{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "b6ea6c3b", "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "'numpy.ndarray' object is not callable", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mTypeError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[25]\u001b[39m\u001b[32m, line 20\u001b[39m\n\u001b[32m 18\u001b[39m X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=\u001b[32m0.2\u001b[39m, random_state=\u001b[32m42\u001b[39m)\n\u001b[32m 19\u001b[39m X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=\u001b[32m0.2\u001b[39m, random_state=\u001b[32m42\u001b[39m)\n\u001b[32m---> \u001b[39m\u001b[32m20\u001b[39m X_train = \u001b[43mX_train\u001b[49m\u001b[43m.\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 23\u001b[39m n_features = \u001b[32m10\u001b[39m\n\u001b[32m 24\u001b[39m fig=plt.figure( figsize=(\u001b[32m15\u001b[39m, \u001b[32m15\u001b[39m) )\n", "\u001b[31mTypeError\u001b[39m: 'numpy.ndarray' object is not callable" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.pipeline import Pipeline\n", "\n", "\n", "\n", "data = pd.read_csv('./Datasets/adult.csv', comment = '#')\n", "\n", "# Features\n", "X = data.drop(columns=['income'])\n", "\n", "# Labels\n", "y = data['income']\n", "\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)\n", "\n", "\n", "\n", "n_features = 10\n", "fig=plt.figure( figsize=(15, 15) )\n", "plt_num = 1\n", "for i in range(n_features):\n", " for j in range(n_features):\n", " ax = fig.add_subplot(n_features, n_features, plt_num)\n", " if(i == j):\n", " ax.hist(X_train[:, i], bins=25, color='gray')\n", " else:\n", " ax.scatter(X_train[:, j], X_train[:, i], c=np.array(colors)[y_train], s=30, alpha=0.3)\n", " \n", " if(i == n_features-1):\n", " ax.set_xlabel(f'$x_{{{j}}}$', fontsize=22)\n", " \n", " if(j==0):\n", " ax.set_ylabel(f'$x_{{{i}}}$', fontsize=22)\n", "\n", " ax.grid(True)\n", " plt_num +=1\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 5 }