com/microsoft/LightGBM/graphs/contributors.
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
# .basic is intentionally loaded as early as possible, to dlopen() lib_lightgbm.{dll,dylib,so}
|
|
# and its dependencies as early as possible
|
|
from .basic import Booster, Dataset, Sequence, register_logger
|
|
from .callback import EarlyStopException, early_stopping, log_evaluation, record_evaluation, reset_parameter
|
|
from .engine import CVBooster, cv, train
|
|
|
|
try:
|
|
from .sklearn import LGBMClassifier, LGBMModel, LGBMRanker, LGBMRegressor
|
|
except ImportError:
|
|
pass
|
|
try:
|
|
from .plotting import create_tree_digraph, plot_importance, plot_metric, plot_split_value_histogram, plot_tree
|
|
except ImportError:
|
|
pass
|
|
try:
|
|
from .dask import DaskLGBMClassifier, DaskLGBMRanker, DaskLGBMRegressor
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
_version_path = Path(__file__).absolute().parent / "VERSION.txt"
|
|
if _version_path.is_file():
|
|
__version__ = _version_path.read_text(encoding="utf-8").strip()
|
|
|
|
__all__ = [
|
|
"Dataset",
|
|
"Booster",
|
|
"CVBooster",
|
|
"Sequence",
|
|
"register_logger",
|
|
"train",
|
|
"cv",
|
|
"LGBMModel",
|
|
"LGBMRegressor",
|
|
"LGBMClassifier",
|
|
"LGBMRanker",
|
|
"DaskLGBMRegressor",
|
|
"DaskLGBMClassifier",
|
|
"DaskLGBMRanker",
|
|
"log_evaluation",
|
|
"record_evaluation",
|
|
"reset_parameter",
|
|
"early_stopping",
|
|
"EarlyStopException",
|
|
"plot_importance",
|
|
"plot_split_value_histogram",
|
|
"plot_metric",
|
|
"plot_tree",
|
|
"create_tree_digraph",
|
|
]
|