diff --git a/Decision_tree.ipynb b/Decision_tree.ipynb index 9e548d9a..47c3f073 100644 --- a/Decision_tree.ipynb +++ b/Decision_tree.ipynb @@ -6,7 +6,7 @@ "metadata": {}, "source": [ "### Toymodel as an initial test\n", - "This is only a quick test to see if the model is applicable" + "This section is mostly the initial feature engineering. We also create a simple toymodel just to see how the decision tree performs" ] }, { @@ -17,7 +17,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA70AAAOwCAYAAADyQxNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdUVFf7NuB76EWKvQVLbDFqBBTsIAoKCsaKiBU1JraoMdaoiTGaqIkmGmM0KnbAhkoRFRVRkaKAJXZjL4ggSB+YOd8f+TmfvjHGMjN7GO5rrayVd8rZN28G5jxnP2dvmSRJEoiIiIiIiIj0kIHoAERERERERESawqKXiIiIiIiI9BaLXiIiIiIiItJbLHqJiIiIiIhIb7HoJSIiIiIiIr3FopeIiIiIiIj0FoteIiIiIiIi0lsseomIiIiIiEhvseglIiIiIiIivcWil4iIiIiIiPQWi14iIiIiIiLSWyx6iYiIiIiISG+x6CUiIiIiIiK9xaKXiIiIiIiI9BaLXiIiIiIiItJbLHqJiIiIiIhIb7HoJSIiIiIiIr3FopeIiIiIiIj0FoteIiIiIiIi0lsseomIiIiIiEhvseglIiIiIiIivcWil4iIiIiIiPQWi14iIiIiIiLSWyx6iYiIiIiISG+x6CUiIiIiIiK9xaKXiIiIiIiI9BaLXiIiIiIiItJbLHqJiIiIiIhIb7HoJSIiIiIiIr3FopeIiIiIiIj0FoteIiIiIiIi0lsseomIiIiIiEhvseglIiIiIiIivcWil4iIiIiIiPQWi14iIiIiIiLSWyx6iYiIiIiISG+x6CUiIiIiIiK9xaKXiIiIiIiI9BaLXiIiIiIiItJbLHqJiIiIiIhIb7HoJSIiIiIiIr3FopeIiIiIiIj0FoteIiIiIiIi0ltGogMQERERadrSpUvx/YL5UCgUAABJkiCTyd7oGOXLl0dYeAQaN26siYhERKQhLHqJiIhI70VGRMAUxfBu+wFkAB5k5sC2nBnMTIxRKC+GvEQBEyNDVLaxREZOAawtTCEvVsDE2BCPnuSidlVbfB8Si6SkJBa9RESlDIteIiIiKhNaNqiJBcM83uq98mIFvg+JVXMiIiLSBha9REREVCaFHD2HrLxCdLZ/H2bGRlAoJeQUFCEtKxe2lmZo0aCm6IhERKQGLHqJiIioTAlLuIRK1hawsjCBsZEholOuo0ntKmhWpyoqWJsjt1CO2+nZKCpWwNrCFLblzFHFxlJ0bCIieksseomIiKhM8Wn1wSufb/2B3T8ekxcrNBWHiIg0jEUvERER6a2CggIcOXIEly9fQm1rQ6yKTELDmhWRX1SMdh/WgqGhAf689QhGhga48fAJbCxMUcHaAg1rVkLCpTuwMjdFOXMTSNLfx9u7dy+aN2+Ojz766I1XfyYiIjFkkvTszzgRERFR6ffgwQOEh4cjPDwc0dHRyM/Ph4W5OSpYGmOkZ0vV6+49foqnBUXIL5TDrrINTIyNUFRcgkJ5CQBABqBWFVsAQMbTPCzfmwBTU1MUFRXBzs4O3t7e8PHxgZubG8zMzAT8pERE9DpY9BIREVGpJkkSUlJSEBYWhrCwMJw+fRoGBgZo164dfHx84O3tjX379uGH7xeo9ul9G+XLl8fOXaF49OiRaqybN2/CwsICHh4e8PHxQbdu3VC9enU1/nRERPSuWPQSERFRqZOfn49Dhw6pZnTv378PGxsbeHp6wsfHB15eXqhQoYJGM0iShAsXLiAsLAzh4eE4efIklEolnJycVLPA9vb2bIMmIhKMRS8RERGVCvfu3UN4eDjCwsJw6NAhFBYWon79+vDx8YGPjw/at28PY2NjYfkeP36Mffv2ISwsDFFRUcjJyUHNmjVVBXCnTp1gbm4uLB8RUVnFopeIiIh0klKpxOnTp1WFbkpKCgwNDdG+fXtV23KjRo1Ex3wpuVyOY8eOqdqg//rrL5ibm8Pd3R3e3t7w9vZGjRo1RMckIioTWPQSERGRzsjLy0N0dDTCwsIQERGBhw8fonz58vDy8oK3tzc8PT1Rvnx50THfiCRJuHTpkqp4P3HiBJRKJVq0aKGaBXZwcICBgYHoqEREeolFLxEREQl1+/ZtREREICwsDIcPH0ZRUREaNWqkms1t164djIz0Z5fFzMzMF9qgs7OzUb16ddUMsLu7OywsLETHJCLSGyx6iYiISKuUSiWSkpJUC0CdOXMGRkZGcHFxURV+DRo0EB1TK4qLi3H8+HHVLPDVq1dhZmaGTp06qYr+9957T3RMIqJSjUUvERERaVxubi4OHDiA8PBwRERE4NGjR6hQoQK6desGb29vdO3aFba2tqJjCnflyhXVxYBjx45BoVDA3t5eVQC3bNmSbdBERG+IRS8RERFpxK1bt1QF3JEjRyCXy/Hhhx+q7mNt3bq1XrUtq9uTJ08QFRWF8PBw7Nu3D0+ePEHVqlXRvXt3+Pj4wMPDA5aWlqJjEhHpPBa9REREpBYKhQIJCQmqVt3z58/D2NgYrq6u8PHxQffu3VGvXj3RMUulkpISxMXFqS4iXLp0CaampnBzc1PNAteqVUt0TCIincSil4iIiN7a06dPX2hbfvz4MSpVqoRu3brBx8cHXbp0gbW1teiYeufatWuqAjg2NhYlJSX46KOPVLPozs7ObIMmIvo/LHqJiIjojdy4cUNVcMXExKC4uBhNmzZVFVytWrWCoaGh6JhlRlZWFvbv34/w8HBERkYiMzMTVapUUV148PDwgJWVleiYRETCsOglIiKiV1IoFDh58qSqbfnChQswMTFBx44dVW3LdevWFR2T8HcbdHx8vOqixP/+t/L29kadOnVExyQi0ioWvURERPQP2dnZ2L9/P8LCwrBv3z5kZGSgcuXKLyyixNlD3Xf9+nXVHshHjx7lrDwRlUkseomIiAjA3/eJPpvNff4+0WczhLxPtHR7dv91WFgYIiMjX7j/+tm2Ubz/moj0EYteIiKiMuplKwKbmJigU6dOXBFYz71qpe1ns8Dvv/++6JhERGrBopeIiKgMefLkyQtty8/2fvX29oa3tzfc3d1Rrlw50TFJy27evKkqgGNiYiCXy9G4cWPVxY82bdpwT2UiKrVY9BIREem5K1euqGZzjx07BoVCAQcHB9WMXosWLdi2TCo5OTk4ePCgahuqR48eoUKFCqo2aE9PT9jY2IiOSUT02lj0EhER6Zni4mKcOHECYWFhCAsLw9WrV2FmZobOnTurZnTfe+890TGpFFAqlUhMTFTNAp89exZGRkbo0KEDfHx84OPjg/r164uOSUT0Six6iYiI9EBmZib27duH8PBwREVFISsrC9WrV1fN5nbu3BkWFhaiY1Ipd/v2bVUBfPjwYcjlcjRq1EjVBt2uXTu2QRORzmHRS0REVApJkoRLly6pCpATJ05AqVSiRYsWqkLXwcGBbcukMbm5uYiOjkZ4eDjCw8ORlpYGW1tbeHl5wcfHB56enihfvrzomERELHqJiIhKC7lcjmPHjqkK3evXr8Pc3Bzu7u7w8fFBt27dULNmTdExqQxSKpU4ffq06t7xlJQUGBoaon379qpZ4EaNGomOSURlFIteIiIiHfb48WPs27cPYWFh2L9/P54+fYqaNWuqZnM7deoEc3Nz0TGJXnD37l3VDPChQ4dQWFiIBg0aqD637du3h7GxseiYRFRGsOglIiLSIZIk4cKFC6oZs5MnT0KpVMLJyUk1Y2Zvbw+ZTCY6KtFryc/Px6FDh1Sf6QcPHsDGxgaenp6qNuiKFSuKjklEeoxFLxERkWBFRUWIjY1VFQU3btyAhYUFPDw8VG3L1atXFx2T6J0plUqkpKSoWvRPnz4NAwMDtGvXTjUL/MEHH/CiDhGpFYteIiIiAR49eoTIyEiEh4dj//79yM3NhZ2dnWo2183NDWZmZqJjEmnU/fv3ERERgbCwMERHR6OgoADvv/++ajukDh06wMTERHRMIirlWPQSERFpgSRJOH/+vGo2Nz4+HgDg7OysOsFv1qwZZ7iozCooKMDhw4dVvyP37t2DtbU1unbtCm9vb3Tr1g2VKlUSHZOISiEWvURERBpSWFiImJgY1YI+t27dgqWl5Qsn8VWrVhUdk0jnSJKE1NRUVRt0UlISZDIZ2rRpo7pI9OGHH/IiERG9Fha9REREapSWlqZq1zx48CDy8vJQu3ZtVdtyx44dYWpqKjomUany4MEDREZGqn6v8vPzUbduXXh7e8Pb2xuurq78vSKif8Wil4iI6B1IkoQzZ86oZqQSExNVM1LPFuZp0qQJZ6SI1KSwsBBHjhxR/c7duXMH5cqVe6GDokqVKqJjEpEOYdFLRET0hgoLC1+49/Du3buwsrJ64aS7cuXKomMS6T1JknDu3DmEhYWpLjoBQKtWrVTdFbxXnohY9BIREb2GBw8evLDK7LP2ymf3F7q4uHCVWSLB0tLSVKuiHzhwALm5uahVq5aq66Jjx45cFZ2oDGLRS0RE9BKSJCElJUU1m3vq1CkYGBigbdu2qhPoxo0bcwaJSEcVFRXh6NGjqlngZwvJPb//dbVq1UTHJCItYNFLRET0f/Lz819oW75//z6sra3h6ekJHx8feHp6cssUolJIkiT8+eefqt/tkydPQpIkODs7qy5iNW/enBexiPQUi14iIiqTjh07Bmtra+zevRtVq1ZFREQEoqOjUVhYiHr16qnaljt06ABjY2PRcYlIjdLT07Fv3z6EhYVh//79yMnJwXvvvQdvb29UqFABbm5uyMzMhJ2dHdq0aSM6LhG9Ixa9RERUpiiVSpw+fVq18mtKSgoMDQ3Rrl071cI3jRo14owPURkhl8sRGxuraoO+ceMGLCws4O7urtoSqXr16qJjEtE7YNFLRER6Ly8vD9HR0QgPD0d4eDgePnwIW1tbeHl5wdvbG56enqhQoYLomEQkmCRJuHjxouqiWFxcHJRKJVq0aKHq/nBwcOBFMaJShkUvERHppTt37qhOXA8fPoyioiI0bNhQdeLatm1bti0T0StlZGRg3759CA8PR1RUFLKzs1GjRg3VfcCdOnWChYWF6JhE9B9Y9BIRkV5QKpVISkpSFbpnzpyBoaEhXFxcVC2KDRs2FB2TiEqp4uJiHDt2TPU35tq1azAzM3uhDbpmzZqiYxLRS7DoJSKiUis3NxcHDx5EeHg4IiIikJaWhvLly6Nbt27w8fFB165dYWtrKzomEekZSZJw5coV1WrQx48fh0KhgIODg2ptgBYtWsDAwEB0VCICi14iIiplbt26pZppOXLkCORyORo3bqxqN2zTpg2MjIxExySiMiQzMxNRUVEIDw/Hvn37kJWVhWrVqqlmgN3d3WFpaSk6JlGZxaKXiIh0mkKhQGJiompG5dy5czAyMoKrq6tqRqVevXqiYxIRAfi7DTouLk71N+vy5cswNTVFp06dVH+z7OzsRMckKlNY9BIRkc55+vQpDh48iLCwMERGRiI9PR0VK1ZUtS136dIFNjY2omMSEf2nq1evqrpTjh07hpKSEjRv3lxVADs5ObENmkjDWPQSEZFOuHHjhmpmJCYmBsXFxWjSpInqxLB169YwNDQUHZOI6K1lZWVh//79qgt6T548QZUqVdC9e3f4+PjAw8MD5cqVEx2TSO+w6CUiIiEUCgXi4+MRFhaGsLAwXLhwAcbGxujYsaOq0K1bt67omEREGlFSUoKTJ0+qZoEvXrwIExMTuLm5qdYoqF27tuiYRHqBRS8REWlNdnY29u/fj/DwcERGRiIjIwOVK1dG9+7d4e3tjS5dusDKykp0TCIirbt+/bqqAD569ChKSkrQrFkzVQHs7OzMbheit8Sil4iINOr69euq2dzY2FiUlJTgo48+Up3IOTk58USOiOg52dnZOHDggKoN+tkFwmfrGnh4eMDa2lp0TKJSg0UvERGpVUlJCeLi4lQzFpcuXYKJiQk6deqk2r6DLXtERK/n2a0gz/6m/vnnn6pbQZ5dPOStIESvxqKXiIjeWVZW1gt7VGZmZqJq1aqqxVnc3d25OAsRkRrcuHFDVQA/W/Tvww8/hI+PD3x8fLjoH9FLsOglIqK3cuXKlRe24VAoFLC3t1ctQtWyZUtuw0FEpEE5OTk4cOAAwsPDERER8cL2bt7e3ujatSu3dyMCi14iInpNxcXFOHHihKrQvXLlCkxNTdG5c2f4+Pige/fusLOzEx2TiKhMUigUSEpKUm39dvbsWRgZGcHFxUU1C1yvXj3RMYmEYNFLRET/KjMzE1FRUQgLC0NUVBSysrJQvXp11b25nTt3hqWlpeiYRET0P27duoXw8HCEh4fj8OHDkMvl+OCDD1TdOG3btoWRkZHomERawaKXiIhUJEnC5cuXVTMFJ06cgEKhgKOjo+pEydHRkW3LRESlSG5uLqKjoxEWFoaIiAikpaWhfPny8PLygo+PD7p27Yry5cuLjkmkMSx6iYjKuOLiYhw7dkxV6F67dg3m5uZwd3eHt7c3unfvjpo1a4qOSUREaqBUKnHq1CnVrSqpqakwNDREhw4dVBc3GzZsKDomkVqx6CUiKoMyMjIQGRmJ8PBwREVF4enTp6hZs6Zq+ws3NzdYWFiIjklERBp2584dREREICwsDIcOHUJRUREaNmyo+j5o164djI2NRcckeicseomIygBJknDx4kXVbG5cXByUSiWcnJxUJzb29vaQyWSioxIRkSB5eXk4dOiQ6l7gBw8ewNbWFp6envDx8YGnpycqVKggOibRG2PRS0Skp+RyOY4ePapqYbtx4wYsLCzg4eEBHx8fdOvWDdWrVxcdk4iIdJBSqURycrLqOyQ5ORmGhoZo166d6mJpo0aNeLGUSgUWvUREeiQ9PV3Vtrx//37k5OTAzs7uhbZlMzMz0TGJiKiUuXfvHiIiIhAeHo7o6GgUFBSgfv36qu+XDh06sA2adBaLXiKiUkySJPz5558ICwtDWFgY4uPjAQDOzs6qBUk++ugjXoknIiK1yc/Px5EjR1S3zNy7dw/W1tbw9PSEt7c3unXrhooVK4qOSaTCopeIqJQpKipCTEyM6p6rmzdvwtLSEl26dFG1LVetWlV0TCIiKgMkSUJqaqqqAE5KSoKBgQHatm2rmgVu3LgxL76SUCx6iYhKgbS0NERGRiIsLAwHDhxAXl4eateurZrN7dixI0xNTUXHJCKiMu7Bgweq76uDBw8iPz8fdevWVX1fubq6wsTERHRMKmNY9BIR6SBJknD27FnVAiKJiYkAgDZt2qiunDdp0oRXzomISGcVFha+0AZ9584dWFlZvdCZVLlyZdExqQxg0UtEpCP+7eSga9euqnukeHJARESl0b9dzG3durVqFrhp06a8mEsawaKXiEigV7WB+fj4wMXFhW1gRESkd/7ttp1n3Uy8bYfUiUUvEZEWccEPIiKiFz2/QGNYWBhu3brFBRpJrVj0EhFpWEFBAQ4dOqRabfn5rR18fHzg6emJSpUqiY5JREQk3PNb8YWHh+PkyZMA/t6K79nFYW7FR2+KRS8RkQbcv39fVeRGR0ejoKAA9evXV9231KFDBxgbG4uOSUREpNPS09MRGRmJ8PBw7N+/Hzk5ObCzs1MVwG5ubjAzMxMdk3Qci14iIjVQKpVISUlBWFgYwsLCkJycDENDQ7Rr105V6DZq1IhXpomIiN6SXC5HbGys6rv2xo0bsLCwgIeHh6oNunr16qJjkg5i0UtE9JZKSkrg6+sLhUKBpKQkPHjwALa2tvDy8oK3tzc8PT1RoUIF0TGJiIj0jiRJuHjxoqoNOi4uDkqlEk5OTmjRogWqVauGr7/+WnRM0hEseolI761evRqzZ89GSUmJ6jFJkt541tXa2ho7duxAixYtAAA7d+5E3759YWpqinHjxsHHxwdt27Zl2zIREZGWPX78GFFRUQgLC8P27dshSRJiY2PRoUMHAMCxY8cwcIAf8vLyVO95m3MB144dsSt0tzqjkxaw6CUivdenTx8cij6Ibh6dUM7SEjKZDEZGhigoLIIkSbCxKod7D9NgZmqCqlWq4OnTHFSqWB4W5ua4e/8hLCzMkZH5BBuDd2D58uUYN26c6tjx8fFo3LgxbGxsBP6ERERE9My1a9cQHx+PgQMHqora77//HjNnzkRA+7ooUUgwMzZEUYkCEoDs/GKYGhkgu6AYze1skZknh6WpEQqKFcgpKIa5iSEKi5U4e/cJ/rz3FCyfSh8j0QGIiLShdUtHbPz9l3c6xrbd4f88buvW73RMIiIiUq/69eujfv36/3i8krUFvu/b/K2Pu+XkTUwOSX2HZCQKi14iKrM2b9uFJ1nZ6NrZFWamplAolHiak4N79x+iW5dOouMRERGRhm1Puo3s/GK4Na4KU2MDKJQScgtLkFdUgqeFxXD/sJroiKQGLHqJqMwJDY9C5YoVYG1VDibGxoiKjsFHTT5A86ZNUKlieRQWFSEq+ggsLSxgZVUO9s2aiI5MREREahRx5j4qljOBlZkxjA0NcPhiGhrXsEbTmjaoaGmCC/efIrewBIl/ZcDGwhjWZlyvozRj0UtEZU4vb89XPt+qhYOWkhAREZEI3ZvXeOXzzu9X1FIS0gYWvURUZsSeiMeZPy+iccP6yMvPh0vb1jAyMsT5i5ehKFHg/sM0WFiYo2O7NohLPIXCoiLYWlvD2MQYbZxaiI5PRERE7yju2mNcuJeNBtWskF9Ugjb1K8HIQIb7WYU4dTMDFcuZoryFCZrUtMGf97JRopRgaWoEI4M3W+WZdAuLXiIqE1LP/YnE5FTVv9+59wC7I/ZDqVTCwtwcFSvYorBIjoKCQuw7eAQymQx1ar0HAHiak4vjJxNRWFgo8CcgIiKid/H4aT6Sbz0BAJy7m437WQWIPPsASkmCuYkhyluY4NKDHBQWK7Dj1B3IZDLYVbAAAOQUFqveS6UPi14i0nuenp44fvw4Fv+6CoUFhZDL5TA2Noa5uTnwL/vzKZVK5OfnQ6lUwtzMDMYmJqhTpw7atGmj5fRERET0rtq3bw+7mjXw27G7UCgUyM/PB2QyWFhYwNDA4KXvKSwqQlFREUyenTMA6NXzY23GJjV5+X9hIiI98sknn+DEiROoXbsOFEolfl2xAnn5+cjIzERGRsZL/3ny5Amys7MxYsQI5OTmwsvLC+fOnUOLFmxzJiIiKm06dOiA23fv4dffVqJQXoyWzq1w5+49ZGU/RcaTrJf+k5dfgHWB66GQgKYfNcflq9ewK3S36B+F3gKLXiLSe9u3b4ejoyNycnIQHx+PTz/9VLVZ/auYmZnh999/x9atW7Fnzx60bNkS586d00JiIiIiUielUok5c+bA398fvr6+OHz4MKpWrfqf7xsyZAgOHz6MixcvolWrVrhw4YIW0pK6seglIr1VWFiIcePGwdfXF926dcPp06dhb2//xscZMGAATp8+DVNTUzg7O2Pt2rWQJEn9gYmIiEjt8vPz0b9/f8ybNw/ff/89NmzYADMzs9d+f7t27ZCYmAgLCwu0adMG+/bt02Ba0gQWvUSkl65fv4527dphzZo1WLlyJYKCgmBtbf3Wx2vYsCHi4+MxZMgQjBw5EkOGDEFubq4aExMREZG63bt3Dy4uLoiMjMSuXbswffr01+r2+l916tRBXFwcXFxc4O3tjZ9//pkXwEsRFr1EpHd27NgBR0dHZGdn4+TJk/jss8/e6gvuf5mbm2PVqlXYsmULQkND4eTkhPPnz6shMREREanbqVOn4OTkhLS0NJw4cQK9evV6p+NZWVlh9+7dmDx5MiZNmoRPP/0UcrlcTWlJk1j0EpHeKCoqwvjx49GvXz907doVycnJcHBwUPs4/v7+OH36NIyNjeHs7Ix169bxai8REZEO2bZtGzp06IBatWohKSnprW5vehlDQ0MsWrQI69atw/r169G1a1dkZGSo5dikOSx6iUgvPGtnXr16NX777TeEhIS8Uzvzf2nUqBESEhIwaNAgjBgxAsOGDUNeXp7GxiMiIqL/JkkS5s6di/79+6N3796IiYlBtWrV1D5OQEAADh06hPPnz6NVq1a4ePGi2scg9WHRS0Sl3s6dO+Ho6IisrCycPHkSo0ePVks7838xNzfH6tWrsXnzZuzcuZPtzkRERAIVFBRgwIAB+Oabb/Ddd99h8+bNb7Rg1Zvq0KEDEhMTYWZmhtatW2P//v0aG4veDYteIiq1ioqK8Pnnn6Nv377o0qULTp8+DUdHR63nGDhwIE6dOgVDQ0M4OzsjMDBQ6xmIiIjKsvv378PV1RV79+7Fjh078NVXX2nlAnjdunURFxeH9u3bo1u3bli+fDlvedJBLHqJqFT666+/0L59e6xatQq//vortm3bBhsbG2F5PvjgAyQkJMDf3x/Dhw9nuzMREZGWJCcnw9nZGffv38fx48fRp08frY5vbW2NvXv3YuLEifj8888xZswYFBcXazUDvRqLXiIqdXbt2gVHR0dkZmYiLi4OY8eO1crV3P9iYWGBNWvWYOPGjdi+fTucnZ25iT0REZEG7dixA+3bt0eNGjWQlJQkpOML+HuBq59++glr1qzBmjVr4OnpiczMTCFZ6J9Y9BJRqVFUVIQJEyagT58+cHd3R3JyMlq0aCE61j8MHjwYp06dgoGBAZycnLBhwwbRkYiIiPSKJEn47rvv0K9fP/To0QNHjx5F9erVRcfCiBEjEB0djdTUVLRu3RqXL18WHYnAopeISokbN26gQ4cOWLlyJZYvX47t27cLbWf+L40bN0ZCQgL8/PwwbNgwBAQEsN2ZiIhIDQoKCjBw4EDMnj0bc+fORVBQEMzNzUXHUnF1dUViYiKMjIzQunVrHDx4UHSkMk8m8U5rItJxu3fvRkBAAMqXL49t27ahZcuWoiO9kY0bN2L06NGoU6cOtm/fjg8//FB0JCIiolLp4cOH6NmzJ86ePYsNGzagX79+oiP9q+zsbPTv3x/R0dFYtmwZxowZIzpSmcWZXiLSWXK5HJMmTUKvXr3QqVMnJCcnl7qCFwCGDBmCpKQkAICTkxM2btwoOBEREVHpk5KSAicnJ9y5cwexsbE6XfACgI2NDcLDwzFu3DiMHTsW48aNQ0lJiehYZRKLXiLSSTdv3kT79u2xYsUKLFu2DDt27ICtra3oWG/tww8/RGJiIvr374+hQ4dixIgRyM/PFx2LiIioVAgNDUX79u1RtWpVJCYmlpqL4EZGRvj555/x+++/Y9WqVfDy8sKTJ09ExypzWPQSkc7ZvXs3HBwc8PjxY5w4cQLjx4/XidWZ35WlpSXWrVuH9evXIygoCM7Ozrh48aLoWERERDpLkiR8//336N27N7p164bY2FjUrFlTdKw39umnn+LAgQM4ffo0WrdujatXr4qOVKaw6CUinSGXy/HFF1+gV69ecHNzQ3JyMpycnETHUruhQ4ciKSkJkiShZcuW2LRpk+hIREREOqewsBBDhgzBzJkzMWfOHISEhMDCwkJ0rLfm5uaGhIQEyGQytGrVCocPHxYdqcxg0UtEOuHWrVtwcXHBr7/+ip9//hk7d+4s1e3M/6VJkyZITExEv379MGTIELY7ExERPSctLQ2dOnXC9u3bERQUhLlz58LAoPSXLg0aNEB8fDycnJzQtWtXrFq1SnSkMqH0f3KIqNTbu3cv7O3tkZaWhuPHj2PChAl60c78XywtLbF+/XoEBgYiKCgIrVq1wqVLl0THIiIiEurMmTNwdnbGjRs3EBsbCz8/P9GR1MrW1hYRERH47LPP8Nlnn2HChAlc4ErDWPQSkTByuRyTJ0/Gxx9/jI4dOyI5ORnOzs6iY2ndsGHDkJSUBIVCgZYtW2LLli2iIxEREQmxd+9etGvXDhUrVkRSUpLenhcYGRlh+fLl+O2337BixQp4e3sjKytLdCy9xaKXiIR41s68bNkyLF26FLt27UL58uVFxxLmWbtz7969MWjQIHzyyScoKCgQHYuIiEgrJEnCokWL0LNnT3Tt2hXHjh3De++9JzqWxo0ePRpRUVFISEhAmzZtcO3aNdGR9BKLXiLSurCwMDg4OODhw4c4fvw4Jk6cWCbamf9LuXLlsGHDBqxbtw5btmxhuzMREZUJRUVFCAgIwLRp0zBz5kxs374dlpaWomNpjbu7OxISEqBQKNCqVSvExMSIjqR3WPQSkdYUFxdjypQp6NGjBzp06IDk5GS0atVKdCydIpPJEBAQgMTERBQXF6Nly5bYunWr6FhEREQa8ejRI3Tu3BnBwcHYsmULvvvuO71YsOpNNWzYEAkJCXBwcICHhwf++OMP0ZH0Stn7RBGRELdv34aLiwt+/vlnLFmyBLt370aFChVEx9JZTZs2RVJSEnr16oWBAwdi1KhRbHcmIiK9cu7cOTg7O+PatWuIiYmBv7+/6EhClS9fHvv27cMnn3yCUaNGYdKkSVAoFKJj6QWZJEmS6BBEpN/Cw8MxZMgQWFlZISQkBK1btxYdqdSQJAnr1q3DuHHj0LBhQ2zbtg2NGjUSHYuIiOidhIeHY8CAAahXrx727t2LWrVqiY6kU1asWIEJEyagS5cuCAoKgo2NjehIpRpneolIY4qLizF16lT4+Pigffv2SElJYcH7hmQyGUaMGIHExEQUFRWhZcuWCAoKEh2LiIjorUiShJ9++gk9evSAu7s7jh8/zoL3JcaOHYvIyEjExcWhbdu2+Ouvv0RHKtVY9BKRRty5cweurq5YunQpfvrpJ+zZs4ftzO+gWbNmOHXqFD7++GP4+/vj008/ZbszERGVKnK5HCNGjMCXX36J6dOnY+fOnShXrpzoWDqrS5cuiI+Ph1wuh7OzM2JjY0VHKrXY3kxEahcREYEhQ4bA0tISISEhaNOmjehIekOSJKxduxbjx49Ho0aNsG3bNjRs2FB0LCIiold6/PgxevfujYSEBKxZswaDBw8WHanUyMzMRN++fXH8+HH8/vvvGD58uOhIpQ5neolIbYqLizFt2jR4e3ujbdu2SE1NZcGrZjKZDCNHjkRCQgIKCgrQokULBAcHi45FRET0r/788084Ozvj0qVLOHLkCAveN1ShQgXs378fAQEBqplyLnD1Zlj0EpFa3LlzB25ubvjpp5+wePFitjNr2EcffYRTp07Bx8cHAwYMwOjRo1FYWCg6FhER0Qv27duHNm3aoFy5ckhKSkLbtm1FRyqVjI2N8fvvv+OXX37B0qVL8fHHH+Pp06eiY5UabG8moncWGRmJIUOGwMLCAsHBwfxC0yJJkrBmzRqMHz8eH3zwAbZv344GDRqIjkVERGWcJEn45ZdfMHnyZHTv3h1btmyBlZWV6Fh6ISoqCv3794ednR3CwsJQt25d0ZF0Hmd6ieitFRcXY/r06ejevTtat26NlJQUFrxaJpPJ8MknnyAhIQH5+flwdHRESEiI6FhERFSGyeVyfPrpp5g0aRImT56M0NBQFrxq5Onpifj4eBQUFMDZ2RnHjx8XHUnnseglordy9+5duLm54ccff8SiRYuwd+9eVKxYUXSsMqt58+Y4ffo0vL294efnhzFjxrDdmYiItC4jIwNdunTB+vXrERgYiEWLFsHQ0FB0LL3TuHFjJCYmokmTJujcuTM2bNggOpJOY3szEb2xffv2YfDgwTA3N0dISAhnd3WIJEn4448/8Pnnn6Nx48bYvn076tevLzoWERGVARcvXoSPjw+ys7MRGhqK9u3bi46k9+RyOcaOHYs1a9Zg6tSpWLBgAS8yvARneonotZWUlGDmzJno1q0bWrVqxXZmHSSTyTBq1CjEx8cjLy8Pjo6O2LZtm+hYRESk5/bv34/WrVvDzMwMiYmJLHi1xMTEBKtXr8aSJUvw448/onfv3sjJyREdS+ew6CWi13Lv3j24ublh0aJFWLhwIcLCwlCpUiXRsehf2Nvb49SpU+jWrRv69++PsWPHst2ZiIjUTpIkLF++HN26dUOHDh0QFxfHhZW0TCaTYdKkSQgLC8ORI0fQvn173Lp1S3QsncKil4j+U1RUFOzt7XHjxg0cPXoUU6dOhYEB/3zoOmtrawQFBWHlypVYu3Yt2rZti2vXromORUREeqK4uBijR4/G559/jkmTJmHPnj2wtrYWHavM6tatG06ePImcnBw4Ozvj5MmToiPpDJ61EtG/KikpwVdffQUvLy+0bNkSqampaNeunehY9AZkMhk+++wz1Zego6Mjtm/fLjoWERGVcpmZmfD09MS6deuwZs0a/Pjjj7yXVAc0adIECQkJaNSoETp27IhNmzaJjqQTWPQS0Uvdv38fnTt3xsKFC/H9998jIiKC7cylmIODA06fPg0vLy/4+vpi3LhxKCoqEh2LiIhKocuXL6NVq1Y4c+YMDh48iBEjRoiORM+pXLkyDh48iIEDB2LIkCGYOXMmlEql6FhCcfVmIvqHAwcOYNCgQTAxMUFQUBA6dOggOhKpiSRJ+P333zFx4kQ0bdoU27ZtQ7169UTHIiKiUuLgwYPo168fatasibCwMLz//vuiI9G/kCQJP/30E6ZOnYqPP/4YmzZtQrly5UTHEoIzvUSkUlJSglmzZsHT0xMtWrRASkoKC149I5PJMHr0aMTHxyM7OxuOjo7YsWOH6FhERFQKrFixAl5eXmjTpg3i4uJY8Oo4mUyGL7/8Env37kV0dDTat2+P27dvi44lBIteIgLw/9uZf/jhByxYsAARERGoXLmy6FikIQ4ODkhOTkbXrl3Rr18/jB8/nu3ORET0UiUlJRg7dizGjRuH8ePHIywsDDY2NqJj0Wvy9vZGXFwcsrKy4OzsjPj4eNGRtI7tzUSkuu/D2NgYwcHBnN0tQyRJwsqVKzFp0iQ0a9YM27Zt45V7IiJSefLkCXx9fRETE4MVK1Zg1KhRoiPRW3r06BF69eqF06dPY926dfD39xcdSWs400tUhikUCsyZMwddu3aFg4MD25nLIJlMhjFjxuDkyZN48uQJHBwcsHPnTtGxiIhIB1y9ehWtW7dGcnIyDhw4wIK3lKtSpQoOHz6M/v37Y+DAgZg1a1aZWeCKRS9RGfXgwQO4u7tj/vz5+O6777Bv3z5UqVJFdCwSxNHREcnJyejSpQv69u2LCRMmsN2ZiKgMO3z4MFq1agUDAwMkJCTAzc1NdCRSA1NTU6xfvx4LFy7EggUL0K9fP+Tl5YmOpXFsbyYqgw4ePIhBgwbB0NAQwcHBcHFxER2JdIQkSfjtt9/wxRdf4KOPPkJISAjbnYmIyphVq1Zh7Nix6Ny5M0JCQmBrays6EmnAnj17MHDgQDRs2BB79+7Fe++9JzqSxnCml6gMeb6duXnz5khNTWXBSy+QyWQYO3Ys4uLikJGRAUdHR+zatUt0LCIi0oKSkhJ8/vnn+OyzzzBmzBhERESw4NVjH3/8MU6cOIHHjx/DyckJiYmJoiNpDIteojLi+XbmefPmISoqiu3M9K9atGiB5ORkuLu7o0+fPpgwYQLkcrnoWEREpCFZWVno3r07fvvtN6xcuRLLli2DkZGR6FikYc2bN0diYiLq1KkDV1dXBAcHi46kEWxvJioDDh06hIEDB0ImkyEoKAgdO3YUHYlKCUmSsGLFCnzxxRewt7dHSEgI6tatKzoWERGp0bVr1+Dj44OHDx9ix44d6Ny5s+hIpGWFhYUYOXIktmzZgjlz5uDrr7+GgYH+zI/qz09CRP+gUCjwzTffwMPDA82aNUNqaioLXnojMpkM48aNQ1xcHB4/fgxHR0fs3r1bdCwiIlKTmJgYtGrVCkqlEgkJCSx4yygzMzNs2rQJ8+fPx7fffgs/Pz/k5+eLjqU2LHqJ9NTDhw/h4eGBefPm4dtvv0VUVBSqVq0qOhaVUi1btkRycjI6deqEXr16YdKkSWx3JiIq5f744w94eHjAwcEB8fHxaNiwoehIJJBMJsPMmTOxc+dOREREwMXFBffu3RMdSy3Y3kykhw4fPgx/f3/IZDJs3bqV2wyQ2kiShF9//RWTJ0+Gvb09tm3bhjp16oiORUREb0ChUODLL7/Ezz//jDFjxuDnn3+GsbGx6FikQ1JSUtCjRw8olUrs2bMHLVu2FB3pnXCml0iPKBQKzJ07F+7u7mjatClSU1NZ8JJayWQyjB8/HidOnEB6ejocHBywZ88e0bGIiOg1ZWdnw8fHB8uXL8evv/6KFStWsOClf3BwcEBiYiLee+89uLi4YPv27aIjvRMWvUR6Ii0tDV27dsXcuXPxzTffYP/+/WxnJo1xcnJCSkoK3Nzc0LNnT3zxxRdsdyYi0nF//fUX2rZti7i4OOzbtw9jx44VHYl0WPXq1RETE4OPP/4Yvr6++Pbbb1Fam4TZ3kykB44cOQJ/f39IkoStW7eiU6dOoiNRGSFJEpYtW4YpU6bA0dERISEhqF27tuhYRET0P2JjY9G7d2+UL18eYWFh+OCDD0RHolJCkiTMnz8fs2fPhp+fH9atWwdzc3PRsd4IZ3qJSjGFQoFvv/0W7u7uaNKkCVJTU1nwklbJZDJMmDABx48fR1paGuzt7bF3717RsYiI6Dnr1q2Du7s7PvroIyQkJLDgpTcik8kwa9YsbN++HXv27IGrqysePHggOtYbYdFLVEqlpaXB09MT33zzDebMmYP9+/ejWrVqomNRGeXs7Izk5GR07NgRH3/8MSZPnsx2ZyIiwZ4tWDVixAgEBARg//79qFChguhYVEr17dsXx44dw71791S3OZUWbG8mKoViYmIwYMAASJKELVu2cE890hmSJOGXX37BlClT0KJFC7Y7ExEJ8vTpU/j7+2Pfvn1YunQpxo8fD5lMJjoW6YH79+/j448/xoULF7Bp0yb07t1bdKT/xJleolJEoVDgu+++Q+fOndG4cWOkpqay4CWdIpPJMHHiRBw/fhwPHz6Eg4MDwsLCRMciIipTbt68iXbt2uHYsWOIiIjA559/zoKX1KZGjRo4evQovL290adPH8yfP1/nF7hi0UtUSjx69AheXl6YM2cOZs+ejYMHD7KdmXRWq1atkJycjA4dOqBHjx6YMmUKiouLRcciItJ7x48fh5OTE/Lz8xEfHw9PT0/RkUgPWVhYIDg4GN988w1mzZqFwYMHo7CwUHSsf8X2ZqJSICYmBv7+/lAoFNiyZQvc3d1FRyJ6LZIk4eeff8bUqVPRsmVLhISEoFatWqJjERHppQ0bNmDUqFFo06YNdu7ciYoVK4qORGVASEgIhg0bhubNm2P37t06OSnDmV4iHaZUKlXtzI0aNUJqaioLXipVZDIZJk2ahOPHj+P+/fuwt7dHeHi46FhERHpFoVBg2rRpGDZsGIYMGYIDBw6w4CWt6d+/P2JjY3H79m04OzsjNTVVdKR/YNFLpKOeb2eeNWsWoqOjUb16ddGxiN5Kq1atkJKSgvbt28PHx4ftzkREapKTk4PevXvjxx9/xJIlS7B69WqYmJiIjkVljJOTE5KSklC5cmW0a9cOu3fvFh3pBWxvJtJB48ePx7Zt21SrM3t4eIiORKQWkiRh6dKlmDZtGho0aIAZM2Zg8ODBomMREZVKGzduxOjRo2FgYICQkBB069ZNdCQq4/Ly8jBs2DDs2LED9vb2OH78OCwtLUXHYtFLpGtSUlLg6OgIY2Nj3Lx5EzVq1BAdiUjtTp48ibZt2wKAzq/4SESkqxo1aoQrV67g4MGDvP2JdIZSqUS7du0QHx+PBQsWYMaMGaIjsegl0jUlJSVYtmwZ/Pz8WPCSXouLi8PVq1cxdOhQ0VGIiEqlzMxMFBQUoGbNmqKjEL1ALpdj165d6NGjBywsLETHYdFLRERERERE+stIdAAifREUFIQvJk2CXC5XPSZJ0lttBl++fHlEREaiUaNG6oxIpHMmT56M9Rs2qv732/zOmJiY4OelS9C/f391xyMi0qht27ZhwvhxqnOHN/kbaGBggGkzZuLLL7/UZESidzZ37lzs2LX7tV8vk8kwauRwjBs3Tm0ZWPQSqUl0dDQK8nLg69EaJQolzE2MUVhcDEhAVm4+TI2NkJ2bD/tGdZCZnYty5mZ4nJ2DkhIFnrVbyGRAtYo2+HFTBJKSklj0kt7btXsPYG6NuvbtYWRiihK5HICEwtxsGBqboDD3KWo0bI787EyYWFgiPzsTypLnVn2WyXDhaBgOHDjAopeISp3o6GjkPs3CAKeakAF48LQItubGMDM2QGGxEsUKJYwNDVCpnAky8+SwNjeGgUyGomIFdiTfQ0R4GIte0nm//rYSeQblYFbJDpKiBEYWVoDMAIYm5jAwNkXh47swNLOAskQOs4rvISP1IFb9sZZFL5GualSnJn6a9G4r0RYWFePHTRFqSkSk+5q49kCXUV+/9fuf3LmmxjRERNrVoJo1vv24yRu/Ly2nCE80kIdI3SSlhKrt+6J2jwmv9waZAaRHp9WagUUvkYYF7Y9DVk4e3Fs1g5mJMRQKJXLyC5CRnYtCeTE82zQXHZFI56TuD0ZBTjYatOoMIxNTSEolCvOeIj87E/VauIqOR0SkMdtP30V2fjHcPqgMUyNDKJUScopKkFdUgqcFxXD/sKroiERvLe3EDhTnZ6FCMzcYGP/9/a4oyEFRVhqgVKCivWa26WTRS6RBe4+eQu1qlWBtYYazV24hLTMbTevZoVmDWqhTozJOnLmCXYcTYVetIkyMjNC8YW3RkYmE+jM2DJY2FWFqaQ1DYxNcTYhG1feboHqDZrCwqYD87ExcPBEJqwpVYWJuiSp1PhAdmYjonUWce4CKlqbIypfDxNAAEoCH2YVoUsMGRgYyPHxaiMw8OSqWM0HijUw0t7MRHZnojaWfioRpJTsY5pVD7q3zkGenw9KuMcrVagKzyrWRcyMFmediIH/6WO1js+gl0qAeri1f+TxneYle1MTF55XPc5aXiPRR92bVX/m8c90KWkpCpBmF6bdhaG4JQzNLQJJQvqkrZAZGyL19HsqifBRlPoCiMA+GZpaQGaq/RGXRS6RGT/PysXLHQTSqXQP5hUVoZ98IRoYGuJuWibyCIqRlZMHSwgzVKtrA0twMDzOyVO99/CQHtlYWKCouEfcDEAlyI/UEHl47j8q1G0JemI+69u1gYGiIzPs3UZSXg9zMR2jQqjMeXv8TBU+fQIIE83I2qNO8nejoRETvLO56Bi7cf4oGVcshX65Am/crwshAhvvZBTh18wmqWJnC1NgQjrVscejiI5gZGyIjTw4Da9HJiV6PWeVaeM9j5D8eN69aF6a2VWFaoYbqsbS4XWofn0UvkRo9SH+CInkxzl69BQC4duch7j3KRFpGNkxNjFG5vBVMjI1RVFyMgqK/tyeQQYba1SupjpH+5KmQ7ESiXE2IhqmFFQDg3uUUZKffx59H90BSKmFsZgEL6/IokRfh5tmTUCoVMDQyRrnylVGUn4Nb5xLw8MYloFUzwT8FEdHbufrwKVJuZwEADvyZhpzCEkScfYBK5Uwh/7/Vm8/czQYARJx9ALsKFgCAa2m5aPjqCWIinSAzkCEtbgfkWQ8hf/oYiqJ8QFLCyMIGMiNjSCXFACRISiVkhkZ4ejUJld+rotYMLHqJ1MTd3R2RERH4OST6/x6RkJ+fj5ISBSwsLGBk9M9ft6KiQhQVFcHU1BSmpmaqx+u9/z6cnJy0lJxInN49P8b6DRuRvGvlP57Lzc0FAFiWs8TT7KcwNTWFmZnZP15X3sYKXbp00XhWIiJ1c3d3x+7QXVh84BoUCgVMzcxgamLyf8/m/eP1xcXFKCgsgIHMAJaWluju/epbQoh0wbgxo//ep/fxmb8fkP39z8WUeBgaGqBhwxe36KxmVxWjRg5XawaZJEnSf