# pylint: disable=invalid-name,unused-import """For compatibility and optional dependencies.""" import functools import importlib.util import logging import sys import types from typing import TYPE_CHECKING, Any, Sequence, TypeGuard, cast import numpy as np from ._typing import _T, DataType if TYPE_CHECKING: import pandas as pd import pyarrow as pa assert sys.version_info[0] == 3, "Python 2 is no longer supported." def py_str(x: bytes | None) -> str: """convert c string back to python string""" assert x is not None # ctypes might return None return x.decode("utf-8") # type: ignore def lazy_isinstance(instance: Any, module: str, name: str) -> bool: """Use string representation to identify a type.""" # Notice, we use .__class__ as opposed to type() in order # to support object proxies such as weakref.proxy cls = instance.__class__ is_same_module = cls.__module__ == module has_same_name = cls.__name__ == name return is_same_module and has_same_name # sklearn try: from sklearn import __version__ as _sklearn_version from sklearn.base import BaseEstimator as XGBModelBase from sklearn.base import ClassifierMixin as XGBClassifierBase from sklearn.base import RegressorMixin as XGBRegressorBase try: from sklearn.model_selection import StratifiedKFold as XGBStratifiedKFold except ImportError: from sklearn.cross_validation import StratifiedKFold as XGBStratifiedKFold # sklearn.utils Tags types can be imported unconditionally once # xgboost's minimum scikit-learn version is 1.6 or higher try: from sklearn.utils import Tags as _sklearn_Tags except ImportError: _sklearn_Tags = object SKLEARN_INSTALLED = True except ImportError: SKLEARN_INSTALLED = False # used for compatibility without sklearn class XGBModelBase: # type: ignore[no-redef] """Dummy class for sklearn.base.BaseEstimator.""" class XGBClassifierBase: # type: ignore[no-redef] """Dummy class for sklearn.base.ClassifierMixin.""" class XGBRegressorBase: # type: ignore[no-redef] """Dummy class for sklearn.base.RegressorMixin.""" XGBStratifiedKFold = None _sklearn_Tags = object _sklearn_version = object _logger = logging.getLogger(__name__) @functools.cache def is_cudf_available() -> bool: """Check cuDF package available or not""" if importlib.util.find_spec("cudf") is None: return False try: import cudf return True except ImportError: _logger.exception("Importing cuDF failed, use DMatrix instead of QDM") return False @functools.cache def is_cupy_available() -> bool: """Check cupy package available or not""" if importlib.util.find_spec("cupy") is None: return False try: import cupy return True except ImportError: return False @functools.cache def import_cupy() -> types.ModuleType: """Import cupy.""" if not is_cupy_available(): raise ImportError("`cupy` is required for handling CUDA buffer.") import cupy return cupy @functools.cache def is_pyarrow_available() -> bool: """Check pyarrow package available or not""" if importlib.util.find_spec("pyarrow") is None: return False return True @functools.cache def import_pyarrow() -> types.ModuleType: """Import pyarrow with memory cache.""" import pyarrow as pa return pa @functools.cache def import_pandas() -> types.ModuleType: """Import pandas with memory cache.""" import pandas as pd return pd @functools.cache def import_polars() -> types.ModuleType: """Import polars with memory cache.""" import polars as pl return pl @functools.cache def is_pandas_available() -> bool: """Check the pandas package is available or not.""" if importlib.util.find_spec("pandas") is None: return False return True try: import scipy.sparse as scipy_sparse from scipy.sparse import csr_matrix as scipy_csr except ImportError: scipy_sparse = False scipy_csr = object def _is_polars_lazyframe(data: DataType) -> bool: return lazy_isinstance(data, "polars.lazyframe.frame", "LazyFrame") def _is_polars_series(data: DataType) -> bool: return lazy_isinstance(data, "polars.series.series", "Series") def _is_polars(data: DataType) -> bool: lf = _is_polars_lazyframe(data) df = lazy_isinstance(data, "polars.dataframe.frame", "DataFrame") return lf or df def _is_arrow(data: DataType) -> TypeGuard["pa.Table"]: return lazy_isinstance(data, "pyarrow.lib", "Table") def _is_cudf_df(data: DataType) -> bool: return lazy_isinstance(data, "cudf.core.dataframe", "DataFrame") def _is_cudf_ser(data: DataType) -> bool: return lazy_isinstance(data, "cudf.core.series", "Series") def _is_cudf_pandas(data: DataType) -> bool: """Must go before both pandas and cudf checks.""" return (_is_pandas_df(data) or _is_pandas_series(data)) and lazy_isinstance( type(data), "cudf.pandas.fast_slow_proxy", "_FastSlowProxyMeta" ) def _is_pandas_df(data: DataType) -> TypeGuard["pd.DataFrame"]: return lazy_isinstance(data, "pandas.core.frame", "DataFrame") def _is_pandas_series(data: DataType) -> TypeGuard["pd.Series"]: return lazy_isinstance(data, "pandas.core.series", "Series") def _is_modin_df(data: DataType) -> bool: return lazy_isinstance(data, "modin.pandas.dataframe", "DataFrame") def _is_modin_series(data: DataType) -> bool: return lazy_isinstance(data, "modin.pandas.series", "Series") def is_dataframe(data: DataType) -> bool: """Whether the input is a dataframe. Currently supported dataframes: - pandas - cudf - cudf.pandas - polars - pyarrow - modin """ return any( p(data) for p in ( _is_polars, _is_polars_series, _is_arrow, _is_cudf_df, _is_cudf_ser, _is_cudf_pandas, _is_pandas_df, _is_pandas_series, _is_modin_df, _is_modin_series, ) ) def concat(value: Sequence[_T]) -> _T: # pylint: disable=too-many-return-statements """Concatenate row-wise.""" if isinstance(value[0], np.ndarray): value_arr = cast(Sequence[np.ndarray], value) return np.concatenate(value_arr, axis=0) if scipy_sparse and isinstance(value[0], scipy_sparse.csr_matrix): return scipy_sparse.vstack(value, format="csr") if scipy_sparse and isinstance(value[0], scipy_sparse.csc_matrix): return scipy_sparse.vstack(value, format="csc") if scipy_sparse and isinstance(value[0], scipy_sparse.spmatrix): # other sparse format will be converted to CSR. return scipy_sparse.vstack(value, format="csr") if _is_pandas_df(value[0]) or _is_pandas_series(value[0]): from pandas import concat as pd_concat return pd_concat(value, axis=0) if lazy_isinstance(value[0], "cudf.core.dataframe", "DataFrame") or lazy_isinstance( value[0], "cudf.core.series", "Series" ): from cudf import concat as CUDF_concat return CUDF_concat(value, axis=0) from .data import _is_cupy_alike if _is_cupy_alike(value[0]): import cupy # pylint: disable=c-extension-no-member,no-member d = cupy.cuda.runtime.getDevice() for v in value: arr = cast(cupy.ndarray, v) d_v = arr.device.id assert d_v == d, "Concatenating arrays on different devices." return cupy.concatenate(value, axis=0) raise TypeError(f"Unknown type: {type(value[0])}")