7+MiN5EXl4efHx8kJCQgL1796Jz587/+toFCxbgq6++wowZMzB//vzX3pSeSJ/dv38f7733HtasWYPhw4djyJAhSEpKwoULF/g7QkR6Y9++fRg8eDAsLCywbds2tG7d+j/fc+XKFfTr1w9XrlzBr7/+iuHDh/PvIpVKVlZWsLW1xZ07dzQ+loHGRyAqY54+fQpPT08kJSUhKirqlQUvAMycORM//fQTvv/+e3z55ZfgdSgiYPv27TAyMkLv3r0BAH5+frh06RLOnj0rOBkR0bsrKSnBjBkz0K1bN7Ru3RopKSmvVfACQMOGDREfH49BgwZh5MiRGDp0KPLy/jkrTKTrlEollEqlVsZiezORGmVlZcHT0xOXLl3CwYMHX/sL7IsvvoCpqSnGjRuHwsJCLF++HAYGvCZFZVdwcDC8vLxga2sLAPDw8ECFChUQHByM5s256jkRlV7379/HgAEDcOLECSxcuBBffvnlG3/nm5ub448//oCrqys+/fRTnD59Gtu3b8eHH36oodRE6qfNopdn1URqkpGRgc6dO+Pq1as4dOjQaxe8z4wdOxarV6/GypUr8emnn0KhUGgoKZFuu3HjBuLj4+Hn56d6zNjYGH379kVwcDC7IYio1Dp48CDs7e1x7do1xMTEYOrUqe90kXvQoEE4deoUZDIZnJycsHHjRjWmJdIsFr1EpcyjR4/g5uaGO3fu4PDhw2jRosVbHeeTTz7B+vXrsW7dOgQEBKCkhNsXUdkTEhICCwsL9OjR44XH/fz8cPPmTSQkJAhKRkT0dhQKBebMmYOuXbvC0dERqampaN++vVqO3bhxYyQkJMDX1xdDhw7FyJEjUVBQoJZjE2mSUqnU2iQPi16id3T//n24uroiPT0dMTEx79x6OWTIEGzduhVbt27FwIEDUVxcrKakRKVDcHAwfHx8YGlp+cLjLi4uqF69OoKDgwUlIyJ6cw8fPoSHhwfmz5+PefPmITIyEpUrV1brGJaWlggMDMS6deuwdetWtGrVCpcvX1brGETqplAoONNLVBrcuXMHrq6uyM3NRWxsrNrupenfvz+2b9+O0NBQ9OvXD0VFRWo5LpGuu3jxIs6cOfNCa/MzhoaG8PX1xbZt29j+T0SlwpEjR2Bvb4+LFy/i0KFD+OqrrzS6ZkdAQAASExMhl8vRsmVLBAUFaWwsonehUCggSRJneol03Y0bN+Di4oKSkhLExsaiQYMGaj1+r169EBoaiqioKPTu3RuFhYVqPT6RLgoODoaNjQ28vLxe+ryfnx8ePHiA2NhYLScjInp9SqUS8+bNg7u7O5o0aYLU1FR07NhRK2M3bdoUp06dQo8ePeDv74/Ro0fzHIJ0jlwuBwCt3crHopfoLVy9ehUuLi4wMjLC0aNHUbduXY2M0717d4SFheHIkSPw8fFBfn6+RsYh0gWSJCEoKAi9evWCqanpS1/TqlUr1KlThy3ORKSz0tPT4eXlha+//hqzZ8/GgQMHULVqVa1mKFeuHDZv3oxVq1YhMDAQbdu2xbVr17SagehVWPQS6biLFy/C1dUV5cqVw9GjR1GrVi2Njufh4YF9+/bh5MmT8PLyQk5OjkbHIxIlJSUFV69efWlr8zMymQx+fn7YsWOH6guTiEhXHDt2DPb29khJScH+/fvxzTffwNDQUEgWmUyGUaNGIT4+Hjk5OWjRogV27twpJAvR/2LRS6TDzp49C1dXV1SqVAlHjx5FjRo1tDKuq6srDhw4gNTUVHTt2hXZ2dlaGZdIm4KDg1GpUiV07tz5la8bMGAAMjMzER0draVkRESvplQqsXDhQri5uaF+/fpITU2Fh4eH6FgAAHt7e5w+fRpdu3ZF37598fnnn3OtEBLuWdGrrRWcWfQSvabk5GS4ubnBzs4OR44cQZUqVbQ6ftu2bREdHY2LFy/C3d0dmZmZWh2fSJOUSiWCg4PRr18/GBkZvfK1zZo1Q+PGjdniTEQ6ISMjAz4+Ppg+fTqmTp2KQ4cOae2i+OuytrZGSEgIfv31V6xatQodOnTAjRs3RMeiMuz5bi1t7FTCopfoNSQkJKBTp05o0KABDh06hIoVKwrJ4eTkhCNHjuDGjRvo1KkT0tPTheQgUreTJ0/izp07GDBgwH++9lmLc2hoKPeiJCKhTp48CQcHByQkJCAyMhILFiz4zwt3oshkMowdOxYnTpzA48eP4ejoiD179oiORWXU80WvNm5XYtFL9B+OHTsGd3d3NGvWDAcOHICtra3QPPb29oiJicHDhw/RsWNHPHz4UGgeInUIDg5GzZo10a5du9d6vZ+fH3JzcxEZGanhZERE/yRJEpYsWQIXFxfY2dkhJSXlX1ed1zUtW7ZEcnIyOnbsiJ49e2Ly5MlamWkjet7zLfbaaLdn0Uv0CocPH4anpyecnJywb98+WFtbi44E4O/tCI4ePYqsrCy4urri3r17oiMRvbWSkhJs27YN/fv3f+39Kxs2bAhHR0e2OBOR1j158gS9evXC5MmTMXHiRMTExMDOzk50rDdia2uLXbt2YenSpVi2bBlcXV1x584d0bGoDOFML5GOiIqKQvfu3dGhQwdERESgXLlyoiO9oFGjRoiNjUVhYSFcXFxw69Yt0ZGI3kpMTAwePXr0Wq3Nz/Pz80N4eDiePn2qoWRERC9KSkqCo6MjYmNjsXfvXixevBjGxsaiY70VmUyGiRMn4tixY7h37x7s7e3ZPUNaw6KXSAeEhYXh448/hoeHB3bv3g1zc3PRkV6qXr16iI2NBQC4uLjg+vXrghMRvbng4GDUq1cPLVq0eKP39e/fH4WFhdi7d6+GkhER/U2SJCxfvhzt2rVDlSpVkJycDB8fH9Gx1KJ169ZISUlB27Zt0b17d8yYMUNr28hQ2cWil0iwnTt3onfv3vDx8cGOHTtgZmYmOtIr1a5dG7GxsTAzM4OLiwsuX74sOhLRaysqKsLOnTvh5+cHmUz2Ru+tVasW2rVrh6CgIA2lIyICsrOz4evri88//xxjxozBsWPHUKdOHdGx1KpChQrYs2cPFi1ahMWLF6NTp068dYo0ikUvkUBbt25F//794evri+DgYJiYmIiO9Fpq1qyJo0ePonz58nB1dcX58+dFRyJ6LQcOHEBWVtYbtzY/M2DAABw4cAAZGRlqTkZEBKSkpKBFixY4cOAAduzYgZ9//rnUnBu8KQMDA0yZMgVHjx7FX3/9BQcHBxw4cEB0LNJTLHqJBAkMDMSgQYMwePBgbNy4UWe3HPg31apVQ0xMDKpXr46OHTsiJSVFdCSi/xQUFISmTZuiSZMmb/X+vn37QqlUYteuXWpORkRlmSRJ+P3339GmTRvY2NggOTkZffr0ER1LK9q1a4eUlBQ4OjrC09MTc+bMgUKhEB2L9AxXbyYSYNWqVRg+fDhGjRqFtWvXwtDQUHSkt1KpUiUcOnQIdevWRadOnZCUlCQ6EtG/ysvLw549e956lhcAqlatik6dOrHFmYjUJicnBwMHDsTo0aMxYsQInDhxAvXq1RMdS6sqV66MyMhIfPfdd5g/fz48PDy4RSKpFWd6ibTsl19+wWeffYYJEyZg5cqVr71liq6qUKECoqOj0bhxY3Tu3BlxcXGiIxG9VEREBPLz89G/f/93Os6AAQMQExODBw8eqCkZEZVV586dQ8uWLREWFobg4GCsWLFC59f20BQDAwPMnDkThw4dwsWLF2Fvb48jR46IjkV6gkUvkRYtWrQIEydOxNSpU7F06dI3XkhHV9nY2GD//v1wdHREly5dcPToUdGRiP4hKCgITk5O7zyD0qtXLxgZGWH79u1qSkZEZY0kSVi3bh2cnZ1hZmaG06dPv/MFOX3RsWNHpKamomnTpnB3d8e8efOgVCpFx6JSjkUvkZbMmzcP06ZNw5w5c/DDDz/oTcH7jJWVFSIjI9G2bVt4eXnh4MGDoiMRqWRnZyMyMvKdWpufKV++PDw9PdniTERvJS8vD8OGDcOIESMwaNAgxMfHo2HDhqJj6ZSqVati//79mDNnDr7++mt4eXkhPT1ddCwqxeRyuWpROBa9RBogSRJmzZqFOXPm4LvvvsPcuXP1ruB9xsLCAnv37oWbmxt8fHwQEREhOhIRAGD37t0oLi6Gr6+vWo43YMAAxMfH48aNG2o5HhGVDRcuXICzszN27NiBTZs24Y8//oC5ubnoWDrJ0NAQX3/9NQ4cOIDU1FTY29vj2LFjomNRKfV80cuFrIjUTJIkTJkyBfPnz8ePP/6Ir776SnQkjTMzM0NoaCi6deuGXr16ITQ0VHQkIgQFBaFDhw6oWbOmWo7n4+MDc3NzhISEqOV4RKT/Nm3aBCcnJwBAUlISBg0aJDhR6eDu7o6UlBQ0aNAAbm5uWLhwIdud6Y0VFRVxppdIE5RKJcaPH4+ffvoJv/76KyZPniw6ktaYmJggJCQEvXv3Rr9+/VgYkFDp6emIjo5WS2vzM+XKlUOPHj0QHBystmMSkX4qKCjAyJEjMWTIEPTr1w+JiYn48MMPRccqVWrUqIHo6GhMmzYN06dPh4+PD/dLpzfC9mYiDVAqlfj000/x22+/YfXq1Rg7dqzoSFpnbGyMLVu2YODAgfD398fGjRtFR6IyaseOHQCg9j0v/fz8cObMGVy8eFGtxyUi/XHlyhW0bt0aW7Zswbp167B+/XpYWlqKjlUqGRkZYf78+di3bx8SEhLg4OCAkydPio5FpYRcLoepqSlMTExY9BKpQ0lJCYYNG6b6cvvkk09ERxLG0NAQgYGBGD58OIYNG4Y1a9aIjkRlUHBwMNzd3VG5cmW1HtfT0xPW1tac7SWilwoODkaLFi1QVFSExMREBAQEiI6kFzw9PZGSkgI7Ozu4uLhgyZIlkCRJdCzScSx6idSouLgYgwYNwtatW7F161YMGTJEdCThDAwMsGrVKowZMwaffPIJVqxYIToSlSF3797FsWPH1Nra/IyZmRl69+6N4OBgnnARkUphYSHGjBmDAQMGoEePHjh16hSaNWsmOpZesbOzQ0xMDCZNmoTJkyejV69eePLkiehYpMOetTez6CV6R0VFRfD19cWuXbuwfft27rf3HAMDAyxfvhxffPEFxo0bhyVLloiORGXEtm3bYGJigp49e2rk+H5+frhy5QpSU1M1cnwiKl2uX7+Otm3bYt26dVi1ahU2b96McuXKiY6ll4yNjbFo0SLs3bsXsbGxcHR0RFJSkuhYpKOeL3q5ejPRWyosLESfPn2wb98+hIaGolevXqIj6RyZTIYff/wRM2fOxOTJk7FgwQLRkagMCA4OhpeXF2xsbDRy/E6dOqFSpUrcs5eIsHPnTjg6OiInJwfx8fEYNWqU3m5RqEt8fHyQkpKCqlWrol27dli+fDm7b+gf5HI5jI2NWfQSva38/Hz06NEDhw8fRlhYGLp37y46ks6SyWSYP38+vv32W3z11VeYM2cOv5hIY65fv46kpCSNtDY/Y2xsrFqhnFtoEJVNRUVFmDBhAvr27YuuXbvi9OnTsLe3Fx2rTKlduzZiY2MxduxYfP755/D19UV2drboWKRDioqKYGpqClNTUxQXF2t8PBa9pFdyc3PRrVs3xMXFITIyEh4eHqIjlQqzZ8/GwoULMW/ePEyfPp2FL2lEcHAwLC0t4e3trdFx/Pz8cPv2ba4iSlQG3bhxAx06dMDvv/+OX3/9FSEhIbC2thYdq0wyMTHB0qVLsWvXLhw8eBAtWrRAcnKy6FikI3hPL9Fbys7ORteuXZGSkoIDBw6gY8eOoiOVKlOnTsUvv/yCRYsWYeLEiSx8Se2Cg4Px8ccfw8LCQqPjtG/fHjVr1uQqzkRlzJ49e+Do6IjHjx/jxIkTGDt2LNuZdUCvXr2QnJwMW1tbtGnTBr///jvPMYirNxO9jczMTLi7u+PChQuIjo5G27ZtRUcqlT7//HP8/vvvWLZsGUaPHs32UFKb8+fP4/z58/Dz89P4WAYGBujfvz+2bduGkpISjY9HRGIVFxdj8uTJ6NmzJzp27Ijk5GS0bNlSdCx6zvvvv48TJ07gk08+wejRo+Hv74+cnBzRsUggzvQSvaH09HR07twZN27cwJEjR+Dk5CQ6Uqn26aefYt26dVi9ejVGjBgBhUIhOhLpgeDgYNja2qJLly5aGc/Pzw+PHj1CTEyMVsYjIjHu3LkDV1dXLFu2TNVKa2trKzoWvYSpqamq5TwiIgItW7bE2bNnRcciQbh6M9EbePjwIdzc3PDgwQPExMRwoQo1CQgIwObNm7Fp0yYMHjyYs2X0TiRJQnBwMPr06QNTU1OtjNmyZUvUq1ePLc5EeiwyMhL29va4d+8ejh07hokTJ7KduRTw9fXF6dOnYW5ujlatWmHt2rVsdy6DioqKONNL9Dru3bsHV1dXPHnyBEePHkXTpk1FR9Ir/v7+CA4Oxvbt2+Hn56eVP0ikn06dOoXr169rpbX5GZlMBj8/P+zcuZOfXSI9U1JSghkzZqB79+5o27YtUlJS0Lp1a9Gx6A00aNAAJ0+exJAhQzBy5EgMHToUeXl5omORFj2b6TU1NWXRS/Rvbt26BRcXFxQWFiI2NhaNGjUSHUkv9e3bF7t27UJYWBj69u2rlfYT0j/BwcGoWrUq3NzctDqun58fsrKysH//fq2OS0Sac+/ePXTq1AmLFy/GwoULsWfPHlSoUEF0LHoL5ubmWLVqFTZv3oxdu3bB2dkZFy5cEB2LtIT39BL9h+vXr8PFxQUAEBsbi3r16glOpN98fHywZ88eHDx4EB9//DEKCgpER6JSRKlUIiQkBP369YOhoaFWx27atCmaNm3KFmciPXHgwAE4ODjgr7/+QkxMDKZOnQoDA57KlnYDBw7EqVOnIJPJ4OTkhI0bN4qORFrA1ZuJXuHy5ctwcXGBmZkZYmNjUbt2bdGRygRPT09ERETg2LFj6N69O1uQ6LUdP34c9+7d02pr8/P8/PywZ88e5OfnCxmfiN6dQqHAnDlz4OnpCUdHR6SkpKB9+/aiY5EaffDBB0hMTET//v0xdOhQjBw5khfZ9Rxneon+xfnz5+Hq6gpbW1scPXoUNWvWFB2pTOnUqRP279+PU6dOwdPTE0+fPhUdiUqB4OBg1KpVC23atBEyvp+fH/Ly8hAeHi5kfCJ6Nw8fPoSHhwfmz5+PefPmITIyEpUrVxYdizTAwsIC69atQ2BgILZu3YpWrVrh8uXLomORhjy/kBVXbyb6P6mpqXBzc0O1atUQExODatWqiY5UJrVv3x4HDx7EuXPn4OHhgSdPnoiORDqsuLgY27dvR//+/YW1INarVw9OTk5scSYqhY4cOQJ7e3tcvHgRhw4dwldffcV25jJg2LBhSExMRHFxMVq2bImgoCDRkUgDuJAV0f9ISkpCp06dUKdOHRw+fJhXeAVr1aoVDh8+jGvXrqFz587IyMgQHYl01OHDh/H48WMMGDBAaA4/Pz9ERkYiOztbaA4iej1KpRLz5s2Du7s7mjRpgtTUVHTs2FF0LNKipk2bIikpCR9//DH8/f0xevRoFBYWio5FasT2ZqLnxMXFwd3dHR988AGio6O5QqOOcHR0xJEjR3D37l24ubkhLS1NdCTSQcHBwWjYsKHw/bP79+8PuVyO3bt3C81BRP8tPT0dXl5e+PrrrzF79mwcOHAAVatWFR2LBChXrhw2bdqE1atXIzAwEG3btsW1a9dExyI1YdFL9H+OHj2KLl26wMHBAfv374eNjY3oSPScjz76CEePHsXjx4/RsWNH3L9/X3Qk0iGFhYXYtWsX/Pz8IJPJhGapWbMmOnTowBY5Ih137Ngx2NvbIyUlBfv378c333yj9VXfSbfIZDJ88skniI+PR05ODlq0aIGdO3eKjkVqwNWbiQAcPHgQXl5eaNu2LSIjI2FlZSU6Er1E48aNcfToUeTm5sLFxQW3b98WHYl0RFRUFJ4+fSps1eb/5efnh+joaKSnp4uOQkT/Q6lU4ocffoCbmxvq16+P1NRUeHh4iI5FOsTe3h6nT5+Gp6cn+vbti88//1wrix+RZkiSxJleooiICPj4+MDNzQ179+6FhYWF6Ej0Cg0aNEBsbCwUCgVcXV1x48YN0ZFIBwQFBaF58+Zo3Lix6CgAgL59+wIAZwiIdExGRgZ8fHwwY8YMTJ06FYcOHUKNGjVExyIdZG1tjeDgYKxYsQKrVq1C+/btec5RShUXFwMAF7Kisis0NBS9evWCl5cXQkNDYWZmJjoSvYa6desiNjYWRkZGcHFxwZUrV0RHIoFyc3MRFhamM7O8AFC5cmW4u7uzxZlIh8TFxcHe3h4JCQmIjIzEggULYGRkJDoW6TCZTIYxY8YgLi4OGRkZcHR0xJ49e0THojf0rMjllkVUJoWEhKBfv37o1asXtm3bBhMTE9GR6A3Y2dkhNjYWVlZWcHV1xYULF0RHIkHCwsJQUFCgU0UvAAwYMADHjh3D3bt3RUchKtMkScJPP/0EV1dX1KpVCykpKfDy8hIdi0qRFi1aIDk5GW5ubujZsycmT56smj0k3fe/RS9neqnM2LhxI/z9/eHv748tW7bA2NhYdCR6C9WrV0dMTAwqV64MV1dXnDlzRnQkEiAoKAitW7dGnTp1REd5Qc+ePWFsbIzt27eLjkJUZj158gQ9e/bEl19+iYkTJyImJgZ2dnaiY1EpZGtri507d2Lp0qVYtmwZ1xYpRV5W9EqSpNExWfSScH/88QeGDRuG4cOHIzAwkK1NpVyVKlVw5MgR1KpVC25ubjh9+rToSKRFT548QVRUlPC9eV/GxsYG3bp1Y4szkSBJSUlwdHTEsWPHsHfvXixevJgXuemdyGQyTJw4EcePH8f9+/fh4OCAiIgI0bHoP/xv0QsAJSUlGh2TRS8JtWLFCowaNQpjxozBqlWruDWBnqhYsSIOHTqEhg0bonPnzoiPjxcdibQkNDQUJSUl6Nevn+goLzVgwAAkJSXh+vXroqMQlRmSJGHZsmVo164dqlSpguTkZPj4+IiORXqkVatWSElJQdu2beHt7Y3p06drvIiit/fsHl5TU1OYmpoCgMZbnFn0kjBLlizBuHHj8MUXX2D58uUwMODHUZ/Y2triwIEDaNasGTw8PHDs2DHRkUgLgoKC0LFjR1SvXl10lJfy9vaGpaUlgoODRUchKhOys7PRr18/TJgwAWPGjMGxY8d07tYH0g8VKlTAnj17sGjRIvz4449wc3PDvXv3RMeil3jZTC+LXtJLCxYswOTJkzFz5kz8+OOPkMlkoiORBlhbWyMqKgrOzs7w9PTEoUOHREciDUpLS8Phw4d1srX5GQsLC3z88ccseom0IDk5GS1atMDBgwexY8cO/Pzzz1ykkjTKwMAAU6ZMwdGjR3Hjxg3Y29vjwIEDomPR/3hZ0avpFZxZ9JJWSZKEOXPm4KuvvsK3336L+fPns+DVc5aWlggPD4eLiwu6d++Offv2iY5EGrJ9+3YYGBigd+/eoqO8kp+fH86fP4/z58+LjkKklyRJwu+//442bdrAxsYGycnJ6NOnj+hYVIa0a9cOKSkpaNGiBTw9PTF79mwoFArRsej/cKaX9JokSZg+fTrmzZuHhQsXYvbs2aIjkZaYm5tj9+7d6NKlC3r27Mk99fRUcHAwunbtiooVK4qO8kpdunSBra0tZ3uJNCAnJwf+/v4YPXo0Ro4ciRMnTqBevXqiY1EZVLlyZURGRuK7777DggUL4OHhgYcPH4qORWDRS3pMkiRMnDgRixYtws8//4ypU6eKjkRaZmpqih07dsDHxwd9+/bltjF65vbt2zhx4oTO7c37MqampujTpw+Cg4M1vkUCUVly9uxZtGzZEuHh4QgODsaKFStgZmYmOhaVYQYGBpg5cyYOHTqEixcvwt7eHocPHxYdq8x71spsYmLChaxIfyiVSowePRrLli3DypUrMWHCBNGRSBATExMEBwfD19cXfn5+2Lx5s+hIpCYhISEwMzPDxx9/LDrKa/Hz88P169e5pRaRGkiShLVr16JVq1YwMzPD6dOn0b9/f9GxiFQ6duyI1NRUNG3aFB4eHpg3bx7bnQV6VuCamppyppf0g0KhwIgRI7B69WqsW7cOn332mehIJJiRkRE2btyIIUOGYMiQIVi3bp3oSKQGwcHB8Pb2hpWVlegor6Vjx46oUqUK9+wlekd5eXkYOnQoRo4cicGDByM+Ph4NGzYUHYvoH6pWrYr9+/djzpw5+Prrr+Hl5YVHjx6JjlUmsb2Z9EpJSQkGDx6MTZs2YfPmzQgICBAdiXSEoaEh1q5di1GjRmHEiBFYuXKl6Ej0Dq5cuYLk5ORS0dr8jJGREXx9fRESEgKlUik6DlGp9Oeff8LJyQk7d+7Epk2bsHr1apibm4uORfSvDA0N8fXXX+PgwYM4c+YMHBwcEBsbKzpWmcPVm0lvyOVy+Pn5Yfv27QgODoa/v7/oSKRjDAwMVO3uY8aMwdKlS0VHore0efNmWFlZoVu3bqKjvBE/Pz/cu3cPx48fFx2FqNTZsGEDnJ2dYWBggFOnTmHQoEGiIxG9ts6dOyM1NRUNGjSAm5sbvv/+e14A1aLni14Dg7/L0aysLI2OyaKX1K6goAB9+vRBWFgYdu3ahb59+4qORDpKJpNh6dKlmDp1Kr744gv88MMPoiPRG8rLy8O8efNgZmZW6mZ42rRpA+Dvkx8iej35+fkYMWIEhg0bBl9fXyQkJKBx48aiYxG9serVqyM6OhozZszAzJkz4e3tjcePH4uOVSakpqYCAAoLC3Hq1CkA0PiOCjKJS1eSGmVnZ8PW1haGhoYIDw+Hp6en6EhUCkiShG+++QbffvstKlasyC+dUqSkpAR2dnb4/PPPMWPGDNFx3piTkxOePHmCa9euiY5CpPOWLl2KZcuWIS0tDStWrOBtS6Q3oqKiMGjQIBgZGWHAgAHsPtOwjh074ujRo7h16xaqVKkCb29v/PbbbxpdD4BFL6nVxYsX8dFHH8HX1xdbtmwRHYdKmerVq+Phw4coKipS3eNBRETiSZKkakM8d+4cmjZtKjgRkXrdvXsXtWrVgiRJuHHjBurUqSM6kt568uQJDh48CF9fX62NyaKXiHSKQqGAoaGh6BhERPQ/1q9fD0dHR3z00UeioxBpxJ07d7B7926MHTtWdZGH9AOLXiIiIiIiItJbRqIDkG7x7dcPhw5F/+NxSZIgk8ne6FidOnXG9h071BWNygilUokBA/xx4dLl136PqYkJFsyfhy5dumgwWdlx69YteHTpioyMDNVjb/M3wLdfX53cjmrevHnYtmPXa79eJpPhkxEBGD9+vAZTEWnOIH9/7NsX+cJjb/M7Xa9efRyPi+PtJ6TX+vTpjZiYoy889ja/Lx9++CFiYmLKfPfalStX4NGlK55kZb/w+Mv+PzUwMICBwcv/f+7dqyfW/PHHW+fgTC+9wMjICG2bvo8alWygVCpRztwUMpkMhoYGKCwqhgTA2sIMDzKyYWpshCoVrJGTV4AK1uVgaCDD/cdZkCTgTvoTHD97HQqFQvSPRKXMnTt3UKtWLVg3bA0DEzNIihIYmVsBMgMYmpjDwNgURZn3YWBsBmWJHGaV3kPasSCMCBiK1atXi46vF0JDQ9G7d284e/rCxMwMxqZmKJb/vX+eiak55IX5kABYlLOBzMAARsYmyHmSDpnMALlZGbCwtsXlU8eBolw8Snso9od5iSrVaiAH5jCrXAuSogSG5laQyQxg8Ozz9eQBDIyMoSwpgVml95B55iDq16iEP8+dER2d6K1YWpjjPSsDNKlhBUsTI8hkgKGBDEXFSkiQYGVmhIfZRTAxMkAVKxPkFCpQwdIY5saGSMspgiRJuJSWh4QbWbh69Srq168v+kci0hiZTIamjRuhWeNGKFfOEjKZDEaGhigo/Pt3wcbKCvcePoSZqSmqVqmMpzk5qFShPCzMzZGW/hgGMgMkpZzByVPJuHfvHmrUqCH6RxKqYYP6uHrtOirYe8DQ1AKGZuUAyCAzNIRSXggJEozMrSB/8hAyY1OY2FSGoiAXRuXKw8DIBPKsNGRfjoepPAtPMt5+oVPO9NI/9HKxx/Du7d7pGIERJ3D87HU1JaKy5Nl1ODufCSjfxOW13lNw+yx4/U79+k9ZCEubCm/13sg1i3Fy19tfkdUkSZJQuW1v2PlMer03GBhCepio2VBEGjbI+T2MbF/rrd8fdz0Tff9IVmMiIt017pNhGDGo/1u/f1/0EfTwH6HGRKXXs66xhsN/gol1pbc6xu3w5cg6/G4TGyx66bUERychKzcf7i0bw9TEGAqlEjn5hcjMzgNkgKu95pYYp7LtUdwOlORlo3yzjpAZmwFKBUoKciDPSoPMwADlm3YUHbHMiI8IRn5OFpq0cYexqSmUCgUK83KQm5UBmYEhGrXsIDriG3sUtwOK/GzYNu0IA2MzSEoFFIV/f74Mzaxg3cBJdEQijdmR/ABZBcVwa1gRpsaGUCol5BSWIE+ugHMdW9HxiHTK5m2heJKdja6dXGBmagqFQomnObm49+ABunl0Eh2v1Ek7sQMl+Vko38wNBsamkJRKKP7v/E5SKlHR3l2t43FZMnqlvcfPIO78dVhZmqFKeSscPHURNx48hq2lOepUqwgAyCuQ48S56zj31z3BaUmfPL2aiOwrCTA0t4KxTSVknjuCwkc3YWRhDbPKtWFgZAwDY1M8vZokOqreSzm8F1dT4mBmaQXrCpVxPu4g0u/egLmVDSrVrAMjEzPkPEnH1ZQ43L6UKjrua8s4HQmzSnYwrfge8m6fR0byPhRl3IFphZqwru8MRVEeMlMPQP5E91q0id5F5PlHSLjxBOVMDVG5nAmOXM7ArYx8WJsZoXZFczwtLMHBi+lIvp2Na+l5ouMSCRUaHoXj8YmwtiqHqpUrIerQUfx18zZsbazxfh075OblY9vucCSfPS86aqnw+FQksi8nwNC8HIytK+PJ2SMofHRLdX4nMzKGUp6PnJtn1TouZ3rplXq0b/7K510dOMNLmmFoVg55t87DvEYDQJJQtW1fwMAI+fcuwdDMEgamFpBKilGSnw2FvFB0XL3m0KnHK5+vb99aS0nUp/DxHRiZW8PQrBwkSYJtE1fIDIyQd/ciIDNA/oOrKH76GCa2VWFgYgYUiU5MpD7dmlZ55fPuH7xdCyKRPurl7fnK5317emspiX6o1LLbK58v/6FmusZY9NI/XLuXjt93H0WjWtWQV1iE9s3qw9DQAHcfPUF+kRwPM59CXlyCxrWrw9LcFGmZ2cjIzoOBgQxWFmaQJOCv+29/ozkRAFjaffjSe3rNKtnBxLbqC4/d3b1YW7HKnCunj+Pu1fOoVqch5IX5aODYDoaGRnh87yYK8nKQnf4ATdt3xd0r51EiL0TWoweobPe+6Nj/yaySHaq7//N+K7PKtWBkYQ2r9x1g9b4DACA9YbeW0xFpzsm/nuDPBzloUMUS+XIF2tQtDyNDGR5kFyGnsAQlSgkPnxahc6OKOHkjCyUKJWzNjUXHJtK62LgEnPnzIho3qIe8/AK4tG0FIyNDnL94BcXFxbh99z5a2DeDXF6McpYWeJD2CI8zMtGoQT3cuHVHdHydlXXpJPLu/AmL6g2gKMqHzQdtIDMwQmH6LRhZ2kL+5CHkT9NhaGYJU9tqsKjRQC3jsuilfzh3/R6qlrfC2et3AQDX76XjXnoW0p48hamxESrbWsHE2BBJF2+iUF4M4O+V7mpV/f8L3iReuikiOumBZ8vX3wn7BQ9jNkNZlA9JUsLI0gYGhsZQKooBSYKkVEJmaARjS1vk3rsCmayN4OT6J2r9Ulha2wIAzsSEoyAvB6cPhsKqfCUoSophaGQMSZJwNfkEDI1NYF2hMgDg4c3LuJh49BVHFksmkyH95C4UZ6ej+OljKIryAUkJw//5jOH/PmNPryWhcg3OfFHpFvnnIxQplKr/feBCOnKKShBx7hEqlTNGsUKCkaEMhcV/vybur0zYlTcHAOQUluBWZoGQ3EQibAsNg0fHv2ccU89dwJ37D7A7Yj+USiUsLMxRsXx5FBYV4WTSaQB/f6/UsXsPAHDtr5uIjUsQll3XVKxYEZlPsnAnYgWMrf6uFYoy7+PpX2cASYmsSydhYGyC4twsGJqYQ1KWQGZkAhPrSnhSkAsj83LISN6Pd934iUUvvaB3r144dCgaf95OVz2mVCqRm5sHIyNDWFhYvPD6/Px8lJQoUK6cJQwMDP5xLKI3VbNmTfj69v97n97ie6qVB5T5mbh48SKsrKxRq9b/rUBaDKDwFmrY26Nv377CMusbR0dHNGz0AU5Hbn3hcYVCgZycHFhYmMPExBQAkJOTA5lMhnLlyv3jOL79dPO/yfixo//epzfj/7Yg+r/P2MWUeBgYGqBRw0b//8XFQHW7qvhkRID2gxKpSa+evbBvXySunPz/3+0KpRJ5ubkwMTGBmZmZ6nF5sRwFBYWwsDCHsVHuC8dxatECtWvX1lpuIhF69+6FmJijSP3z0j+ey8/PgyRJsLQsh/z8/L+393zJ9x8AtG/fHlWrVn3pc2VJeETk3/v0xm976fOFAHJzcmBoaAjLcuVU+/Q+f5nNCH//d3kX3KeXXik3NxetW7dGcXExEhMTYWNj88Lz2dnZcHZ2hpGREeLj42FlZSUoKem7jIwMVKpUCT4+Pti7d6/oOGWOJEnw8PDA3bt3cf78eRgZ/X3N9ODBg+jSpQtCQ0PRs2dPsSHfkbW1NaytrXH37l3RUYg0qqCgAE5OTjAwMEBiYuILRa8kSejXrx8OHz6MM2fOwM7OTmBSIt1x79491KpVCytXrsSoUaMQFhaGHj16IDk5GQ4ODqLjlVoKhQJGRkZo164djh8/rrFxuHoz/StJkhAQEIBbt25h9+7d/yh4AcDGxga7d+/G7du3MXz4cO6VShpTVPT3SkJKpfI/XkmacODAARw6dAgLFy5UFbwA4OHhAQ8PD0yfPh0lJSUCE747pVLJzxeVCVOmTMH169cRFBT0QsEL/N2muXr1alhaWmLw4MFQKBSCUhLplo0bN8LU1BT9+/+9f6+XlxeqVq2KwMBAwclKN7lcDkDz53cseulfLVq0CDt27MDGjRvRuHHjf31d48aNsXHjRuzYsQOLFi3SYkIqS7T1R5H+SaFQYNq0aWjfvj169PjnSs4LFy7ElStXsHbtWgHp1IdFL5UFYWFhWLFiBZYsWYImTZq89DUVKlTA5s2bERsbi4ULF2o5IZHukSQJgYGB6N27t2oSyMjICEOGDMGWLVtUF+bpzbHoJaH279+PGTNmYNasWej1Gvfm9urVC7NmzcKMGTOwf/9+LSSksoZFrzhbtmzBmTNnsGjRItVCY89zcHDAoEGD8PXXXyM3N/clRygdWPSSvrt//z4CAgLQo0cPfPbZZ698raurK7766ivMmTMHCQlclIfKtri4OFy9ehUBAS+u7xAQEIDMzEyEhYUJSlb6aev8jvf00j/89ddfaNmyJdq0aYO9e/fC0PD11ktTKBTo0aMHTp48iVOnTuH993V/2xIqPc6fP49mzZrBw8MDBw4cEB2nzCgoKECjRo3g7OyMHTt2/Ovrbt26hUaNGmHGjBn4+uuvtZhQfUxMTGBtbY3Hj7nlGukfpVKJLl264MKFCzh79iwqVfrvFcmLi4vh4uKCR48eISUlBdbW1lpISqR7Ro4ciejoaPz111//WLi1devWqFixIiIiIgSlK93u3buH9957Dy1atMCpU6c0Ng5neukFeXl56NWrFypWrIgtW7a8dsELAIaGhtiyZQsqVqyIXr16IS8vT4NJqax5diWQ95dp1/Lly/HgwQMsWLDgla+rXbs2xo8fj8WLFyMtLU1L6dRLoVDw80V666effsLhw4exadOm1yp4AcDY2BhbtmxBeno6xo0bp+GERLopLy8PISEhGDZs2D8KXuDv2d6oqCjcv39fQLrST1vndyx6SUWSJIwcORLXr19HaGgobG1t3/gYtra2CA0NxfXr1zFy5EgubEVqw6JX+zIyMrBgwQKMGjUKDRs2/M/Xz5w5EyYmJpg7d64W0qnXs9bm0r4YF9HLnDp1CjNnzsSUKVPQuXPnN3rv+++/j5UrV2LTpk3YsmWLhhIS6a4dO3YgNzcXQ4cOfenzfn5+MDExwaZNm7ScTD+w6CWtW7JkCYKDgxEYGIimTZu+9XGaNm2KwMBABAcHY8mSJWpMSGXZs0UiWJRoz4IFC6BQKDBnzpzXen358uXx1VdfYfXq1bh8+bKG06lXcXExAF5UIf2Tm5sLf39/NG/eHPPmzXurYwwcOBCDBg3C6NGj8ddff6k5IZFuCwwMhJubG+rWrfvS521sbNC7d28EBgZysuctPDu/Y9FLWnH48GFMnToV06ZNQ79+/d75eP369cO0adMwdepUREdHqyEhlXXPrgSy6NWOmzdv4tdff8XUqVNRtWrV137f2LFjUbNmTcyYMUOD6dSPny/SVxMmTMD9+/exdetWmJiYvPVxVqxYgUqVKsHf3191kYhI3/311184evToPxaw+l8BAQG4fPky4uPjtZRMfzz7/tX03xUWvYRbt27B19cX7u7umD9/vtqOO3/+fLi7u8PPzw83b95U23GpbGJRol2zZs1ChQoV8MUXX7zR+8zMzDB//nyEhoYiLi5OQ+nUj+3zpI+2bduGdevWYfny5a91i8KrWFtbY+vWrTh16hS+/fZbNSUk0m3r16+HlZUV+vTp88rXderUCbVq1eKevW+B7c2kFQUFBejVqxesra0RFBT0RgtX/RdDQ0MEBQXB2toavXr1Qn5+vtqOTWUPi17tSU5OxpYtWzB37lxYWlq+8fv9/f1hb2+PKVOmlJpWr+e3TGDhS/rg1q1bGDVqFHx9fTFs2DC1HLN169aYO3cu5s+fj6NHj6rlmES6SqlUYsOGDejfvz8sLCxe+VoDAwMMHToUwcHBXMj1DXGmlzROkiSMGjUKly5dQmhoKCpUqKD2MSpUqIDQ0FBcvnwZo0aNKjUnwKR7WPRqhyRJmDp1Kj744AMMHz78rY5hYGCAxYsXIy4uDrt371ZvQA15dk/R//47UWmkUCgwaNAg2NjY4Pfff3/p/tpva/r06ejQoQMGDRqEJ0+eqO24RLrm8OHDuH379n+2Nj8zbNgw5OTkYNeuXRpOpl+0dX7HorcMW758OTZv3oy1a9eiefPmGhunefPmWLt2LbZs2YJly5ZpbBzSb9q6EljWHThwAIcOHcLChQthZGT01sdxd3dHly5dMH369FLx3+zZ5+t//52oNFqwYAHi4uKwefNmlC9fXq3HNjQ0xObNm5GXl8eL2aTXAgMD0ahRI7Rp0+a1Xv/+++/D1dWVLc5viDO9pFFHjx7FF198gcmTJ2PAgAEaH2/AgAGYPHkyJk+ejJiYGI2PR/rn2ewbCxLNUSgUmDp1Kjp06AAfH593Pt7ChQtx9epVrF27Vg3pNItFL+mLuLg4zJ07F7NmzUKHDh00MoadnR3++OMP7NixA+vWrdPIGEQiZWVlYdeuXQgICHijTonhw4fjyJEjuHHjhgbT6Zdn53cseknt7ty5g379+sHV1RU//PCD1sb94Ycf4OrqCl9fX9y5c0dr45J+kMvlMDAwYEGiQZs3b8bZs2exaNEitbRD2tvbY/Dgwfj666+Rk5OjhoSaw6KX9EF2djb8/f3RqlUrzJ49W6Nj9enTB5988gk+//zzUrdFGdF/CQkJgVwux+DBg9/ofX369IGVlRU2bNigoWT659l3rqa/e1n0ljGFhYXo3bs3LCwsEBIS8k7ti2/KyMgIISEhsLCwQO/evVFYWKi1san0k8vlMDQ0ZEGiIQUFBZg1axb69u2L1q1bq+248+bNQ3Z2Nn766Se1HVMTWPRSaSdJEj777DM8efIEW7Zs0cr3+9KlS2FnZ4cBAwbwXnjSK4GBgfD09ESNGjXe6H2Wlpbw9fXF+vXroVQqNZROv7DoJbWTJAmjR4/G+fPnsWvXLlSqVEnrGSpVqoRdu3bh/PnzGD16NO8Fotcml8thZGTEgkRDli9fjocPH2LBggVqPW6tWrXw+eef48cff8TDhw/Vemx1ev6EnZ8xKo02bdqE4OBgrFq1CnXq1NHKmJaWlggKCsL58+cxa9YsrYxJpGkXL15EQkLCay9g9b8CAgJw69Yt3s73mp7fskiTuyew6C1DVq5cifXr12P16tVwdHQUlsPR0RGrV6/G+vXrsXLlSmE5qHRh0as5GRkZWLBgAT777DM0aNBA7cefMWMGTExMMHfuXLUfW12e/1xxxopKm2vXrmHs2LEYOnQo/Pz8tDq2g4MDfvjhB/z44484ePCgVscm0oTAwEBUqFDhrde2aNu2LRo2bMgFrV7Ts04+QLP39bLoLSOOHz+OCRMmYMKECW98f4ImDB48WJXn+PHjouNQKcCiV3Pmz58PhUKhsXsAy5cvj1mzZuGPP/7ApUuXNDLGu2J7M5VWxcXF8Pf3R9WqVbF8+XIhGSZOnIguXbpgyJAhSE9PF5KBSB2Ki4uxceNGDBw4EKampm91DJlMhmHDhmHnzp3Izs5Wc0L9I5fLYWxsrPp3TWHRWwbcu3cPffv2Rbt27bB48WLRcVQWL16Mdu3aoW/fvrh3757oOKTjioqKYGRkBKVSyb161ejGjRtYsWIFpk2bhipVqmhsnLFjx8LOzg4zZszQ2BjvgkUvlVZff/01UlJSsHXrVlhZWQnJYGBggA0bNkChUGD48OG8dYlKraioKKSlpb11a/MzQ4YMQVFREUJCQtSUTH8VFRWx6KV3V1RUhD59+sDY2Bjbtm1Tfah0wfOZ+vTpw5ZCeiVtXQksa2bNmoWKFSti0qRJGh3H1NQU3333HXbv3o0TJ05odKy3waKXSqMjR47ghx9+wLx58+Ds7Cw0S7Vq1RAYGIjw8HCsWLFCaBaitxUYGAh7e3s4ODi803Fq1qyJLl26sMX5NTzr5AM0e3sRi149N378eKSmpmLXrl0ancV5W1WqVMGuXbuQmpqK8ePHi45DOoxFr/qdPn0aW7duxdy5c2Fpaanx8QYMGAAHBwdMmTJF52aCuJAVlTYZGRkYPHgwOnbsiClTpoiOAwDo3r07xo8fjy+//BLnzp0THYfojaSnpyMsLOydZ3mfCQgIQHx8PC5evKiW4+krtjfTO1u9ejX++OMP/P7773BychId5185OTlh5cqV+OOPP7B69WrRcUhHyeVymJiYqP6d3o0kSZg6dSoaN26sti/4/2JgYIDFixfj5MmTCA0N1cqYr4sLWVFpIkkSPvnkExQUFGDjxo2qRWB0waJFi9CwYUMMGDAABQUFouMQvbYtW7ZAJpPB399fLcfr0aMHypcvj/Xr16vlePpKW+d3LHr11MmTJzFu3DiMHTsWw4YNEx3nPwUEBGDMmDEYN24cTp48KToO6SAWveq1f/9+HD58GAsXLtTqft2dO3eGp6cnpk+frtFVGt/U8+1V/HyRrlu9ejVCQ0OxZs0avPfee6LjvMDMzAxBQUG4fv26zsxAE/0XSZIQGBiIHj16qG1LTzMzM/j7+2Pjxo1ci+QVWPTSW3vw4AH69OkDZ2dnLFmyRHSc17Z06VI4OzujT58+ePDggeg4pGOe/6PImbh3o1AoMHXqVLi4uMDb21vr4y9cuBDXrl3DmjVrtD72v+FFFSotLly4gEmTJuHTTz9Fr169RMd5qSZNmmDJkiVYsWIFwsLCRMch+k8pKSk4e/as2jufhg8fjocPH2L//v1qPa4+YdFLb0Uul6Nv376QyWTYsWOH6kNUGpiYmGDHjh2QyWTo27cvTzzpBSxK1GfTpk04d+4cFi1aBJlMpvXxP/roIwwZMgTffPMNcnJytD7+y/DzRaVBYWEh/P39Ubt2bZ2/qP3ZZ5+hR48eCAgIwP3790XHIXqlwMBAVK9eHV27dlXrcR0cHPDRRx9xQatXKCoqYtFLb27ixIlISkrCzp07Ua1aNdFx3li1atWwc+dOJCUlaXw1WSpdtPVHUd8VFBRg9uzZ6NevH1q1aiUsx7x585CdnY0ff/xRWIbnPft8yWQyfr5IZ82YMQMXL15EUFAQLCwsRMd5JZlMhrVr18LExARDhw6FUqkUHYnopYqKirB161YMHjxY7bf7yGQyBAQEYO/evXj8+LFaj60v5HK5ak9krt5Mr2XdunVYuXIlVqxYgdatW4uO89Zat26NFStW4LfffsO6detExyEd8fwfRRYlb2/ZsmV4+PAhFixYIDSHnZ0dJkyYgB9//FEnbmd49vkyMTFh+zzppH379uHnn3/GwoULYW9vLzrOa6lUqRI2bdqEQ4cO6fzMNJVde/fuRWZmpsYWdRw4cCAkScLWrVs1cvzSTlvndyx69URiYiJGjx6NUaNG4ZNPPhEd55198sknGDVqFEaPHo3ExETRcUgHyOVymJmZqf6d3lxGRga+//57jB49GvXr1xcdBzNmzICZmRnmzp0rOorqS9fU1JSfL9I5aWlpGDZsGLy8vDBhwgTRcd5I586dMWXKFMycOROnT58WHYfoHwIDA9GmTRt88MEHGjl+5cqV4ePjw4mcf6Gt8zsWvXogLS0NvXv3hqOjI5YtWyY6jtosW7YMjo6O6N27N9LS0kTHIcFY9L67+fPnQ6lUYvbs2aKjAABsbW0xa9YsrFmzRvg+hs/u6TUxMeHni3SKUqlU7cIQGBgo5D78dzVv3jx89NFHGDBgAHJzc0XHIVK5d+8e9u/fr/Gt+wICAnDmzBmkpKRodJzSiDO99FqKi4vh6+sLhUKBnTt3qj40+sDU1BQ7d+6EQqGAr6+vTm1vQtqnrXs+9NWNGzfw66+/Ytq0aahcubLoOCpjxoyBnZ0dZsyYITQHi17SVcuXL0dUVBQ2bNiAqlWrio7zVkxMTLB161bcv38fEydOFB2HSGXTpk0wNTVF//79NTqOl5cXqlatygWtXoIzvfRavvzyS8TFxWHHjh2oUaOG6DhqV6NGDezYsQNxcXGYPHmy6DgkEIved/PVV1+hUqVKOnfCaWpqivnz52PPnj04fvy4sBxyuRzGxsa8p5d0ypkzZzB16lRMmDABnp6eouO8k4YNG2L58uVYu3Yttm/fLjoOkWpv3j59+sDa2lqjYxkZGWHw4MHYsmULv2P+Bxeyov+0ceNGLFu2DL/88gvatWsnOo7GtGvXDsuWLcPy5cuxceNG0XFIkKKiIpibmwMAZ/3f0KlTpxAUFIR58+bB0tJSdJx/8PPzg6OjI6ZMmQJJkoRkKCoqUi1kxc8X6YL8/HwMGDAAjRs3xsKFC0XHUYthw4ahf//+GDVqFG7fvi06DpVxcXFxuHLlisZbm58JCAhAZmYm967+H0VFRZzppX93+vRpfPrppxg+fDhGjx4tOo7GffbZZxg+fDg+/fRTLoRRRsnlclXRy/bT1ydJEqZOnYoPP/wQQ4cOFR3npQwMDLB48WLEx8dj165dQjI8397Mq/CkC7744gvcvHkTW7du1Ztbl2QyGX7//XdYW1tj0KBBUCgUoiNRGRYYGIg6deqgY8eOWhnvww8/hLOzM1uc/8fzuyew6KUXpKeno3fv3mjWrBlWrFhRKhe1eFMymQwrVqxAs2bN0Lt3b6Snp4uORFoml8tV+1Ky6H19UVFROHLkCBYuXKj2/QfVqVOnTvDy8sKMGTOEzLRy9WbSJaGhoVi1ahWWLl2KDz/8UHQctbK1tcWWLVtw4sQJ4VunUdmVl5eHkJAQDB06FAYG2iuHhg8fjqioKNy/f19rY+o6bX3/sugtZUpKStC/f38UFhZi586dqnaAssDMzAw7d+5EYWEh+vfvj5KSEtGRSIueLXRgYGDAouQ1KRQKTJ06Fa6urujevbvoOP/phx9+wLVr1/DHH39ofWwuZEW64u7duxg5ciR69uyJUaNGiY6jEe3bt8fs2bMxd+5cxMXFiY5DZdDOnTuRm5ur9Q4oPz8/mJiYYNOmTVodV5dp6/uXRW8pM23aNBw7dgzbt2+HnZ2d6DhaZ2dnh+3bt+PYsWOYNm2a6DikRWw/fXMbN27E+fPnsWjRolLREfLRRx9h6NCh+Oabb5CTk6PVsVn0ki5QKBQYMmQIzMzMsGbNmlLxe/u2Zs2ahVatWmHgwIHIzs4WHYfKmMDAQLi5uaFu3bpaHdfGxga9e/dGYGCgsDUsdA2LXvqHrVu3YsmSJViyZAlcXFxExxHGxcVF9f/D1q1bRcchLWFR8mYKCgowe/Zs+Pr6wtnZWXSc1/btt98iJycHixcv1uq4/HyRLli8eDFiYmKwadMmVKxYUXQcjTIyMsKWLVuQmZmJ0aNHswAgrfnrr78QExOD4cOHCxk/ICAAly9fxsmTJ4WMr2tY9NILUlNTMXLkSAwZMgTjxo0THUe4cePGYciQIRg5ciRSU1NFxyENkyQJRUVFLErewC+//IJHjx6Vunvm7OzsMGHCBPz000948OCB1sbl54tES0xMxOzZszFt2jR06tRJdBytqFOnDlatWoWgoCBs3rxZdBwqIzZs2ABra2v07t1byPidOnVCrVq1uKDV/3n++5dbFpVxGRkZ6NWrFxo3bozff/9dr9udXtezFSAbN26MXr16ISMjQ3Qk0iCFQgFJkrjQ0Gt6/Pgxvv/+e4wePRr16tUTHeeNTZ8+HWZmZvjmm2+0Nubzq0eyfZ60LScnB/7+/nBwcMC3334rOo5W+fn5YejQoRgzZgyuX78uOg7pOaVSifXr16N///6qxTG1zcDAAEOHDkVISAjy8vKEZNAlnOklAH8vXOXn54fc3Fzs2rVLtWULAebm5ti1axdyc3Ph5+fHha302LM/gpyJez3fffcdgL/vmSuNbG1tMXv2bKxZswYXL17UypjPvnR5UYVEGD9+PNLS0rB161YYGxuLjqN1y5cvR9WqVeHv7899skmjDh8+jNu3b2ttb95/M2zYMOTk5Ajbpk+XcPVmAgB89dVXOHz4MEJCQlC7dm3RcXRO7dq1sW3bNhw5cgRfffWV6DikISx6X99ff/2F3377DdOmTUPlypVFx3lro0ePRq1atTB9+nStjMd7ekmUoKAgbNiwAStWrED9+vVFxxHCysoKW7duRXJyMr7++mvRcUiPBQYGolGjRmjdurXQHO+//z46duxY5lucJUniTC8B27Ztw6JFi7B48eIyc3/P23Bzc8OiRYuwaNEibNu2TXQc0oD/LXrZfvrvvvrqK1SuXBkTJ04UHeWdmJqaYsGCBdi7dy+OHTum8fFY9JIIN2/exGeffYYBAwZg8ODBouMI5ezsjHnz5uGHH37AkSNHRMchPZSVlYVdu3YhICBAJ24VDAgIwJEjR3Djxg3RUYR51qXJorcMO3fuHAICAjBgwABMmjRJdBydN2nSJAwYMAABAQE4d+6c6DikZpzpfT1JSUkIDg7GvHnzhN2rpE79+/dHixYtMGXKFI2v7Mqil7StpKQEAwcORIUKFbBy5UqdOAkXbcqUKejYsSMGDx7MtTpI7UJCQiCXy3XmAlOfPn1gZWWFDRs2iI4ijDYnNVj06qDMzEz07NkTDRo00Pt9+tRFJpNhzZo1aNCgAXr27InMzEzRkUiNnv0RZFHy7yRJwtSpU9GkSRMMHTpUdBy1MDAwwOLFi5GQkICdO3dqdCyu3kza9t133yE+Ph5btmyBjY2N6Dg6wdDQEJs2bUJBQQE++eQTbmNEahUYGAhPT0/UqFFDdBQAgKWlJXx9fbF+/XoolUrRcYTQ5vkdi14do1AoMHDgQGRlZSE0NFQvZmu0xcLCAqGhocjKysLAgQOhUChERyI1efZHkKs3/7t9+/YhJiYGCxcuhKGhoeg4auPm5gYvLy/MmDFDowvcaGshDSIAOH78OObNm4evv/4abdu2FR1Hp9SsWRNr165FaGgo/vjjD9FxSE9cvHgRCQkJwhew+l8BAQG4desWYmJiREcR4vmZXi5kVcbMmTMHBw4cQHBwMOrWrSs6TqlTt25dBAcH48CBA5gzZ47oOKQmbG9+NYVCgalTp6Jjx47o1q2b6Dhqt3DhQly/fh2rV6/W2BjPtzfznnHSpGcXZtu2bYuZM2eKjqOTevbsic8++wwTJ07U2grupN8CAwNRsWJF+Pj4iI7ygrZt26Jhw4ZldkGr5yc1ONNbhuzcuRMLFizA999/Dw8PD9FxSi0PDw98//33WLBggcZbIkk7WPS+2oYNG/Dnn39i0aJFenk7RLNmzTBs2DDMnTsXT58+Vfvxtbl6JJVtkiTh008/RXZ2NjZv3gwjIyPRkXTWTz/9hDp16mDAgAG8EEXvpKSkBJs2bcLAgQNhamoqOs4LZDIZhg0bhh07diA7O1t0HK3T5vkdi14d8eeff2Lo0KHo168fpkyZIjpOqTdlyhT069cPQ4cOxZ9//ik6Dr0jFr3/Lj8/H7Nnz4afnx+cnJxEx9GYb7/9Fjk5OVi8eLHaj61QKCBJEj9fpHHr16/Htm3bsHr1am5D+B8sLCwQFBSEixcvYsaMGaLjUCkWFRWFhw8f6lxr8zNDhgyBXC5HSEiI6Chax6K3jMnKykKvXr1Qt25drFu3Ti9narRNJpNh3bp1qFu3Lnr16oWsrCzRkegdcMuif/fLL78gPT0d8+fPFx1Fo9577z1MnDgRS5Yswf3799V6bF5UIW24cuUKxo8fj4CAAPj6+oqOUyo0b94cixYtwtKlSxEVFSU6DpVS69atg729Pezt7UVHeamaNWuia9euZbLFmas3lyFKpRKDBg1Ceno6QkNDUa5cOdGR9Ea5cuUQGhqK9PR0DBo0qMyujKcPtHnPR2mSnp6O77//HmPGjMH7778vOo7GTZ8+Hebm5vjmm2/Uelx+vkjT5HI5/P39UaNGDSxbtkx0nFLl888/h5eXF4YOHYq0tDTRcaiUSU9PR1hYmM7O8j4TEBCA+Pj4MncPO2d6y5C5c+ciMjISW7duRf369UXH0Tv169fH1q1bERkZiblz54qOQ2/p+SXtubru//fdd99BJpNh1qxZoqNohY2NDWbPno21a9fiwoULajvu/36+iouLuVUKqdXs2bNx9uxZBAUF8eL2G5LJZKoZsGHDhvECNr2RLVu2QCaTwd/fX3SUV+rRowcqVKiA9evXi46iVdo8v2PRK9CePXvw7bff4rvvvoOXl5foOHrLy8sL3333Hb799lvs2bNHdBx6C2w//afr169j5cqVmDFjBipVqiQ6jtZ89tlnqF27NqZPn662Y/7v5+v5x4jeVXR0NBYtWoT58+ejRYsWouOUSlWrVsWGDRsQFRWF5cuXi45DpYQkSQgMDESPHj10/nvS1NQU/v7+2LhxI0pKSkTH0RrO9JYBly5dwuDBg9G7d28u0KAFM2bMQO/evTF48GBc+n/snXdAU9f7xp/sBMIeAiKiMrRuq9at4IDWatW6QASxra2rrVVr9/q2v9ZWrVa0trYgKOCqe4AD3Fr3RMWNsjcJ2cn9/UEvAjIC3OQm4X7+0ST3nvOE3PWe9znvuXOHbjkMjYQJel/k888/h6urKz744AO6pRgVgUCA//u//8PevXtx4sQJStpkgl4GQ1FQUIDw8HAMHz4cCxcupFuOWRMcHIwPP/wQH3/8Ma5du0a3HAYz4MqVK7h+/brJW5tJIiMjkZOTg+TkZLqlGA1mySILp6ysDOPGjYOnpyc2bNjAFK4yAiwWCxs2bICnpyfGjRtnkGVPGAwHE/RW5/z589iyZQv+97//QSQS0S3H6EyePBm9e/fG4sWLKbEhM0EvgyEgCAJvvfUWVCoV4uLiwGYzj1zN5aeffkKnTp0QEhICmUxGtxwGEycmJgbu7u4ICgqiW4pe9OzZE926dWtRBa2YQlYWjE6nQ3h4OLKzs7Fz507Y2NjQLanFYGNjg127diE7Oxvh4eHMvCAzQqVSgc1mg8vltvjqzQRB4OOPP0aXLl0QHh5OtxxaYLPZ+Pnnn3H+/Hls37692e3VHGmu+h4DQ1NZt24d9uzZg+joaHh4eNAtxyIQCARITEzE48ePmcw5Q70olUokJCRg+vTpZrMeNovFQmRkJPbs2YOCggK65RgFxt5swfzwww/YvXs3Nm3aBH9/f7rltDj8/PwQHx+P3bt3W/wSL5aESqWqDEZaeqZ3//79OH78OH7++WdwOBy65dBGQEAAXnvtNXz66afNPh6q3nQFAkG19xgYmsKtW7fw0UcfYc6cORg7dizdciyKTp06YeXKlVi3bh127dpFtxwGE2XPnj0oKioyG2szybRp0wBUFOBqCdS8/zJBr4Wwb98+fP311/jmm28wZswYuuW0WF5//XV8++23+Prrr7F//3665TDogVKprAx6W3L1Zo1GgyVLliAgIADBwcF0y6GdpUuX4tGjR/jzzz+b1U7V6pFMppehuSgUCoSEhKB9+/ZYtmwZ3XIsknfeeQfjx4/HW2+9hczMTLrlMJggMTEx6N+/Pzp27Ei3lEbh4uKCMWPGtBiLM3n/5fF4lUkNQ62ewAS9RiI9PR3Tpk3D66+/ji+//JJuOS2eL774AmPGjMG0adNw7949uuUwNACT6a0gNjYWaWlp+Pnnn5laAAC6dOmCiIgIfPvtt82ap8/M6WWgkiVLliA9PR2JiYktcs69MWCxWFi/fj1EIhGmT58OrVZLtyQGEyIzMxPJyclml+UliYyMxLVr13DlyhW6pRgclUoFDocDDodTef81VPVqJug1AhKJBOPHj4ebmxs2btzIFLMwAdhsNuLi4uDm5oZx48ZBIpHQLYmhHpigFygvL8dXX32FkJAQ9O7dm245JsN3330HqVSKn3/+uclt1Bb0tuR54wxNZ//+/fjtt9/wyy+/oFu3bnTLsWicnJywceNGHDt2DL/88gvdchhMiLi4OAgEAkyZMoVuKU0iODgYbm5uLSLbq1KpKqcVGfr+y0RfBoYgCMyYMQMZGRnYtWsX7Ozs6JbE8B92dnbYtWsXnj59isjISIPZKRiaT82gV61Wt7jfa+XKlcjPz2fmotfA09MTCxYswIoVK5CVldWkNphMLwMV5OTkIDIyEqNHj8a8efPoltMiCAgIwCeffIIvv/wS58+fp1sOgwlArs375ptvwtbWlm45TYLL5WL69OmIj4+3+AHYms935HuGgAl6DcxPP/2EHTt2IC4uDp06daJbDkMNOnbsiLi4OPzzzz9YunQp3XIY6qC2kcCWFJTk5+dj6dKlmDt3Ltq1a0e3HJNjyZIlsLKywtdff92k/atWb2YKWTE0BZ1Oh4iICHA4HMTExDDTD4zIt99+i549eyI0NJRxbTHgzJkzuHfvntlam0kiIyNRVFSEvXv30i3FoFQNeg19/2WCXgOSlJSEzz//HF988QXGjx9PtxyGOhg3bhy+/PJLfPbZZ0hKSqJbDkMtVL0oknO3WtIajf/73//AZrPxxRdf0C3FJLGzs8OXX36J6Oho3Lp1q9H7V8308ng8AIBcLqdUI4Nls2rVKhw6dAixsbFwcXGhW06LgsfjISEhAbm5uZg/fz7dchhoJjo6Gt7e3hg2bBjdUppFp06d8Morr1i8xbnq8x25tBRjbzYzdu/ejSlTpuDVV1/FN998Q7cchgb45ptv8Oqrr2Lq1Kk4evQo3XIYanDp0iXk5OQAqDi3AODUqVN0SjIaf/zxB1avXo3FixfDycmJbjkmy+zZs+Hk5ISuXbtCoVA0at/r168DqKi6e+HCBQDAhg0bqJbIYKGsWrUKixcvxsKFCzFq1Ci65bRIfHx8sGbNGsTGxmLx4sV0y2GgiQsXLiA6OhodOnSwiPo5Q4cOxYEDB5CYmEi3FINx/vx5lJSUQKfTVWa1DbWyCotoaRPjjARpbSouLoa9vT29Yhj0oqSkBA4ODgAqsomWcMG0FGxsbCCVSkEQBG7fvo358+fjwIEDlaODlkzfvn1x4cIFpKWlMVMkGiAgIADHjh3D06dP4enpqfd+gYGBSE1NxePHj+Ho6Ih+/frh77//Rr9+/QyolsFSIO/3crkcQqGQZjUtF4IgYGNjg/Lycjx69Aje3t50S2IwMmlpaZXZ0YkTJ9Itp9mcOnUKgwcPxrp16/Duu+/SLccgeHh4IDs7GyqVCvfu3cOECROQmpoKd3d3yvtigl4DMWvWLAwdOrRykWkG8+CPP/7Axo0bcfLkSWZOlglx8+ZN5OXlITAwkG4pRiczMxOFhYVMJVg9IAgCmZmZjQp4gYrByYMHDyI0NNRAyhgsmaioKHTp0sXs7ZSWwPXr1/HDDz9g48aNLWJQlMHyIQjCop9HHz16hPT0dAQFBRm8LyboZWBgYGBgYGBgYGBgYLBYGP8mAwMDAwMDAwMDAwMDg8XCpVuAKXP27FlMnTwJUqm08r3G2gzYbDY+WrQYn376qSEkMlBEcXExJk+ahLy83Ca3MSooGL/88guFqloeEokE9+/fB0EQeG/2bNxNv/fCNlXPQRYANoeDqmekq6srUlOOws3NzTiiG8G7776Lc/82fy1JkVCIpUt/wtChQylQZb5kZWUhYPgI5OfnV75X3zWaIIjK6t8AoFGroVKrYW0thqtr7RV3+Xw+2GwOAMDD3Q3/bN8GsVhM4bdgMBXmzJmDLYkJla+bYit0dHRE8uEjaN++PdXyGOpg+fLl2BgbC4LQNasdNoeDefPfx1tvvUWRMgaquH79Osa98QZKS0tf+Kyh87Rbt244mpJiNnVaPvroIxxNSW30ftZWVli9+je8/PLLBlBFDUVFRXj48CFUKhU+XrIEObn5dW4rEDy/9wKAlZUIK1csR//+/ZvcPxP01sPp06eR8SwTMwZ6Q6sDhDwOlGotCAAiHgdytRYEAdiJeGCzWeBzWCiQqsBmAVKlBlZ8LpJuZmHfnt1M0GviXL58GUeOHsX4gD5o5WgPAHiYmQu1Rgs7sRXYLBashAIIBTw8zsqHjZUQCpUabd0rHpRPXb2D339fywS9zaRb9x54/Ohh5WtXv15w9H4JbC4P0ryn4FvbgW9tA3lxPsSuntCqVeCJxOAJRJDkPYWirBB3zh/C9evXTS7oVSqV+PPPP+Hm1QGunm1hbesAlUIGNodbedMmCAIcLhdajQZKeTkcXT2gUsjBF1lBUlwADpcHHl+As0n/YOfOnS0+6L169SrS79yGS983wBGJweYJQKhVIECAwxdBq5IDBAGulS1YbA4Krx2BLPNutTZYXD7Ynt2Qr9WAa2UDsNjg8EVg8wRQFmWBzRdBp1GCzebiZnISrl69ikGDBtH0jRkMyZ5dO+DIU6NfOzsIuWwoNRVBlPC/+z0IwFbEBYfFAo/DQo6kYqkrNgtQawnIVVrsufEIly5dYoJeIxL913oU5DxDV283OIhFkCnV4HLY0BEE2CwWdAQBHocNtVYHmVINDycbyJUaWAl4KJbKQRAEuBw2Tt96hLjYDUzQa4KcP38ejx4/RljwAPC4HPC4HDzJKYS9WARbaxFyi8rg5eYElVoDsUgAK6EAT7ILcPtxNo4dP46ioiI4OzvT/TX0Ys2aNXBt6wffHv2Q/+wRtBoNRDa2YLHY4AtF4AmEKMx+CoHIGmqVAs7uXgCA1G1/Yf/+/SYb9Gq1Wvj7+aKgsKjyPYeugSAIHYha7r8FeU/AFdhAp1ZB6OyJmymx2Lt3LxP0GhI7ayF+mtijyfsrNFo8pU4Og4Egp7b/b/aUykC2Mfy+/RC+Wb+DalktjszMZ2gVOAOOvV7D7WWT0XPi+2g3YLTe+0vynuHJ+UMGVNh0yGNs4pzPMPj1Kc1qK/NBGphyDM/pEPoNBPatGtyu9P5F2Pr3R9spXwMAHsQuBpvNRrdFCQ3sCchyHqDwSjLzd7dwxnZ1xaIR7Zq0r0ShwZ4bdWcuGAwDQRCYOLgbvo9sXiGcOb/tRKaGOb9NmTWLwxu1/f7TVxH61ToDqTEMBEFg6MSZCJj0dqP2u3Z8v0nfn1QqFQoKizBvcGt0dBVh3j/34f3mEojbdtVrf8mtY83+fkzQ2wS2XchAqVyNgI6tIOCxodURkCo0KFdqkF2qwBs9W9MtkYECEpNOo0RajhF9u0Eo4EGr1UEik6OwRAKFSo3gAT3olmiRWLn7QlWU+cL76SlboZSWoM3Lw8HhCUDotFDJJJAX54Ersob7S6/QoJYaTuxJRHlZMboPGgm+QAidVguZVAJJSQFUCgVeHvYq3RLNitzT26GWlcCxa0BF9leng1YugUZWCmuvLlAWPAXPxgk8a3to5ZLKfTSyEjjU2EdVkgtCp4PIrWmBEIN5s/1KDkrkGgT4OULAZUOnIyBRapFbpoRUqcXYbq50S2Sogy3HrqGkXI7hPX0g5HGh1RGQyJTILZFCp9Nh5Mt+dEtkaCKbD59DiUSGEX06Q8DnQavTQSJToLBUCg6bhcE9/OmWSBln9yWiXFKCLgNGgMcXQqfTQlEugbS4ECwOBx17D6ZbYqPwdxUhp0xV7b3cM9uhKX9+/4VOB41cAlVxNtgCK9h3HEBJ30zQ2wj2X8+CkzUfNkIeeFw2Um7nopOHLbq0toOTNR/puRIIuGzceFaCrp72dMtlaAa7j1+El7szbMpEuH7vCXKLStGlQxt09fWCt4cLLqU9xNnr6dDqdHBxsKVbrsXh0H1EtdcPz+yDjWsb8KxsUPDgOmTFeXBq1xnO7bvA1s0beemXkZ32L8TO5jXg9O/h3bB1dIZIbAMuj4erJw/By78LvP27wcbBCQqZFEW5Wbhz+Sxs7B3Rur3l3MgNRf7FAxA4twGnXAzpk5tQlebDuk0niL06gyusmIvr9PJrAACBkyfkmXdQcPEAhM5toP5vH/V/+1h7dYbQpS3K7l9E0fUUOr8Wg5E5cDMfTtY8iAUc8DgspN4tRCc3MTp7iOFozUN2qQIuYh4uPCmFvYgLX1druiUzVGHvuTR4udrDRirA9Yc5yCuRonPbVujazg1t3Rxw9tYTnL71GBw2G/06edEtl6ER7Dl5BV6tnGBjJcS1+0+RV1SKzu090dXHE97uzrh05zEO/XsDDjbmfU5eOroHNg7OEIptweHxcfP0YXj6dkEb/66wsXdCaUEuZCWFeHDtX3Tobl6D/oPa2wEAStJOQauUgSsUg83hofh6auW9lyt2hFpaBK2sDKX3ml8LBWCC3kYxuptHvZ/3autoJCUMhuJC2gMcOH0F/m09UFQqxaCeHcHlsJGVX4z8ojLceZSJcrkS/br64sb9DCiUauQXlSErv5hu6RaDPPcRco/HV3uv/YDX693Hs8cQABX2ZnMh7cJJFOVmQmRtAxAEug0YDg6Xi6f30pD1KB0sNhveHStsP/JyCXKfPsSt8ycwauo7NCs3bVx6v1b3h2wOVKX5yD7yN0TuvlAWVBwvXLEDpBk3YOXuCxAEXAdOBIvNRfmzNFi37giutR34etinGSyH17rUP81lREfzmB/Y0jh96zFuPs6BX2sXFElkGNjZGxwOG8/yS/HvnQzkl5Zj1Mu+sLUWolyhgojPRUZeMbxcHeiWzqAnYwf3rPfzYb06Vv5//+mrBlZjGHIz7kOrUUNoLQYIAp37B4LD4eLpvVvIfXIfBVkZ6DY4CI9uXER5WTFunj4MrVZDt2y9uJcvx63scgAAx8oW0ic3YOXhCwLP772yzDsQOLiDI7CCTlEOnVoJnUbd7L6ZoFdPztwvQFpWKXxb2UCm0qB/B2dw2SzcyCwFQQDlSg0G+DjjSFouHK35cLcXwsfVhm7ZDI2kz0sdap3Ta2ethH/b6oMe/bs9t0advn635i4MTYTQaSBu36vyddaN0yh8dAv2bfygUcjg0XUAWGwuip7cBk9kDY1SDgDgW9mCKxDRJbvRvNRnMF7q86ItyaV1Wzi4PC/C1bHX86INxfk5RtFmrpTcOQvp01uwcveFTimDXcf+YLG5UOQ/AdfaHlqFFBwWGza+fSHLvAuNQgoWdLDv2B/2HV8sjiF0aQuulS1s2/cE14pxdLQUzj4sxq2ccvi6WEGm1qJ/O3tw2SzczimHNZ+DjGI52CwWBra3x4UnpSgsV6Otkwj+TLaXdgZ29sbAzt4vvO8gFmHGqN6Vr8nsrlKtgUyhemF7BtPk1LV03HzwDH5ebpApVBjY3RdcDgfP8oogUyiRVVCCYb064dbDZyguk+Hi7Ud0S24Srbx8ap3T69LaG/YubmjftQ8AoNMrwwAAapUSLJZ5VKfW6QjYCCqqMtt4d6t1Tq/QuQ349q0gcKri3mtkJf3aYILeBigtV2D10XSw/lsUJflmDiQKNfZdzYKzjQAqrQ48NhsKtRaHb+WAxWLB00GE0/e1EAu4OP+wEO4+7jR/C4aGIMvdf/n7lsrqzXlFpSiXK6EjCDjYWoPH5UCt1kKpJkebWHB3rtj21NU7jV7aguFFWrf2xOOUDchN2QAAuHM4Aa069YG0IAt56VdAEDpk3jgNDpcPhaQYPKEIOq0WHC4PHL4QGqWM3i9QD+TxcWDjGqRfPVf5fmlhPpTycugIHcS29uBw+dBqVCAIAjqtDhwuF2K76lmIp/fvgMUaaVT9pszTA2vBt32eeSu8nASNXIr8C/vAs3GCTqsBm8OFTqlAecYt3PguuHJbFpePe3GfQlVWAJ1SBoLQgWtlBzaX99/IMgFCp4NGWlKxPXOeWzRH7xZCxK94eLyZLUFWqQIHb+VDRxAQ8dhwsOJDqdFBodbi6N0CsFgstHEQ4l5+OY7eKaRZfcuExWJh//nb0FRZjgwA8kqkkCnU0BEE7MVC8LkcqDRaKNUV27EAuDk+T06kXn0A/649jKicobGcT3sINouFg2evo6xcjt0nLsPF3gZqrRZcDgcKpQopF9LAYrHg5eaEtEdZdEtuNCwWC8e3RyPrfhrKiiqeDwiCgLWNPTg8HrRqNQhCB52u4vnA2rbi+aCkINek7098Ph/OTo6IOvX8N3n8z1KwBaJ6770sDhc8a3vICjKb/f2YoLceBg4cCC/P1vj91ItFdbQ6HaRSKaytrCCTyyHg8yEQCF7Yjs3m452xbxhDLkMz6NWrF0aOGIEHuTl4UFCROSwpKUF2djZat24NW9nz9f8yMzMhlUrRrl17PCqq2JZtZYfZs5tXkZcBuH7tao11ei+g+N6FattoNRrI5HLw+XwIBYIX1unt2OkldOvWzbjC9UAgEGDWrFk49+955Ny+8MLn+fl5uF1QCH9/fxQVFSEvLw8d/f3B5nAgrXHf7tOnL8aPH28k5aZLjx494NexE/Iv7URtwx2EjkB+aSk4XA5sbGwgIAhw7ewrPyfX6S2/vLfaOr0Pbp+GUChE69atn6/TywdeCQpGjx49DP69GOjhjfFvYnNCPH4/9zx4ValUkCsUsLayApfLBVBxzZeWSwECsBaLwUJ55fY+7duZ7JIhlspb78xC3IYNOJdRXuMTFgoKylBQWAhfXx/otCrcf/AAbq1awcGhIlB4LH2+j3vb9giPmGE84Qx607dvX7Tz9sbqf45Xe1+pVEClUkEksoJMVg5rsRicKmu7AsCwoUPh5ORkTLnNYt68eThyNAWF6RcBAGwAZWVluHPhKXx8fJCfnw+FQgEfHx+oASj+M4D17z8Ao0frv9qFseFwOLibfq/GOr2ZgOL5NvKSh8jOzoa1WAyvNm2er9Mrf4I2/fpj7NixzRNBMDSJpUuXElZWVoRCoSDefPNNYsCAAXRLYqCQ9PR0wtramoiMjHzhs5KSEsLb25sYMGAAoVaraVDXstm8eTMBgPjggw/olkIZWq2W8Pb2JmbOnEkQBEFkZWURHA6HWLduHc3KzJsnT54QAIguXbrovY9OpyMAEP379zegMgZz4MaNG4RAIKj1WpOWlkYIhUJi7ty5xhfGoBcqlYrw8PAgZs2aVfne+PHjiZdeeonQ6XQ0KmOgildeeYWYNGkSoVAoCGtra+Knn36iW5JBCA0NrbyP7d69mwBApKWl0ayKerZs2UIAIMaNG2eQ9s3DAG6CJCcnIyAgAAKBAEFBQTh37hyKi5liRpaASqVCaGgoPDw88Ntvv73wuZ2dHeLj43Hu3Dl8//33NChs2UilUgAVv5OlcPz4cTx+/BiRkZEAAHd3dwQHByMmJoZmZeaNRFKxHFFjjhVyW51O18CWDJaMUqlEWFgYfHx88OOPP77weadOnbBs2TKsWbMGBw8epEEhQ0Ps3LkTWVlZmDdvXuV78+fPR1paGlJTU2lUxkAFhYWFuHDhAoKDgyEQCBAYGIikpCS6ZVGOXC7Hnj17MHnyZADAqFGjYGNjg23bttGsjHpKS0sBAOXlNV0b1MAEvU1AKpXi5MmTCAqqWAg9KCgIOp0OR48epVkZAxV8/fXXuHr1KuLj4yEWi2vdZsCAAfjqq6/wv//9D6dPnzaywpaNVCoFm8022EWRDmJiYuDr64uBAwdWvhcZGYl///0Xt2/fplGZeUMOkCiVSr33YYJeBgD48ssvkZaWhvj4eIhEtRfImzNnDoKDgzFz5kwUFBQYWSFDQ0RFRWHo0KHo2vV5oZxhw4bhpZdeQlRUFI3KGKjgyJEj0Ol01Z7FT506VTnYaSkkJydDKpVi0qRJAAChUIg33ngDW7dupVkZ9ZSUlIDH41UGv1TDBL1N4NixY1Cr1QgOriiG4uXlhU6dOiE5OZlmZQzNJTU1FUuXLsX//vc/9OnTp95tP//8c/Tv3x/Tpk0z2AnK8CISiQRcLtdibmxlZWXYvn07ZsyYUa1Iw5gxY+Dk5MRke5sBGfTKZPoXOGOCXoZjx45h2bJl+OGHH9C9e/c6t2OxWIiOjoZarcY777wDgiCMqJKhPq5du4aTJ09Wy/ICFb/ZvHnzsHv3bmRkZNCkjoEKkpKS0LVrV7RuXVHhNzg4GBqNxuKy+Fu3bkXXrl3RsePzpZgmTZqEW7duWdygeGlpKYRCIRP0mhLJyclo164dfHx8Kt8LCgpCUlISc9MzYwoLCzF9+nQMGzYMixcvbnB7LpeLTZs2obi4GLNnz2Z+eyMhlUrB4/EqAxpzZ+vWrVAqlQgPD6/2Pp/Px7Rp07Bx40ZoNOax/p6pQQ6MMEEvg76UlJQgPDwcQ4YMwUcffdTg9u7u7li/fj127drFDFCZEFFRUfD09MS4ceNe+Gz69OkQi8X4/fffjS+MgRIIgkBycnJl8gkAOnToAB8fH4uyOMvlcuzdu7cyy0tiqRbnkpISWFlZMUGvKZGUlISgoKBqWZng4GA8e/bM4kZdWgoEQWDWrFmQyWSIi4sDh8NpeCcA3t7eWLduHRITE7Fp0yYDq2QAKoJePp9vMUFvTEwMRo4cCU9Pzxc+i4yMRE5OjkXdxI1J1UyvvkEsGfRqayx/wtAymDt3LsrKyhp1Hxg/fjxmzpyJ999/Hw8ePDCwQoaGKCoqQnx8PN57773/Km5XRywWIzIyEuvXr4dCoailBQZT58aNG8jOzq60NpMEBwdbVAKqprWZxFItzqWlpbC2tkZJSYlB2meC3kby8OFD3L9/v9roEgAMGTIEQqGQsTibKX/99Rd27NiBv/76q9bgoz5CQkIQHh6OOXPmMA88RkAikUAoFFqEvfnu3bs4c+ZMZQGrmvTo0QM9evRgMkhNRCqVgsVigSAIvbO9TNDbcklMTERCQgLWrFkDLy+vRu27cuVKtGrVCtOnT2ecGTQTHR0NrVaLd955p85t5s6di8LCQmzZssWIyhioIikpCVZWVhg0aFC194OCgvDo0SPcv3+fJmXUUpu1mYS0OKelpdGgzDCUlpbC1tYWCoWiUbU49IUJehtJcnIyuFwuAgICqr0vEokwZMgQJiNjhty9excffvgh3nnnHUyYMKFJbURFRcHV1RXTpk2DWq2mWCFDVaRSKUQikUVkejds2AB7e3u88Ubda3lHRkZi7969TKGcJiCRSGBlZQUAeh8v5I2WCVxaFk+fPsXs2bMxdepUhIaGNnp/GxsbbNy4Ef/++2+t1Z4ZjINWq8XatWsxZcoUuLq61rmdr68vgoODsXr1aovJCrYkkpKSEBgYCIFAUO39YcOGgc/nW8SzOGltJqs212TUqFGwtbW1KItzSUkJ7OzsAMAgFmcm6G0kSUlJGDBgAGxtbV/4LDg4GCdOnIBcLqdBGUNTUCqVCAkJQZs2bfDrr782uR0bGxskJCTg4sWL+O677yhUyFATqVQKKysrsw96tVot4uLiEBoaCqFQWOd25AN4fHy8saRZDOQACfl/fSAzvUzQ23LQ6XSIiIiAjY0N1q5dW23qUmMYMGAAPvvsM3z77bc4f/48xSoZ9OHgwYN49OjRCwWsamPevHm4dOkS/v33XyMoY6AKqVSKU6dOveC4BCqs64MHD7aIoDcpKalWazOJUCjE2LFjLSroLS0thYODQ+X/qYYJehuBSqVCSkpKrScaUGGrUCgUOHHihJGVMTSVL774Ajdv3kRCQgKsra2b1dYrr7yCb7/9Fj/88ANzDBgQiUQCa2trs7c3Hzp0CFlZWXVam0mcnZ0xZswYxuLcBKRSaeV5re/xwtibWx6//vorUlNTERsbW/nA1VS++uor9OzZE2FhYRa1rJq5sHr1avTt2xd9+/ZtcNtXX30V7du3x+rVq42gjIEqUlNToVarX5jPSxIUFITU1FSzn6+9bds2dOvWDf7+/nVuM3nyZIuyOJeUlMDJyQkAE/TSztmzZyGVSus80Tp16gRPT0+LGGFqCRw5cgTLli3D//3f/6FXr16UtPnJJ59g8ODBCAsLQ3FxMSVtMlRHKpXCxsYGSqXSrK3kMTEx6NKlC15++eUGt42MjMS1a9dw5coVIyizHCQSCWxsbAAwmV6G2rl+/To+++wzLFy4EIGBgc1uj8fjYdOmTXj27BkWLVpEgUIGfbl79y4OHTqkV5YXANhsNubOnYtt27YhJyfHwOoYqCIpKamyUnNtBAcHQy6X49SpU0ZWRh1yuRx79uypM8tLYmkW59LSUri4uACAQYpZMUFvI0hKSoKLiwt69OhR6+csFgvBwcFMMSszoKCgAOHh4RgxYoRey1LoC4fDwcaNGyGRSPDuu+8yc4UMABn0AjDbTEpRURF2796NyMhIvayUwcHBcHNzY7K9jUQqlVZORWls0GvOAyoM+qFQKDBt2jT4+/vjhx9+oKxdf39/rFixAuvWrcO+ffsoa5ehftasWQMXF5c650DWRmRkJHg8HtavX29AZQxUQRAEDh48WKfjEgC6dOkCDw8Ps05AJSUloby8vMGgVyAQWIzFWafToaysDK1atQLAZHppJzk5GUFBQWCz6/6zBQUF4fbt28yi5yYMQRB46623oFKpEBsbW+/v2RS8vLzw559/Ytu2bdiwYQOlbTNUZO/IQgfmanFOSEiATqdDWFiYXttzuVxMnz4d8fHxBqloaKlUDXoba29mgl7L57PPPkN6ejri4+NfKIjTXN59912MHj0ab731FvLy8ihtm+FFJBIJNmzYgFmzZjXqt3RwcEBYWBjWrVvHnPNmwP379/Ho0aN6g14yAWXOQa8+1mYSS7E4SyQSEARRGfQymV4ayc3NxZUrV+q0NpMMHz4cbDabyfaaMH/88Qf27NmD6OhoeHh4GKSPSZMmITIyEvPnz8e9e/cM0kdLRSqVwt7evvL/5khMTAxGjx5db3XRmkRGRqKoqAh79+41oDLLouoASWOrN5PBL4NlcvToUfz666/48ccf0bVrV8rbZ7FY+Pvvv0EQBN5++23G9WNgNm7cCJlMhvfee6/R+86bNw9ZWVnYuXOnAZQxUElSUhJ4PB6GDRtW73ZBQUG4desWnj17ZhxhFKKvtZnEUizOZJDr5OQEsVjMZHrp5NChQwAqDq76cHBwQL9+/Zig10RJS0vDggULMHv2bIwdO9agff3222/w8PBAaGgo8wBNERqNBgqFwqyD3uvXr+Py5csNFrCqSadOnfDKK68wFudGIJVKYWdn16glrphMr+VTVFSEiIgIBAYG4sMPPzRYP61atcJff/2FvXv34q+//jJYPy0dgiAQFRWF8ePHw9PTs9H7d+3aFUOHDkVUVJQB1DFQSXJyMgYPHgyxWFzvdiNGjDDbBJS+1mYSgUCAN954A1u3bjWwMsNCBrl2dnawt7dngl46SU5ORq9evfTKzAQFBeHIkSNMIRQTQ6lUIjQ0FO3atcOyZcsM3p9YLEZ8fDyuXr2Kr7/+2uD9tQTIwMXZ2RmAedqbY2Ji4Orqitdee63R+0ZGRiIpKQlZWVkGUGZ5SKVSiMVi2NjYNNrerFKpmOycBUIQBGbPno3y8nKDTG+pydixY/HOO+/gww8/ZFw/BiIlJQW3b9/Wu4BVbcybNw8nT57EtWvXKFTGQCUKhQKpqan1WptJHB0d8corr5ilxXnr1q16W5tJJk2ahLS0NNy6dcuAygwLGeTa29vDzs6OsTfThU6nq5zPqw9BQUEoLS1l1n4zMT799FPcvn0biYmJsLKyMkqfffr0wffff4+lS5ciNTXVKH1aMmTQS5a0N7dMr0qlwqZNmxAWFgYej9fo/adOnQo+n4+NGzcaQJ3lIZFIIBaLIRaLG53pJQiCWbbIAomPj8fWrVuxbt26JmUFm8KKFSvg4eGBsLAwxkFgAFavXo2uXbtiyJAhTW5j3Lhx8PT0ZLK9JsypU6cgk8n0CnqBimfxw4cPm1UCSi6XY+/evY0qxgZYhsWZDHLt7OxgZ2fHZHrp4sqVKygoKNA76O3duzccHR3N0lZhqSQlJeHXX3/F0qVL0b17d6P2vXjxYgwbNgzTp09HYWGhUfu2NGpmes0t6N2/fz8KCgoabW0msbOzw4QJExATE8NkIfWArPTd2KCXw+FU/p/Bcnjy5Anmzp2LadOmYcqUKUbrVywWY9OmTbh06RKlVaIZgMePH2Pv3r2YN2+eXpXw64LL5eK9995DfHw8ioqKKFTIQBVJSUnw8PBAly5d9No+ODgYpaWlOH/+vIGVUcfBgwcbZW0mIS3O5hz01rQ3M5lemkhOToaNjQ369++v1/YcDgcjR440S1uFJZKXl4cZM2YgKCgI77//vtH7Z7PZiIuLg0wmw6xZs5hgpRmQFlVnZ2ew2WyzszfHxMSgd+/eet+0ayMyMhJ3797FuXPnKFRmeRAE0WR7M5fLrfw/g2Wg1WoRHh4Oe3t7WrJ5r7zyCr788kt8//33zLlLIevWrYOtrS2mTZvW7LbeeecdaLVaREdHU6CMgWpIx6W+gxtkAsqcnsW3bduG7t27w8/Pr9H7mrvFuaSkBHw+H0KhkMn00klSUhICAwPB5/P13icoKAgXL15EQUGBAZUxNARBEIiMjIROp8OGDRsMPn+rLjw9PfHXX39hx44dTEGTZkBm6xqbvTMFcnJycODAgSZneUkCAwPh5eXFFLRqAIVCAa1W22h7s1KprAx6meWhLIfly5fj5MmTiIuLqyyEZ2w+//xz9O7dG2FhYWZ17TJV5HI51q9fj5kzZ8La2rrZ7bm6umLKlClYu3YtM7XBxHj27Blu3rypt7UZqEhAjRo1ymyCXtLa3NgsL4m5W5xLS0thZ2cHFovFZHrporS0FGfPntXb2kwSFBQEgiBw+PBhAylj0Ic1a9bgwIEDiImJgZubG61aJkyYUFnQ5O7du7RqMVfIB0UykDGnTO+mTZvA5XIREhLSrHbYbDYiIiKwefNmyGQyitRZHk0dIFGpVJXzrZlMr2Vw5coVfPHFF1i8eDGGDh1Kmw4ul4uNGzciJycHCxYsoE2HpbB582YUFxdjzpw5lLU5b948PHr0CAcPHqSsTYbmk5ycDDabjREjRjRqP3NKQDXV2kxi7hbnkpKSygFJJtNLEykpKdBoNI0Oej08PNC1a1dmXi+N3Lx5E4sWLcL8+fMxevRouuUAAH799Ve0adMGISEhTBapCZBBro2NDWxsbMwmW0IQBGJiYjBu3Dg4ODg0u70ZM2ZAIpFgx44dFKizTKoOkDTW3ky6epig1/yRy+WYNm0aOnfujO+++45uOfD19cWvv/6Kv/76C7t376ZbjtlCEARWr16N1157DR06dKCs3b59+6Jv375YvXo1ZW0yNJ+kpCS88sorcHR0bNR+5pSAao61mWTy5Mlma3EmM70AE/TSRnJyMnx9fdG+fftG7xsUFITk5GRmDicNyOVyhISEwNfXFz///DPdciqxtrZGYmIibt68iS+++IJuOWaHVCoFi8WCSCQyK3vzhQsXkJaW1mxrM0n79u0xdOhQxuJcDzVdAUymt2XyySef4OHDh9i0aRMEAgHdcgAAb7/9NsaOHYu3334bOTk5dMsxS86ePYsrV640a5miupg3bx4OHTrEOLJMBI1GgyNHjjQ6+QQA7u7u6N69u8lbnJtrbSYZOXKk2VqcS0tLKzO95Dq9VMdPTNBbDwRBNGqpopoEBwcjJycH169fp1gZQ0MsWbIE9+7dQ2JiIoRCId1yqtGzZ0/83//9H5YtW4YjR47QLcesIAsTsVgss7I3x8TEwNPTs9HWrPqIjIxESkoKHj9+TFmblkRVV0Bjg14m02sZHDp0CL/99ht+/vlndO7cmW45lbBYLKxfvx5sNhtvvfUWMzDeBKKiouDr64tRo0ZR3vbkyZPh4uKCNWvWUN42Q+M5f/48SkpKGjWftyrBwcFITk6GTqejWBl1NNfaTEJanLdu3UqRMuNRUlJSLdOr1WpRXl5OaR9M0FsP6enpePz4cZNPtEGDBsHKyoqxOBuZ/fv3Y/Xq1Vi2bFmzquQako8++ggjRoxAeHi4Wcw1MRUkEglsbGwAwGzszXK5HImJiQgPD69cCocKJk6cCLFYjNjYWMratCSaam9WKpVM0GsBFBYWYsaMGRg5cqRBsoHNxdXVFdHR0Thw4ADWrVtHtxyzIjs7G9u2bcPcuXMNUpxSIBBg1qxZ2LBhg9kMrFoySUlJcHR0RO/evZu0f1BQEHJzc006AbV169ZmW5tJJk+ejNu3b5udxblmphcA5cWsmKC3HpKTk8Hn8zFs2LAm7S8QCDBs2DAm6DUiOTk5iIyMxOjRozF37ly65dQJm81GbGwsVCoVM9LfCMhMLwCzsTfv2rULpaWlmDFjBqXtWltbY/LkydiwYYNJj2DTRXPszUzQa94QBIF3330XSqWS1qr9DTF69Gi89957WLhwIWOlbQR//vknBAIB5dfUqrz33nuQyWTYuHGjwfpg0I+kpCSMGjWqyYPGAwcOhLW1tclanOVyOfbt24fJkydT0h5pcTa3bG/NTC8Ayuf1muadwERITk7GoEGDmlUKPzg4GCdPnjSLh3NzR6fTITIyEmw2G9HR0c1aqN4YeHh4IDo6Gnv27MEff/xBtxyzoGbQaw6j8DExMRg0aBB8fX0pbzsyMhKPHz/G8ePHKW/b3CGPDTLolcvlei1DUjXoZYrNmSdxcXH4559/8Mcff8DDw4NuOfWybNkytGnTBmFhYVCr1XTLMXlUKhXWrVuH8PDwygdjQ+Dp6Ynx48cjKiqKGZSmkYKCAly8eLHJ0wwBgM/nY/jw4SYb9FJlbSYRCAQYN26c2c3rrVrIisz0MkGvkVAoFEhNTW2ytZkkKCgIarUax44do0YYQ5389ttvSEpKQmxsLFxdXemWoxdjx47F7NmzsWDBAqSlpdEtx+QxN3tzRkYGjhw5QlkBq5oMHDgQvr6+TEGrWpBKpeDz+eDz+ZXHjD7Hi0qlqqwDwGR6zY+HDx9i3rx5iIiIwMSJE+mW0yDW1tbYtGkTrl69ahLVpU2dHTt2ICcnxyhOrnnz5uH27dtISUkxeF8MtXP48GEQBNGsoBeoeBY/ffo0ysrKKFJGHVu3bkWPHj0oHRifNGmS2Vmcay5ZRL5HJUzQWwenTp2CXC5v9onm6+sLb29vkx1hshSuXbuGJUuW4MMPP2z2b2Zsli1bhnbt2iE0NBQKhYJuOSaNudmb4+LiIBKJKBvBrQmLxcKMGTOwfft2k7yZ00nNY4V8ryFUKlVllV8m6DUvtFotwsPD4ezsjN9++41uOXrTp08ffP311/i///s/nD59mm45Jk1UVBQCAgKMUphsyJAh6NKlC6KiogzeF0PtJCUloXv37nB3d29WO8HBwdBoNEhNTaVIGTXIZDLs27eP8meEkSNHws7OzmwszkqlEgqFgrE300VycjLc3d3RtWvXZrXDYrEqK8cxGAaZTIaQkBB06tQJP/30E91yGo2VlRUSExNx+/ZtfPrpp3TLMWnMyd6s0+kQExODSZMmVWYaDUF4eDiUSqXZ3NyMRVVXQGODXibTa54sXboUZ8+eRVxcHGxtbemW0yg++eQTvPLKK5g+fTozgFUHV65cwenTpzF//nyj9MdisTB//nzs2bMHT548MUqfDM/R6XRITk5utuMSqFjmz9fX1+QSUFRbm0nIKs7btm0zC3s+GdySmV5ra2twOBwm02sskpKSEBQURMm80KCgINy/fx8PHjygQBlDTRYtWoRHjx4hISHBZNZhbCzdu3fH0qVLsXLlSpO7KJsStdmbTfWCfvLkSTx8+NBg1mYST09PjBw5krE416DqAAl5zOgzSKJUKplMrxly8eJFfP3111iyZAkGDx5Mt5xGw+VysXHjRuTn5+PDDz+kW45JEhUVhTZt2mDMmDFG63PatGmwtbXF77//brQ+GSq4du0acnNzKXPvBQcHIykpyaSeGbZt20a5tZnEnCzOZNBLZnhZLBbs7OyYTK8xyMzMxM2bNyk70QIDA8HlcplsrwHYs2cPfv/9d6xYsQIvvfQS3XKaxfvvv4/g4GDMmDEDeXl5dMsxSaRSaWVhObFYDI1GY7LFhmJiYtC+fXujPIBHRkbizJkzTAXYKtRmb9Yn6K1qbzbVY4uhOjKZDGFhYejWrRu++eYbuuU0mQ4dOmDVqlWIiYnBjh076JZjUhQWFiIhIQGzZ88Gl8s1Wr/W1taYOXMm1q9fD7lcbrR+GSocl9bW1hg4cCAl7QUFBeHx48dIT0+npL3mYihrM4k5WZxrBr1ARdaXyfQageTkZLBYLIwcOZKS9mxtbTFgwAAm6KWYrKwszJw5E2PHjsV7771Ht5xmw2azK5efiYyMNKnRSFOhZqYX0M+yamwkEgm2bduGGTNmGGW5lDfeeAP29vbYsGGDwfsyF2qzN+uz0D1pb2axWEym10xYvHgxMjIysGnTpsrK2+ZKZGQkxo8fj3feeQdZWVl0yzEZ/v77bxAEgbffftvofc+ePRvFxcXYvHmz0ftuySQlJWH48OGUndPDhg0Dn883mWdx0tpM1VJFNTEnizMZ3JL2ZgBMptdYJCcno0+fPnBycqKszaCgIKSkpDAPURSh0+kQEREBPp+Pv//+2+SXJ9KXVq1aISYmBgcOHMCaNWvolmNySKXSJs3TNDbbtm2DXC5HRESEUfoTCoUIDQ1FXFycXsvytASaam8mg14+n89cr82AAwcOYO3atfjll1/QqVMnuuU0GxaLhT///BN8Ph8zZ840+YdVY6DVarF27VpMnToVLi4uRu/fx8cHr776KlavXs38HkairKwMp0+fpmQ+L4m1tTWGDBliMlPISGuzj4+PwfqYPHky7ty5Y/IW59oyvUzQawS0Wi0OHz5MeQXg4OBgSKVSnDlzhtJ2WyorVqzAkSNHEBcXB2dnZ7rlUMro0aMxf/58LFq0CDdu3KBbjknR1Iq8xiYmJgbDhw+Hl5eX0fqMjIxEVlYWDh06ZLQ+TZmqx4pIJAKLxdK7kBWfz4dAIGCCXhMnPz8fM2fORHBwMObMmUO3HMpwdnZGTEwMkpOTmcFPAPv27cOTJ0+MVsCqNubPn48rV67g7NmztGloSaSkpECj0RjkWfzYsWO0W9VlMhn27t1rsCwvCWlxNvU1e8lMb9UChIy92QhcuHABxcXFlI4uAUCPHj3g4uJiMrYKc+by5cv47LPPsGjRIowYMYJuOQbh559/hq+vL0JDQ2m/OJsKSqUSarW6Sdk7Y3Lv3j2cOnXK4AWsavLyyy+jS5cuTEGr/6hqb2az2bC2ttY700uu78sEvaYLQRCYNWsWNBoNoqOjLcbtQxIcHIx58+Zh8eLFLX4N96ioKPTr1w8vv/wybRpGjRoFX19fZvkiI5GcnAxfX1+0b9+e0naDgoIgl8tx8uRJStttLAcPHoRMJjPYfF4SPp+PcePGYevWrSbtUigtLYVYLK42X5/J9BqB5ORk2NnZoW/fvpS2y2azMWrUKCbobSbl5eUIDQ1F165d8cMPP9Atx2AIhUIkJibi3r17+Pjjj+mWYxKQWTpTtzdv2LABdnZ2GD9+vFH7ZbFYiIyMxO7du1FUVGTUvk2Rqple4Hm174ZQKpVM0GsGREdHY9euXVi/fn2z1/A0VZYuXQpvb2+EhYW12GPx9u3bOHLkCK1ZXqDiGW7u3LnYtm0bsrOzadVi6RAEgaSkJMqTTwDQuXNntG7dmvZn8a1bt6Jnz54GtTaTTJo0yeQtziUlJdXm8wJMptcoJCcnY8SIEQapDhgcHIwrV64gNzeX8rZbCgsWLMDTp0+RkJBg9gVLGqJLly5YtmwZoqKisH//frrl0A4ZsJiyvVmr1SI2NhZTp06FSCQyev9hYWHQ6XRISEgwet+mhkQiqRb0isXiRtmbmaDXdLl//z4++OADzJw50+iDS8bEysoK8fHxuHHjBr7++mu65dDCmjVr0KpVK0ycOJFuKYiIiIBAIMCff/5JtxSLJj09HY8fP6bc2gxUDA6TSxfRhaGrNtfEHKo4l5aWVpvPCzCZXoNTXFyMf//91yCjS0CFPQYAM+euiezYsQPr16/HypUr4e/vT7ccozB37lyMHj0akZGRyMnJoVsOrZDWVFO2Nx89ehSZmZlGtzaTuLq6YvTo0YzFGdWLngEVx01j7c3MkkWmh0ajwfTp09GqVSusXLmSbjkGp1evXvjuu++wdOlSnDhxgm45RqWsrAyxsbGYNWuWSQxy29vbY/r06Vi3bh0zIGZAkpKSwOfzMWzYMIO0HxwcjLS0NGRkZBik/YY4cOCAUazNJKTF2ZSrONcW9DKZXgNz5MgR6HQ6g4wuARUPpL169aLdVmGOPHv2DG+//TYmTJhAy5IFdMFisRAdHQ02m40ZM2ZAp9PRLYk2atqb+Xw+eDyeSWV6Y2Ji0KlTJ8qnRzSGyMhIXL58GdevX6dNA93odDqUl5c3yd5MrtPLFLIyTf7v//4P58+fx6ZNm6oNalgyH3/8MQYOHIjw8HDKMx+mTGxsLBQKhUktSThv3jzk5OQw6ygbkOTkZAwZMgTW1tYGaX/48OFgs9m0PYtv27bNaNZmEtLifPPmTaP12Rhqszfb2dmhvLwcGo2Gsn6YoLcKycnJeOmll9CmTRuD9REUFITk5OQWHbw0Fq1Wi/DwcFhZWWH9+vUWV7CkIVxdXREbG4vk5GT89ttvdMuhjZr2ZvL/phL0FhcXY+fOnYiMjKT1GH3ttdfg6uraorO9MpkMBEEw9mYL4/z58/juu+/w+eefo3///nTLMRocDgcbN25EUVER7XNbjYVOp0NUVBQmTJgADw8PuuVU0rlzZwQEBDAFrQyEXC7HsWPHDOa4BAAHBwf069ePlqDX2NZmElOv4lxXpheocHxQBRP0/gc5cd5QWV6SoKAgFBQU4MqVKwbtx5L45ZdfcOzYMWzcuBGOjo50y6GFoKAgLFiwAEuWLMHVq1fplkMLpDW1anbHxsbGZOzNmzdvrrRe0gmPx0NYWBg2bdrUYoO2mq4AoGn25pb69zNFysvLERYWhl69euHLL7+kW47R8fb2RlRUFDZu3GjSc/Oo4ujRo0hPT8e8efPolvIC8+bNw+nTp5nnOANw8uRJyOVygz+LBwcH4/Dhw1Cr1QbtpybGtjaTmHoV57oyveRnVMEEvf+RlpaGzMxMg59o/fv3h42NDWNx1pMLFy7gyy+/xJIlSxAQEEC3HFr58ccf0alTJ4SGhkImk9Etx+iYeqY3JiYGr776Ktzc3OiWgsjISBQUFLTYAmi1HSv62Js1Gg10Oh0T9JogCxcuRGZmJjZt2gQej0e3HFqYPn06Jk6ciPfeew+ZmZl0yzEoq1evRvfu3TFo0CC6pbzA2LFj0aZNGybbawCSk5PRunVrdO7c2aD9BAcHo6ysDP/++69B+6kJHdZmksmTJ+Pu3bsmaXGuq5AV+RlVMEHvfyQnJ0MoFGLIkCEG7YfP5yMwMJDWynHmglQqRWhoKHr27InvvvuObjm0IxAIkJCQgMePH2PhwoV0yzE6UqkUXC63WkETUwl6b926hQsXLtBWwKomXbp0Qe/evVusxbk2V4A+xwoZ5DJBr2mxd+9e/PHHH1ixYgX8/PzolkMbLBYL69atg0gksugaD48ePcK+ffswb948k5zOxOVyMXv2bCQkJKCwsJBuORYFuVSRoX/3Xr16wcnJyajP4nRZm0lGjBgBe3t7k7Q412dvZjK9BiApKQlDhw41yjIjQUFBOHv2bIsqSNEU3n//fWRnZyMhIaHFjuzX5KWXXsKKFSuwbt067N69m245RkUikcDGxqbazdBU7M0xMTFwdnbG66+/TreUSiIjI3HgwIEWWfW7LldAQ8dKzaCXqd5MP7m5uXjrrbfw+uuvY9asWXTLoR0nJyds2LABR44csdgaD7///jvs7e0RGhpKt5Q6efvtt0EQBKKjo+mWYjFkZGQgLS3N4I5LoGKe/KhRo4zquqTL2kzC5/PxxhtvmJzFmSAIlJaW1mlvZjK9FCOTyXDixAmjnGhARdCr0WiQkpJilP7Mka1btyImJgarV6+mxQZiyrz77rt444038NZbbyErK4tuOUZDKpVWC2IA08j0qtVqbNy4EdOmTTOJZTVIQkJCwOVysWnTJrqlGJ2m2pvJoJep3mwaEARRWa3/r7/+MsmsHx2MHDkSH3zwAT755BOTtCo2B5lMhr/++gtvvfUWrKys6JZTJy4uLpg6dSrWrl0LrVZLtxyLIDk5GWw2GyNGjDBKf8HBwbh48SLy8vKM0t/WrVtpszaTmKLFuby8HFqttk57M5PppZgTJ05AqVQatFpcVdq3bw9fX19mXm8dZGRkYNasWZg8eTJmzJhBtxyTg8Vi4a+//gKfz0d4eLjFWtxqIpFITDLoPXjwIPLy8kzG2kzi4OCAcePGISYmxqRGdY0BY2+2DNavX499+/bh77//RqtWreiWY1L8+OOP8PHxwbRp0yzKkZCYmIiSkhLMnj2bbikNMm/ePDx+/LjF1k6gmuTkZPTr1w8ODg5G6W/UqFEAgMOHDxu8r/Lycuzfvx+TJ082eF/1QVqcTakYHhnU1sz08vl8iEQiJtNLNUlJSWjTpg06duxotD6Dg4ORnJzc4h5GG0Kr1SIsLAy2trZYt24dM7JfB87OzoiLi8PRo0exYsUKuuUYBalU+sK6nKZgb46JiUHPnj3RvXt3WnXUxsyZM5GWloYLFy7QLcWokMFt1XUexWIxVCpVvYEsE/SaDunp6ViwYAFmzZqFMWPG0C3H5BCJRIiPj8ft27fxxRdf0C2HEgiCwOrVq/H666+jffv2dMtpkN69e6Nfv35YvXo13VLMHrVajcOHDxst+QQAbm5u6NGjh1ESUHRbm0nIKs7btm0zmfiDDGprZnqBikCYCXopJjk52SgT56sSFBSEx48fIz093Wh9mgM//vgjTp8+jfj4eKON9pkrI0aMwOLFi/HZZ5/h8uXLdMsxOKZob87Ly8O+fftMLstLMnz4cHh6era4glYSiQQikQgcDqfyPXLApL7jhQl6TQO1Wo2wsDC0bt26xQzqNYXu3bvjhx9+wPLly5Gamkq3nGZz+vRpXLt2zSSXKaqLefPm4ciRI7h9+zbdUsyaf//9F2VlZUabZkhCJqAM7Zjbtm0bevXqhQ4dOhi0H32YNGkS7t69ixs3btAtBcDzoLdmpheoCIQZezOFPHnyBHfu3DH6iTZs2DDw+XzG4lyFc+fO4ZtvvsFnn32GwYMH0y3HLPj+++/RtWtXhISEoLy8nG45BsUU7c3x8fFgs9kmW3CFw+EgIiICiYmJkMvldMsxGrW5Ashjpz5nAGkTZYJeevn+++9x+fJlbNq0qVq2nuFFPvroIwwZMgQRERGUPhzSQVRUFPz8/Iw2p5MKJk6cCFdXV6xdu5ZuKWZNUlISnJyc8PLLLxu13+DgYOTl5eHq1asG66O8vJzWqs01MbUqzuR1q7ZMr52dHZPppZLk5GRwOBwMHz7cqP1aW1tj8ODBTND7H2VlZZg2bRr69OmDr776im45ZgOfz0dCQgKePXuGBQsW0C3HoJiavZkgCMTExGDs2LFwcnKiRYM+zJgxA6Wlpdi1axfdUoxGXa4A8rO6qJrpZQpZ0cPZs2fx/fff46uvvkLfvn3plmPycDgcxMXFoaysDHPnzqVbTpPJysrCP//8g3nz5oHNNp9HU4FAgHfffRcbNmxAWVkZ3XLMluTkZIwaNaqaO8cY9O/fHzY2NgZduujAgQOQy+UmE/SSFmdTqeLckL2ZyfRSCDlxvra0uqEJCgpCamoqFAqF0fs2NebNm4f8/HzEx8czyxM1En9/f6xatQrr16/HP//8Q7ccg1GfvZmOC/fly5dx48YNk7U2k/j4+GDw4MEtyuJMLm9VlcYEvQKBgFmyiAYkEgmmT5+Ovn374rPPPqNbjtng5eWFNWvWICEhAYmJiXTLaRJ//PEHhEIhIiIi6JbSaN59913I5XLExcXRLcUsycvLw8WLF43uuAQqAsDAwECDJqC2bt1qMtZmkkmTJiE9Pd0kLM4lJSXgcDi1unqYTC+FqNVqHDlyhJYTDaiwVcjlcpw6dYqW/k2FhIQEbNy4EWvWrDGL4hWmyFtvvYUJEybgnXfewbNnz+iWYxDqCmQIgqDFuhsTEwN3d/fKCpCmTGRkJI4cOYKMjAy6pRiF2gZIyGOnPmcAM6eXXhYsWICcnBxs3LgRXC6XbjlmRWhoKKZOnYrZs2eb3XmuUqnwxx9/IDw8HLa2tnTLaTStW7fGhAkTEBUV1WJWU6ASsnoyXffS4OBgnDlzhtLgioSs2mwqWV4SU7I4l5aWws7Orta6Skyml0LIifPGrBZXlS5dusDDw6NFW5wfPXqE2bNnIzQ0FGFhYXTLMVtYLBbWr18PKysrTJ8+3SLXDWxqIGMIFAoFEhISEB4ebhYP55MmTYKVlVWLyURQYW9mgl7jsmvXLvz9999YtWoVszZ7E2CxWFi7di1sbGwQERFhVsHX9u3bkZuba1YFrGoyf/583L17F0ePHqVbitmRlJSEHj16wN3dnZb+g4KCoNFokJKSQnnbpmZtJjEli3NpaWmdblsm00shycnJcHJyQq9evWjpn8ViYdSoUQadS2DKaDQahIWFwdHREWvXrmWWJ2omjo6O2LRpE44fP45ffvmFbjmU09RAxhDs2bMHxcXFJm9tJhGLxZg0aRI2bNhA+w3OGDTX3swEvcYlJycH77zzDsaNG4eZM2fSLcdscXBwQGxsLI4dO2ZWVa+joqIwfPhwdOrUiW4pTWbQoEHo1q0boqKi6JZiVuh0Ohw6dIi25BMAtGvXDv7+/gZ5FjdFazPJ5MmTTcLiXFJSUut8XoDJ9FJKUlISRo4cafSJ81UJDg7GzZs3kZmZSZsGuvj+++9x7tw5xMfH13nAMzSOYcOG4ZNPPsGXX35pUWuzEgRRb0VeYwe9MTEx6N+/P/z9/Y3ab3OIjIzEgwcPcPLkSbqlGJzaBkiEQiE4HI7e1ZuZQlbGgSAIzJw5ExwOB3/++Scz+NlMAgMDsXDhQnz++ee4du0a3XIa5NKlSzh79izmz59Pt5RmwWKxMH/+fOzduxePHj2iW47ZcPXqVeTl5dE2zZAkKCgIycnJlA4Km6q1mWT48OGwt7fH1q1badVB2ptrg8z0UvW7tNigt6CgAJcuXaJ1dAmo8NWzWCwcOnSIVh3G5vTp0/jf//6Hr776CgMGDKBbjkXx7bffomfPnggNDaV1OR8qkcvl0Ol0JmFvzszMxKFDh8wmy0syePBgdOjQoUUUtKpteSsWi9XgEldMptf4/P777zh48CCio6Ph4uJCtxyL4IcffoC/vz+mTZtm8oUyo6Ki4OXlhddff51uKc0mNDQUdnZ2+P333+mWYjYkJSVBLBbT/hwYHByMJ0+e4O7du5S1uX//fpO0NpOQFudt27bR6gArKSmp095sb28PtVpN2XWsxQa9hw8fBkEQtBehcXJyQp8+fVqUxbm0tBTTpk1D//798fnnn9Mtx+Lg8XhISEhAdnY23n//fbrlUAIZ1JqCvTkuLg4CgQBTpkwxWp9UwGKxMGPGDGzbts1iBkPqojZXANDwus41qzer1Wqzmhtpbty5cwcLFy7EnDlz8Nprr9Etx2IQCASIj4/HvXv3TLoKdkFBARITEzFnzhxaHXdUYWVlhbfeegt//fUXZDIZ3XLMgqSkJAwfPhx8Pp9WHUOHDoVAIKD0WXzbtm0ma20mIS3O169fp01DQ5leAJRZnFts0JuUlIRu3brRNnG+KsHBwTh8+LBFFh+qCUEQmD17NoqLi7Fp0yazKAJkjvj4+CAqKgoxMTG0W1eogAxU6LY3k2vzvvnmm2ZZZTQiIgIymcwkKjYaktrszUDD6zqrVCqw2WxwOJzKhzC1Wm0wnS0ZlUqFadOmoW3bthZZg4Buunbtih9//BG//vorjhw5QrecWvnrr7/AYrHw9ttv0y2FMubMmYOSkhKzXTrKmJSWluLs2bO0W5uBigGLoUOHUhb0ktbmyZMnU9KeoSAtznQ+EzRUyIrchgpaZNBLEATtE+erEhQUhOLiYly8eJFuKQZn06ZNSExMxLp16+Dt7U23HIsmIiICkydPxqxZs/DkyRO65TQLMqitK9NrLHvzmTNncO/ePbOzNpO0adMGI0aMsHiLc232ZkC/TC8Z7JL/MhZnw/Dtt9/i+vXr2LRpE6ysrOiWY5F8+OGHCAwMxIwZM1BUVES3nGpoNBr8/vvvCAkJgZOTE91yKKN9+/YYPXo0oqKiWkTRwOaQkpICjUZjEkEvUPEsfvz4cUqWQDR1azMJn8/H+PHjaa3i3FAhK3IbKmiRQe/169eRk5NjMida3759YW9vb/EW5wcPHmDOnDkIDw9HSEgI3XIsHhaLhXXr1sHOzs7slzGqy97M5XIhFAqNlumNiYmBt7c3hg0bZpT+DEFkZCROnjyJ+/fv0y3FIGg0GigUiibbm5mg1/CcOnUKP/30E7799lv07t2bbjkWC5vNRmxsLMrLyzF79myTCsL27t2LjIwMs16mqC7mzZuHq1ev4vTp03RLMWmSkpLg5+eH9u3b0y0FQIXrUqFQ4MSJE81ua+vWrXj55ZdN5rvVx6RJk3Dv3j3aLM762JuZTG8zSEpKgrW1NQYOHEi3FAAVD+4jRoyw6PV61Wo1pk2bBldXV6akvxFxcHDApk2bcPr0afz44490y2kyddmbgYYDGaooLy/Hli1bEBERATbbfC+d48aNg52dHTZs2EC3FINQXl4O4MUBEqBhe7NSqawMdgUCAQAm6KWasrIyTJ8+Hf3798eSJUvolmPxeHp6Yt26ddi6dSvi4+PpllNJVFQUBgwYQNuSkYZk5MiR8PPzY5516oEgCCQlJZmM4xIAOnXqhDZt2jQ7ASWVSnHgwAGTz/KSDB8+HA4ODrRMhdNoNJBKpfUWsgKYTG+zSEpKQkBAQOVDjSkQFBSEc+fOITs7m24pBuHbb7/FxYsXkZCQUGvgwmA4Bg8ejM8//xzffPMNzp49S7ecJpGVlQUAtdograyskJ+fb3ANZAGoiIgIg/dlSEQiEUJCQhAbG2vW2f+6KCsrA1B70As8P5Zqo+pxxGR6DcMHH3yAwsJCbNy40SKKF5kDU6ZMQVhYGObOnYvHjx/TLQdpaWlISUmxyCwvUJFhnzt3Lv755596rzctmTt37iAjI8NkHJdAhTsuKCgI+/bta9a90VyszSRkFectW7YYvXAjec8VCoW1fm5tbQ0A1E3RI1oYJ0+eJAAQY8eOpVtKNZKSkggAxGuvvUa3FMr59ddfCQDE999/T7eUFotarSZeeeUVwsnJifj333/pltNoBg4cSAAgzp8/X+19nU5HACC4XK5B+9dqtQQAQiQSGbQfY7Fv3z4CADF9+nS6pVDOypUrCQDEggULXvgMAAGA0Ol0te7r4OBAACAkEgkRHx9PACBSU1MNrLjlsHjxYgIAERMTQ7eUFkdJSQnRpk0bok2bNkRWVhatWoRCIcHj8QilUkmrDkNSUlJCsFgsws3NjW4pJomfnx8BgMjIyKBbSjXefvttAgARHR3d5DaM8UxCNT/88AMBgPj222+N2u/69esJAMTMmTNr/TwzM5MAQLRr146S/lpcprdVq1awtbU1uWqBQ4cORdeuXTFhwgS6pVCKTqfDggULAACffPIJzWpaLlwuFz/88AMKCwtN7tjXh59//hljx459Yf4fi8XCmDFjDG6TZLPZcHd3N9sCVjXp378/eDyeRS7HM2HCBPj6+uLdd9994bM//vgDs2fPBovFqnXfqKgozJgxA2KxGA8ePAAAi537bGzKy8vxyy+/gM1mm71bwhyxs7PDrFmz8PTpU3zxxRe0auFwOPD29qZ9mRpDYmdnB2dnZ4u8xlJB//794efnBw8PD7qlVGPhwoVo27Yt+vTp0+Q2PD09TSqDrQ/Tpk2Di4sLOnfubNR+J0+ejKFDh+Kbb76p9XMPDw9MmTIFv/76KyX9sQjChCobMFgkM2fORFhYGAIDA+mW0uL566+/0LZtW4wcOZJuKQw0QxBEncEfA6DVahEdHY23336b+TtRgE6nw6xZszB37lz07NmTbjktEq1WixUrVmD8+PHw8fGhTYdGo2kRyxUSBAGtVtsivisDgznABL0MDAwMDAwMDAwMDAwMFkuLszczMDAwMDAwMDAwMDAwtBwswnORnJyMLz77FCqVstltDQ0Yjt9++40CVXUzceJEpKamVr5uis3Q3d0dJ0+ehIODA9Xy6mX+/Pk4cSy14Q1rwcHREXEbN8HLy4tiVQz1sW3bNrz//vxqVWgbe8zx+XwsW7Yc06ZNo1zfwYMH8fZbb0GhUNSrS6fTQSaXQ4faP+dyuGjr3RY8XsU8MQ6HjYULPsT06dNr3X5aaMgLSxM05Vz08fHBqdNnwOPxGrWfMSkvL8fEiZOQ1cTq8B07+iMxIcFklmpSKpV4c+IkPMl4Wu39stISZOfkVFuPtOpvygILHA4barW62n4EQVTbTiAQvPB7crlcfLTgQ7z22mvw8vKCk5OTIb6ayXP06FF8uuRjKBSKZrXDAjBg8BD8/vvv1AhjqJP3338fiYmJ1d5r7LXO0dERBw4cQIcOHerc5tNPP8WBfXsbpY3L5eKLr77G+PHjG7WfqRIbG4uVv/7a6Lm8odOmWcwSXqdPn8bCjz6CXC5v1H49e/Uy2lJ65eXlGDigP54+fX4P0eec0Gp1UCjklU8hIpEIbdq0qXN7a7EYUWvWmtTSXBs2bMCSTz6FRqMB0LTnHoFAgHW/r8XYsWPr3Ean0yEgcDhu3LxZ7f2q/el0OpRLpdDVMB1X3YbDZkPcwKovLACRMyKwbNmy+rezBHvzrFmzEBfzN4b6uUCt1cHeig+5SgsuhwUdQYDNqviXy2ZDo9NBptLC3U4IuUoLKz4XxTIVuBwW0rLK8LBAZvDCA2w2G7169ULv3r0hFAqhVCpBEASsrKwgk8lAEATs7e3B4XDA5/ORl5cHuVwOmUwGJycnPH78GAcPHsSpU6eMvtYwh8NBFy8nvOJbUXzgUW4J1Fod7KwEYLNYEAm4EPK4yC6Wgs/lQKnWwsvFFnK1BpuO3UJCQgJCQkKMqrml8+677yIxfhNCxwVBo9FCKOBDqVJXHHNCIWT/BZv2tjZgs9ng87jILypGmaQcLBYLtjbWiN+ZjImTJxvkhrRkyRKsWL4cU0f1Q7lcCXsbKwh4XFgJ+SiWyAAAVgI+isqkSDx0Dk4d+4ErEEGnVYNnZQuw2OAKRGDzBJDlPwVXaA2dWoniB1cxsE9PHD1yuNZ+raxE8HK2Q7f2HhBbCSoDIsV/fxtbKyGyC8sg4HPh6mADiUwBR1trWAl4yCuWQqvT4dbjbJy99Qj379+v92GQbs6cOYOBAwei+5BX4ejWGvnPHkGr0UAktgWLzQZfKAKPL0RB1hNweXwQBAFnj4rBqcz7t5F++TQyMjLqvbkbk6tXr6Jnz54QuvlA1MobbL4IIAhIM25CU5KDdsOmQKfVgMMXQqdWggDA5QuhUcqRfTUVUCvgP/h1sLk8lOZkoODxXZTmZujdv5W1NQry8yESiQz3JU2UefPm4c91v2OYr0PF/VbEg1ytBZfNgo4A2CxARwA8DgtqLQGZWgt3WwHkah2s+GyUyDQgQOB+nhz3C2RQq9XMnEcD4+XlBTaHi569+8JaLAaLxQKXw4VCIQdBELCxtUVOdhYEAiFcXFtBIimDo6MTeHw+8vNyUVJcjL07t2Pz5s2YMmVKnf042NvB3ZqNgf5ueJQvgUarg62IDzYLEPG5EPI4yCmRgcthQ6XRwctZjM1nH2D0GxOwefNmI/5FDMeIESNw4+oVTHx9JB48eQa1Rg17Gxuw2CxYiUQQCfh4mpULAZ8HlUYDb08PJB07DTZPgHv3LKNo3ieffIKlS5dizowQPHjyFGq1Bva25N9ACJFAgMycPAj4fCiUSni3aY0rN27j7KWrKCkpgZ2dncE1kveQkT3awcPJBkIeF0q1FgABEZ8HmUoNEICddcWzLZ/LQX6ZDA9zinH8ZgYigvqgsLQcbFbFM4OHky1KZQpYCXgol6tgLeJDKldh95mb+P777/H5558b/Dvpy9SpU7F730H0HDEOPL4Q6v8ShjyBCGqlDAQBiGzswGazweHyIS3OB4vNhkohB18gglopx5WjOzH73VlYtWpVnf3k5eWhVatWEHt3h9DVGxyhNcBigcXmQKdWAgQBjUKKoksH4NFjGAQ2DuCJrAGwwOZwoFVVxEZ8KxvIinLA5vEhsneFWi6BwMYRXIEI8pJ8sFhsPL2QDBcbAR7ev1fvd7eIOw1BEOjs6YC4t/s2q51NZ59g8fYbFKmqn1mzZmHWrFlN2vfOnTs4ePAgxYr0gyAIzAjsivCALo3aT66qCHotYIzFLPHr0BYrv1zQ5P1v3HlIoZoX8fZwxdol9VdGfpZXhMRD59Bx/Ado1SOgwTbPr3oPBCGpd5vI1/rhvTcGN0prVU5cu4+xn65r8v7GgjzvJn7wHTza+zdq31vnUrBi9mmTOndJLX6zVkPs3a3y/YebPof8wQX0nvVznfse/z4EtjZWGL1wZeV7cR++Dp2tO7xDvkXx9SPQyqWw8ekNFpcP6HTQKmXQSAph49sHJTdS8HTnzygtLW2RQS9BEOjobovY8G4Nb1wPWy5lY8E/dyhSxdAQE6aEYsmX3zZpX6lEgr07tze4HUEQmNK/A+aM1L8CbHpOmUldW5oLQegwdEAfrPjmY733sfp5NXYmnzCgKuNCEAQ6tGuLX7/Tf8WOnQeO4Oylq0Y/Fj6ZOBA92rvpvf2Wk7dw/GYGlr7zOgS8hkMo/8ilJnl8t32pJ0I+W93k/bPuXdd72zZjP4Rjj1G1flZ69xyKLh1Av3d/gp1H+ybr4QiEkF5NanA7iwh662LbxacolakR0NEVAh4bWh0gVahRrqoYle7V1rjW4IbYuHEjiouLERwcDKFQCK1Wi7KyMjx79gyjR4+mW16tbD11GyXlSgR2awshjwutTgeJXIW80ooMXWC3tjQrZKiLhN3JKC6VYNTgVyAQ8KHTaVEmlaGwuBSFJaWY+Cq91bYTD51FiaQcI/p2gZDPQ2Z+UbXPM05sg6q8FK26B4DDF4DQaaGWSaGSFMG1a9MD2c1HL6FEKsOIlztCwP/vmJYpUVRWDgAY2sO3Wd/LVDizLxGyshJ0GTgCPL4QOp0WCqkEkpJCqFUKdB8cTLdEvck7sx3a8lJoZKWoWIq3Oo+Ob4NaWgK3noHQqBQArCo/u3FoCyQFORB49YCy4Cns/AdAU14CnVoBVWEmrNp0gq1vH7DYXEgeXARYpmHxNjW2X8lBiVyDAD9HCLhs6HQEJEotcsuUcLDioWcbW7olMtRgW+ImlBYXI2BkEAT/PXNIJWXIynyGkcHNe+bYeu4BSmUqBHZu/d/zFwGJQo0iqRIKlRajunlS9C1Mm/gd+1FSWoZRQwdAIOBX3E8k5SgoLoFKpUJwwCC6JRqc+H/2ori0DKOGDYRQIIBWq4VEWo6CohIoVSq8Gtj0+zXVbDl5CyXlSgzv7l39mbakHJpaXKCbU6+gVCrH8F5+EPC50Ol0KJMpUVQmw9Dupuv+qo3zBzZDLilBp/4jwP3vmUohlUBaWgidVoNO/UZQ0k/eme3QlJfCoeswqMvya93mfupWqKSlaN0rsMrznQSKsiIoJcVoN+iNJvVtsUHv/uvZaONoBRuhGjcyS5EvUaKTuy26tLYFl81Geq4El58UgyCAl73pDX537NgBFxcX2Nrags/n4+DBg+jWrRt69OgBZ2dnFBQUICUlxaSW/Nl34T6cbEUQi/jgcTk4ev0JXmrjhK5tXeBoI0K5Uo1yhRpXH+XBWsCFpzPzwGMq7Dp0HM6O9rARW4HH4yL55Dl09euAbp184WRvj8LiUnh5uOHUhatwcXKAf3vjD1zsOXEJbd2cYGslxPV7GcgtKkMrx4pjqPDueXAEInBFNmBzeci9mgI7r06w8+4Cvo0TtIpyPDu7u/F9nr4BZztr2FgJwOdycPjiHXRu545u7T3gZGuNcrkSGp0Ol+5m4GV/852XfunoHtg4OENkbQsuj48bpw+jjW8XtPHvCrG9ExTycqhVCqRfPgOByKrhBmmm8NIBCJ3bQCOyQdH1o0CNUfWn5/bD2qUNVCIxSh7dgLI0H3ByrPycJ7QCX2QFHQCnl1+rty/7LsNAaDWG+Bpmy4Gb+XCy5kEs4IDHYSH1biE6uYnR2UMMR2sesksVyCiWQ6XRQcTnoFvr+udmMRie/bt3wsnZGTY2tuDx+Eg5lIROXbqiS7cecHJyRlFBAY4kH8CIoPrPh7rYd+UJvJzEKBYqceNpIfJKFXjJ0wFdPB3g7WyD8w/y8O/9vBfm8VkSu5JS4OzoAFuxNfh8HpKPn0aXjr7o/pI/nB3sUVBcAkm5DOcu658xMzd2HTwCZ0dH2NiIwefxkJx6Gl07+aL7Sx3h7OiAgqISSKXlOHbmPN1SAQB7z6fDy8UONiIFbjzOQ15JOV7yckHXtq5o62qPyw+ycT49CwCw/1wa3BxtYfvf88KRy+no3NYNXdu7w9HGGuUKFXaeMo5ztLlcS90Dsb0zhNY24PJ4SDtzGB4+neHp1xXWdk6QlhZCLilF+sUT8Os9pFl9FV46AIFzG3BENpBm3ETZvQsvbPP47D6IXb2gtCpG4cMbkJfkwbHtS3Bs3wU2rbxR9OQWHp3a3aTA1yKD3jP3C5BdIodYwAVBEBjm7wIum40bmaW4myNBbpkSgR1dkZ4rgZYgcD9PCh9XMW16J0yYUO/nw4cPN5IS/bifXQxPJxuIhXyAAAK6eoHDZiPtaQEeZJfgaWEZHMUi9PVzx+UHucgqkiC7uJxu2Qz/MW7U0Ho/D+j/spGU1M3YIS9qeJZXkenlisQoeXwTNq19ARDwGjIJLA4XiqJscPhCsDhcsLkCqGUSQNiIPgd2rffzfp3bNeYrmCSPbl2CXFIKobUYBAh07h8INoeLzPtpeJZ+C6WFueg2OAhP029CIS1DWVE+ivOy6JZdJ9LH10GoleAIxSAIAgJHDyilBdW2adOvesbqUeqWaq87DhmD8zv+QFlZPrKP/A2Ruy90Shls/fuBxeZCWZwFjsAaqtI8qEpyoC6tfWS6JXL2YTGyypSwFnBAABjq6wgum4XbOeXIKlFCqtKAy2ZhhL8TLjwpRa5EBaVGhz5tDT9nj6FuRr9Rf9GowQFNf+Z4nC8Bj8OGWMADAWBYJw9wOWxkl8iQllmM4nIVhnZyx+XHBVCqtZApLW8QKb+gCJnZuRBbW4EAgRGD+4HL4eDGnXu49/AJnmRm49WAQUhKPYWnWTkoKi6lW7JBcHSwx9Vbt9HRpz0IgkDYm2PA5XJw43Y6NFptRZZ3+BCcOHcRl2+k0S0XY/r61fv50C5tkVMsxYaj1+BgY4UbD7Pg18YVBAFMDegJDpuNW09ywGWz4elsh9JyOTRarZHUN53uAXUXowIA/z7DKOur5sAy364Vco7GVHvPu//r9bbRqtMrTe7fIoPeAT7OGODj/ML77V2s0cr2+VNwr7YOIAgCBVLVC9sai+PHj+PatWvo1KkTysvLMXToUHC5XFy/fh1cLhcdO3bEzf8qnzk5OaFjx460aSXxcXeodU5vW1c7uNlb42Wf5/MjhnSuKHzzOM8yL+rmxMnzV3H9zn107NAW5XIFBvfpUXEjTn8ArUaLguISCAUCDO7THdfvVrxXYXs2bGG32jh19S5uPHgK/7bukMlVGNjDD1J5RbEFO6+Xap3Tq7GyhcihFaxcKo65J8c2A1C/sF2dfd54gJsPs+DfphXKFSoM6toeHA4b1x9kgs/jopWDDe49qwh42rg6wK+Na/O/qJFp1/nlWuf0Onu0hb3L8/PWt0e/yv//m9zwXD66EHt3qzantzTtZLXP826dQcnjW7D19INGWQ7XlwZAp3v+kP3k2mnkPbgJhbQUOo4YHCs7lD+7Dei00GnVYAusoCrKBsfKBoRGDTZfCGVh9YrRLZn+7R3Qv/2LTikvByFa2QqqvTfMr6LadW5Z81dZYGg6Z04eR9qN6/Dt2BGychn6DxoCLpeL7KxM5Oflom279nh4Lx1yuQztOvjC179xzxzeLjZ4J7DTC+/binjwdXs+2DGkozsIgsDqQ7ea/Z1MDRdnR8yNfLFgZzuv1nB3dUHfnhUDrBNfHwWCIHDm4lUjKzQOQ/r1xpB+vV94v52XJ9xbuVS+fm34ECgU9F4XTt9+iptP8uHX2hEyhRoDO7UBh8NGdpEE+WUyZOSXYkxfP1x/nAcAGNDZGwE9fF5ox7uVA9z+c6V5utg3uiqysbl3+RSy7t1EK28/qBQy+PQcCDaHi6wHaSB0Oji0ao2SvCzIJRXP8M5t2qNV26ZN8Sq9exblGWmw8vCFVimDnX8/aJUvVvjOuXkGRY9uwa6NLzQKGdy6DACbzYW04Nl/xa9kUEiKYOPmDXvPxmmxiKCXxWLh1rNifL6jelnsfIkS5SoNCAKwF/HA47Ch0uqg0uj+2w/VguALj4uMdoBu2bIFJSUlla/37NmDsrIybN++Ha6urlCr1eDxeJUl31ksFhwdHWFra4tHjx4ZRWNtsFgsbEi5gdtPCwEA+aUylCvV0BEE7K2F4HPYUGm1/1XBq9jezd4acrWm8jWD8Ul/8ATnr1eMpF69fQ/PsvOw+/AJ6HQ6WImEcLS3hVKphlypxIFjZ8BiAW1buwMAJNJy3L7/CH5dexpM3+OsPKxMfF6cLTOvCGXlcly+8wgu9ra4ePshCksrilLd2bkKj1LioVWWg9AR4IvtwObwoNNWVF0mdDqwOVwUpV8Aq0/9mvecvgGl6nkQlJlfgqv3nkFHEDh78yH4PC6KysrB+W+pHhYL8GrliLM3H8LGSojrDzMN8NegHvK8277qKzi6tQYAlBXlQymv+Bta29qDw+VBq1GDIHTQ6XTgcLiwtnNA5v3b1dowBUgtGTt+htDFC+qyAmiVMsiy7kIrLULajucVJWWFWSi8fwUEoUPezTOQ5jyGLEuN0wm/AgDK8rOgkkkgybkFyb1/9erfWiw2SoVRU4TFYuFOdhm+2Jte7f18qQoylRY6ArAXcSurNyvJ+y1QLRC+lFFmTNktnqPJB6sVXju4dzckZWXYs2MbnF1coFFrwOVxQegIaLQa8Hh8XPz3HMQ2NpBK6y8ISMJisbDl7AM8KypHfpkc5UpNxcoA1oKK5y+NDirN88yXm70Vbj4tQttepnNtaS4sFhvHz1zAR9/8jNyCQpTL5CB0BBzsbMHjcaFSq6FUqf/bFnB3dUHyf9WbLQUWi4UHj55gwVc/VfwNyuUgCB0c7Oyq/A0qkk0ssODeygVXbtBzn/nr0BX4ta4YkMsslODaoxzodATO3n0GAZeDIqkc7P/qOFy6n40SacVSbUvW70OpVAGZQlXx/CsWgc/lQKXRQkk+7wIoLJGa1L2T5Fn6DRzasLzy9fXj+6Aol+DykZ2wcXCGVq0Gh8cDQRAVKyFw+RA7OOPh9XMQWImRm/EAgH6OkNwTiZBl3q18XXg5CVq5BAUX9kKnrTgObu3+HWKX5/P8ywuyUHCv4r6dc/MMODw+lJJicAQiEFot2FweuPx/wbOqmC6TeTkF9pyGtVhE0Pvmm2/iyqWLuFBSc6RIBHCA3NxclJWVwN7eDkVFxfDz8wOLBYAAMkqqbG7fGnPHG95KPGHCBKSmpuLq1au1fi6VSqHT6WBrW/c82M6dO6NzZ/0rJFLFnDlzcOJYKv7NJgMFPrRaDu7duwdXV1fY2tri3r37cHN3h4O9PQDgibxi26FDBht9iSWGiiUU9uzZjRXR1W2dhI6ARCKBQCiAQCCASqmCQqGAzX/LK1RFaGWFkSNHGkTfsGHDEL9pE1ZuTalzm7KyUrBYbPD5fJQ+vPLC9yBAgMfjwdvbu3KdXmcfb8yICK+zzQnjx+PgwYO4k3m61s+VSiWUSiW4XB6srOqu0tu3T2+TX3u6e/fuCA5+FVnZ2Sgsfb5Wr0qhwIMHD+Dl5QWNRo2srGz4+/uDy+VCDUCRU+EQnzxlCjw9TafwTKdOnTD69TEV6/QWFle8yQbKbPh4VqrBjS0/g8Op5Q5IABqNGmwOByc3/PT8bYIAm8OtrLIpFAobXKe3JVZuBoDx48fj/LmzuFBWfZ1enVaLBw8fQCwWw93DGdAACrkcjx4/hpubGxwcHFA1zmXZ2+G9MUOY5YqMwLhx45CYmIg/o1bW+nlZmQQ6nRZisbjO38PPzw+9e7+YtavKe7Pn4MC+vTifDwD/TRljATce5qC4uBgdOrQHn/+8TkBGPuDX8aV6l0EyN6ZPn45VhYU4dfm5Xffp06fQ6rTwbuuNzKxMKBUKtG9fUeTowbN8iG0dMC0sjC7JlDNmzBgcS03FqUvVE1FZBaW4c+cOxGJxteXvHjzLBQBEREQYbTDR19cX3bt1RfKNp0i+UfvgdVlpGVhsFmyqrBGr1eog4POwJfUqgOfr9J45fwdarRb+/tWdVP37vYJXX33VYN+jKQQHB+PY8RM4s3VtrZ+XlZWBxaoYwBGLa5/66ezk1ODUS2dnZwwZOgw3bl5G2dPLtW5TUlICFpuLe0cS6m2LIAjY2VYssVgbLAATZkTU2wbZkMXTs2dPIjw8nDh27BgBgLh8+TLdkuqlU6dOBI/Ho1uG3qxdu5bgcDhETk4OQRAEERwcTAwcOJBmVQwN8cUXXxDW1tZEUVERQRAEUVpaStja2hJLliyhWdmL8Hg8olOnTrV+FhYWRgAgHj16RGmfs2bNIhwdHYkBAwZQ2q4p8fHHHxNOTk6ESqUiCgoKCC6XS6xevZpuWc3C39+f4PP5tX62c+dOAgCxZs2aWj+3sbEhWrdubUh5Fst7771H2NraVt4HSN566y3C3t6eyMvLo0kZQ0O4ubkRAIjExESDtD9v3jwCAHHjxg2DtG/KZGRkECwWi1i/fj1BEARx6NAhAgBx9uxZmpUZn7KyMgIAERQURLeUBlGpVAQAwtXVVa/t27RpQ1hbWxtYleFRKBQEm80mxo4dSzg5ORm8v1atWhH29vb1bhMaGkoAIJ48edLs/ix+7YXCwkJcvXoVgYGB6NevH4RCIVJS6s4omQI6nY6WeZRNJS4uDsHBwWjVqhUAIDw8HKdPn8aDBw9oVsZQFzKZDGvXrsXbb78NB4eKOXm2traYNWsW1q1bB4lEPzubsdDpdNDWURCCPFeUSmrnBOXk5MDe3h45OTmUtmsq6HQ6bN68GZMmTQKPx4OTkxNGjRqFxMREuqU1i/qun+QxVN+xZE7XXlPh0qVL+OOPP/Ddd99V3gdIfvzxR7BYLHzyif5rdjIYD4IgUFBQAB6Ph7y8PIP0QZ5vVF+jzYG4uDiIRCJMnjwZABAYGAgvLy9ER0fTrMz4kL9/XddfU0IqlQLQ/5jV6XQmuR5vY3nw4AF0Oh169uyJwsJCFBYWGrQ/fe65VD7jWXzQe/z4cRAEgYCAAAgEAgwcOBCpqal0y6oXc3rwunv3Ls6dO4eIiOe2gnHjxsHW1hZxcXE0KmOojw0bNqCkpAQffPBBtffff/99lJeX4++//6ZJWe3Ud0MhzxWVitqCdNnZ2XBxcUF2drZF3MxqcvbsWWRkZCAk5HnBldDQUJw5cwZPnjyhUVnz0Cfore9YMpdrr6mg0+kwd+5cdOnSBXPnzn3hcxcXF/zwww+Ijo7GuXPnaFDIUB+lpaXQaDSws7NDfr5hKpMb6hpt6uh0OkRHR2PSpEmV09U4HA5mzJiBzZs3o7y8Za1qQf7+5nA/bUrQawn3jrt3K+beDh48uNprQ9GYoJeK64fFB72pqano0KFD5Zy7wMBAnDhxAhqN6ZbJJx/wzWE0bOPGjbC3t8eYMWMq3xOJRJg0aRLi4uIs4iJgaWi1WqxYsQITJ05Eu3bVl+Fp06YNpk6dipUrV5rMOUKeD3UdS4YMej08PCCXy1FWZnlFdxITE+Hp6YlBgwZVvvfGG29AJBJh8+bNNCprHuRNtLYHK7VaXblNffsy6M+GDRvw77//Iioqqs75oLNmzUKvXr0wd+5cs7ivtSTI7K6jo6PBMr3kudjSgt6TJ0/i4cOHmDlzZrX3Z8yYAYlEgn/++YcmZfRA/v7mcI0l3W4KhUIvvZZy77h79y5sbW3Rr1+/yteGRJ+/G5XXD4sPelNSUhAYGFj5OiAgABKJBJcuXaJRVf2QBwD5gGaq6HQ6bNy4EVOmTIFQWH1B1IiICDx+/BinTp2iSR1DXezevRsPHjzAokWLav184cKFePLkicnckMnzoK6HZfJ9Kh+odDodcnNzKwfLLM3irNFosHXrVkyZMgXsKoUhxGIxxowZY9YWZ/J4qG3QhjxGGHszNRQXF2PJkiWYNm0ahgwZUud2HA4HUVFRuHz5Mv78808jKmRoCDK726pVK4Pbm1ta0BsdHQ0fH5/KrBlJu3btEBgY2OIszg1df00JMtMLQK+MfH1TsMyJ9PR0+Pv7w9raGl5eXgYPerVabYP3XCqvHxYd9Obm5iItLQ0BAc/X9OzduzfEYrFJz+s1lxvE8ePHkZGRgfDwFyvkDhw4EO3atWMszibI8uXLMWTIEPTp06fWz3v06IHhw4fjl19+MQkbUkOjw4bI9BYVFUGtVsPHp2Idvuzs7Ab2MC+OHj2K/Pz8atZmkpCQEFy7dg1paWm17Gn61Hc8kO/V5WLQarUW8eBiLL788ksolUr88ssvDW7bv39/REZG4vPPP0dBQYER1DHoAxnouru7G8zebC7PNFRSVlaGbdu2ITIystYla2bOnInjx4/j/v37NKijB3MNeqv+vy7Ie4cpPDM1h7t371ZWoPb390d6enoDezQPfe65TNCrJ+Tc3apBL4/Hw5AhQ5iglwJiY2Ph4+OD/v37v/AZm81GeHg4tm7dCplMRoM6hto4c+YMzpw5g4ULF9a73aJFi3Dp0iWcOHHCSMrqpqEbpSHOFzLI7dixY7XXlkJiYiJ8fX3Rq1evFz579dVXYWdnZ7bZXjKgrS/orW2eFpnlNRVbv6lz9epV/P777/jmm2/g7u6u1z4//fQTCILAp59+amB1DPqSl5cHNpsNT09PJtNLIVu2bIFSqaw1KQBULF1pZ2eHDRs2GFcYjZhT0Fu1mKc+hT3rcxiZEzWDXmNkepmglyJSU1PRqVMnuLm5VXs/ICAAp0+fNtlKguZQ6bC8vBzbt29HeHh4nQtvT58+HRKJBLt37zayOoa6WL58Ofz8/PD666/Xu11QUBC6dOmC5cuX17udMSDPg7puJuT7VJ4vpJ25ffv2sLKysih7s0KhwM6dOxESElLruSsQCDBhwgQkJiaa5ah1fddPpVIJFotV682zIRs9w3PI4lWdOnXC/Pnz9d7P1dUV//vf//D333/j/PnzBlTIoC/5+flwcnKCm5ubwTK9hrhGmzrR0dEICgqqc31zkUiEkJAQbNiwocVccxq6l5sSjc301jfYai6Q1Zr9/PwAVAS99+/fN+jxSdqb67M4U3n9sOigt+Z8XpLAwEDI5XL8+++/NKhqGPLhy5RPnh07dqC8vBzTp0+vc5sOHTpg4MCBiI2NNaIyhrq4f/8+du7ciYULF1abx1kbLBYLH330Efbu3Ys7d+4YSWHtNGRJNcTNhszsenh4wN3d3aIyvQcOHEBZWVmt1maSkJAQPHjwABcvXjSiMmpoKNPLZrObZH1meM7GjRtx5swZREVFgcfjNWrf9957D927d2eKWpkIeXl5cHV1hYuLC0pKSgzy3GEJAUFjSEtLw7lz514oYFWTmTNnIjMzE4cPHzaSMnoxp0xvU+zNgHkf42RWt2qmV6VS4fHjxwbrU59rA5Pp1YOnT5/i/v371azNJN27d4e9vb3JLl1kDjeIuLg4DB06FN7e3vVuFxERgcOHDyMrK8s4whjqZOXKlXB2dq53oKIqoaGhcHNzw4oVKwysrH7oCnrt7e0hFAotLuhNTExEjx49Kq3btREQEABXV1eztDg3FPTWlek1pwcyOikpKcHixYsREhKCYcOGNXp/LpeLNWvW4OLFiya3NFpLJD8/H66urnB1da18TTXm8ExDJTExMXBycqq2qkVt9O7dG126dGkxBa3MaWBRIpHA2tq68v8NYQnHOBn0+vr6Ange/BrK4lx1DnR9fzcq/7YWG/SSAW1tN2UOh4Nhw4aZ7LxeUz95nj59iqNHj9Y5V6UqkyZNAo/HQ3x8vBGUMdRFYWEhoqOjMXfuXIhEIr32EQgEeP/99xEXF2ewuV76QFfQS85TdHNzsxh7c1lZGfbt21dvlheoCEwmT56MLVu2mF0Q2NxMr6VU4TQUX331FeRyOZYtW9bkNgYMGICIiAh8+umnKCwspFAdQ2PJy8uDi4sLXFxcABgm6FWr1XWed5aGWq1GXFwcwsLCIBAI6t2WxWJh5syZ2LVrV4so7mZOQa9UKoWNjU3l/+uDIAiTf27Xh7t378LLywtWVlYAAE9PT4hEIoMFvVX/VvX93ah0v1ps0JuSkoLu3bvDycmp1s8DAgJw7tw5kyyyZOonT3x8PIRCISZOnNjgtvb29hg3bhxiY2PNcn6gpfD777+DIAjMmTOnUfu9++674HA4WLNmjYGUNUxDN0pDTAfIycmprAVgSZne3bt3Q6FQYOrUqQ1uGxISgqysLJw8edIIyqijvuOBDHrrmu9b2/8ZnnPt2jWsWbMGX3/9NTw8PJrV1tKlS6HVavH5559TpI6hKdTM9BpigLO+wSZL48CBA8jLy0NkZKRe24eFhYEgCCQkJBhYGf2Qv7+pL8cJNC7orfp9zPneUbWIFVBRkNbX15cJek0dgiCQmppa63xeksDAQKhUKpw5c8aIyvTDlOf0EgSB2NhYjB8/Hra2tnrtEx4ejlu3buHKlSsGVsdQGwqFAlFRUZgxY0blaL6+ODo64q233sKaNWtoGyBq6EZpiCxC1UyvJQW9iYmJGDhwYOX6w/XRv39/tG3b1qwszg2NuKtUKnA4nHozvXXt29IhCALz5s2Dv78/Pvjgg2a316pVK3z33Xf4888/zXLuuKVgjExvSwp6o6Oj8fLLL6N79+56be/i4oKxY8e2CIuzOWV6JRIJbG1tYWVl1aC92VLuHTWDXsCwFZwbE/RSdf2wyKD34cOHyMjIqDfo7dy5M1xcXEzO4lx1oWZTHDG6ePEi7ty5g4iICL33GTVqFFq1asWs2UsT8fHxyMvLw4IFC5q0/4cffoji4mLafj/yPKhrORkykKHyfKkZ9BYVFZnk+dgYCgoKcPjwYYSGhuq1PYvFwtSpU7F9+3azuZFXPT7qyuY2ZG+u+X+GCjZt2oRTp041qXhVXcyZMwddu3bF3Llz663eyWAYdDodCgoK4OrqCisrK1hbWxsk06tUKim/RpsiOTk52L9/f4MFrGoyc+ZMXLt2zeITA+Tvbw7XV6lUCrFYDBsbmwYzvZZw79BoNLh//z5tQW9914b6HFqNxSKD3pSUFLDZbAwePLjObVgsFgICAkyumJWpnzyxsbHw8PDA8OHD9d6Hy+Vi2rRpSEhIMAtbiyWh0+mwfPlyjB07trIMfWNp37493nzzTaxYsYKWuY4NnRPkA5Wh7M3kv7m5uZS1Twfbt28HQRCYNGmS3vuEhISgqKjIbKqLVr0pMple6igtLcXixYsxefLkegeTGwuXy0VUVBTOnz/fIjJdpkZxcTG0Wm2ltdnV1dVg9maqr9GmyKZNm8DlchusmVCToKAguLu7W/w5QP7+5nAckEGvWCxuEUHv48ePoVaraw16s7OzUVZWRnmfDd2vq35G1fXDIoPe1NRU9O7dG3Z2dvVuFxgYiAsXLuhVmc1YmPLJo1KpkJiYiLCwMHA4nEbtGxERgfz8fCQlJRlIHUNtHDx4ELdv38aiRYua1c7ChQtx79497N27lyJl+tPQOUH1A1V5eTkkEkm1TC8As7c4JyYmYsSIEY2yuHfr1g0vvfSS2Vic9TlWuFwuE/Q2km+++QZSqdQg63YPHjwY06dPxyeffIKioiLK22eoGzLAJa8JLi4uBrM3W3rQSxAEoqOjMWHCBDg4ODRqXy6Xi4iICMTHx0OhUBhIIf2Yk81dIpHAxsYGNjY2LcLeXHO5IhLydXp6OuV96vt3UyqVdd63G4vFBb0EQSAlJaXWpYpqEhAQAK1Wa1KFWkz55Nm/fz+Kior0qtpck27duqF79+7Mmr1GZvny5XjllVcwcODAZrXzyiuvYNCgQc2q2NpUmhPINAUyuLWkoPfp06c4efJkozMQLBYLISEh2LVrl0kW/auJvscKU8hKf27cuIHVq1fjyy+/hKenp0H6+Pnnn6FWq/HFF18YpH2G2iEDXGNkeqm8Rpsi//77L27fvt1oazNJZGQkiouLsXv3boqVmQ7mdBw0JtNrCfeOu3fvQiQSvXCNN+SyRfrGO1QeNxYX9N65cwe5ubl6WbB8fX3RunVrk5rXa8pBb1xcHF5++WV07ty5SftHRERg7969zGi+kbh06RJSU1OxcOFCsFisZre3aNEinD59GufOnaNAnf4YO+gllycibc3Ozs7gcDhmvWzRli1bwOfzMX78+EbvO3XqVJSXl2Pfvn0GUEYtTKaXWgiCwNy5c+Hj49PkmgD64Obmhm+//Rbr1q3D5cuXDdYPQ3VqZnqZoLfpREdHw8vLq8n2fz8/PwwaNMiiLc7mdBy0NHvz3bt34efnBza7elhoa2sLNzc32oNext5cBykpKeDxeHpltkxxXq+pnjwFBQXYv39/k7K8JKGhodBqtdiyZQuFyhjqYvny5WjXrl2TAp3aGDNmDHx9fQ1icawPujO9bDYbrVq1MutMb2JiIkaPHq13xfWq+Pj4oE+fPmZhcWaCXmpJSEjAyZMnsXr1avD5fIP2NW/ePHTu3JkpamVE8vPzweVyYW9vD8Cw9mZzCXaaQnl5OTZv3ozIyMgXgobGMHPmTBw+fBgZGRkUqjMdyOPAHNZCb4n25prWZhJDFbNqTNDL4/GYoLc2UlNT8corr8Da2h1uyVwAAQAASURBVFqv7QMDA3HlyhWTyT7qW83M2GzevBkEQTTaHlmVVq1aITg4mKnibAQyMjKwdetWLFiwAFwul5I22Ww2PvroI+zYsQMPHz6kpE19aMg6RF4QqTpfsrOzIRAIKh8EAfNetig9PR2XL19u1rkbEhKCAwcOoKSkhDphBqCh62d9c4Ms4cGFSsrKyrBo0SJMnDgRI0eONHh/XC4Xa9aswblz55hpMEaCXK6IDNQMlelVKpWUXqNNjX/++QcSiQQzZsxoVjuTJk2ClZWVxR7/5HFA/t+UaYmZ3vqCXkPP6W2oenNd05Iai0UFvTqdDqmpqXrN5yUJCAgAQRA4fvy4AZXpD/mjmtqoaGxsLF577bVGr/Nak/DwcJw7d85gJdAZKli1ahVsbGwQGRlJabvh4eFwdHTEypUrKW23PkhrC/n/mpA3Uirtze7u7tUs4W5ubmZrb05MTISNjQ1Gjx7d5DamTJkCtVqNHTt2UKiMesjrZ33LEtV1rFjCgwuVfPvttygrK8OKFSuM1ueQIUMQGhqKJUuWoLi42Gj9tlTIoJfExcUFUqkUcrmc0n4sPdMbHR2N4cOHw9vbu1ntiMViTJkyBTExMRbpdiCvv+T/TRWCIFpU0FtWVoacnJwGg16qj0l9qjcTBEHpM55FBb3Xr19HUVFRo+ZUeHt7o127diZjcSZ/VCof4ptLWloaLl682Ki1eeti7NixsLOzw8aNGylQxlAbJSUl+PPPPzF79myIxWJK27ayssLcuXPx999/G80dUd+NklzXmsrzJTs7u3I+L4m5ZnoJgkBiYiLGjRsHkUjU5HY8PDwwdOhQk7c4N3T9rM8VYAnFSKji1q1bWLVqFb744gu0adPGqH3/8ssvkMvl+Oqrr4zab0skPz+/sogV8LygFdUWZ5VKBT6fbzLPNFRy//59HD9+vMkFrGoyc+ZMPHr0yGQSMVRiLkGvUqmERqPR296s79I7pkpdlZtJ/P39IZPJkJmZSWm/+gwWaDQaANTFRBYV9KampkIoFKJfv36N2i8wMNBkilmRP6op3SDi4uLg4ODQrEwRiVAoxJQpU7Bx40aLHMk0BdavXw+lUon58+cbpP05c+ZAq9Vi3bp1Bmm/JuQDE/n/mp8B1A4SZWdnV87nJTHXoPfq1au4e/dus6zNJCEhIUhJSTHpjHdD18/6Hr7NfbSeKgiCwLx589C+fXt89NFHRu/fw8MD3377LdauXYurV68avf+WRF5eXq1BL9UWZyrn5JkaGzZsgJ2dHWW1MwYMGAA/Pz+LLGhV373clCAzu43N9HI4HLMcMCWDXj8/v1o/N1QFZ33uuVTHRBYV9KakpGDAgAEQCoWN2i8gIAC3bt1Cbm6ugZTpj6kFvVqtFps2bUJISAgEAgElbUZERCAjI8MiRzLpRqVSYdWqVQgLC3shcKMKV1dXREREYPXq1Ua5wOsT9FJ5vtQW9Lq5uSE3N9fsBmoSExPh5OSEESNGNLutN998E2w2G9u2baNAmWFobtBLzn83hWsvXWzZsgXHjh3D6tWrKbvmN5b58+ejU6dOTFErA5Ofn/+CvZl8nypIN46pPNNQiVarxYYNGxAaGtosJ01VWCwWZs6cie3bt6O0tJSSNk0Fc8n0NjXoNddjPD09He7u7nUWuvT29gaPx6M16GUyvTXQaDQ4ceJEk8rFk3OAjx07RrGqxmNqJ09KSgoyMzObVbW5Jv3794ePj4/FFmugk61btyIzM9PgGZqPPvoIOTk5SEhIMGg/gPGD3pycnFrtzRqNBoWFhZT0YQx0Oh02b96MyZMnVz5oNAcnJycEBQWZtMVZH3tzQwFx1XZaGhKJBAsXLsT48eMRFBREmw4ej4eoqCicOXOGmQpjQGpmesmgl8pMb9VrtDlmwerj8OHDyMzMpMzaTBIeHg61Wo3NmzdT2i7dVL3GmvKxQNqZSXuzQqGotNnWhqk9tzeW+opYARU1hnx8fAwW9Nb3d2MyvXVw+fJllJWVNaqIFYmHhwf8/f1NYl6vqd0g4uLi4O/vj759+1LWJovFQnh4OLZv347y8nLK2m3pEASBZcuWITg4GF26dDFoX/7+/hg7diyWLVsGgiAM2ld9N0ryfBEIBJScLxqNBvn5+bXamwGYlcX5zJkzePr0KSXWZpKQkBCcPXsWjx8/pqxNKql6PNRV9IwJeuvmu+++Q3FxMX799Ve6pWDYsGGYOnUqPv74Y5OvGm6OaLVaFBYWVsv0CgQC2NraUprpJa/L5hoQ1Ed0dDS6du2Kl19+mdJ23d3d8eqrr1qcxZm8/gKmfY2tmemt+l5tWHrQCxhm2SJ9/m5UXz8sJuhNSUmBtbU1+vTp06T9TWVeryndICQSCXbs2IHw8PBqlWypYPr06SgvLzf5arDmxNGjR3Ht2jUsWrTIKP0tXLgQaWlpSEpKMmg/SqWy0mZZ85yg+nzJzc0FQRAWEfQmJibC09NTrzXL9eWNN96ASCQy2QxE1eOhruWt6vqMfCBjsVgmMeBobNLS0rBy5Up89tlnaNu2Ld1yAADLli2DTCbD119/TbcUi6OwsBAEQVTL9ALUL1vU0ECUuVJQUIBdu3Zh5syZlD8fARUFrc6fP4+bN29S3jZdqFSqOu/lpkRjg15Tem5vLDqdDunp6bQEveQ9t74kH9WJDYsJelNTUzF48OAm2/gCAgJw7949PHv2jGJljcOUbhD//PMP5HI5wsLCKG/b29sbQ4cOZdbspZDly5ejR48eTbL4N4XBgwejT58+WL58uUH7qe9GSfX5QhZpqmlvbtWqVbXPTR2NRoNt27Zh6tSplWtwUoFYLMaYMWNM1uLc0PFAHktqtfoFhwL5mTk+uDQXgiAwf/58tG3b1miDZvrQunVrfPXVV4iKisL169fplmNRkIEtE/Q2DXJqz7Rp0wzS/ujRo+Hi4oKYmBiDtE8H5hL01rQ3V32vNlSqimUVTcWh2RiePXsGuVyuV9CbkZFB6XJm5CC0PvZmqq4fFhH0qlQqnDp1qlkP+8OGDQMA2i3O5I8qFAppvyjExsYiICAAXl5eBmk/PDwcR48exdOnTw3Sfkvi5s2bSEpKwsKFCw0y6lwbLBYLixYtwtGjR3HlyhWD9aNP0EvV+UJmcmtmeoVCIRwcHMwm03v06FHk5+dTam0mCQ0NxfXr15GWlkZ5282loeNBpVJVFjpUq9UvfCYQCCzu4Vwftm3bhpSUFKxevbrRhSANzQcffAA/Pz/MnTvX4FMpWhKkhbmqvZl8TaW92RKDXoIg8Pfff2Ps2LEv/P2ogs/nY/r06di4caPF/N2qXn9N+Ts1xd5srveOhpYrIvH39wdBELh37x5lfevzd6P6Gc8igt7z589DJpM1aT4viYuLC7p160a7xVmlUoHFYtF+8jx58gTHjh2jZG3eupg4cSKEQiHi4+MN1kdLYfny5WjdujWmTJli1H4nTJiAtm3bGjTbS94o2Wy2wTO92dnZYLFYL2Q/APNatighIQF+fn7o2bMn5W0HBwfD3t7eJLO9ZAXm+ubt1jeA0tCosyUilUrx0Ucf4Y033sCrr75Kt5wX4PP5iIqKwqlTp5h7BYUYO9NrCgP5VHHlyhVcv36d8gJWNYmMjER+fj72799v0H6MhblkeqVSaeV9RN+g11zvHXfv3gWfz4e3t3e92xli2SIm09tEUlJSYGdn1+wHvICAAKSkpNA6mmwqJ8/GjRthbW2NCRMmGKwPW1tbjB8/HrGxscwIfjPIzs5GfHw8PvzwQ0qq9DYGLpeLBQsWYMuWLQbL2Nd3TlD9QJWTkwMXF5fKpWuq4ubmZhb2Zrlcjp07dyIkJMQgWX+BQIAJEyYgMTHR5M7b+o4VnU4HjUZTZ6bBVK69xub7779HYWEhVq5cSbeUOhk+fDgmT56MxYsXW9wyLnSRn58PPp9fad8kMWSm19ysn3URHR0Nd3d3jBo1yqD9dOnSBX369LGYglZVM72mfCxIJBLY2NiAxWLpbW8213vH3bt34ePjAw6HU+92Tk5OcHJyMnrQSx4nTKa3CqmpqRg6dGiDP1pDBAYGIiMjA48ePaJIWeNRqSrWMaNzbgBBEIiLi8OECRMqR7kMRUREBO7cuYMLFy4YtB9LhrQkvvPOO7T0P3PmTIjFYqxatcog7dd3TlD9QFXbGr0k5pLpPXDgACQSiUGszSQhISF48OCByZ239R0rpJ2ZzDTUdizRfe01Nnfv3sWKFSvw6aefNjjSTzfLly+HRCLBN998Q7cUiyAvLw8uLi4vDIy5urpWFvSjgqoDk5ZwXikUCsTHxyM8PLzWwVGqmTlzJg4cOICsrCyD92VoqmZ6TflYkEqlsLa2BoDKZ+CGgl5zvXfoU7mZhOpiVvr83ZhCVjWQy+U4c+YMJcV7hgwZAjabTeu8XrJSLZ0jRufOncO9e/cMam0mGT58ODw8PJiCVk1EKpXi999/xzvvvAM7OztaNNjY2OC9997Dn3/+aZAsTH3nBHkRFIlElNmbzT3oTUxMRM+ePfW+kTWFgIAAtGrVyuQszvoeK0DtlcDpvvYaE7J4VZs2bfDxxx/TLadBPD098eWXX2L16tW4ceMG3XLMnvz8/MoCfVVxdXWFQqGgbDnBqpmamvPozZFdu3ahpKTE4NZmkqlTp4LP51vEetVKpbLy+mvKx4JUKq3M8IpEIrDZ7HrPB3O+d9Ad9Db0dyPfp+oZz+yD3jNnzkClUlES9Nrb26NXr160zus1BZtEXFwc2rRp06w50vrC4XAQFhaGxMREs7tYmALR0dGQSCT44IMPaNUxf/58KBQK/PXXX5S3rY+9maoLYk5OTp1BrznYm8vKyrBv3z6DZnmBivN28uTJ2LJlC7RarUH7agz6HitVX+uzryWyY8cOHD58GKtWrTK54lV1sWDBAvj4+GDevHkmZ603N8hMb03I96iyOJPnkpWVlUWcV9HR0Rg0aBD8/PyM0p+9vT3efPNNREdHm/0xr1Kp6rz+mhKkvRmoKNgpFost0t4sk8mQkZHR6KCXquOw6pJFTNCrJ6mpqXB2dkbnzp0paY/ueb10V4FTKBTYvHkzwsLCKF3qpD7Cw8NRVFRkMcUajIVGo8HKlSsxZcoUg1XY1hcPDw+EhoZi1apVlI/g1ndOUH1BzM7OfmG5IhJ3d3dIpdJ6C1rQza5du6BUKo1S0CwkJATZ2dk4ceKEwfvSF32OFSsrq2qv9dnX0igvL8eCBQvw+uuv4/XXX6dbjt7w+XysXr0aJ06cMDmXgbmRl5dXa8E+8j2qilnVvEabc+D25MkTHDlyxGhZXpKZM2ciPT0dZ86cMWq/VEPO6WWxWCZ9jZVKpdWm9onFYous3kxWYtZ3AMff3x9lZWXIzc2lpP/GVG9mgt7/SElJQUBAAGUBWmBgIHJycihfhFlf6B4x2rdvH0pKShAeHm60Pjt37oyXX36ZsTg3kp07d+LRo0dYuHAh3VIAAAsXLsTTp0+xbds2StvVJ3tHRRaBIIgG7c0ATNrinJiYiMGDBxtlEKRfv37w9vY2qeCDyfTqxw8//IC8vDyDzcM3JCNHjsSbb76JRYsWoaysjG45Zkt+fr5RM70ikQgEQZiUM6SxxMbGwsrKCpMmTTJqv8OGDYO3t7fZF7TSx85qCtQW9Fpiplff5YpIyOA4PT2dkv4bU72ZKqeIWQe9EokEFy5coNSGO2jQIHC5XNosznSfPLGxsejbty86duxo1H7Dw8Oxf/9+FBQUGLVfc4UgCCxbtgwBAQHo1asX3XIAAF27dkVQUBCWLVtG6Wh+Y+zNzem3pKQEKpWqXnszAJO1OOfn5+Pw4cMGtzaTsFgsTJ06Fdu3bzeZGz0T9DZMeno6li1bhk8++QTt27enW06TWLFiBUpLS/Hdd9/RLcVsqSvT6+zsXPk5FdR0WJhboR8SnU6HmJgYTJkyxeAFPmvCZrMRGRmJLVu2mLTTqCGqXmNN+Tioam8GKuqWWOKSRXfv3q2syqwPHTp0AJvNpiwp2JjqzUymF8CpU6eg0Wgomc9LIhaL0bdvX9qKWdF58uTl5eHgwYNGKWBVk5CQEBAEgc2bNxu9b3Pk9OnTOH/+PBYtWkS3lGosXLgQV65cofT8qTrvo7aKuywWC0KhsNlZBDKDW5+9uep2psb27dsBVKx/bSxCQ0NRXFyMQ4cOGa3P+qjv+kkeO/XZm83xwaUxEASB999/H56enliyZAndcpqMl5cXvvjiC6xatQq3bt2iW47ZoVarUVxcXGvQy+Px4OjoaBB7c9XX5saxY8fw+PFjo1ubSSIiIiCTySh3UhkTfeZwmgJNsTebw/eqSWOKWAEVFZTbtWtnkKC3vurNbDYbQqEQWq222U4Rsw56U1NT4eHhQXlBgcDAQKSmpkKn01Harj7U94BvaBISEsBms40yH7AmLi4ueO211xAbG2v0vs2RZcuW4aWXXkJwcDDdUqoxYsQIdOvWDcuXL6eszYYCGT6fT8kyCGQwW1em187ODkKh0GSD3oSEBIwcObJWy6Kh6Nq1Kzp37mwyFueGBkiAujNOdF57jcWuXbuQnJyMlStXVgYh5spHH32Edu3aMUWtmgDpqKrrWkHlWr0NDTaZC9HR0fDz88OAAQNo6b9t27YYMWKEWVuczSU4bKy92VyC+Zo0NugFqK3grK+9mdyGfN0czDroJefz1lxnrrkEBASgsLAQN2/epLRdfSB/YDomxMfFxWHMmDF6Wx2oJiIiAhcvXkRaWhot/ZsLd+/exZ49e/DRRx8ZrdiYvrBYLCxatAgHDhygLAPTkGWVqgsiaVuuK9PLYrFMtoJzRkYGTp06ZTRrc1VCQkKwe/duypY4aQ71XT/J1+T6iy2tkJVMJsOHH36I1157DWPGjKFbTrMRCARYvXo1jh07hi1bttAtx6wgs7i1ZXrJ96nM9LJYLLMOektKSvDPP/9g5syZlD9vNoaZM2fi1KlTlM2pNCYEQdD6fNsYmmJvJucqm8uAKUEQtAe9+lZvJu/L5OvmYFpPzI2guLgYly9fptTaTNK/f38IBAJa5vXSNdH/xo0buHLlilELWNVk9OjRcHBwYApaNcCvv/4KV1dXTJs2jW4ptTJlyhS0bt0aK1asoKS9hiryVs30Nuecyc7Oho2NTWVQVBumulbvli1bIBQKMW7cOKP3PXXqVJSXl2Pv3r1G77sm9V0/9Ql6zXG0Xl9+/PFH5OTkYNWqVbQ+uFNJUFAQxo8fj4ULF9abiWGoDpnFNUaml8prNF1s3rwZarWa1ucjABg3bhzs7e0RExNDq46moNVqQRCE2Ray0sfebOrBfFVycnIgkUiaFPQ+fPiQku+pb/VmJtML4MSJEyAIwiBryYpEIvTv35+2oJeOB6+4uDg4Ozvj1VdfNVqfNREIBAgJCcGmTZvMusKjIcnPz0dsbCzmz59vsmtr8vl8vP/++9i0aRMlWdGGMr3kTZR83VTqq9xMYqpBb2JiIkaPHg1bW1uj992hQwf07dvXJCzO+hSyaolB77179/Dzzz/j448/ho+PD91yKOXXX39FcXEx/ve//9EtxWwwdqaXyodWOoiOjsarr77a4P3B0AiFQkybNg2xsbHQaDS0amks5O9u6tdYgiAglUpfyPRaWvXmxlZuJvH394dWq8XDhw+brYGxNzeClJQUeHt7o127dgZpPzAwEMePHzf6hYWOk0ej0WDTpk0ICQmpPLDoIjw8HJmZmbRVzzZ11q5dCxaLhffee49uKfUya9Ys8Pl8REVFNbuthuZpUmlvrsvaTGKK9ua7d/+fvfMOi+O69/53dmcrLL13SaAGKqiChHpDBcmWjeMqW7JvmpPYjv3mxnFuyk25KXZsp97k2nG3bCM3IVmoSzYIUAEJhCREFb2zwPYy8/6xntUCy9bZ3VnE53nyxNqdOXOYnXPmfM+v1aKystInrs0MDzzwAI4cOYLBwUGf9QFwLJHVnSZ6aZrGU089hdjYWDz//PO+7g7rJCcn4yc/+QlefvllXL9+3dfd8Qt6enogkUgm9GrxpOj1F/dPhurqaly4cMFnCazGsm/fPnR2duLo0aO+7opTML871/MmqFQq0DQ96RNZ1dbWgs/nY8aMGU6dx4hkNlycHUlkZbn+Y/7tDn4rek+fPu0R12aG9evXY3h4GJWVlR67hjV8ERB/4sQJdHV1+SRr81iWLVuGWbNmTbk4W0GtVuOvf/0r9u3b57O4a0cJCQnBf/zHf+Dvf/+727GejiSyupMtvfv374dMJsO2bdt81of77rsPBoMBn3zyic/6ANieP+9US+/Bgwdx5MgRvPLKK+a4ysnGc889h+TkZHz/+9+fSmrlAL29vRNaeYHb7s1s3Et/t/S+8cYbiIyMxPbt233dFQBAZmYmFixY4HcJrfzF0suI2ztB9E6bNs1pQ1dMTAxkMhnronfK0muD3t5eVFdXe8S1mWHp0qWQSqVeL11kGRug1Wq98gJ/6623MHfuXE7UeyUIAnv27MEnn3wyFaM1hnfeeQf9/f145plnfN0Vh3jqqacwPDzsVvyRZfILRxJZuZu92RHR29vbC71e7/J12ISmaezfvx+7d+/2aTbeuLg4rF271ucuzrZ2ji1Lp/D5fKvZm/0tGYk91Go1nn76aeTm5mLXrl2+7o7HEIvF+Mtf/oKTJ0/6dUkXbzFRjV6GqKgo6HQ6DA8Pu30ty3EF+Jfo1el0eOedd/DII4/43AuOgSAI7Nu3DwcPHmQt7tob+JvotebePNF63B+zN7uSxAowPX9sJbOaEr0OcubMGQDwqOgVCoVYtWqV191sx8Yoetq9emhoCJ999hkeffRRziQ3efjhh6FWq/Hxxx/7uiucgaIovPTSS9i9e7fT7ii+Ijk5Gfn5+Xj55ZddjtFmkl94K3uzI+7NAFhz/XOXyspK3Lx506euzQwPPvggTp8+7VP3b8vEGGNr+lkuuuwlRfOXhYs9fve736GjowN//vOfOTO/e4qtW7di165d+OEPf2jTKjOFaf6yVdqM+Y4NUeXPiawOHTqEvr4+7N2719ddGcVDDz0EHo+Hd99919ddcRh78y9XYIwtYy29BoPBoQzD/rJh6qroBdjL4OxI4t6p7M0wxfPOnDkT8fHxHr3OunXrUFxc7NXB6W1XoIKCAuh0Ok5lAk5KSsK6deumavZacOjQIdy8eRPPPvusr7viFM8++ywaGxvx2WefuXS+M0LF8nhnUavVkMvlDll6AXDGxXn//v2IjIzEhg0bfN0V3HPPPeDz+fjoo4981oex86elRZ55NgQCgd0NFK4uyJyhoaEBv//97/Hcc88hLS3N193xCq+88gr6+/vx61//2tdd4TT23JuZ79jY3PNn9+Z///vfWLZsGTIyMnzdlVGEh4dj165deP311/3GnZ/53bmevXki92bL78bib+8OrVaLpqYmn4teR0sW3fGWXk/H8zKsX78eSqUSFy5c8Pi1GLz9gnj77bexceNGj28gOMujjz6KM2fO4NatW77uCid48cUXsWLFCmRnZ/u6K06xZMkSrF27Fn/84x9dejmPfVF6KpEVY530J9FLURQ++OAD5OfngyRJX3cHoaGhyM3N9amLs63ngXnBEgQx7iVrz43eH3n66acRFRWFn/zkJ77uitdISUnB888/jz/96U+s1ZKcjNiz9DKil01Lr7+J3o6ODhw5coQzCazGsm/fPtTU1ODixYu+7opDjE1kxdXnYCL3ZgAThtxZPuNjPYy4SGNjIyiKckv09vX1YWBgwK1+OOJddceL3vb2dtTW1npF9GZmZiI4ONirLs7efEE0Njbiq6++8nntOWvs3r0bAQEBeOedd3zdFZ9z/vx5fPXVV3juued83RWXePbZZ1FeXo5z5845fa69FyVbJYsY0WvPvTkyMhIEQXAig3NxcTHa2to44drM8MADD6CsrIyVcgauYGv+ZL4DMO5ZsudG728UFhbi0KFDePnll23WnZ6M/OhHP0JiYuJUUisb2LP0hoWFgSAIj1h6/cX98+2334ZQKMT999/v665YZdOmTYiPj/ebhFZjY3q5+hxM5N4MOGbpBcCZnB8T4Wq5Iga2MjiPzcFhbb5me/7wO9HLJJZau3atx69FkiRWr17t1WRWbGajtcc777yDwMBA3H333R67hqsEBgbinnvuwdtvv33HL1xeeuklpKamYufOnb7uikts27YNs2fPxosvvuj0ufaSX7A1XhjLrT1LL0mSiIqK4oSld//+/UhMTMSKFSt83RUzO3fuhFQqxQcffOCT69t6HmyJXn9JsuIIarUaTz31FDZt2oTdu3f7ujteRywW49VXX8Xx48d9nk2ci2g0GgwPD9sUvXw+HxEREXesezNN0/j3v/+Ne++9F8HBwb7ujlX4fD4ee+wxvP/++1CpVL7ujl38ZY615d7siKWX+TeXqa2tRVBQEKKjo106nwmXYVP0AtZzGLGtifxS9M6bN8+maw6brF+/HufOnYNGo/HK9byV9IGmabz99tvIz8/nbBmLPXv2oK6uDmVlZb7uis9oamrCgQMH8Mwzz4DP5/u6Oy7B4/Hw7LPP4vPPP0ddXZ1T59p7UbL1suns7IRAIEBYWJjdY7lQtkiv16OgoAD3338/eDzuTOMBAQHYuXOnz1ycbc2flqJ3rDuVpRs9l5OsOMIf/vAHtLW14S9/+cukT141ETt27MCOHTvwzDPPuF0ybbLBuCzbW0MxZYvchS1vHG9SUlKCuro6zro2Mzz22GMYHh7Gp59+6uuu2MWfRK9YLB4VMsS4N9uy9LKZbMnTMEmsXH0/SKVSJCUluSV6x4YUAdbvG9uaiDurJQc5deqUR7M2j2XdunXQarUoLS31yvXGviA85QJSUlKCxsZGTtTmnYh169YhMTHxjq7Z++qrryI0NBSPPfaYr7viFg8//DAiIyPx8ssvO3Wes6LX1fHS1dWF6OhohwRkTEyMz92bT5w4gf7+fk65NjM88MADuHr1Kq5ever1a9uaP8daei2/G+tGr9frQVGUF3vODk1NTfjd736HZ5991mXXtcnCq6++ip6eHvzmN7/xdVc4BSNkbVl6me/ZsPQylho+nw8+n895QQCYElhNmzYNa9as8XVXbJKamoo1a9b4hYuzP2VvtrTyAvbdm73pockG7mRuZnA3mRVj1bW3Icb2pplfid6mpiY0Nzd7JZ6XYd68eQgPD/daXK+33CTeeustJCcnY9WqVR5pnw14PB4efvhhfPDBB16ztHOJwcFBvPbaa/jud7/LWWu8o4jFYnzve9/DG2+84ZT1wJuWXnuuzQxcsPTu378fs2bNwsKFC33aD2vk5uYiNDTUJ9ZeV2N6xz5nAPfjsqzx9NNPIyIiAj/96U993RWfM336dPz4xz/Giy++iJs3b/q6O5yBEbL2LL1RUVGsJrICxo87LqJQKPDRRx9h7969nPKimYh9+/bh1KlTaGpq8nVXbOJPll7LJFaAbfdmo9EIiqL8Km6dC6J37EYzYNvSe0eK3tOnT4MgCKxevdpr1+TxeFi7dq3X4nq9IXrVajU++ugj7Nmzh/OT+p49eyCXy3Ho0CFfd8Xr/POf/4TBYMCTTz7p666wwne+8x0QBIF//OMfDp/DTIwT1cBjxou7VgR/Er1qtRqffvopHnzwQU66rwqFQtxzzz344IMPvB6Pby97M+Mi5Yjo5eqibCK++OILHDx4EH/605/uuORVE/Gf//mfSEhIwA9+8IM7PjcEg6OiNzIyktWYXsA/RG9BQQFUKhWnveAsueeeeyCTyThf4tHyXc7l50ChUIyz9IpEIggEAquWXn97d/T396O/v58V0VtfX+9ypuqxln/A+maB5RqPIIg7K5HV6dOnsWjRIoSGhnr1uuvXr0d5ebnHC9476uPuLgcPHsTw8DAeeeQR1ttmm9mzZ2PZsmV3nIuzTqfDn//8ZzzyyCMuJxvgGhEREdi7dy/++te/Qq1WO3TO2BeKwWAY5XZqS8g4Q1dXl93MzQyMe7OvFtGHDx+GQqHgpGszwwMPPIDGxkacP3/ea9dkSkWwZenl8sJlLBqNBj/4wQ+wYcMG3Hvvvb7uDmeQSCR45ZVXcPToUZdrhU82ent7IZPJIJFIbB7Hlnuzv4nef//739i0aROSkpJ83RWHCAgIwP3334833niD0yEZ/mLptebeDJisvZNB9LqbuZlh1qxZ0Ol0aG5udul8R+8bM39YKzXoCn4jemmaxqlTp7zq2sywfv16GAwGFBcXe/Q6jDudpxNZvfXWW1ixYoU5AxvXefTRR3HkyBFWXsD+wv79+9HZ2Ykf/vCHvu4KqzzzzDPo6+vDu+++69Dx9txO2VpQOWvp1el0GBwcdOla7rJ//34sXryY0+N3zZo1iI2Nxfvvv++1a1rbOXY1kdXYc7nOH//4R9y6deuOTl41EXl5edi2bRuefvppv8hy62ns1ehliIyMRF9fn9tCionJA8bH0nONmzdvori4mPMJrMayb98+tLS0eLW8prP4S8kia+7NgCmZlTX3Zst3h7+IXoIg3F4/uFu2yFHRy8RLA+Pf267gN6K3rq4OHR0dXk1ixTBr1izExMR43MXZG4Onq6sLR48e5WRt3on4xje+AYIgfJYR1tvQNI0XX3wRO3bswJw5c3zdHVZJTU3FXXfdhZdeesmhxZS9iZEN0Ws0GtHd3e2U6AXgExfnoaEhHD58mNNWXsBUTuO+++7DRx995LL7k7PYmz8nq6W3ubkZv/3tb/HMM89MuvmCDQiCwKuvvoquri78z//8j6+743Ps1ehliIqKgsFggFwud+t6/mTpfeONNxAaGopdu3b5uitOsXz5csyZM4fTCa10Oh14PB74fD6nnwNr7s2AY5Zef9gwra2tRVJSkl1PD3skJCRAIpG4LXodSWTF5vzhN6L31KlTIEkSOTk5Xr82QRBYv369x3fRrC282N4Ne++99yAQCHDfffex2q4nCQ8PR15eHudjVtji2LFjuHr1Kp599llfd8UjPPfcc6itrcXhw4ftHuus6HVlvDDWDGfcmwH4JIPzp59+Cp1Oh2984xtev7azPPDAA+jq6sKZM2e8cj1786cz2ZvHnstlnnnmGYSHh+O//uu/fN0VzpKamoof/ehH+MMf/uB02bTJhqOWXkYYu5vMim1LjacwGAx466238NBDD0EsFvu6O05BEAT27duHTz75xGceSPaw5WnDJZx1b3Y0IRNXYCOJFWDKdzRz5kyPW3rHeorcUaJ36dKlVt0OvMG6detQUVHh9q6nLbxhbXj77bexc+dOr8dFu8uePXtQWVmJ6upqX3fF47z00ktYvHgx58sluMqKFSuQnZ2NF1980e6x9sQIG7uAjMXWHyy9+/fvx6pVq5CQkOD1azvLsmXLMH36dK95aNibPy0X35PF0ltUVITPPvsML730ks/ejf7C888/j9jYWDz11FN3dFKrnp4ehyy9jDB2N6zIXyy9R48eRWdnp9+5NjM88sgjMBgMnPWIszX/cglX3Zv9ZcOULdELuJfB2dH7xoZhwxK/EL0UReHMmTM+iedlWL9+PSiKwpdffumxa3h6x+jy5cuoqqrym6yElmzduhURERGTPqHVlStXcPz4cTz33HOTOjbvueeew5dffokLFy7YPM6e6xAbVgRnRa9UKkVQUJDXRW9PTw9OnjzJeddmBoIgcP/99+Pjjz/2yiLA3vxpa8fYH0WvVqvF97//faxfv96vPHd8hVQqxSuvvIIjR47g4MGDvu6Oz3DGvRm4c0Tvv//9byxcuBCZmZm+7opLREdHY8eOHZx1cR47/+r1ek5uPrnj3sz1d4fBYEB9fT1rotcdS6+zJYuYY+8IS29NTQ16e3t9KnqnTZuGpKQkj8b1enrwvP3224iKisLmzZtZa9NbCIVCPPDAA3j33XfNRa0nIy+99BKSkpImfQbWXbt2YcaMGXjppZdsHudOnKajMG7KzmTJZjI4e5OCggIQBOFXz8aDDz4IuVyOo0ePevxa7sR/+1syEsA0VzQ3N08lr3KCXbt2ITc3F08//bTDGeQnG466N4eEhIDP57vt3sy2e6In6O3txcGDB/3Wysuwb98+XLp0CVeuXPF1V8Yxdv4FuFkLfTJnb25uboZer2fV0tvZ2WnVAm4PR2Oh70jRe/r0aQiFQmRnZ/usD96I67VceLlbd3Qser0e7733Hh566CEIBAJW2vQ2jz76KLq6unDixAlfd8UjtLW1Yf/+/Xj66adBkqSvu+NR+Hw+nnnmGRQUFNhMeT82+QXzmeX37i6oOjs7ER4ebm7fEXxRq3f//v3YtGkTIiIivHpdd0hPT8e8efO84nJnOX8yc5yz2Zv9JRlJS0sLfv3rX+Opp57C3Llzfd0dv4EgCPz5z39GR0cHfve73/m6O15HqVRCpVI5ZOnl8Xis1Opl2z3RE7z77rvg8Xh48MEHfd0Vt9i6dSuio6Pxxhtv+Lor47Amern4LLiTvZnr7w62yhUxMO3cvHnT6XMd3Wi+I7M3Hz58GFlZWW5nG3OX9evXo6qqymOlczQaDQCYF2xs7ooyJX/8KWvzWBYtWoS5c+fizTff9HVXPMJf/vIXBAQE4IknnvB1V7zCY489hpCQELzyyisTHmPtRcmMCZqmodfrwePxzN+7Ml6ampqcroUcGRmJlpYWp6/lKk1NTSgpKfHLRdkDDzyAzz//3KXdYGewnD+t1fSbTNmbn3nmGYSEhODnP/+5r7vid6SlpeG5557D73//ezQ0NPi6O16lu7sbABzeOAsKCnJpQWuJ5bjT6XRuW47ZhqZpvPbaa7jrrrsQHh7u6+64hUAgwJ49e/DOO+9wTlBaPgdMRn9rllNfotVqoVKpzGuKsfT29o5zybb27uDa38VQWloKsViM+Ph4VtpjRK8ruXaY8nG23rk6nQ5Go9Hs3XlHWHpbW1tx7NgxtLe3+7or5mLljz32mEfaLygoAACcPHkSGo0Ger0eFy9eZKVtJgX/woULWWnPFxAEgenTp+PDDz/E2bNnfd0dVikuLsYf/vAH7Ny5845JSBMQEIAtW7bg1VdfxcmTJ60eU1FRAYPBAI1Gg4GBAQC3dyuZeGDGitja2urSeHnttddw7do1p845cuQISkpKvCaMmNCOtWvXeuV6bLJy5Uqo1WrcddddHr3Ohx9+CMDkGaTRaGA0GlFRUWH+/ubNm+bMvfX19WhtbTW/TC9fvgzAJJwZcX79+nWP9tdVfvCDH+CTTz7Biy++eMfMFWzzk5/8BMHBwZg3bx6USqWvu+M1/u///g8AUFlZ6dDxN2/exHvvvefy9UZGRqBUKtHY2AgAOHfuHI4fP+5ye57g+eefx7Vr17By5Upfd4UVNm/ejIGBAY/Pt85y/vx5s8GosLAQADyaI8cVSkpKAACHDh0a992BAwfQ2tqKoaGhUZ/fuHEDgKmcIPN++d///V8P99Q1fve730Gj0bAWDsNsDjz33HNOn8sYry5evGgONamqqhp1DLOeY7RRW1vbqHe6K3DehzI6OhqzZ8/mRH29JUuWICEhAatXr/ZI+3v37sWnn36KBx98EBqNBgaDAZcuXWKl7dmzZ/u14GV48skn8eWXXyIkJMTXXWEVZqcsNzfXxz3xLt/4xjewf/9+9PX1Wf3+4sWLMBgMUKvV5hjampoaAKYNnHnz5uGFF14AYBK9rrgc79mzxynXZgD45S9/iU8//dTp81wlJycHoaGhrO3QepOlS5di2rRpWLJkiUev88QTT+Dw4cO4//77oVQqYTQacf78eQCmZIgDAwNmIVtVVQWlUgmtVguSJM0v1+HhYfT39wMAaxuObMMsqPyhbBVXCQgIwPz583HixAlUVFRg1apVvu6SV3jkkUfwySefOOzx9dOf/tStBfLg4CBomsbVq1cBAL/+9a+9VrfbUeLj4xEcHIx77rnH111hhRUrViA2NhYzZ870dVdGUV1dba5+8pvf/Ab9/f3YuXOnbzs1hlWrVmHz5s3405/+NO67119/Hfv37x+39mREWF9fHzZs2IAlS5bgJz/5iTe66zQ//elP0dvby5roDQgIwJo1a7B8+XKnz3366adRW1uL9evXo6OjAwDGJTZdtmwZtmzZgt/85jcAXF/jWULQXEyfNgUA4PPPP8fSpUsRFxfn665M4QUmyho42aFpesJJuKOjA2VlZdi9ezdomsabb76JPXv2gM/njzu2vLwcAoEAixYt8nSXp/ADPv74Y/MCEDDVv54xYwZmzJiB1tZWXLp0yWwNGRwcxLFjx8xC8s0338T999/PyXqdR44cQUpKCubMmePrrvg1NE2jvLwcWVlZvu7KpObDDz/E1q1bERQU5OuuTOFDbty4gY6ODp8mpPUEOp0O7777rt8nQfM17733Hnbs2IHg4OAJjykpKYFYLMbixYtdvs6U6J1iiimmmGKKKaaYYooppphi0sL5mN4ppphiiimmmGKKKaaYYooppnAVn8X0/s///A/+9OIfQVEUANsujhPB5/Pxs1/8Et/73vdY7dtvfvMbfPSB+yU2+Hw+nv1/P8JDDz006nODwYB7781HY1Oz+TOjwQDtBElxSJKPxx7dg40bNwIwZZ8MDg5GbW0ttm/NxeDg4Lhz7N5PAnhkz6N45ZVXnf/DvMSJEyew97FHzVneAOefEz6fj//62c/x/e9/3xNdtApN03jooQdRc7XG7bakUile/fOfsWzZMhZ65nt+9atf4dU//8WcAdHy96RpCkYjZT6WoijQX88POp0WFEzHEQQPUVGR4BE80AAIAhAKhKOeiy2bN2Lv3r0AgISEBJw5cwZ/+P3vYHSwxnP/wAB0BiNiY90LLeARBB5/fN+4OYqiKKxdswY1124/I67MgSHBIfj84EFkZGS41U+2OHv2LB5+ZI9bYxYANm3ciA9szMHvvPMOXnr5FVBGChRFQavVjPper9ebYwdlMhny771nVIZImqYhEAjA4/HGlaKIj483Z9CPjY1FaGgoAFMivTlz5pjLUrDFt7/9bZQWfwVXXK4iIiPw7nv7p0JgHKCrqwvr1qweV33B2eeTIAh889vfwW9/+1u2u+gyNE3jsccexWUHE1QxaDQa3GptN6/DmLakUqnDZfMIgsATj+/DCy+8gH379uL4sWOj2pro3vJ4PKvfhYeHo+joMUyfPt2pv4WhoaEBW3O3oL+/3+b17f3uEokEb7z5FjZt2uRSP7zBsWPHsG/fvnE1p519pkUiEf72t7/h7rvvdrtPTBjS888/b86ob6tfBEFYzZbM4/Hwk5/8BM8884zbfWKunbdjO0pLS632R63WQGsw2rx3lNEAkmfq70R3VygSITYmBiRJTjiGJtIG7rJv3z4cPFg47nN7z0NQUBA+/vgAMjMzbbY/PDyM/Pu+gY7OLpvHjQwPo6e3ByB4iI6KGhW2ZzQaodNpYTQa0dXZMSrGf/R6kAZoGnw+aQozsvE4pySn4Pz5codyrPjMvTlnRTYaayqxcU4UxAIetAYKNIAhtR4iPg9DGgMWxAdhQKVHgIiPEY0BCq0BQj4PBoqGiOThaE03Fq/agMOHv2C1b8mJCdCNDGBOfChCA4RQ6YwgeQRo2rTApmmA5BMwGGmodAbEhkih1hsgFZLoHTYNcplEgBPV7VixZj2+OHJkVPs3btzAnDlzEDN/FUix6WHoqjwJg96xTLAzpk9DfUMj3nvvPTz88MO4d3ECJEI+BHweWgdUCJYIIBML0DOiQWKYFDoDhQARCamQjw65GjyCwJnaHvACw9HY7L2yK87ys5/9DL/61a/wRO5iGIwUxEISWr1pUpKIBFBr9aBpIDhADD6PgIDko29ICR6PgEqrh0QowGel17A0ezWOFBV5rd89PT2Ijo7GnBnJSIiOQGiwDCq1BiTJNw9qmqZB8kkYjAYoVRrER0dApdFCKhGjb3AIPIKAVCLGh1+cxs9+9jP88pe/9Fr/PcmiJUtR19KJpEXrwReKYdRrAZoGKZLgxskPoVMOWT+R4CEwYRZEITGgjHqo2muhHXKs9AVJkti4cSPKvjqD/FVz0dQ1CL2RQrBUBB6PgEQogFhIoq1vGCIBH3oDhZIb7SCEEqSlL0JgcCi0GhX4fBI0TYEgeKBpCnxSAKNBD41ahfDoOOg0aogkUiiHh6DX6yAUinC9shyJcTG4fHn0YrS7uxsxMTFYtTgDaSmJEIuE5k0v+bACQqEAQyNKZM5JRb98GLIACYYVKvTLhyERi0DTNGiaxnuFJ/Hvf//bLPB9zX//93/j5z//OVbdsw+UwQCBSAyDTgsagHpkCKRACJViCEmzF0Ip74dIGgiNcgQUZQRlNIAyGtFeX4OO+hpzZmVrbNy4CcUXKhE2fT766iqgn+i5AQCCB9C3F/U8AqBcfOvtyNuJwoOfu3ayFQwGAwQCARbGy7Ao0ZSJuXlADb2RRrCYBEEAEgEfYgEP7XINRCQPeiONxFAxFFojPqrsxoEDByZNEh5PcuzYMWzZsgWb5kYjUEwiUESCAMDn8aAxGAEakIlJdA6Z7nNUkBgjGj3CAoSQCPjoHNJAIuSj8HIHQuOSUV3DnezecrkcoaGhmJUch8SYcIQGBUCl0YHk80fNWSSfD4PRCKVai/ioMNQ0tOHS9UYs2vEoaNAghSIYdTrQoCEQSaDXqgGahjgwGASPBz4pxHCvKekMTRnBF4rQeOE0okMDIRHwUXPtGmZEB2P5zFjz+xoAJEISKq0eAMzzrpDPQ6fctDlmpCgIST6GlFp8dr4eBQUFuPfee126FwcOHEB+fj7uXpYGCjSCpSKIBHxIhCTkSq25PzqDERRNIz5Mhs5BBYIkIuiNRnQOKpEcGYRXDl3CCy+8gF//+tfu/jwe44UXXsD//M//4OGHHoTRSEEmCwRBECBJEmq1GjRNIyg4GB3t7RCJxIiJicbw8DAiIiIglUrR1dUNI2XE66//G0888QT++te/ut2nf/zjH/jud78LAHgofzcoyojAAKZffKg1GtA0jWCZDO1dXRCLRIiOisTwsAIR4aEIkErR1tGJjwu/wIKFmaxl+9ZqtaZ40BnRSE+KhFhAQmswADQwpNLiy+sdUPNliJi9BMKAYPAEIpBCCXRKOQCAL5Sg6fhbCA8QYE5COEIDRFBpDSD5Y7UBDwYjBZVWj9jQAKh1BkhFAvSPqGGkaIiFJL661o7s1evGaQN3CQkNhTQ0GqkLs8AnBejvbIFUFgJJYBCG+7sRHpsEvU4LsTQQIokUfR0toIwGlB7+AH/729/Mv9tEnD17FmvXrkXEolxQeg1oowF8qQwEwQNPKAFfIIJ2sAuKthvQyXsQMicbgoAQGLVqEHwSoCkM1BSD0t7OmL9s/XYEh0dCKBJDr9WCBo3ejjZcLjnh1N/+3HPP4Y9//KPd43yavXlVWgT+cK/rFoqeER1c2h63A03TeDAnDT/eaXvXwx77/nkGBit7Csw+w4L7f4SoOctBUxTevScG314Ri7vnR+LEzUEotEYsSZRByCdA0YBSZ8SASo+6XjU+rOoY1d6L31gIsWB8Yh9b/PbwNRTWaewf6GMSIkPxhye2unx+z5ASehb74wjM7/urp/Zi2xrns9pZUlJZM64unF9DA8lLNmDd98dnR7x29F1Er3kYUWseRtepN9Bb/CH+kZ+Gxn4NXjrTjvh1DyNpkylZxIXn12BVtAH/b32izfECAD/9ohkajQZZsxPwu8c2OtTNxU+/jtlrduKpX//NrT/37798Bs1VZRN+/9Sj92Drates+BRF4b1C66WefEloZAwe/PHLLp//5cevo+DFH9k8hqJpRM/LQc4P/4VPnliA4HkbELv5mwCAjqP/i/7yz/D+I3NwvmUYr5xtR9zWJxG+NA+DVSfQe/Qf2JYqwbdXxmF/RTfePN+NaQ/9BnrlIIxqBWSpS0CQQoCiYNSqYBjphyxtKVo/+T1aWttc/rts8djyWNy3KMapc4Y1BnxU2T255gcv8Lt7FyA+VOLy+QYjjbJ+FjvEAswz8F/fvAe71ix1+Ly3Dp3FpeuN2PHsn1zO6Hr07z/FQNVptLe3Q0wSuGt5Gv7fXY73wRJG9LLBS3vXIkjqulfGJ+cbWemHp0lOTsbbb73lVhvnzpXaP8hB2tvbIeDzEBYWijf/4fp7YGBQjgGFyv6BTvL4xvm4L2d8EsD1Py+AcvoGLP/OSxOe23zibTy0ajZ+fLdrzzfD3r8ds6oN2CBn1yPI3fMDp865cOxjh45j5pkZ9/8XpNHTJjzu+r+egrq3BYt+9MG4707tTULM+r2QJs9D4xs/xCM//CUSU0f/HldKT+NyyQnM/M4/IYpMxmDVCZvv5huvPGKu7mEPzpUsKrjUjiG1HutmRUJE8kDRNEY0Bii1RhgoCitm+K54+EdlDRhS6bA+PQ4iAR9GisaIWo8BhRaBYhKLpkU63WbjmY+gGTG5J8+MkqJlUIPslCDI1QZoDBTa5HrMiZFiSZIMJI/Ar44222yv4EIrhtQ6rJsdDZGAByNFQ6ExQKk1oHNIg12Z/lfyZCwfnq2CXKHBhswZEAtIGCkKI2oduuUKDKu0uHvFXF93cULeLzwJ+bACm1YuhlgkhNFIYVipQr98CAPyEdyzxTPlsLjMjZMfQauQg6YpSGLToO1rRUBSBnrxIfqVemSnBIFH3K7T3VFcAL1SjqR4kd3x8vGV8dbgD7+sgVypwYYF0yAW3n5+euRK6A1GbFmcOmFfT372PhRDcixevQlCkRiU0QiVYhhDg/0YkQ9g9Tb3LG7vHzp1+/kQCmCkKLOFVyaVYMm8WW617yvKv/gAymE50rM3QiASgTIaoVGOQCHvB4/Px8zFrpWMaTpTAKNODXH0dGj7WiGQhUMUnggA6BrRYXlyEIB2SBNmQ9vXiuBZK9B34jWkhInRMqjBgvhAAN0wqEcQPGsFDEo5KL0Guv52SBPnIChtKQgeiZGGixBFJAJyGxZlljhQ2Q25xoB1aaGmdyBFY0RrROewFlIBHyumh3i8D3cSk/2dub+oBPIRJTYun/f1nEJjRKlG/9AIrtZb9/S6cuxDaEbkSF22AaRQDIoyQqscgWKgGzRFIS3LussvnzdeOH9UUgu5UoP185MhNq+bdOgZUoHk87B6bgKrf+9EfFRyA3KlFuvnJ329bmD6oQTJ53utH97inXfexaB8ELlbtkAsFsNoNGJ4eBhtbW3Yvn27R68tEfJNZs8xvPvRJxiUD2HL+jUQi0WmPo0o0N7RiW2bN3i0TxPxUfF1yJVas1fCWJrOFECnlCM2c+Ks0x+duwm5UosN8xJHaYOeYRXWZyR6qut2OXdoP1QjcmSs2AjB1+NYoxzByGA/9DoNFqxyvURmV8kBGJRyhM1fB55ABJqiYFSPQDvYDXVfq9VzOksOmDw149KgH+qxegwAXD53CgCgHxmAICgSAQlzR72XAxLTQfBIKNuuwzDSD1IW5nC/OSN6D1d3ITxACJmIhJDPw6kbvZgbK0N6XBDCpEKca+yHRk/hYvMglqSEer1/hypuISk8EINiLapbBtAzrMbchFBkJIQhJVKGmrZBHLncgrBAMZanRjnUZvfVc4hKzwYpDjB/tm2ubVE/K0oKYPzC63BVB8IDRJCJSQhIHk5d78acuCBkxAcjPECIC82DSAyToLpNjnkJIc786ZyhsOwGIoKkkElEEJB8nKhsQHpyFOalRCMsSIqO/mFodHp8dbUZqzJSfN3dUXx2ogSRYcGQBUohFJA4VnIRGWnTMH/2dISHBqFfPgShUICKa3WQiISYMyPZ1132Cg0lhxAUnQiNNNC8ixi+eBuGa03W0TWpIZgeLjFbIbovHIYkMtHkKgPK7niZEy0d9e/C8zeRFBkEmVSI6uZu9MiVmJsciXnJ0UiOCkbp9TYU11hfCJYc/QzR8cmQBsrQcO0KBnu7MW12BqbPmY+YxGloqr2KL7/42GXh+/nJEiTHRSEoQIIrNxrQ3TeIjJkpmD9rOqYlxOBGYws+PvoV7tniPzVFK08dRGBoBMQBMvBJAWrOHUd8WjoSZs5DYEg4tGolhvq60HClDAHBYYhJca62JCmWfv0smJ4bADB87Y62cWYopMLbsWLM9zyBKe5n29xw3Og2WRKCZ6+AbMbEZRBCMtZioPKoU31zli9q+hAeIECgmA8BSeD0zUHMiQlAemwAwgIE0Boo9Ch0KGuSIzxQiGiZd2pET2YOV3UgMUwKmYpEdfsQeoc15vcm+bWAq7g1CJJHQCTgYVaMf5Xd+fzsBSTFRkAWIEZV3S109w8hIzUR81KTkRIfiWNlV8adc/3LQoTEJEEtlaGzrgqKgR5Ez0hHTOo8hMYlo/16BerPn0TqMvsi5dDFBiRGyBAoEaD6Vi96hlSYmxiOeUkRSI4MQmVjN45faUZogBhLUp3zdHAGUz+CECjRoPpW34T92LQgxWN98BaffPIpIiMjEBQUBKFQiCNFRZg/bx4WLlyIiIgIKBQKfP75QSQlJdqN4XQHS8+BTw8dQWR4OIICAyEUCFB08gzmz52NBfPSEREWhv6BAXxZUgaBUIDspa6Xo3GWQxfqkRhpei40OsM4QdRadhgBUYkQKAIx2FRtVcgfutSIxAgZZBIhqlr60DOkRnpCGDKSIpASKUN5XReGlFpsXui9Nd2lkwchC42AJDAIpECI6pLjSEzLQOIs03t3ZLAfNEWj9lIJZi1e6XT7A9VnEJg4F3pJIEZuXYVuqBeBiXMQmJQOcWQyeEeFoPSjPUl7LnwBccTtDYDgWdmwJo1Lj32O0PBoAKb3rjgyacJ+BKV9bXH/6L8d7jtnRO/2ebYnvM1zo73Uk/Gcu9mFTrkKgWIBaABr58aB5PNQ0zaIa+2DUGoNyE6LRkVTH7R6I+q7hpAaM3GtKQaBVIaBxmoExc8AANT3qfF6WSfSIiVQ6ShkpQSB5BHoHNZCb6ShN9K4NWDdJXn7fNuJTNbNdkyIc5m8rNk2v9+8OM1LPXGcry5Wobq2CbOmJ6JfPoxVS+aB5PNx9WYTDEYjTpRcQpAsACsXZaC6thH9g8MIDw3C9YZbd4TwnbFyh/m/eTw+ND3N6DzxOmijKZ6zsk2B03Vy0DQNVVcTQFHmOPjOYZ3V8XK9W4lZUVI09Wtwret27MjAiBod/SMIFAtB08C6+dPA5xOobu5BXecAZsWHQ/S1BUBvHL/rKwsJR8O1K0icMQs0TWPD3Q+CzyfRcO0KYhJTwOfzER4dh9aGWiTOcN4iu2uD7ZfP0nmzsXSe7THANTLX77T5/YwFrtdI1Qz1QdXfAdCAtq8VnSdehyQ2DSMNFQCAiy0jaBowJXhRd9aZv6f0OrTJabxe1gkxaVqYKW9dhaLpsul7rQpBs7JA8EhoBzvAFwVAN9QDnYMx5K5Q36tCVJAIASI+aBpYkxoKkkfgaocC17uU6FHoIBORWDU9FDVdCjT1q9ExpPVYf+4U7L03l033nWeZuxRX3kBHzyBkUgloGli/dB5Ikoer9a1o6+5HSnwkDBaJAxnmrM6z2e70xWsm/M44Jlh+x5IZNttane4dKxhX+uENdu+2nYxq5UrnRY4rWIZd3L3Ddoja+tU5nu6OVXYsve3V9eLBCijHfJ+YNdoifuGv4xOihgaKUX2rDzPjQkHTNL6xYiZIHoGatgGQPAIJ4YFQavWo6xxEWqx3DHaLN9h+785dvtat9klpMBS3qiGNSwNoGjEr7wXBI6FovYbAhNmmjegxcYUCWSgUt6oBAOruRqi7rYcPZG/ehSulpwEAI40VGLxy3MZ7uRuGkQFQesffhZwQveca+nGtcwRpUYFQ6YzInh4GkkfgRtcIdEbK/FlFixwBIhJBYhKpUYH2G2aJFTNjsGLmeFGeEhmI6ODblqTVc2JB0zR6RxyLlQ2bPs8c0wsAFEUjRELiRrcKRoqGgaIhFfDQMaQFn2+yWDT0q622da6+D9c6hpAWLTPdrxnhIHkE2gbVUOmMaOpTIDcjFuebBjCk1mNQ6VjSLC5QUnMLV5u7MTMhAiqtHivnJoHP56G6yeTDL1doMCMuHHqDEUIBH1caOhEgFmJGXDiGlBpI7e8/eIxVS+Zj1ZL54z5PSYhFbORol4zszHTzf3f2Dni8b76mvboEfY01CE2cCYNGBRo0aKMefGkwRhpNwqV9SAsxyQNNA9KYaeaYXlIcCL1RPeF4qe8zjUFL0Rsmk+BbW8fvIk+PCUVMqGk+WTPPtNHAsxLfNn/5KsxfPt7KGp8yA2FRsYiMNbnHDfR0On0vvrpYjeqbTZg1LREqtQY5SzJA8vm4Vn8Ll683YMe6LFxruAWKopESH41Z07i/SLt5qRhtdVcRO20mtGoV0hatBJ9PoqPhOoRiCeS9XUhdmIW6ynPmc+KmOy7qxcERmLX9P1Dz6V9BG/WQpS2Dqr0WumGTOG0f0poX4bTRCL40GMq266ApAwwUiRAJievm54M2fw/KCMqoB08khW6gE3ypDLRBD91gJxDimSp/qZFSqzG90yIkiJaNjktclmya0Op72Y93u1OY6H15rWMYSp0RWr0RIgEfy6aFoaZ9CAaKBkEA2TMifN11h8nJnI2czPHjaVpcFGIiQgAA6TNGzyPNl0vQ3XAVEckzoVerkLxwJXh8PgY7bkESFIKRPtM7VxwQhIhk214ZJTfaUdPSh5lxYVBp9VgxOw58Hg/XWvthoCh0DCiwddE0VDR0Q6M3Ylp0MKKCpDbbdIXb/QiFSmsw96O9fwRylRbxYYHoGFBiRK1DcmQQ0uK870nIFmfPnsWVqirMmT0bSqUKa9asBkmSqKyshFAoRGxsLLq7u9HcfAvz58/D7Nme2URV64yQBABflpThSs11zJmZCqVKhdUrskDy+ai6dt2c2ThIFgidTg+hUIBB+RDiY2PQbic7MBuUXG8b9XwaqfEbQN015yBvrkFQwkwYNGMlsYmVs+Kwctb4zbPkSBliQkxenPFhgeiSWz/fE9ReKkbrzWrETpsFrVqFWYtXgscn0V5/De311zAvZzP6O1vB5/MxIu93Oi9E0IxMqzG9kqhkkNIgCGXhUI+5X6GzsxE6Oxt1+/8bMBohTZ5nte2r579C2bGDAAAen7T7XuYJxTCqhh3uu09F7/nmQfzt9G21f6ymGyMaAw5XdSEiUAidkYKAz4NGb8Txaz0gACSESqDUGREoInGlTY5MDxjDCILAZxeaMay6LQx7h9VQag2gaRohASII+DzoDBR0htsWoZiQ0RP2udouLI8aHzDPuH1c+eAPEAYEQ69WghQI8b/nHFssz5g++mH768k6iAWmzMxXWuWgKKCsoQ9Cko8BpRb8r693vnEAiWFS0DSNC00DgCjEoev5krbeQVyqM8VzVjd1ob1vGIfKb4CiaEhFAoTKJNDqDTh5uQGAKat5UlQIAKC+ox832/uwMM67cZDM7/vymwdwsrTC/HlP/yCUag0oikZocCAEJAmd3gCtTv/1eUBs5GjLQltnj8sJRjgJAbRXleDih6+YP2os/QI61Qh4fAG6z76L7rPvmr/7/cmvHWAIHtpPv4vB66UwapVQDfXhRNsgTtwcX65rLCRpSnlfdqENP37zBHqHlFBq9KBoGiEBYghJPnQGozmmhyCAQYUaF84U4W+/eHpUW/L+HmhUKlA0BVlQCEiBEAa9qQQORRnBJwWQBd9eNJWdPIz46Ilj/d/+7BiuN9x2pz58pgzDShU+/dod3mAwgOST+P3/ffB13wiEBcsgC5COSvXPJQZ7u1D0xu1kIJdPH4JGOYKKE58iMDQCRr0efIEANEWj+qsj4AuECAqLhNFoQFP1BTRcmTjxFwOPINBdXYyvXnwcRp0GfWWfoK/sk1HH/NeRZtN/EDx0HPmbxbnAp9UKfFrdZ/6s6b0XHPrbkvJs76C7ypvlnajqUAAAehU6qHRGUDQQIiEh4BPQG2loDaZFGUEA0TIRFFrmeZ1E84MX+OeZekQFiQEA1W1D6JCr8UVVBygKkAh5CA0QQas3QqM34khVBwiCQGKYFCMaPS41D+Krul4IwrgV58s8A3/5oAjFlTfMn/cMDEGp1oKiaYTKAiAQ8KHXG83vnFtdpjHw1TsvgeCbkmEO93ag/UYFaIpC0+VikEIR1MODEIgk5jmOFIkhkpqyjTdeOI0QkanUV821IRy/0gyRRWLNI5VNGFHrcPBCAyKCJNAbKAhIHtQ6A8pudoIggMRwGS42dFnzHnWZv35RiUDJ7RCA2/2oR0SQFHqD8et+3J73QwPEkH19TmuvnL3OeJBbt27hD2Oy1h4sLMTw8DAOfPIxoqKioNfpIBAIzKWNCIJAVXUVgoJM7vo3b95kzQIcHx8PvZFCd98Azl+6DAC4XFWD1vYOfHboKCiKglQiQXhYCDRaHdRqjblPKUmmjePhEQXKL1UibRb7ovzAuVp0yW9vGB6paMSIWoeOAQUMNedQ88ntMp6q/g7oVSPoq7sEcVAEQNP49Lwptw9D77DKpA2or7UB+bU2YGKECZjFL8O52k4sj/TMurTi1EEYDXoMdLejqcY0jmsvfgVSKIJiaAAisRQtN6tBfv3epSnK4VKOzDzT8MGvQPD5MGpVJu+7gGAQpAC0QQ/QNIYaKqEf7sONt54fdb5uuA8EKUTXqTfMnx1866+ITkgx/7uvqx39naaEkTf/8S2H/+6YGMfCI3wmerfn7cSfXqzF389Z39FRq/ug1+shEAohEYstvrmt6PlkALZu3cZ637757e/gow/24/wob7avLcsEcL21D319/aApComJCQgMNE3+LWO835JTZ+Ghhx8e135qaip27brLVKdXaaoPGZo2E7daWqBUKTFtWgp4xO2XBknysfexR7FhgymGJi3N5Ma7ZMkSzJiWgn+Xj7+HOp3OVCONIBAkk1l887VIIHh45Bvu12TzJKtXr0ZCfBz+fLjC6vcqlWpULU5r8PkibPNw0oaxREZG4oEH7kfN1RqUXG0a971KrcKt8stITklGV2cXRGIR4uNMi6jG7tE7VlnLl3s86YQ3uXvXTrz657/g5qH/HfddoFiAEYMIBoMBUokEPB5vVJ1edVcD1F0N5jq9KpKAfEiOiIgIBMmCRi3+c7dswmOPPQbgdp3e7q5OlLdpYZr2TFPf+StN0Gg0mDN7DoDbVrzgkFDoDEa0XD0/4d9SdqEYoIFZY3bLBy0CVRJiovD44/vGnRsZGYlVOTkovlyD4ss3xn0PAAqFApSRQlDwxHGE06dN41QN5zVr1iAxKRlfffh3q9+PjAyDzyeh0+kQEBBgroc7lnvusV2u5NFH96B/cBBGZRuCpiVBq41CZ2cnlCoVpk+fDqPBYLNOL2DaDHG2Tu/cuewmySNJEt/61rdQWvwVLoxYfCGgUV9XD1lQEGQyGW7duoVpKSkQS0xZh1u+Pnbd2lnIzs5mtU+Tlfnz52P2zDQcqLKeQEWj0UBvMEAsFkGlUkMmk1l4fNzeXCMIPr65i1vvzuDgYOzZ8wguV1biXK31zfOWgT40NjYiMDAQiYkmC6+GIiESS1D87uiMtRKJBCRJgqZpDA0NQSAQICAgwFqzIAgCu7/xOF544QXs3fsYjh87hleLrlo9Vq1Ww2g0IjAwcMI6vWmpM7Bo0SJn/vxRZGZmIi11Bt4snjgL9PDwMGiaNv3GVmrEAkB8XCzWrJnYlZsLrFmzBm+99RZ+/wfrpVqYdSBBEBAKhRPWGA8ODjavL93l29/+NiQSCZ5//nn87lXr7wGKoqBWqSD4uk/WfgM+n49t29hb3wuFQmzfthWlpaW43FYz7nuNzgiNsgVVH/zBZp3elr4RvP3ljQnLxlIUBT6fj+nTp5ut2S3do3dzkmfMtKoN3OWe3bvx+ecHcXb/7U1eGsDw8BAEAiG0Wi2kUilEY+rZTps23aH3SGZmJjZvyTXV6WV0Mg9orKmEWq1GerrJW1EiE6JHQ2Kw/FNER0chIOC2Z25E6gzodFq0trTAYNDjzOfvW70WKRCYSjNSNCRSic264SnJKfjNb35jt/8AAJqjrFu3jo6JiaHvvvtuX3dlHA8//DC9fPlyOigoiP7d737HWrs7d+6kAdC9vb1ut/XDH/6QjomJoQHQcrmchd5xj4ULF9KrV6+meTwerdFofN0dh/nxj39MR0RE0AaDgX7hhRfo0NBQWq/X+7pbnGDNmjU0APqNN96we+zLL79MA6APHTrk8vUWL15MEwTh0rmRkZF0WFiYy9e2x/z582k+n++x9r1NX18fDYB+99136WnTptHPPPMMq+1v27aNBkAPDg6y2q4v+Oqrr2gAdHFxMW0wGOioqCj6ueee83W3JjVpaWn0t771LXpgYIDm8Xj0P//5T193iVXKy8tpAPTGjRsdPqerq4sGQO/evZuVPqxdu5YG4NP3tVwup2HSAvTZs2d91g9v8NBDD9HZ2dl0bm4uvWPHDl93x8ylS5doAJyb05j1h1arHffdlStXaAD0U089NeH5Wq2WBkBHR0d7sJfOUV9fb14nzZs3j3788cdZv8ayZctoZ+Xk7NmzaQB0W1vbhMe8+OKLNAD6yJEj7nbRjGcClFigo6MD4eHh6OjosH+wl6mpqUFGRgbmzp2LmprxO0auwlgmtFr3E5TcunULCQkmV5GWFuvZaP0ZmqZRX1+PuXPngqIoNDc3+7pLDlNYWIjt27eDz+cjLy8Pg4ODOHfunP0T7wDkcjkEAgEGBuzHNDPjxR03X4qiTLuJLvjVURQFykocEFt4un1vU15eDgDIyspCVlYWysrsuzE7A3Ov2Jg/fU1BQQHi4+ORnZ0NPp+P3bt3o6CgYKomr4dobGxEXV0dcnNzERoaiqysLBw96tls3d5GoTC5zzOeDo7AjCW25iEujNHu7m6r/z0ZqaioQGZmJjIzM1FRYd1jzhew/Vyxha01OPOZrfUGM8a49A4qLi4GAKxYsQI5OTnmf7MJ8zsaHHSTBm7PQ8w9s9Uum6FcnBW97e3tiI2NRXt7u/2DvYjRaMT169eRnp6O9PR0VkUvs6Bx5qU0ES0tLZgxw5Sx8NatW263xzV6enqgUCiweLEpMVF9PTsF7T1NY2MjampqsHOnKTZw6dKliI6ORmFhoY97xg36+/shlUrR399v91hXJtqJ2tDr9XaOtH6up0UvTdOcjd11lrKyMkRGRmL6dJMr1aVLl1hdHFBmV3j/SdJnDYqicODAAdxzzz1mt7/8/HzcunULFy9e9HHvJidHjx4FSZJYv95UizM3NxcnTpxwaV7gKq4syJmxxLbo9eUYZYSuQCCY1KJXqVSitrYWixYtwqJFi9DR0cGZv5ft54otbK3BHekzF0VvSUkJ0tPTERoaipUrV6K2tha9vexWInBlXGs0plhuR0Qvm/MwJ0XvyMgIFAoFEhMT0dnZyamB0dRkigHMyMhAeno6rl+/ztqilGmHjRfCrVu3MHv2bAgEgkkpeuvq6gAAy5Ytg1gsNv+b6xQWFkIoFGLz5s0AAB6Ph+3bt0+J3q8ZGBiATCZzyNLLxgLKnTa8IXoBdid8X1JaWoqsrCwQBIGsrCzodDpcvnyZtfa5sKBmg9LSUnR0dCA/P9/82erVqxEZGYmCggIf9mzyUlRUhJUrV5oT++Tm5mJ4eJh1bwRfwsStq1SOZ/2ezKI3KioKXV2ezxLsK6qqqkBRlNnSCwCVlZU+7pUJropeW88n85ktbxtmjKnVas78bcXFxcjJMZWEYv6fbc9CV8Y1k1TNMp8GG+3ag5Oil3FpnjFjBoxGI+u7Eu7AWHbT09ORkZEBtVqNpqbxyYpcga0fWK1Wo6enB9OmTUNiYuKkFL2MZTctLQ2pqal+Y+ktLCzEunXrEBh4O7B/586dqK2t9Rvh7ik0Gg1UKhWCg4OdsvT6SvQajUaviF5/F3GA6V6Vl5cjK8tUl3fBggUQiUSsiorJcr8KCgoQGxuLFStWmD8jSXLKxdlD6HQ6nDp1Clu2bDF/tnjxYkREREwqF2fGouKK6GVrY58LY7Srq2tU+Z7JSmVlJUiSRHp6OqZNm4agoKAp0WsHW4YnR8aCpdXSmXHmKQYGBnD9+nVzZu6kpCTEx8ejpKSE1eu4YrBj7o8jlt47RvQyNcS4FNd79epVhISEIDY21pypjC0XZ7Z+YCaGNzk5GcnJyZNW9CYkJEAikfiN6B0aGsLZs2eRl5c36vONGzdCJBLd8dZexrobFhbmVEyvO+PFnTYoivKo6zGbnh++5saNGxgZGTFniBQKhVi8eDFKS0tZu8ZkuF/WXJsZ8vPz0dzcjEuXLvmod5OTc+fOQaFQIDc31/wZj8fDpk2bUFRU5MOesYtCoYBQKLS5yBwL2+KEC2O0u7sbUVFRiI6OnvSiNyMjw5wdOTMzk3Oil2uhO2yKXmfGmadgLLqMhZcgCKxcuZJ10eusdjEYDGYXcFv3iQldm/Sil4njXbBgwah/c4Gamhqkp6eDIAjExsYiJCSENdHL1guBEbmTXfSmpqYCgN+I3qNHj8JgMGDHjh2jPg8ICMCGDRtw8OBBH/WMGzDW3cjISIcsvYzbrzvjxZ1J1WBRFscTcGGByBalpaXg8XhYsmSJ+bPs7GxWLb3Mb8mleCpnKS8vR3t7+yjXZoY1a9YgIiJiysWZZYqKihAdHW1ebzDk5ubi0qVL6OmxXuLI3xgZGYFYLLbpTjgWtsUJm8k6XaW7uxvR0dGTXvQySawYuJTMarKKXsux5cw48xTFxcWIjY1FSkqK+bOcnBxcvHjRHFPLBs6uVSyFrq37dMeI3o6ODgQHByMlJQU8Ho9Tll5G9AKmXRM2k1mxsYgHTKKXx+MhISEBSUlJk1L01tXVjRK9zc3NnI99LCwsxPz585GcnDzuu7y8PBQXF2NwcNDKmXcGjHU3OjraIUuvVqsFQRCsWHpdWYQZjUYYDAaPuZtOBhHHUFZWhoyMjFH1tLOysnDr1i10dlqvK+osk2GToKCgADExMWZ3NEtIksTdd9+NAwcOTLk4s0hRURG2bNkyzrLO5F04duyYL7rFOgqFAhKJZFR9e3swcw9b71ZPLGKd5U4QvTqdDlevXh1V73jRokVoaGjA0NCQD3tmgnmu3ElC6QlsvXMd6TPXLL0lJSVYuXLlqLrDK1euhE6nYzUpIjM/OLpWYe6NRCKxeZ+YNR6bayDOit64uDiQJIno6GjOiF6DwYAbN24gIyPD/BmbopetXdBbt24hLi4OAoEAycnJ6OrqmhQLZwamXFFaWhoAU1yv0WjkdNkig8GAL774YpxrM8OOHTtgNBpx5MgRL/eMOzDW3fj4eIcsvTqdzu0J0dVFmGVWZU+9uCeDiGMoKyszuzYzMPG9TCkjd+HCgtodLF2b+Xy+1WPy8/PR2NjIGTdFf6ezsxNXrlwZFc/LEBMTg8zMzEkT18uIXsDxeEO2LXJcGKNjRe9k3EC6du0adDrdOEsvAFy5csVX3TLD/P5cE72OWHrtiV5m88zXoler1eLChQtm12aG+fPnIzAwkNXSRa5aeu2JXmaNd0dYeuPi4gAAcXFxnBG9DQ0N0Ol0ZksvAGRkZOD69eusDF62Xgi3bt1CUlISAJitiq2tre51jkP09fVheHh4lKUX4HbZotLSUgwMDJhLFY0lISEBixYtuqPjegcGBkAQBOLi4qBUKu2KWZ1OBx6P5xP3ZkvLh6cWcFxYILLB0NAQrl27Zha5DAkJCUhISGAtrtffNwnOnz+P1tZWq67NDOvWrUN4ePiUizNLHDt2DARBYNOmTVa/37JlC44ePcq5hDuuMDIygoCAAPN/OwLb4oQLc1p3dzdiYmIQExMDjUbDCTdUtqmsrARBEKNc9mfPng2xWMwJF2dPiBk2sPV8OjIWXBljnoIpCTjWa4gkSWRlZbEa1+vsuGbuTWBgoM37xMYabyxTotcJrl69CgCjRG96ejp0Oh0aGhrcbp+tF0JLS4tZ7DL/P5lcnJksx4zYTUhIgEgk4rToPXjwIGJiYkbFNI4lLy8PR44c4bybtqfo7+9HaGgoIiMjAcCui7MvRa/l8Z56cbMV7uBrzp8/D5qmx4lewGTtZSuu19/vV0FBAaKjo8ftzFvCuDhPZXFmh6KiIixZssQ854wlNzcXvb29k8KyrlAozOEFjlqhJpvopWl6lKUXwKR0ca6srMTMmTNHVYkgSRLz58/nxLPsCTHDBvZEr70+uzLGPEVJSQkCAgKwcOHCcd/l5OTg3LlzrG3mOTuumXsTGBho19J7R4je9vZ2xMfHAzC5OnIlkVVNTQ3Cw8MRFRVl/ozNDM5sxvQyYjcxMdH82WSBEbczZswAYMq0OX36dE6X/CksLMT27dvHxY1ZkpeXh6GhIVbdTvyJgYEBhIWFITw8HADsujizMSG6Oua8IXp9vUBki7KyMoSGhmLmzJnjvsvKysKFCxdYWVQ7G1fEJWiaxoEDB7B79+4JXZsZ8vPz0dDQwGqN4zsRo9GIY8eOWXVtZsjOzoZMJpsUWZy5IHp9PUZHRkagVqtHid7JWKt3bBIrBq4ks+Kq6LW1HvA30VtcXIzly5eDJMlx361cuRIDAwO4ceMGK9dydh3F3JugoKAp0UvTNGctvTU1NcjIyBgVFB4VFYXw8HBWRC8bi1yDwYC2tjaz6BWJRIiNjZ10ojcuLs7sRgKY4nq5aumtq6tDbW3thPG8DIsWLUJcXNwd6+Lc39+P8PBwhIWFAXDM0svn8yet6PV3yyVDaWkpli9fbnXDJzs7G2q1GlVVVW5fx5/v1/nz59HS0mLTtZlh3bp1CAsLm3JxdpOLFy9iYGBgVKmisQiFQmzYsGFSxPWOjIwgJCTE/N+OwIylyZLIirHqTmZLL0VRuHLlyoSi9/r161Cr1T7o2W0mq+gdGRlBUFAQJBKJT92baZo2J7GyBvM+ZsvF2VX35uDg4Cn35oGBAeh0ulGit6enhxMun5aZmxmYDM6M67M7MLuf7vzAHR0dMBqNozIET7ayRZblihi4XLaosLAQIpEIGzdutHkcQRDYsWMHDh48eEe6Ljpr6dVqtaxZep21PFge72nR64+WSwaaplFWVmbVtRkwLcIEAgErLs7+LHoLCgoQFRWF1atX2z1WIBDgrrvumnJxdpOioiIEBwdj+fLlNo/bsmULzp07x4mst+6gUCjMotdRKxTb2VOZsckF0RsaGgqBQDDpRG99fT0UCsWozM0MixYtgtFoZGW96g5ardbtDWtPYOudy/TZ1lhQKBQIDAy067braWpra9Hf3z9hqIxMJsPChQtZE73OjmuFQgGCIBAcHGw3e7O9e+4snBO9jFXXUvQCvndB0ev1uHnz5jjRC7CXwVmv14PH47n1A1vW6GVISkpCS0uL2/3jCpblihhSU1PR1NTEuWyAgEn0btiwYZRleiLy8vLQ0NDAmtuJP8FYepmFmaOWXlfHC03TLi/CLI/3hCg1Go1OF3znInV1dRgcHByXuZlBIpFg4cKFrIleLiZHsYczrs0M+fn5qK+vZ8VCfqdy9OhRbNq0yar7nyVbtmyB0WjEyZMnvdQzz+CK6GXDm2Zse5b/720sRS9BEIiKipp0opdxX7Zm6Z03bx74fL7PXZzdfXd7ClvPpyNjgSuit6SkBDweb8LNZsDk4sxWKB1zT5wpWeTIfWJ7/gE4KHqZ+F3LmF7Lz31FXV0d9Hq9VdGbkZGBmzdvum2N1ul0IEnSrR/YmuidTJZemqZRV1dnLlfEkJqaCoPBwLm/c3BwEF999ZVd12aGDRs2QCKR3JEuzv39/QgLCwNJkggJCXEoptedCdGyDAfX3Ju94T7tDRgxu2zZsgmPyc7OZiWDsydekN7g4sWLuHXrlkOuzQwbNmxAaGjolIuziwwMDKC8vNxmPC/DtGnTMGvWLL+P6x0ZGTGHjjjj3uzummRse5b/7226u7tBkiRCQ0MBYFLW6q2srERSUpLZY8oSsViMuXPn+jyZFdvPFVu4K3pHRkYgk8kgk8l86t5cUlKC+fPnIygoaMJjcnJy0NDQ4LZBkaIopysnOHqfPPGccE70MpbemJgYALctvb6O67WWuZkhPT0der3e7URKbIne8PDwUVbF5ORktLa2ToqyCwMDAxgaGhpn6WVEMNdcnIuKimA0GrFjxw6HjpdIJNi0adMdKXoHBgbML+qwsDCHLL0CgcDl8eKOi/KU6HWM0tJSzJkzx2xhskZWVhbq6+vR19fn1rW0Wi1IkuSc9cAeBQUFiIyMdMi1mWHKxdk9Tpw4AYqiHBK9gCmL89GjR/32XtM0DYVCgaCgIAQEBPjM0qvX6306RpnMzUx+gZiYmEkneidKYsXAhWRWXBS9NE2bvS0nEr32+swVS29xcfGE8bwMzPfuuji7Ur7RGUvvHSF6IyMjIRQKAQDh4eEQCAQ+F701NTWIjo5GRETEuO/YyuDMluhlavQyJCcnQ6/Xo7Oz063+cQFG1I4VvYmJiRAIBJwTvQcPHsSiRYuQkJDg8Dl5eXk4d+6cXUvnZIKmabOlFzCNe09bet0RllOi1zHKysomdG1mYFywysvL3boWFxdS9qBpGgUFBdi9e7ddN9ux5Ofn4+bNm6iurvZQ7yYvRUVFSE9PN1c3sMeWLVvQ0tLit2EnOp0OBoPB6QU5m2OKCdnwpTcGI3oZJpull6ZpVFZW2hW91dXVPg0F46JXjtFoBE3TEz7v/iJ6e3p6UFdXZ7P0HWDyok1OTnZb9DL3w5nQIsv7ZM/SO+ndmy0zNwOmG8mFDM7WklgxREREICoqyu3kAGy8YCxr9DJMplq9jDWdKVfEwOfzOVe2SK/X48iRIw67NjNs374dFEXhiy++8FDPuIdKpYJOp/OqpZc5z5VJdUr02kepVKKqqspmXBEApKSkICoqyi0XZ2aX3t9E76VLl9Dc3Ix7773X6XM3bNiAkJCQKRdnJ6FpGkePHrWZtXksa9asgUgk8lsXZ2Zh6azrJZuil2nDnTnbXbq6usaJXl/ni2GTtrY29Pf3W01ixbBo0SJoNBqfbuC4++72BPaeT0fGAhfcmxkRa8/SC5hcnNkSvc7ME5b3yZ6ll+3nhJOil4njZYiPj+e06AXcT2ZlNBphNBpZsfROZtFbX1+PmJgYcy00S7hWtqi4uBhDQ0NOi97Y2FgsXbr0jnJxZqy6zlh6GXdWd0WvK+52ns7ebPkC9jd3XYYLFy6Aoii7opcgCGRnZ7uVzIpxseLaQsoeBQUFiIiIwNq1a50+VygUYteuXVMuzk5y9epVdHR0OOzaDABSqRRr1qzx29JFzMLSWSuUVqs1jyl3nzFmHvPlxtRElt7JMn5sJbFiWLhw4ahjfYG7725PwDyfE71zmbHA9ezNJSUlSExMdMiLZeXKlaioqIBKpXL5eq6Ma8v7pNPpJjzPEyFLnBO97e3toyy9gCmu15eJrLRaLerq6myK3oyMDLdELxuLXJqmrYreoKAgBAcHT4oMztbKFTFwrWxRYWEh4uLibO66TkReXh6Kioo49VLwJIxV1xVLr6vjxR3Lg6ezN3NhgeguZWVlkMlkmDt3rt1js7KycP78+VHJxZyBC1YkZ2Fcm++++26nXZsZ8vPzUVtb6/MSJP5EUVERJBIJVq1a5dR5ubm5OHv2rM9rnLqCq6KXsW4B7tfq5cIYtSZ61Wq1T+Mv2aSyshKRkZHjDEeWBAUFYcaMGT5NZuXuu9sT2LNY2rM60jSNkZERTohee67NDDk5OTAYDDh//rzL13NFu1iKXubfE7V9R1h6rYleX1p6a2trYTQakZGRMeEx6enpqKur88kCnKGvrw9qtXqc6AUmTwZna+WKGFJTU9HY2OjywplNaJpGYWEhduzYAYIgnD5/586dGBkZwdmzZz3QO+7hiqWXrURWQqGQs+7N/iTixlJWVoZly5Y5VIYnKysLIyMjuHbtmkvXstwk4NJCyhYVFRVoampyKmvzWDZt2oTg4OApF2cnKCoqwrp16yAWi506Lzc3FxqNxi/nZHfcm5n8Ku7OQ1zwXrEmepnPJwNMEit7a45FixZxQvRy6d3miHuzrT5rNBpQFOVT92a1Wo1Lly455NoMmHRLcHCwW6WLXFmrWLo3A3ew6DUajejq6uKc6GUsuPbcm41GI27evOnSNZgf1ZUFOIO1ckUMk0X01tfXjytXxJCamgq9Xs8Ji3ZtbS3q6+uddm1mmD9/PhITE+8YF2dXLb3ujBe2LL2eFL3u/H2+hKZplJaW2nVtZli6dCl4PJ7LLs7MPRKJRH5zvwoKChAeHo5169a53Abj4nzgwAEWezZ5USgUKC4udiqel2H27NlITEz0y7hedyy9bIteX81pCoUCKpVqUotee0msGDIzM1FZWemzih7uvrs9gb3n016fXR1jbHLhwgXo9XqHLb08Hg/Z2dluxfW6Mq6dsfSy/ZxwSvT29PSAoiirolcul7vld+4ONTU1iIuLs1l2gxHErrqZTYle+wwMDGBgYGBCSy+XyhYdPHgQEokEGzZscOl8giCQl5eHwsLCSRNvZIv+/n7w+XxzXbnw8HBoNBqbY56tRFZctvRybWHgKM3Nzejp6bGbuZkhICAA8+fPd1v0cs16MBE0TePAgQNuuTYz5Ofn4/r1625XD7gTOHPmDHQ6nVPxvAwEQZhLF/kb7ohegUBg/m938PUYZYQtUw7T8r8ng+jt7e1FW1ubQ+FUixYtwvDwMJqamrzQs/Fw2dJrS/QKBAIYDAarmwWMZdeXorekpARBQUE2vVLHkpOTg9LSUrdDi9wRvRNZxSe9pZeJ27WWyArwXa1ee0msACA0NBSxsbEuLzzYEr1SqdRqUXJG9PqzgGpoaAAwvlwRQ1JSEkiS5IToLSwsxKZNmyCRSFxuIy8vD83NzXfEYnZgYABhYWFmtyzmGbZl7WXL0isUCp12t2PO9VTZBX8XvYx4Xb58ucPnZGVluZzB2d/u1+XLl9HQ0OCWazPDpk2bEBQUNOXi7ABFRUWYNm3ahN5C9sjNzcWNGzfQ3NzMbsc8jKvuzVqtljVLrzvhJGzACFtLS29oaChIkpwUopdxV3bU0gv4LpmVTqeDSCQCRVGcCEcD7D+fll4P1uLbGZHLjDG1Wu31slDFxcXIzs52KKSIYeXKlRgaGvKqdnHGvdmV9ZktOCV6GVFrzdJr+b23cUT0Au4ls2LjhcDU6LUWz5GcnAyFQoHBwUGX2uYCTDmiiUQvSZKYNm2az0Vvf38/zp0757JrM8PatWsREBBwR7g4W9boBW7H9tqK62VenL6y9PL5fI8t4NwR5FygrKwMqampVuuaT0R2djauX78OuVzu9PX8TfQWFBQgLCzMLddmBpFIhJ07d06JXgcoKipCbm6uS3kWAFOZKD6f73fWXoVCAZIkIRQKXXZvdnce8vUYZUoTWYpeHo+HqKioSVG2qLKyEjKZbFw5R2tERUUhLi7OZ3G9bG6msIW959Nen8d6UwCmsn3egqIonDt3zuF4XoZly5aBJEmXXZw96d7M3PNJa+nt6OgAn89HZGTkqM99KXrVajXq6+sdchdwp2wRG4tcazV6GSZD2aL6+npERUWZXWCtkZqa6vNavV988QUoisL27dvdakcsFmPz5s13hOgdGBgY5aHgiKWXmRBdHS/ubDQx1/aUKGXa9KcYVUtKS0sddm1mYOJ/XckkaXm/uL5JwGRtvuuuu8yuo+6Sn5+Pa9euuZwI7E6gvr4eDQ0NLrk2MwQHByM7O9vv4nqZRSZBEE6LXpFIZP5vd7CMu/fFGO3u7gafzx+1uQrcLlvk71RUVGDhwoXg8Rxb1vsymRWbmylsYe/5tBwL1r4f694MTCzmPMG1a9cgl8udFr1SqRSLFi1yWfRarqMc+S11Oh30ej0CAwPNll5rnic0Tbtt2LAG50RvTEzMONO8TCZDQECAT0TvjRs3QNO0Q5be9PR01NfXu1TSgI1ELNbKFTEkJSUBACeSPLmKrXJFDFyo1VtYWIilS5ciNjbW7bZ27tyJsrIy9PT0sNAz7uKspddoNIKiKFYsvWKx2CVLLyN6p9ybR6NWq1FZWelwEiuGtLQ0hIWFuRTX60/368qVK6ivr2fFtZlh8+bNkMlkU9ZeGxw9ehQkSWL9+vVutZObm4uTJ0+6XcLHmzDuhACczt7sCdHrK/fmqKiocaJwsoheR5NYMWRmZqKiosInIW9sPldsYe/5tNfnse7NwMSxqp6gpKQEfD7fqZAihpycHJczODs7ri1DLUQiEfh8vtXNAcY1fNKLXmv1xQiCQHx8vE9EL2O5daTWZHp6Omiaxo0bN5y+jjsLcAZbojcqKgoikcjvLb32RG9qaioaGhp8Fiei0+lQVFTktmszw7Zt2wCYrMeTmbGW3uDgYPB4vAktvWyMF3cWYcwL0FMLODb+Pl9RWVkJg8HgtOglCMLluF7mHkkkEs7fr4KCAoSGhrqc5M4aYrF4ysXZDkVFRcjJyTEvSF0lNzcXIyMjLsef+wLG0guYLFFardYh0a7T6cylndgSvb6a08aWK2KYDKJ3eHgYdXV1DiWxYsjMzERPTw86Ozs92DPrsPlcsYUjotdWnxnhFhAQ4BNLb0lJCTIzMxEQEOD0uStXrsStW7fQ1tbm9LnOjmtLN3Bbnieemi84JXrb29vHxfMyxMXFmRNdeZOamhokJibadKllYISxKy7O7u6CKhQKDAwMTCh6eTwekpKS/Fr02qrRy5CamgqdTufS4GWDL7/8EiMjI9i5cycr7UVFRSErKwsHDx5kpT2uMtbSy+PxEBoaOqGllw2rgbui1xuWXn8UvaWlpZBIJJg/f77T52ZlZaG8vNzpUhq+tiI5iidcmxny8/NRU1OD69evs9ruZECr1eLUqVMulSoaS2ZmJiIjI/3KxXms6AUcizecbJbeySp6r1y5AsCxJFYMjED2RTIrLoveid659sbCyMiIeU3gC9FbXFzscKmisTAu0a64ODs7ri1FLzCx54mn5gtOid6Ojg6botdXll5HXJsBk3UqISHBLdHr6iLXVrkiBn8uWySXy9HX12c36yYjin3l4nzw4EEkJia6tOCfiLy8PBw7dgwajYa1NrnGWEsvYIrrddTS64qLlmUbrmRv9rToJQiC8yLOGmVlZVi6dKlLpXiysrIwODjodFy+v2wSVFVVoa6ujlXXZoYtW7ZAJpNN1ey1QnFxMVQqlVvxvAw8Hg+bN2/2K9E71r2Z+cweWq2WNXHCzLFcs/TGxMT4veitrKyESCTCnDlzHD4nKSkJoaGhPonr5aJ7s73n0xFLrytjjA06OjrQ1NTkdDwvQ3R0NFJTU90SvY6Oa0v3ZgAOWXondfbmieIgfWnpdVT0AqYMzq7U6nU3ycNkF71MuSJ7mQlTUlLA5/N9ksyKpmkUFhYiLy/P5eyg1sjLy4NSqcSZM2dYa5NL0DRtLllkSVhYmEOWXpqmXSoNYCksXRG9AoHAY4msPN2+JykrK3PatZlh2bJlIAjCaddRXyfJcZSCggKEhISw6trMIBaLkZeXN+XibIWjR48iOjoaCxYsYKW93NxcVFZW+o1YUigUZrdHe7UxLbGXvMcZfD1GbVl6lUqlT+qqskVlZSUyMjKc8h4hCAKLFi3ymaWXreeKLdxNZGXNm8JbopcRq66KXuZcV+J6nRWnlm7ggOle2bP0UhTFWvknzoherVaLvr4+qzG9gEn0dnZ2ejXoXqlUorGx0alCz65mcGYeFolE4lKCjFu3boHP509oKQf8W/TaK1fEIBAIkJKSYhbJ3qSmpgbNzc2sxfMypKenIyUlZdJmcR4ZGYHBYHDK0ms5XgDXdou1Wi1EIhGEQqHTY87yXE/sVHu6fU/R1taGtrY2pzM3MwQHB2Pu3LlOJ7OyfB64er8Y1+Zdu3aZM5eyzb333ovq6mrU1tZ6pH1/xd1SRWPZvHkzAODYsWOstOdpLK1Qzro3uzPHjm0L8N0Y7erqQkxMzLjPGSHsLxsY1qioqHAqnpchMzPTJ5ZerVbL2nPFFvaeT3t9tvSmkEqlALxXsqikpATTp093K3lqTk4Orly54rRQ12q15g16Z9ybLa3i1jacxq7x2EocyBnRywTTTyR64+PjoVKpMDQ05LU+MbFRzlh609PT0dTU5PTD7q4pv6WlBQkJCTaLUiclJaG3txcqlcrp9n1NfX09wsPDERoaavdYX5UtKiwsREBAANauXctquwRBIC8vD4WFhT7JtOhpGGuuK5Zed1zvGBdlrsb0erJ9T8GIVVcySDJkZWU5LXr9wb356tWruHnzpkdcmxlyc3MRGBg4Ze21oL29HdXV1azE8zJERUVh8eLFfuPi7Kp7M9ui11chG0qlEkqlckJLL+C/olej0eDatWtOxfMyZGZm4tatWzZLA7INU4qGi6KXz+e7lciK2VDi8XgTWjA9QUlJiVtWXsBk6aUoCuXl5U6d5+xaxVn3ZrafE86IXiZe11ZMr+Vx3oCx2DoTJ8EIZGeTiTA/aEBAgMsxvbZcm4Hbrs+tra1Ot+9r6uvr7cbzMqSmpvokprewsBCbN282T4xssnPnTrS2tqKqqor1tn0N88J1JaaXcZFxVfS6ak31RvZmVwW5LykrK0NycrJbO85ZWVmorq52asHA3COpVMrZ+1VQUIDg4GBs2rTJY9eQSCTYsWPHlOi14NixYyAIgvX7vmXLFhw7dszppGu+wJrrpSPuvGyLXqFQ6JONKUbQTkbRe/XqVRgMBpcsvcw5ly9fZrlXE2M0GkHTtNkaypX52tY7l6Zp6PV6m+sNyzEGTCzm2EahUKCystLlJFYMs2bNQlhYmNMuzs6uhRQKBUiSNHs7TYlejonelJSUUQ+yPVzN4OzuLqgzotcfXZwdKVfEkJaWhoaGBq8uRnp6elBWVsa6azPD6tWrERQUNCldnN2x9LozIVruUHIxkZU/ujeXlpa6HM/LkJ2dDYqicPHiRYfP0el0IEmSs5sE3nBtZsjPz0dVVRVu3rzp0ev4C0VFRVi6dOm4TTV3yc3NRV9fn09iIp3F1XhDT4heX8xptkRveHg4+Hy+34reyspK8Hg8zJs3z+lz09LSIJVKvfoMe0rMuIut55NxrXXUvRnwnug9f/48jEaj25ZeHo+HlStXOp3MytlxzcxFTKiJvezNbG+OcEr0ikSiCd1XGcuBN0Xv1atXnYrnBUwPekpKikui1x3LjiOiNyEhATweb9KL3tTUVGg0Gq8+K0wd3e3bt3ukfaFQiC1btkzK0kX2LL3WXLrZFr1T7s3uo9PpcOnSJZfjeRnmzJmDoKAgp1ycuX6/ampqcOPGDY+6NjNs3boVAQEBU1mcARgMBhw/fpxV12aGrKwsBAUF+YWLs+WCXCKRgMfjObQgZ7I38/l8VrI3c1H08ng8REZG+rXonTNnjlkcOAOfz8eCBQu8GtfrKTHjLraeT0fWG2MtvROJObYpLi5GSEiIUx6pE7Fy5UqUlZU5lTTKFfdmRzYHxt5zthKecUb0tre3Iz4+fsJEExKJBGFhYV7N4Oxs5maG9PR0pzM4u/NC0Ol06OjosCt6BQIB4uLi/E70Dg8Po7u72ynRC8Crcb0HDx5EVlYWoqKiPHaNvLw8XLhwwSfF5D1Jf38/BALBuKLqYWFh0Ov1NpMcuPPiZEv0eiL7pOV8wJXslva4cuUKtFqt25ZeHo+HZcuWOZXBmeuit6CgAEFBQR51bWaYcnG+zYULFzA4OOgR0SsQCLBx40bOi16apkctyAmCcNgKxea48rWll8fjTWjt9+eyRRUVFS7F8zIsWrTIq6J3bIIirrzfbD2fjqw3fOXezMTz8njuy7mcnBwoFAqnwuic1S6O3qc7wtJrK/Mw4N1avSMjI2hpaXFZ9Lpq6WUeHGcSFrW1tYGmabuiF/DPDM5MJmZHY3qnTZsGHo/ntbhejUaDY8eOecy1mWHbtm3g8Xg4fPiwR6/jbZgavWM3vJgFirW43rEToisvTnc2mjxtteC6iLNGaWkphEIhFi5c6HZb2dnZKCsrc3ge5PomwYEDB7Br1y5zyQtPk5+fj8uXL/usXjlXOHr0KEJCQrB06VKPtL9lyxaUlZVBLpd7pH02UKvVoGl63ELTnhXKaDTCaDSyNq48vVFoi66uLkRFRU2Y6DM6OtovRa/RaERVVZVbojczMxM3btzwWqZhrlp6bT2fjqw3fOHebDQaUVpa6rZrM8PixYshFAqdcnF21b2ZYSKLOBsVOqwxJXon4Nq1awCcy9zMkJ6ejpaWFqcTsTAPjrN1R1taWgCYsjPbwx9FL7Nwc9TSKxQKkZyc7LUF35kzZ6BUKj0uesPDw7FixYpJF9fb398/Lp4XuB3jay2ul40XpzvJqDwdc+uPoresrAyLFy9mRdhlZWWht7cXTU1NDh1v+Vsyi3WucO3aNVy7ds0rrs0MW7duhVQqveOtvUVFRdi0aRNIkvRI+1u2bIHRaMTJkyc90j4bjM2Wyvy3vQU5E8fIVsI+Tyf/s8VENXoZoqOj0dXV5cUesUNtbS3UarVLSawYFi1aBJqmvZYkk40klJ7A1jvdkfWGL9ybmYSP7iaxYhCLxViyZIlTyaws75sjm1kTbQ6M3eBm7jFzT6dEr4epqakBQRCYPXu20+cyccCMcHYEyxcC829HYUTsZBa9oaGhVoXRRHgzg3NhYSFSUlJc2iBxlry8PBw/fhxqtdrj1/IWjKV3LI5Yet2ZENlwb57K3nybsrIyt12bGZiSR466OFv+lgB7Nf3YoKCgADKZzCuuzQxSqRTbt2+/o0Vvf38/zp8/7xHXZobk5GTMmTOH0y7OjLh11vWSmXc85d7szfJ7johef7T0Mgmo3PGuSU9Ph0Ag8FoyK8tYTYIgOPN+s/XOZf4tFoshEAg4495cUlICgUCAJUuWsNZmTk4OiouLHR6fzq5VrN0no9E4oXWd7c0RToneiWr0MsTHx3tN9F69ehUzZsxwKTnA7NmzQRCEUy7OYxdtzoreqKgosxuALZKSktDe3u6UJdnX1NXVOWzlZfBWrV6aplFYWIi8vLwJ49HZJC8vD2q1GqdOnfL4tbyFO5Zed0sWTWVvZofu7m40NTWxJnrDw8Mxc+ZMh5NZuTN/epqCggLs3LnTI6XMbJGfn4/KykpzeMidxokTJ0DTNLZs2eLR6+Tm5qKoqIizNdSZhfdY64o9K5QnRS8Ar65BJqvoraysxLRp0xASEuJyG0KhEOnp6V6L62WeI19Z/SfC8vmkKGqUt5C9sUBRFBQKhdPeFO5SXFyMxYsXO7T2d5SVK1eio6PDYeMYG+7NwPhs8pNa9CoUCgwPDzts6fVGKRpXk1gBpl326dOnO5XMyjImDXBe9DoSzwuYdqaNRqNXMxu7izM1ehnS0tJQX1/v8YVIVVUVWltbPe7azDB79mzMmDFjUmVxnsjSK5PJQJKkVUsvI1LZEr1czt7MxRjVsTDilC3Ry7Tl76L3+vXrqKmp8aprM8O2bdsgkUjuWGtvUVERMjIy7G6mu8uWLVvQ1taG69eve/Q6rsIsJscuNO0tyJl5h615zp01jrs4InoVCgVUKpXX+sQGFRUVbrk2M3gzmRXbzxVb2Ho+7fWZeW6cjZt3l5KSEtZcmxlWrFhhbtsRLO+bXq+3u+a25t4MjK8bPlb0TqrszfZq9DLExcXBYDCgr6/P431yR/QCziezctfS64zoZc7xF5wpV8SQmpoKtVrt8UzHBw8ehEwmw5o1azx6HQaCILBz504cOnSIs5YFZ5nI0ksQxIS1enU6U11rdzJA2trZdeZcT2dv9rYroCuUlZUhLi4OiYmJrLWZlZWFy5cvO+TKz1XRy7g2e9raaI2AgIA71sWZpmkUFRV51LWZYfXq1RCLxZx1ceaie7Nl+97AEdHLHOcv0DSNy5cvu5XEiiEzMxPV1dVe+U3GPldc2dS19XzaGwuujjF3aGlpQWtrK2tJrBgiIiIwe/Zsh0Wvs6FF1tybmc/Htsvj8SZnIitnRK/l8Z5CLpejvb3dLdGbkZExJXpZQKlUorOz0yXRC8Djcb2FhYXYsmWL+XfzBnl5eejo6PBqQXlPMpGlF7hdq3cslnEkzL+dRavVml2InW3Dm9mbAe+6ArpCaWkpsrKyWHXxz8rKgsFgwKVLl+wey/wezPPAlYXUgQMHkJeX53XXZob8/HxUVFSgsbHRJ9f3FVVVVejq6vKK6JVIJFi7di3nRa877s0ikYjV7M2A98aoSqXCyMiITdEbExMDwL9Eb3NzM+RyOSuW3szMTOj1eqfy0LgK25spbGHr+bQn1F1NFucOjChlW/QCt+N6HcFZ7eKoe7M76zNbTIleK7iTuZkhPT0d7e3tDpcycHURT1EUWltbHUpiBZh2/8PDw/1G9DqbuZlh2rRpIAjCo3G9nZ2duHDhAnbu3Omxa1gjJycHwcHBkyKLM0VRGBwcnDBJmS1Lr7ui1502PJ2JlKuWS2sYDAZcuHCBVddmAJg3bx6kUqlDLs6WMdDMv31NbW0tqqurfeLazLB9+3ZIJBIcOHDAZ33wBUePHoVUKmXd9W8icnNz8eWXX3LSPZZZTFrWQXdkQW4Ze8mWpdfVZJ3uwAhZRthawx8tvcymNxuW3gULFoAgCK+4OHNZ9E70Dhm7AeSopVen03ns7yspKcHMmTMRGRnJetsrV67E1atXHdIvY8e1vc0sZ9yb3V3jWYMTore9vR1BQUGjHhhrxMTEgCAItLe3e7Q/V69eBZ/Px6xZs1xugxHMju6cjR1wju6C9vT0QKvVOmzpBfwrg7OrolcsFiMpKcmjlt7Dhw+Dx+Nh27ZtHruGNQQCAbZu3TopRO/Q0BAoirJp6bUlet0ROe5YHrwV0+vtBaIrXL16FSqVCtnZ2ay2S5Ikli5d6lAGZy5uEhQUFCAwMNAnrs0MAQEB2LZt2x3n4lxUVIR169Z5rS7yli1boNVqcfbsWa9czxkUCgVEIhEEAoH5szvJvZkRsrYsveHh4eDxeH5VtqiyshIxMTE2xbyjBAYGYubMmV7xHmN7M4UtHHFvnqjPE4ley+/YpqSkxCNWXsAkemmaZv3dS9O0U+7NnpgvOCF6HSlXBJgWQdHR0R639NbU1CA1NdUtl7RZs2aBx+M57OLsapIHRrxOZtEbHByMiIgIp8/1dNmiwsJCrFixYkLB5kny8vJQUVHh8Q0gT8MI2onuYVhY2ITuzSKRCHw+HzwejxXR66yl15vuzVxx17VGaWkpSJJkxc1uLFlZWSgtLbUb08xV0ZuXl8dqZk1XyM/Px8WLFx2ueezvKBQKFBcXe8W1mWHWrFlITk7mpIvz2KyyADeyN3NJ9PL5fERGRvqVpbeyspLVOTczM9Mrll6uJrKytdFsr88TuTcDnhG9w8PDqKqq8pgnS2pqKqKiohyK63VmXGs0GlAUZVX0WsveLBQKwefzWS1t5VeiF/BOrV53k1gBJktjamqqwxmcXX0huCJ6k5KS/Er0pqamuhQr6MmyRWq1GsePH/da1uaxbN26FXw+H4cOHfLJ9dmCEbQTuTdPZOllNokAuPziZEv0eiqRFdfcdSeirKwMCxYscKm8mz2ys7PR2dmJtrY2m8dxTfTevHkTVVVVuPfee33aD8Dk4iwWi+8YF+fTp09Dr9d7VfQSBGEuXcQ1RkZGxnnRMe7NtjaT2Ba9vsre3N3dDR6PZ3fj3N/KFlVUVLDi2sywaNEiXL582ePVUdiOFWcLW8+nq4msgPFijg3KyspAUZTHLL0EQWDlypUOiV5nxrW1zQHm3IksvQRBsLo5MiV6rcCG6AWcS2bljuiVyWRO1WlLTk5GS0sL5zPCAq5lbmZgLL2e+DtPnToFtVrtM9EbGhqKnJwcvy9d5I6l11L0upu9mfm3K+cajUanMj97um/epqysjHXXZobly5cDgF03K67dr4KCAgQEBGDr1q0+7QdgWnxt3br1jnFxLioqwowZM1x+b7hKbm4ubt68yTmL+lh3QsD0TBgMBpvzJtsWOV9aeiMiIsDn820e50+it7OzE11dXaxbepVKpUfzoADcjul1V/Raxs170r25uLgYERERmDlzJuttM+Tk5KC8vNxuNmZnxrW1zQHm3xOJXsD1NZ41OCF629vbHa6lFx8f71GXzv7+fnR1dbEiep0pW+SO6E1OTnbKEpqcnAy1Wu2V0k/uUldX5/LiJS0tDUql0iMvsoMHD2LGjBmYPXs26207Sl5eHk6ePAmlUumzPriLI5begYGBcbvPYydEVy29rlhTGZFrmbzB3ovBlb5xScRNRH9/P27evMl6EiuGmJgYpKSk2E1m5askORNRUFCAHTt2+Ny1mSE/Px8XLlxAc3Ozr7viUWiaxpEjR3wSR71+/XqQJImjR496/dq2mMi9mfluIuwl73EWX+Up6OrqsunazOBPopdxQ2bT0su05WkXZ53OVIqGz+f7negVCARWx8LIyAikUumojRVPujcz8bxsVksYy8qVK6FWq+0+D868eycSvTKZzKp7M9PmpLL00jTNKUsvI1LZEr1dXV1WLVVjcfWF0NLS4nDmZgZ/KVukUqnQ3t6OtLQ0l873VNkimqZx6NAh5OXleXTSsUdeXh60Wi1OnDjhsz64S39/PyQSyYTiICwsDBRFYXh4eNTnlqLX1QWZq2Vuxu76Wn7GFv4iesvLywHAY6IXMLk42xO9Y12sfOkyV1dXhytXrvg0a/NYduzYAZFIhI8//tjXXfEo9fX1aGpq8qprM0NQUBBWrFjBORdna+7NzoheZmOQjZJFriTrdBd7NXoZ/E30hoSEICUlhbU2w8PDkZSU5PFkVmxsWHsCW8+nTqcDSZLg8XhWx8JE3hQA++7Ner0e5eXlHnNtZsjMzIRYLLZbusiZtQpzLxyx9FqGsLFZJcPnondwcBBardYp0dvT08O6ZYWhpqYGJEmy4jbACGdHrL2uJq5xpkYvg7+IXqa2pKuW3unTpwMA6+46FRUV6Ojo8JlrM8PMmTMxa9Ysv87iPDAwMKGVF7jt9jw2rpctS68rwnJK9N6mrKwMERER5rHmCbKysnDp0iWbcyKX7teBAwcglUo54drMIJPJ7ggX56NHj0IgEGDdunU+uX5ubi5OnjzJqfFqzdI7UW1MSyZTIitHRG9MTIxfid7MzEzWN929kcyKy6LXlqXXVp+tiV5PWXqvXLkCpVLp8XJsQqEQy5cvtxvX64x2sVYzHLCeWM9Tz4nPRa+jNXoZ4uLiQNO0xyanmpoazJw503yz3WHmzJkgSdKhZFauJq5xRfSGh4dDKpVyXvS6Wq6IQSKRICEhgXVLb2FhIYKDg7Fq1SpW23WFvLw8HDp0yOPJJzxFf3+/zezXjCAe6y3BjBdgcoteZ63Q3qa0tBTZ2dke9XjIysqCTqfD5cuXJzyGS6KXcW32RGIvd8jPz0d5eTlaWlp83RWPUVRUhJycHLvlDz3Fli1boFAocO7cOZ9c3xq2rFCOujf7u+h1pKxPdHQ0hoeHoVarvdAr92A7iRXDokWLUFlZ6dF8L2y8uz2BLW9Le30eW3sWgLm6BNuit6SkBCKRyCPVEsbCJLOy9Tw4k8jKlnuzvZjeSSd6nYnptTyPbdhKYgWYfqiZM2e6ZOl15AceGhrC0NCQ06KXIAi/KFtUV1eHwMBAREVFudxGWlqaR0Tv1q1bR9U99BV5eXno7u7GxYsXfd0Vl+jv72fF0uvNRFbWRC/botQfsjcbjUaUl5d71LUZABYuXAiRSGTTxZkrorehoQGVlZWccm1myMvLg0gkmrRZnLVaLU6fPu0T12aGhQsXIioqilNxve66N5Mk6fei11H3ZuZ4LiOXy9HU1OQR0ZuZmYn+/n60tray3jbD2NAkrmzosm3pJQjCodJgzlJcXIylS5d6pQZ5Tk4Ouru70dDQMOExnnJvnrSil0lK5WiBbcYi7KlkVlevXmVN9AKOJ7NifmBn6o66Uq6IwR9Eb319PdLS0tyyIrFdq7etrQ0VFRU+d21mWLFiBUJDQ/3WxXlgYMAlS68vE1mNjXVz5lxHoGkaer2eEyLOFjdu3MDIyIjHRa9QKMTixYttZnBmfktmI8pX96ugoABSqRTbtm3zyfVtIZPJkJubO2ldnIuLi6FSqXwqenk8HrZs2cKpuF5X3ZsZCw5BEKzE1I3NoeCNMapWqzE8PDypRC/j8eIJS583kllx1b3ZXskiW/Gl1kQvYN2C6Q40TaOkpMTjrs0MjBeXLRdnZ9ZRCoVi1HuaYSL3Zkvr+qTJ3tzR0YGIiAiHdy3Cw8MhEAg8Yunt6elBX1+fT0Uv4HjQtjuiNykpifNubu6UK2JgavWy5a5z6NAh8Pl8zsTrkSSJbdu2+W3pInuWXqlUCpFIZNPS68qCjKIoGAwGl6y1Y7OaWn7GBky+Aq6L3tLSUvB4PCxdutTj18rKynLI0st2TT9nKSgowLZt2zjn2syQn5+PsrIyj1pyfEVRURFiY2Mxb948n/YjNzcXly9fRmdnp0/7weCOezOb4oRpz5sbU4yAnUyit6KiAhKJBLNmzWK97fj4eERGRt6RotcdS68192bAugXTHZqbm9HZ2enxJFYMISEhSE9PnzCZFU3TTiXhdWZzYNJaep3J3AyYdlJjY2M9InoZcZqRkcFam+np6ejt7UVPT4/N41z5gVtaWiAQCBy2klviL5Zed0VvWloaRkZG0Nvby0qfCgsLkZOTg9DQUFbaY4O8vDxUVVVx/ve0hj1LL0EQVmv1ujshuiNcx9avdOZcZ/vGZdFbVlaGjIwMqy97tsnKysKtW7cmFBKWmR7Z3BV2hsbGRlRUVHDStZlhx44dEAqFk9LFuaioCFu2bPFpRn0A2LRpEwiCwLFjx3zaDwZr7s1CoRAkSdoVvWxaWpj2+Hw++Hy+V8aoM6I3IiICBEFwXvRWVlZiwYIFdusOuwJBEMjMzPRoBmcui17m+SQIYlz2Zlvvl4nEHNvuzYz4XLFiBWtt2iMnJ2dCS6/RaARN0065N090n+6Y7M3Oil7Ac2WLampqIBQKWS1qzwhoe9besYs2Ry29iYmJ4PGc/xmTk5MxMDDgkRpibKDRaNDa2sqKpRdgp2yRUqnEyZMnOePazJCbmwuSJHHo0CFfd8Vp7Fl6AZN3x1hLryvjxRJ3hKWnRak3YobZoKyszOOuzQzZ2dnma1qDCwupAwcOQCKRYPv27V6/tqMEBwdjy5Ytk070trW14erVqz51bWaIjIzE4sWLORHXazQaoVKpxm1MEQRhtTamJWyOKcuQDTbacxRnRC9JkoiIiPAL0euJeF4GJpmVp3D33e0JLD2/rHkL2euzt9ybS0pKMHfuXLtrJjZZuXIlrl+/Pm4NBow2ADAeHPayN09kEb9jsje3t7c7nMSKIT4+3iMxvVevXsWsWbNAkiRrbaampkIoFNoVva7sqrqSuZmB62WLGhsbQdO0yzV6GZhSKmyI3hMnTkCr1XJO9AYHB2P16tV+F9drMBgwNDRk09ILwCFLr7Oi0FJYMju7XElk5WlLMhsMDQ3h2rVrXhO9CQkJiI+P57ToZVybAwICvH5tZ8jPz8e5c+fQ1tbm666wxrFjx8Dj8bBx40ZfdwWAaSPy2LFjMBqNPu2HSqUCMD5xDPOZt9ybLUM22GjPUbq7u0EQBCIjIx06nutli1QqFa5fv+5R0ZuZmYm2tjbWvOPG4qlYTXew93yO7bOv3JuLi4u95trMwMQPW8tIb7kW4vF4IElyyr3ZHlyz9LIZzwuYdg9nzZplU/S6ugs6mUWvu+WKGAICAhAXF8dKrd7CwkLMnDmTlRrObJOXl4fTp0+zninQkwwODgKAS5Zeey8he1gmo3I2DtSbll7GFZBrovf8+fOgadpsgfUGE8X1Go1GUBTlEVcoR2lqasLFixc57drMsHPnTgiFQnz88ce+7gprFBUVYdmyZXY30LxFbm4u+vv7cenSJZ/2Y6Jsqcxnjoped8eU5ZzG/L+3RG9ERITDhozo6GhOi97q6mpQFOXRcjWeTmbFhQ3KsYx9Psc+765kbwbYdW8eHBxETU2N15JYMSQnJyMuLs6qi7Oz49qWe7NSqRxVetPdNd5E+FT0Go1GdHV1cUL00jTtEdEL2E9mNXaXyZlEVq6K3ri4OJAkyWnRK5VKXYpXHgsbZYsoisKhQ4ewc+dOt/vjCfLy8qDT6XD8+HFfd8VhGOutu5ZeVxZk1iZrZxNZiUQijySysmyf6RsXFgaWlJWVISQkxKsbQNnZ2bhw4YJ5vmTgwv06cOAAxGIxp12bGYKDg7F58+ZJk8XZYDDg+PHj2LJli6+7Ymb58uUIDg72eRZnRtRas0LZc28e69JpNBpdtlxbeq8A3tuYcrRcEUN0dDS6uro82CP3qKioAEmSrOadGcuMGTMgk8m8Inp9sUFpjbHPpzVLr6+zNzPVC7xt6SUIAitXrrSazGrsu9fe72nLvZmmabNnCtO2J/J0+FT0dnd3w2g0IjY21qnzYmNjMTg4OOoGuUtHRwcGBwc9MpnMnTvXvENnjbELcB6PZ3d3SK1Wo6urC0lJSS71ic/nIy4uDrW1tS6d72nOnz+P5ORkVpKSJCUloaqqyq0Mzl999RW6u7s559rMMGPGDMydO9evsjgz2cNDQkJsHieRSNDW1jbq97OcEAFTvLUzWI45mqZBEITdZHPWzmX64Oz1baHRaADAbJ3gougtLi7GsmXLXMon4CpZWVlQq9Xmkh0MvrIiWcK4Nltb+HCR/Px8lJSUcHbT0xnOnz8PuVzOiXheBpIksXHjRp+LXsZqaa06BkEQNl3ce3t7YTAYANweW2M3nByFWfgzotlbY/TGjRsIDg52+PigoCA0NzezVu2BbcrLyzFnzhyP1mjl8XhYsGABysvLPdK+5bubIAjz+86XMOvtiZ5PW5ZevV4PtVo9Ycb+np4eVp6n06dPIzo62hyy501ycnJw/vx5qNXqUZ+Pfffy+XwMDw9P2M5EiSiZkCBL3WN5z7Va7TjDh6v4VPT+85//BGCKpXWGCxcuAADefvtt1vrys5/9DAC7i1eG+vp6yOVyfPTRR1a/Z8pHMHHK165dw7/+9S+bbb7xxhsAMG4B6AwtLS149dVXXT7fk3z44Ye4fv06K22dOXMG165dc2sH99577wUALFy4kJU+eQKJRIK33nrLbxayr7/+OgDY/Z0PHjyIjo4O8wJOr9ejo6PDXDB9//79OH/+vFPXZiz/PT09kMvlGB4exptvvunQuYzXhkKhQHV1NQDgtddec+r6tvjkk08AmOIUdTodNBoNLl68yFr77tLe3o5jx455veQZ4/Xx+OOPj/qcmT8Z75/u7m6nnwd3eP3113HhwgXMnj3ba9d0Fyb7J1dKr7nDrl27AADz58/3cU9GIxKJUFpaiiNHjvisD4w139p4KC8vt5ls6/333zdvijPi2NU48NOnTwMADh8+DJqm0d/f75U57cSJEzZrjI7l8OHDaG1t5Uy5KUsoisJbb73F2rrIFjU1Nfj00089sh6+cuUKGhsbAQDvvPMOhoaG0NzczPp1nIF5Pr/44gvQNI2BgYFRz+fly5fR1NQEwBTKolAozALtzJkzAIDPPvtsXLuffPIJWlpa3HZxpmkaL774Inp6enySnV4ikUCv1+P5558f9TlzT3p6ejA8PIy+vj784x//sNoGTdO4fPmy1fvEZLr/9NNPAZgEb0dHhzks8bPPPmPN84C9jE0ucN999+H999/Hnj17nDrvySefRFFREauuZPfccw9OnTqFbdu2sdYmww9+8AOcOnVqwvg3Ruwyk9k999xj121w69atmDZtGr773e+63K9HH33U54k2JuJb3/oWazta//rXv/DHP/7RLVfpXbt24datWwgKCmKlT55g7969uHHjht9Ym1544QX09PTgrrvusnnca6+9hr///e/m30+j0UClUuHKlSsAgJ///OdOb/4wk2lLSwtCQ0OxZ88eh13XmU03uVyO5cuXY8GCBfjP//xPp65viz179uCDDz7A3r17odPpoNVqfR4baEl4eDhiYmLwox/9yKvXTU5ORnp6+rjfiVmIX7t2DQDQ19fn1eQoQUFBEIlE2L17t9eu6S7Tpk3DwoULvVr6wlOsXLkSra2tnKuNvHfvXhw6dMjp8C02ee6553Dt2jXs3bt33He//e1vbbpe/vnPfzYvapm1SXt7u0t5Nu677z68++67+MUvfgGapjE0NOTRDMEMTz75pFP9ff311/GXv/zFae9Db8Dj8ZCZmekVb7MXXngB//rXvzwypm7dumXO9PvLX/4SL7/8ssthemzxjW98A++99x5+/vOfg6IoDA8Pjyrb1NjYaC4RVVVVBYqiIJfLIZPJkJ2djdmzZ1tdA7z++uv46KOP3F43EgSB+fPnY8OGDW614yp5eXmIjo4eF0988+ZNACbxGxQUhI0bN064jiIIAt/61rewdOnScd89+eSTOH78OO6++24AJsuuWq02G0T/9re/4caNG6z8LQTNVT+OO4y33noLDz74oHkymGKKKSbmk08+wfLly53O/M5AURTefPNN7N271+mdU6VSiY8//tjpzTpXOXToEBYuXIiEhASvXM8fef3117Fnzx4IBAKcOXMGUVFRmDt3rq+7NcUUkwKdTof9+/fj0UcfZaW9o0ePIiUlBbNmzWKlvSn8h+LiYgQFBXHOM8OSo0ePYvr06ebqIefOnYNEIkFmZibkcjm++OILPPjggz7upe+haRqvvfYaHn/8cdZDnT777DMsX76c9Q2oKdE7xRRTTDHFFFNMMcUUU0wxxaTF5yWLpphiiimmmGKKKaaYYoopppjCU3g8pvfdd9/Fn178I4xfZwF0BI1WA52BYiV+MiUlBR9//DFIksTzzz+PLw4VOnwuQRD49nefxLe//W2nrlleXo6nvv89qNXjs0vTNA2NVguKotDV3QsDRYPH5yM6Kgp8PgmDwYC+7k7QlBEEQYxzveTxeIiNjYVIJBzX9liiomPw4UcF4PF4uC//XnQ7mcgpLDwc7773vssupNaoqKjAPbvvHpfhjcmg6wgEQeA7330Sv/rVr8yfFRQU4Kmnnx6VVc9em1qtFlqVCsBtZwexWAySJB3ui1AoxJ9eeRUPPPCAQ8ezhVwuR/699zqccXgsGfPm4d133/V4UoTHn3gCn372+bjPLX8biqKgUowA9O3s5jSAAGkAeDxiVNy5Xm+A3kgBVvotEYuRmJRkjr2JjIjAhx/sB0VRaG5uxre/9S00NjbY7AtAgM+/vReoUqlBAxAIBIiNjbV5vwQCgfnaYyFJEi+88MKouM9Tp07hx//5n6PiT41Go8141PiEePz+938An89Hamqq3czXztDT04MHH3wIvX19brVz91278Itf/MKlcymKwv3f+AZqb1hP1kLTNLRarTkbJkVR0OmsZ5SVBkjx0//6mTnBVHJyMiIjIx3uC03TeOD++3GtxrlEiwAQGhqKt955FykpKU6f6wlOnz6NPQ8/ZLXigSNz72P7HsdLL73kqe6N48aNG/iPx/dheGjI5TYIHoEnvvltfO9732OxZxNz9epVfPtb38SIjeyl1pg2fQYOfL1GcQaKorB2zepR5RAtf0utVguNzmD1u7EOfgRBmL+//R0NgIBYLJqwb9lZ2Sgo+AirclaaE8qNvR5N0w7nDrnr7t1466237B7X3t6OjRs3oae31+bza+07jUYNvcY0rxMEAbFIBIFQYD4eX38+EQTBww+eetqc/JQt9u7diwoXczcEBQXh/157zalker/4xS+svpudhSRJ/OT5H+Oee+4Z9bnBYMDVq1dhMBiwf/9+HDp0CJZrrfHtCEY9ZzweD9/5znfwzW9+0+0+/v73v8eLf/zDqAoqEz2fFEWZnwOapk3/AyASCrFseRZu1tWDGRsCgQBdne3QajQgAIC43S6P4DkUEx0REYETp07jj3/8I86ePevw38Tj8fDMM8+wFmal1Wpxzz33onWCZHUGgwF6i/V1X1/vqPU2RVHQ6vTmX5jH4wE0M7cYTetqK+0ajUYYqdvPBcHjATbGtFgshkBoXf9s2rgRH36w3+bf6XH35q25uSj/6hR2Z8aiuV8FvZFCkFgAHgFIhHyISR5aBtQIEJHQGigkhUnw2eVO9Cv12LFjB/R6PcLCwqBSqUCS5KgHlSRNIlGpVCI+Ph4qlQoBAQHo7TX9GAMDAzh//jyuX7+O2bNnIzQkGLEyAeLDAqE3UgiWCsEjCEhEJMQCEh0DCogEfGj1RiRFBuHQxQYkpc1FWblzmUB/9rOf4Ve/+hU2zI6E3kgjSEKariPko657BBUtt1/kAbEzEBA7HXyhBKBpqAc7Ib95EatSw0HyeQiRCqDWGUHyCVA0wCMAigZIHgEDRUOlMyA2WAy1joJUyIdCa4Bab4TBSOF0bR+OHTsGPp+PDRs2ICM5EomRIZAIya+HLKAzGEHTQKDEdC9IPg+9Q0oYKQrHKxvx0UcfIT8/n7Xn4e9//zuefPJJ5K9KB0XRCBQLQRAESB4PGr0BNE1DJhWhc2AEIgGJ6JAADKu0CJdJISD56BlS4FhFAyLjk1F5pcrc7je/+U28+/5+rM67H0ajAUKRGHqtFjRoiMQSaDVqgKYhlQWDx+eDFAhQWvQZhjobkZsRB4qmESgyiV0+j4BGbwQNQCYWoEuuhkjAQ5RMjBGNHmGBIgj4PPQOa/DhhRY88PAecyZib3Hq1Cls2LABu3PXoau3H2HBQZBIRKBpkx7U6fSgaUAWIAGPxwNJkujpH4BQIEBrZzcuVl1HT0+PUyLAFULCwqEThyM4bRkIPglNfxtIaTBIiQy6oV6IwhOg7W9Ff8UR7FgxD5EhMoiFAmj1BtA0cOLSDbR2949qUyiVISF9GSiDHqLAIBAEDwKxBKRQDPXwIGiagkrej9bqUhQUFOCRRx6GRmMSksvnpmBucgwEfD5u9QwgJECCoAAJugeHkRQVBp3egECJCFKxEO19crx74hJiY2MxZ84cp+eh/v5+UBQFoVCIoqIibN26dVQG9x/84Af4xz/+jv/4xk40trRDbzCi/PJVKNWOJWFKTIhHS6tr2VStUVhYiJ07d2Lx5nshDQpB+81qSINCIRCb5iYQBAx6HUDTEEkDwePxwCNJKAb6wBcIIJbK0FxzEQbFIPp6XduMaWtrQ2JiIuYkhiM2JAChASKodAaQfB5oikZdlxy17bdLFzDzoSMESKXo7euDRCJx6PiOjg7Ex8cjOyUIc6KlaB7QQG+kESzmgyAISAQ8iAU8tAxqECjkQ2ugkBgqhs5I492L3Xj77bfxyCOPuHIbWOe///u/8fOf/xwPLIkFn0dAwCfQOqhBsJiETEyiV6FDQogYOiOFQCEJiZCHuh4VBHwCVzsV0IkjUNfY5LX+/uMf/8B3v/td7FuRZN7fsrV+EJA80DSQFHb7tz1S04OYlJm4VHnFK31++eWX8cMf/hBPbJyP5p4hq2uMW73DEDJ9jQxCXecgzlxtRW1trdM1r7u6uhAbG4sVM6ORGh0CkYBvep8DkAhIFF25hS41D3PW3gVSKDKPXVIkgbyjGfVlR5G6YjskwWHgC8Uw6rQAaCgHetBYPnFW57E89dRTePXVV7FydhxiQqQIEAtAACD5PGh0Bhy+3Ar5iGPlJQkeH1qN2m5uk8OHD2PHjh1YuHY7+HwS0qAQkAIRRGIJlCNyAIBQJIFBrwNNUQiNiYe8pxOSwCBcPPEZdAPtuGtxEngE8fXGKgWhgA+apqE3UNDojRCSfEhFJALFJPgEgbYBJWgA5Q29CE+cifMX2UsuODIygqCgICzPzMCiDFOcc31zGwIDJBCLhFCpNQiWBYIgCAyPKKHV6ZCcYIp1pGka//vuJ/jb3/7mVGLTiMgoGHkCxEybhYCgUOg0KvD4o99tfD4Jo9EAnVqFkKhY6DRqCMVSqIYHYTQaIA6Q4epXR7F962Z8/PHHo9r/4Q9/iJdffhkAICBJBAYGYlXOCkglEvM1tDqtaZ0iM71PBCSJ7u4eCEUiFJeUYvqMGTh37pzb93f1qhzcqKrA6rkJpueTIEB+vc47XHELcoVjzyePz0dQWBQSUufCaDBAKJXiytkjWJIcgjmxMogFPGgNFGjaND+pdabxGPy1BhDyeWgbVJvX80NqPb6o7sbnn3+O3bt3Y8H8eYiOioZer0dwSLBZOEskYjQ1NUMmC4RWq0VycjI+LDiABQsW4Pjx427fH8CUoTozMxMJsxZCGhwKqSwUeo0KPJKEUW/A9fIToI23N9F4PB4yMjKQmpoKHo+HW7du4cKFCwidtx6i0FiAxwNB8EBTRgyc/xTREWGYO3fuuHVUdXU16urqkLbpIdP6WyCGUW9aA+mUQ+CTQuiUwwifMR+akQEIJAHQKU1GEqNeC4LHB2XQob/pKhTt9XbLqnnc0kvTNFbMCMOv73I8qUh9rxLnW1UoLHTcKmuNkpIS5OTkjNq1uX/VbDy5dZFD56t1BtxUWq+tawuappEYIcN7/7F83HfPf1KN9kEVfpGbgu8U1GHhd/6CkNRM8/ed5w+h4uZF/N+jixEscT2pVdugGkt/c8q8UwUAbz+3G8lRIQ6dP6zSYtreVzxSr05A8vG/33MsU641fvTvo7jUOf7BTpg+C9/8+SsOtyPv7UH/xUH8bc8yl/tytdO9VPSuwvwuv33u2+aXn6McOlWM/O/+xGu1CKNX5iNx+8TWluH6i+ivOIL/emwHZiePzrC99Jt/QMj8DUi86/9hsOoE+s59jLjk6Xjg9wU2r6kY6MGr987G8PAwNBotnlmTgJfPtuGZ/A3IXe74XPTeiUt48skn3c5UvGXLlnH3m6ZpzJmRgpd+cvveyOZtwuNZMbhvYRRO3ByEQmvEkkQZhF+/JJU6IwZUejQNaPDGeXbLajD9u+fZ30MWGuFSG8fefAklH/7d7T789/05WDdvfA3y5948jVsqIdK+/yYGq06g9+g/kDtDjO/mxNu8Xwothd+dbMHQ0JDDopfpy3dz4rF+ZqjDf4PeSOHdi92cq/UZEyLFS/fMcfq8Xx+px7FW+8exCU3TEJJ8/OYu5/vLYKRoXFF67zdgNmx/t2eNw+eU1XbgzNVWt56V726eh83zE8d93jGoBJ+Xgu3PvjLuu5Yr51BfdhSrnvgZwhJGZze+cugNNJYfxdFvz7c5ppYmBeHBt6+ZvY1++Y1sLEgZv4l6+AfvIHLFvYjZ+AQGq07AqFZAlroEBCkEKApGrQqGkX7oR/rQfuhVqFQqh2vrPvz8ywiJdK4qQ3dLA8J6dPjjA6699597/zyus1xalvn9v//ofbhn6zqnz//3R4VOP0M0TWP1vU8gd++zTl/Pkr89da/Va7e3t2NmlBR/2Z2KR/fXI//Bb+CVF3/vcLtPfPt7uH6z3q2+WbIuIwl//9bGcZ8fqnwDkSvvQ8yGfeg++w56zr6HP901A53DOpyuk6OiS4v05w+a3jdn38O8nM149L/+AgDQqpV4cmUsHs9Jxl2Zzmdp7xvR4otqUylGmqbxzScexzefeNzOWSZ6e3vRNzDo9DUngvkN73v+FSTOWjjqO3lPB365ay6Sdv8YwRlrMVh1Ap2H/4x9+/bhqaeeAgDzxv7Mx/4AUdjoe3G+8gi+853vjCt5BAD79u1DXV0dVnz7D+CRrmueG0fewIXXXrB7nNdLFhVcaseQWo91syIhInmgaBojGgOUWiOUOgPWzbJteXrnnXcwODiI3NxciMViGI1GDA8Po62tzakSRh+V3IBcqcX6eUkQC0gYaQojah165KYdn/Xz2UmhXnCxzfT3zo6EiORjRGNAmFSAruHRhdnbviqAXjlk1W3T3NalNgypbrdFUTRGtAYotQYMq/XYODfaoT59+OVVyJUabFgwHWIhCSNFYUSlQ49cAb2RwpbFzpckcJcPv6we0ycaIyoteuRKBAeKsTjVtbIPZz7fD+XwIDJzNkEgEoOijFArRjA82IehgV6r5xScvwW5Wof1c2IgIvkw0jQUGj36FVqIBXwsm+6aIPA0739+FINDI9i8ajlEIiEoyohhhQr9g0Polw/h3q3rfd1FdJ87AINSjtB568ATiACKgrrbugXpgxMXIFeoIE5NgbavFcGzVkBeZaqnV33sQ2gUckxfugGkUAyaMkKrGoFioBta5TCS5q8c1ZZSNz684oOTFyFXqLFx8WyIzONAi4FhBQACaxamTfh3sDUPMbx/8Djkw6YNlLQIKVoGNchOCYJcbYDGQKFNrsecGCmWJMlA8gj8/oT3auSe/+IDqEbkmJu1EaRIBMpohEY5AqW8H5TRgDnZ4xcSnuCjkhu41toPYVC4+XnoO/kaUsLEdu/X2xdcr9FtyYHLPRjSGLE2NQRikgcjTWNEa0T3sA4yER9Lk7lb0mwsByo6IVcbsG5mOEQCnvl90j2sg0JrwM75jr1PvEnBpY6v1w8Ro9cPOiN0Bgo5qeG+7qIZb60xxl23tB5DKh0UWj0gHv999bEP0VFrvVzQtRMfouXyV+DxCLtj6nq3EiHSiZeQH527CblSC4qiIY6ZYR6zBqUclF4DXX87pIlzEJS2FASPRPuRv7r9t5ce2g/liBwZKzZCIDS97zXKESgG+0Hw+Zi9ZJXV8wrKmyBX6bB+bixEAj6M1O13Pp9HYOVM74+F9z8rwuCwAptXLYPo63l3WKlC/6Ac/YPDuHebZ97n5V98ANWwHHOzN0JgMd8r5P3g8fmYudj6PbRGtEyIlkENxILR6YPeef8DyOVybNm0EWKx6Ov35wja2juwfesWtv8kq3xUUgu5UgOKoiH5+vkMTJ6PHrwHudqA7JQg3OxRoXpIaH52B8pNdWSZ52zmopVW2y641G6xVudZrNVNXpgr7MxT77z3PgYH5cjdvOn2+mJkGG1t7di+zfu11a+cNrnBG3UqUFoVAhLmjnI/fueddya0yHefOwDKYN177Z133jGXGhxL/emPoFMMIX7RevCFItCUEXrVCDTDA9CODGJazi6X/havid7D1V0IDxBCJiIh5PNw6kYv5sbKkB4XhDCpEOcaB0DTQGWLfMI2PvnkE6SkpCAoKAiVlZXo6urC/PnzsXDhQkyfPh0nT550qI7VoQv1SIyQIVAsRPWtXvQMqTA3MQLzkiOQHBmM0tp2fHnN/a3tw1WdSAyTQKYiUd02jN4RDRRaAwgCyJl+eyez8/xhSCMToZPIMHC9dHw71Z0IDxBZuXfBCAsQ4sKtQfD5PFxpG8KCBNs7pIXltUiKDIZMIkJ1czd65ErMTYrEvJRoJEcHo6K+E0cv1SN7zvidY09QWF6LiCApZBIRhCQfJy83Ym5SFOalRCFMJkHHwIipqHVjJxZOd86iWXbsc0TFJ0ERKEPT9SsY7OtG8qwMTJs9H9GJKTAY9KAtYkwOX2lHeKAQgWIBBCQPJ691YW5cMDISQhAeIIRSa0BTr6muIZeE72fHziIiLASyQCkEAhJHvyrDvJkzMH9OGsJDQtA/OASpWIziC5cRGe64xYpN+i5+AUFQOEhxIHh8AQarTiMgcQ4CktIhDBm/U3+w+AqSosNA8vmgAIQvNtXPFoZEA9BCIJYiOCYJfS03YdRpoBjoQdT0dMTNXgwen4+G86dGtZeZIANwW/gcLKlCUnQYZFIVqhra0D04gvRpcZg/PQ4pMWGobenGV1XWd5ntzUMlJSXQ6/VYu3atQ/fms+NfITk+GrJAqfl53DbX9ktxZpTna5JePn0QgSEREAfIwBcIcK30OOJS05Ewcx4CQ8KhUyuhVgyj8UoZAkLCEZ088SaBu9yeswWgtbT5eeAJRAA8f7++uNaPcKkAMhEJAZ+H03WDmBMdgPTYAIRJBRhQ6tGj0KOseQjBEq/vJTvFF1d7EB4gRKCYhIDk4fTNfsyJCUR6XCDCAgToHdFBSPJwvlmOsABulNA7XN2N8EAhZGISQj6BU7V9mBsTaF4/XOsaQb9Ch0PVXUgJlyIjzrebD/bWGJWN3ThS0WgWwKxdt6IZSRGBGFRqMaTSjhO9N74sRHBMEoZ628edW1dciKDoJIhloQBtf0wtTZr4Hh+62IjECBlkYgGMX8dRMmN2IgIS021+7whCSQDC45LR2XQTeq0Gw/3dSEjLQNKcBeDzSVw+e2TcOYcvtyIxPACBYgGq2wbRM6zB3PgQZCSEIjkiEBXN/Th9rRPr5nqvdu9nx84iKSEWMvkwLl+vQ3fvAObNMr3TpyXEobq2Hse/KkdkeCgWznXOLd4WlacOIjw2CeIAGVprr2C4vwfxaelInDkPEfEpqKs8h2ulJzDXiY3ObXPD8acvTe/eTz47iMjICATJZKawn2PHMS8jHQvnz0dEeDj6+gfw4YFPkJTo2fJ8hy42mMan5P+z990Bcl3V+d+b96bP7M72vtpepF3JkrtlLNuyjQvNEEroJPRQwi+EQGJIQhIgJEAIgdAxNhg3jA22ce+SLBetpF1pey8zuzu913d/f8ze2dmp7828KSL+/tmdV+68d+e9e893vnPPkcfWk9acfyPc8ycBRO3zPY1aHJlzQLbsjz27nCZqX9PnzLQwndT2Q6MmtFWpoVdyGFt1YsMViHEdTsbgrNGFpyc30wp8991/Pzp27UKFXo+RU6dgMq1j7/AQztu3F12dnXjyqaehUqXwZhUAp5/5PbSGWig1OgCAvudCVPRFI1hnmWj+EmoPzcwk20vmVx6GqrYNDJOcM5mep9PpUn43p9JAV98O+8oUIsEAfPYNVO/ajZruvZDJOCy99CjaLxLvICnK7GxxB2F0+KFTRteSHuqrBSdjMGFy4exWeOjB7mqcWHLA4gnCG0xOevDss89iZWUFer0ehBBcd9114DgOq6urcDqdMBqNguo5LWw4IGdZ6NQKAARXDbeDlckwuriJs8sW7KqrQKVGCYd3a9KAsFC4VKjSKjC26kRvvQ6EAG+/oBWTJjcWN104tbZdFF6hr4JjYQy6ll4w7M6f5OisBUZ7fN/VgZMxWLX7sGDxYNnqw1X9dRhZtiMS4TGz4UZPfeqH6NXpNWw6vdCpFSAguGpvJ1iWwarZid8fn8BbLh2ESh5dezRrtKZsQ2q88eLMdfquO5C76nzJdZk9QTX1zbAsbXu8b9qXOWHXRV21ZUV2AeClU2exYbFBr9WAEOCagxeBY1mMTs1iemEZ62YLdBoNrrjoPDz/8im4PD6cnS7e2jyK2gvSGzysMvkde9Pl+wAAOrUSZpsRxid+BnVTL4J2E3xywGVeg0KjAwhB5wVXQ8ay2Jg7A4aRwbw4Bbly56QwtbHTuHzTwcw1Ai8YSK/C1NTUYGRkBIODgyCE4P3vfz84jsPIyAi6urqg1+tF1duuMVTg1PgM+rui4bxzFh9+9qIRvXVqeIM8LumITparjuj6p0CYx4JV4vi6OMydPg6baRmNHX3wOKzoPXAQMpaDcXYcK1OnwckV0FRUQaHWQlNRBa/LjqXxERCeh8MsjaIajyMTq1izebbG7GhiDMfkMXiXz4KEglixR1L21/i6B/31Gsxb/Em/vxiMr3ugkrPQKVgQEBzqMUTnr3UvZjZ9sPuiSy2u7DHg5SUnnP7C/TZS4Mah+oz7r+wrH7X06KwVZ40u9NZrYfMEcWlXddRwNLnAyRi8smgHALRVq9FcqcKCxYuzay4oWBmsnmDmxguEnc/rto2xanFhzmSH0ebBFXva8OTpRaw7PJJ+9xsOdMT+v/fFOdgTAscGrnhj9J8U4ai9l0f3WRYnwDDAsQUHzpq8Gd8rXyj18q83XNAV+1/OvQD/5lJsDOcDXlT0XwJGxiFgWwOr1CLo2IDPNJffzQM4/3DmZVPnHboBR37/qx3bbjovs4P/igFx4dP5YHxmHt+/zYKB7l2w2h143YX7wbEs5lfW4HC64HR7sLxmwu7eLkzNL0GlVOAPTzwvyVKKqVdfgH1jDSqtDoQQ7L7kashYDqszZ7AyfQZ1rZ1gWRYyloNpYQqNHdnJtt0Xxs9eNMIbimB1dQ2ra2vbNvzhq8FxLE6PncHU9AwYhsHFF56PZ58/AqvVBkceSeyy4Q0XdMf+l3PPxp5PbJGz02tuvLjgxILNDx6IzTdhnwt2swm2jVWotLqU79FNw5mfl4s60wsPU9PT8PsD0Ou2+uiaw1s8Zw2nR8dw3r6o3eJ0OpOSwUqNmRPR50Gp0cfu07syDv/6PNRNvQCJYGYm+rvR3zQR1O5j2GR7iNpR6ZLkdVz6hozXlwvhBYpEemt0Cnz48o6k7W3VajRUbBunr+utASEEP3gm2Sg/dOgQDh1KXitTWVmJpqYm7Nq1C0Zj9jVuHfWV+Oh1+5K2dzUa0GjQAgBaavQAgHuPTgLCk04n4bLuGlzWvdOAkHMMLJ4QNt3ba1JrBi9DzeBlAICwz5W1DQAwaOTor9DjvDYDAOB1vbUghMDsTj/Rn9/bnHJNr0GnxvsPnwcAuHgg6mGbWSs86T1ydglji+voa6mFNxDCwcE2sKwMo/PRNQ6rFiduuLAPr06vIRLhEYpEMNgmLPHSmZeex8LkKFq7BuD3ebDnwsvBchwWJ8cgYznUNDTDbl6PKWtHpzdxZs2OvoYKeIJhXNYTdS6cXXMgHCFYs3tx/XAzTixaEeEJ2qq16GnQF6xvhOKifbtTruntbG1CU/1Ogn7DlZcCAMw26daBCIV94hg8y2egae5FJOBFZf+lYGQcgnYjgvadSY9eOD2DsblV9LU1wO0LgA8HwGoq4VkZRyTggbqmFRe+9WNJ32Fo6oBKV4GWwfOxPpuYcXfb+nthdBZjc2vob6uHxx/E5cPdYFkZxhejhG1gVyNGpqLhw6lMiXRjUW9vL5qamtDa2ipoLKJ43YX78LoL921dJYMIITCoOUysexHhCcI8gUYuw5ojEMssPWOWViGKR9fei6E/lByiXd3cjs69qdfBde2Nen+Vaq3k13NwoAUHB6IOqQdfmcXRFTMCllXwkTB4PowwL0vbXzPmKAGdWM+9vwYbtCnX9LZVKdGg35lF8sreKrgDeUwaBcaxORvOGN3ordfCG4zg0q4ogTc6ArB5Q1ix+VGh5nBppwFnjG4YnQGYnPk5f/PBZd3VuKy7Omn7rmoNGiqUSdtbq7avUyVngcw5TQqC+Oc1HgadCgOt23P5Wy7uxbGJVXzzd+ISZWbC0UkTzqxY0dtUCaPdAyQ8tounjmBjdgyRcHLHLJ8+gs3ZMdiN84jwBGuOICI8wRmjB21VKpxYdsEb4rFqj75XMgC+FALFkYk1nFm2oK/ZAG8gmpwSkVBsDAcfAR8JQabUIGg1gtXoQcIh+EzJmfXFYPLVF7A8NYqmzn4EfV70nX8QLMvBtmGEQqmCw7oBpSo54uPo9AbOrNjQ11gBTzCCy3rrwckYrFi9iBAeu2p0ODq9gY46Hfoaha01zhWDPZ0p1/TWVRuwdyAqAOxqiZKqS/YPAQA623Jb+pWIvvMvR9/5lydtr23pQGVt9DurGqLPtVDnZiDMw6DmEAwTtLQ049OfTK6E0tXRgaambaJ40w3R/Bd33Hl30rFS4MjEKs4smdHXXA1vIJrwk2w9n+7FaHLUFXsAlSoOm64QQh7f9nwT9MNQ24hr/vwT0fvz7XRaHZ214OyaC70Nuq3xtTqm7oZ5HsMtFRg3ulGllaM3hTjV19ubck1vZWUFBgaiAtHhq6PPx49+8lMEw8KyoueCngOXo+dA9Hmwb6xFN/J87D0mhKCnpwef+cxnACApQ3u8zUciyeMNtaNOnjyZtM80dhTW+TOobOtF2O9F49BlkMk4WBfPoKp9EJbZ01Ab6mBozyyapULBSS/DMDg6a8Ut95/FpisATzCaLdigiYaJBcM8gmE+dmxDhRJT6274fCF8+tOf3hE3vr6+DrfbDUIIqqqqoFAoEAwG4d/yrDMMg+bm7QFgcnIytp3+vfP5CYzMrsMTCIEnBAatCgpWhmCERyAU2ToOaDRocWxyDe29hpzuednswkdvexWeYDQLrUEth5yVYXTVgQ13CP/+ZDR8evKef4e2sRMBhxmRgAf+LQLwjw+chU61/fNE+25nW8FIfN9hhwPB7A7EroXe/z//+hnUG3TYdHjg8cfdPxfN+hgIhWPn6ONUFakRCkfw3QeOgdkiIo+8Mg2XN4A/vDiB2gotQpEI5KwMvmAYL06sgGGA9joDwhEeJ2dNeOHMEtTVyURvZW4S9/34P2OfLaZVzIy+CsLzOPPS85ArFHDbbVCo1eAjEayvLMBmcuB/npiMnfPo6Bqc/hAePLmKWp0SoQgPOSuDPxTBS3MWMABaqzU4PmuGTiXHlNGBzJphYUB/l7//zx+iobYaG2YrPD4feJ6gqrICcjmHYCiEwFY5FwaIkeBT49M72ig0LCOPAoQgYF2Da+4UQHg4Jo5BxikQctsR8UU9lj+8/1l0NEWvcXXThpGpZfCRMOynn4T99JOx9lZsa/jtP30QIb8HhBCodAawnByRcCiauI2PIOSPkpyKigqoVEp859loluNfPf4SLuyPKqp/fPEMnF4/fn/kNOoqdQiFI+A4Fv4nXtnqn+j33XbbbViJS+MvdhwCgBdffBGvf/1OzyTDMBifXcDffO1/sGGxweP1Qang8LMXhRkUba3SlRKj1wMAv/3W30FTYQAAuKybCPii/azRG8DK5YiEQgDhwfM8ZBwHbcW2ZT31ynN5PVf03P968BU8dnLb+bnp8MITCGHWZIff5sDsz6LJM2QM8MAY8MCYJWV78dBqNIIT5MRfyw9eWMXT0zZsukPwBiPgCWBQs5CzMoQiPAJhWuYkuoYtGMle9qQUMNm9OLEcfdceG9+Eyx/BQ2MbqNUqEIrw4FgG/i3l7okJM9q2COTomgvQFpf0MgyDYDiCf7h/PPYeCrUfKF6YtaKxo3iROQzDwOUN4Iu3PQuz0yvIxpg22mLn5oo7jkxhcs0e+7xm9eDkohlGuxc2yyiO3PGd2D7n5hoCHifc1qhj+dXf/i8q6rdDSV2ba7AsRefDz9wnLIlQfX00cuCnT46hr8kQ2/7IyAJcviAAgs2j92Lz6L1Z22JkrKAyL7Hv+OV/oaJ62xFuXV/FwpkTIDyPyVeeB6dQwu2wQqnSIBIJIxwOYX1xGqtmK/7n8e21hGs2L04tWcETghdnNqDkZLB6AmDjbEeDVgG9So5jMxuoyrKMTCzo7/+9X96NI69Gs41vmK3weH3gSdycHoyb05nonE4IQSgUFv0MMQyD4w/fuU1otpBuzCeEB0kx5s+eOo7+1yeHO7e0tODuDS8+c98M5ByH3z/4MAghWN/YgMfjBc/zqKoyQCGPzp+0VB/DMGhqasRzLxzFLglLvr00bcR/P3Qi9vmPI/Nw+YJgQLB55G5sHtkm2f/17M7w/9h8w7IYfeEx/O/fvg8BnydWivXeV9ewao/O/2t2H06vOMAT4PicFQouGnXCyhg8cNIIBoBBE12qER+NwjAMfvzTn+HJp56Bx+MBT/iofSGXp+ifJhw7/hL27UsW8HIFfX4e/uG/oqa5I7bdZd2E3+MEw7JYuu8bse0ymQw///nPcfToUbjd7lhCu+U//i8UldExIWBdg3PuFPhIGLfffvsOMYDaUXRN76l7/wsst+1E9pjXYJ4eASE8TGNHwcoVCLhsYJVqkEgEfDgIfeP2da6OPC3sPgtdsihdnd7VtVV4PV6wHIeuzs4d+4TU6V1fX4fVakV3dzcUaWo2AcLq9E5MToLjWPR07wyllclk+NgnPplTnd6//syn4fVue4F4nmBycgIsy6KtvT1jnd7VpQUwIFAoFCnr9Gq1GpjNZrS0tKKiIr3aKKRO7/TMNHieoD9FuYRi1umlCAQCCAQCkDEy6PSpw7SF1umNRzAYhNfjhUariT0v6er00tBUn9+PUDAIuUIBdZo1FKWs0/uOt78d6+vrSftM6yZ43B4EQ0E0NTalrOVarDq9H/7IR3Df7+5P2k4IgcPuACfnoNFokur0gmGgUWtidXo9Hg8YmQxyTp5Up5fwPAgAjVqN9l27RNfpBQCPJ/ocaLW6tHV6E4ksvY+FhQXI5XJ0dnZKUqd3fn4egWAQdbW1SetdSlmnd2NjAxarBXyER19fX9oQ7kLX6XW4nFhbWYVWq0VtbW1J6vQa19bg8XgABujpSV7LXG51ep955hm8/73viV5zAjxeDwiJPnsVen3KMaHc6vQaTSa43S5EIhH09w+krP9YLnV619fX4XQ5EQ6F0d7eDq12ZzSElHV64xEIBOALUIK0s4do7dFYdfL48TSu2gUAqNWqnOr0xrfndDqjtUtlsozrEW9+69tw6623pt1PEV+nNx1cLhd4PoLKSsOO7Yl1etUqFTj59v05ndE8IpUVFUj1YBW7Tm8wGMDs7BxYlkVVVVXKMawQdXojkQgmJiYgl8szltPKp07v+voG/H4/NBoNmpqailqnl4IQAo/Hg3A4DJVKBZlMlrFO7/TMzNb+aJ3exfk58HwErEy243mRMTIoVSq43W4oFYq0z32mOr12uz1GFHt6enbMuSzL4q//+q+LWqfX5XZhdWUVBoMBhI8k1en1x83FMpksJmwREgHLsiA8iW6P6yee5xGO8Dvq+ya+dvzW78BujR/51OkFKREuuugicsEFFxC9Xk94nhd9/qc+9SkCgIyOjuZ9LWq1mnR2dubdTiaYTCYCgBgMhqzHDg4OErlcnnb/97//fQKA/Pa3v837upqamkhlZWXe7UiFv/qrvyJNTU1EpVLl9Fykw69//WsCgPz85z8XfM7NN99MamtryVve8hbJrqMYuPzyy8m73vUuMjg4SP7qr/6q1JeTElarlQAgN910k6Dj5XI5GRwcTLnvve99LwFA5ufnc74ejUZDFAqF6PMsFgsBIOn40dzcTFQqFfn6178uWZtS4F3vehe54IILCADyxBNPlOw6nnzySQKAvO1tbyvZNRw8eJBceumlBADxer0luw4p0NjYSD7xiU8QAOTJJ58s9eUIwuHDh8nBgwcJALKwsFDqy8mIa6+9lrzpTW8iSqWSfPe73y3qd9fX15OqqqqU+775zW8SAOTxxx9PuZ9lWTI8PJz3NczNzREA5Oabbyb9/f15tycUQ0NDhOM40eepVCoCgDidzgJclXjcf//9BAA5ePAgefvb3160711YWCAASH19fcG+4/zzzyddXV3k0KFDBfsOIbjhhhsIwzDkBz/4gehzX/e61xEAJBQKJe0bGRkhAMjnPve5nK7ri1/8Imlqasr4nhYTx48fJwDIl770pZT7Gxsb0/KJ73znOwQAefDBB1Pu5ziO7N69O+W+97znPQQAWVxczOm645GcUqtImJubQ09PD1wuFyyW7KFpiaDx4/EqSa7geT6lB0hK0EX5Xm/2tWXZrofuS4yhzwXFuHcxWF5eRlNTE/x+P8xpFKdcQPtKzL2aTCZUVlbClEIhL1fwPB8rMr5//36cOHEi+0klAH1vhf4ePM+nfd5pG/mMBcFgEMFgUPS74Ha7Y+dLAZ7nsb6+DoPBUHbP3dTUFPbt2weO4zA1NVWy65C6z3PBzMwM+vuj64nm54ufGE4qmM1mmEwmXHHFFVAqlRgdHS31JQnC9PQ0hoaGYv+XM0ZHR7Fv3z7s3r276P2baX6n20Oh1JESUtkGExMTAIALLrgAs7Ozab9PauRy/ZFIJLZMpZCJlMRgYmICFRUV2Lt3b6wviwExNmuuoPZeuiiBYsFms0GpVMJqFZ/LJpP9QbflaqvPzs6ir68PLMtidja/Ne9SIJvdlumdo32QyY7Ldq4UfK8kpNfpdMJsNmN4eBhAlACLBe0cKQyfYhA/u90OADti83O9HrpPimsuR9JLQwKXlqSrRZpLnxmNRtTX14tKSlRqzMzMwO12Y//+/Thw4ABOnToliXNEatD3VgzpJWlWYuQ7FoRCIYS3ll+kCv/MBErA/BJl7DWbzYhEIqirqyur544QgqmpKQwMDKCrqyuWL6EUkLrPc/n+9fV1HDhwAABSlmo4V0BJ2N69e0tCynKB3+/H8vIyzj//fHAcV9aklzoVhoaGMDw8fM6QXrIVTiiFbTA+Pg61Wo1LL70U4XC4aO8Lvfd080YqxC+7ojZbqTE+Po6BgQEMDg5iamqqaPM5vX+Px1MQG9Hv92NjYwMdHR1YWVkpqR1qsVig0WhyEuAy2R9i7ZxEzMzMoK+vL21JoGIj2/0IGW/C4dSJHjONN1LyvZKQXuoZv+CCCwDkRnrpQCZFJ0QiEUlSvmdCvNcwmweRDtTZlC0pPKblRnqXlpZi60ek9P6JVXoJITAajWhubobRaCz48yEVRkaiJZio0uv1ekuqyqWDmMmAvg+FGhApiUr8Xwhcrmi2dZ/Pl9N3J4IS3ZaWlrIivUajEW63G/39/ejv7y/pM0X7vJAKRCZQj/v5558PtVpdFh74XDE6OgqFQoHe3t6SkLJcMDs7C0IIBgYG0NnZWdakl/bn8PAwhoaGMDY2VtT5VogRmmrcpIapVEpvf38/du/eHftcDGQzslNBjJ1WLExMTGBgYAADAwMIBAJYXFwsyvfS+yeExMZcKUGTQ/b19SEYDMYSIZUCVqsVer0+L6U3E+nNxX4khGB2dhbd3d3o7u4ui3lGCtKbqp8oB0t3rpR8rySkl5Lcffv2oaqqKifSS0lMvp1AO7rQ3rN4r2E2D2I2UivVvdPvKhcl0Ov1wmKxYGBgAEqlUlLSS/tS6ATocDgQCATQ1taGYDBYNl7fbDhx4gTa2tpQW1uL8847D8A2ES4niCG99LdL95zm+z7EE12xkzs91+fzSWIgUqLb1tZWVuHNVNmlpLfUSq9cLhftoJAK1Pjo7e1Fd3d3WXjgc8XY2BgGBwchl8sxPDyMM2fOlJUTNBUoye3t7UVvb29Zk96xsTEolcqYU8Hj8RSNtADRsTEXIzRfhSoelLTV19fDYDAUjfTmMi+IsdOKAULIDtILRJXfYqDQDgBq3+3du3fH52KD53nYbDYYDIa8llpmeo9ysbHNZjOcTid6enrQ09NTFvNMtnEh1/GG2njZwpvPWdI7Pz8PjUaD+vp6dHV1lZT0ZoszlwpiBpBs90aJm1Qqd7kYOdTzt2vXLrS2tkoa3kz7SmifxWfMi/9c7hgZGYmFXVZXV6Ojo6OsSa+Q906IdzH+OLHIR+mlxxNCJFF7KdHt7u4uq2ducnISHMehs7MTfX19WFhYkGR9TS5wu91QKpUlI70zMzPQ6/Wora0tGw98rhgdHY0tM6KkbGFhobQXlQXT09PQ6XRoaGgoe9I7OjqKwcFBcBwX6+diqumZnNqFMtYTQUkbwzAYGBgoutIrZl4oN6V3fX0dDocDAwMDaGlpgVarLVr/2e32WDblQjgAqH1H7ZVSkV6Hw7FVPqmqYEpvLjY2nVfild5SRxxmGxcKNd6c8+HNc3Nz6OrqAsMwJSe9Ug7umeBwOGLlR7ININnuLRgMRusYSvAAhMNhhMPhkr9MwPYg2NbWhra2NkkHwUAgAIZhBBvqlHBQ72o5EZB0IITgxIkT2L9/f2xbuSazyoX0FkrpjVd3cw1vTvw/VxiNRtTU1KCtrQ1ut7tkxC4RU1NT6OrqglwuR39/P3ieLxnZc7lcUCqVBQm5EwIacsYwTNl44HMBz/MYGxuLJYSif8s9xHl6ehq9vb1gGAa9vb2Ym5sTFcJaTIyOjsb6tbm5GVVVVUXt30gkknbcpH2Wak6kY2m+/WqxWLC5uRmbR4tJevNRejmOKwvSS/tqYGAAMpkM/f39Res/h8MBvV4f+19qLC8vo7a2Fm1tbVCpVJKKHGJA1d26urqyUnrpvNLd3Y2enh54vd6SR38JscXS7aNqbqp+ypbwS0qhr6SkFwC6urpyyn6ZacAWA3p+oSdNu92OyspoQfNsA0i2e6PbpVBa6ENWDkYDJbmtra1ob2+XlPSKdRTQwYUaLKUebIRgZWUFFotlB+k9cOAARkZGysKpEQ8xRlW2d5QOprm+D/mGN8tksqR2coXRaERjYyMaGxsBlM9zNzk5GVtrT/+WKsTZ7XZDrVaXNLyZRoB0d3djcXGxaBlppcTS0hLcbndMgaSkbGwsuS5xOYGSXiAa4hwKhUpmMGcCIQRjY2Ox/mUYBkNDQ0UlveFwOG00F3UE52KECgUdIwYHBwFsk95izEe5zAvUNqusrCyL8OaJiQlwHBcbb4rpNLDb7bE68IXoi+XlZbS3t4NhGMlFDjGg6m5DQ0NOSm+m54xuy2V+mJ2dRX19PfR6Pbq7u2PbSolsthgV0FLtzzTeZLMHpeJ7QJmQ3qWlJdEPhVTMv5hKb1VVVez/TMh2b8FgEDKZTDKlN9N3FRPLy8toaGiAUqlEW1ub5OHNYkiv0WiMhdDp9fpzQumlYcw0XAiIKr02m62o68iEQIyzKduAKOWa3lzCm9VqdU7npoLJZEJTUxOampoAlE+EwdTUVKxET0NDAyoqKkqWzMrtdkOj0cDr9ZYkH8HMzEzMCOnp6UE4HC5L0pUN8UmWgCgpOxeSWSWSXrqt3LC4uLjDqQBE+7pYToV44zOVfZVpTpRK6Z2YmIgp8kCUtDmdzqI483KZFxwOB1QqFQwGQ9kovd3d3ZDL5QCKS3rF2Ky5YGlpCW1tbQBQUtJL1d2WlhZYrVbRDplCKr3U2UH5Uqmjiuj9pONrmfgEHW8yRZYUKpovHkUnvTzPY35+fgfp5XletNEgNekthtJrMBig1+uzes2EkF4pwpvjM0SXA+lNHATX1tYk+13EOgqMRmOMeDQ1NZUN+ciEEydOoLa2Fi0tLbFtVPUtt3W9Yt47oV7AUoU302ULUoU3lxvpDQaDmJ+fjym8DMOgr6+vZEqvy+WCVqsFIL7EVL4IBAJYXl7eofQCpffA54LR0VFUVlaitbU1tq3cSa/X68Xq6mqMRLW3t0OhUJQl6U10KtD/JycnizLfxhuQ6YzQdHOiVGLAxMQEOjo6Yo5BqvgWg7jlMi/QiLxyUnppaDgQJb1msxlms7ng322321FVVQWFQlEwpTfe3iuV45Cqu62trYhEIjvKVglBNqIH5K700vlFrVajpaWl5PNMpjEjPnNzruNNoWy8eBSd9K6trSEYDO4gvYD4skWhUEgStbNYpNfhcMQG03JReuPvuRxIb/wg2N7eDp7nJTP6/y+QXprEimGY2LampiY0NDS8RnozgIYoazSanMKbKemVMry5srISSqWyLMKb5+bmEIlEYkovgJKWLXK73bG1ZsUOcV5YWADP8zFjpL29HRzHldwDnwvoetP48WJoaAiTk5MlS1KWDbSfKellWRZdXV1lS3orKyt3OCGHh4cRDoeLQvrix8NcjdB8w/YTSVtnZyfkcnnZkl4xdloxkNh/1GlQDIejw+GAwWAoWF/Q8GYAki9nEwOLxQKVSoXm5ubYZzHIRnpztdXjlV4AZZE/ItP9xI8Vr5HeOFByS8luW1sbWJYVTXqlIn7xnV3IdSZU6TUYDJIovVLce7xhUw5GTvwgSMmvVN6/QCAAmUwm+D5NJlNsXWVjY2NZkI9sGBkZ2bGeF4iqcuWYzEpK0pspQYIQUOKq1+tzCm+WkoDR8GaGYcrG2UINLKr00v9Luaa3VKSXetqpMcJxHDo6Okrugc8F8etNKYaHhxGJREpakioT4ssVUZRrBmfav/FOhT179gAoTrIwoaQ3U7ih1KRXLpejp6enKKQ3l3lBjJ1WaHi9XiwuLu7ov56eHshksqL0XyFJr8PhgNPp3KH0Go3GkuRGsFgsqKmpQXV1deyzGGR6znK11V0uFzY3N2POVQBlUSlACHFN/F/IudnWPtNzzmnS29HRASA6CLa3t5ec9AL5D/CZIMaDmG2wDgaDYFlW0nsvtdJLCEkKbwakS2P/p670ms1mLC8vJ5FeIBriXK5Kr5B3Ltux+UZ9uFwu6PV66HS6nMKbaYK6fMObXS4XPB5P2T13k5OT0Ov1MScQEFV6zWZzTok/8oXL5YolWCl2BueZmRkolcod6l05eODFIhgMYmJiIon0lnsG5+npaVRWVqK2tja2rVxJb3w5KAqDwYC2trairOsttdIbCAQwOzu7g7QB0RDdYtSaPdeVXup4iu8/lUqFzs7OopBeGupdCAcAtevi7T1CCFZXVyX9HiGwWq2orq5GTU1N7LMYZFN6c7HVE52r9P9SzzP5kt50fVFoGy8eJSG9zc3NsTUeAHIqWxQIBMCyrGTZm4HCEj+hHsT4TIvp7o0+PPneezmRXrvdDo/HExsEKysrUVFRISnpFTP4nGukN1USK4oDBw5gbW0N6+vrxb6stBDjuaPPOc/zabMC5vM+UKVXp9PlFN5cUVEhSTZh+oyVW4QBTWIVr1jRUOdShDi73e6Yo6EUSm9XV1csYzdQHh54sZicnEQ4HI6RXIrKykq0tbWVNeml5Yooent7MT8/X1YZtKlTIbF/geKtm44fW9Nllk03J8YrL7lGwM3MzIDn+ZSkt9CkjRCSU/bmclJ648sVxaNYToNCOgCoXRcf3hy/vZjIV+ml70+6d0xMhCFFfLkiiu7ubthstpI4miky2VrZIkdpX2TLIZAqj0CmqBSxKAnppaHNFLmQ3kKonYUM8RU6gAghopkmKzEoJ9Kb6Pmj/0sV3izmefH7/bDb7TvIh8PhgM/nk+RaCoETJ07sSG0fj3JMZpUpfX0i8vEgCkG+4c2UMEtFesvN2RJfroiChpeWIgzW7XbHsooWm/TGZ26m6OnpwdzcXMqyMOWKVEmWKMo5mVV85maK3t5eRCIRLCwslOaiUoA6FUrZv9kc+kKUFyD3fCeUtNF1qBQDAwNYXl4u6LubbX1hOpST0jsxMYHGxsZYVAtFsTI4F9IBsLS0BJlMFpvrpI7sEwOq9Go0GiiVStGkMpMDPx+lt7KyMqY+A9uqbykdrELHjEx9kWk5BZA+07wUnAd4jfQWhfjxPA+n0yloABFyPefSvQsFJbfU4wdIm8ZeTJ9RdS2efMRvL0eMjIxg3759OxQoiq6uLlRWVpYV6RXzexSa9OYb3qzX66HX6/MOtU313JUD6Y0vV0Sh1WrR2tpadKWXEAKXyxUzBood3hxfo5eiu7sbPp+vLH4roRgbG0NLS0vMeRCPYpbVEYt0pJfuKxfQ/kul9A4NDWFpaangpEqKcMN05wrBxMQEqqurd4SiA9vKZSHHjlyvP57olQPpTVR5gWj/zc/Pw+/3F+y7g8Eg/H5/QZXe5uZmcBwHANDr9aisrCxJBmeq9DIMg+rq6pyV3nTvEcdxot8h6lyNj2gph0oBUpBeqc8Vi7IhvXa7HTabTXA7uT5MqdpJ9b+UcLvd4HleMqVXqnsvp0RWy8vL4Dhux7pBqUkvx3GC7jOV4ha/vRxBMzenAsMwOO+888oqmZWYZ1jIgJjP+5BveLOUSq9arY4laWpsbITZbC5p2KbdbsfGxkaS0guUJplVMBhEOByOhaIVU+mNRCKYm5tLqfQC51bZolTrTSmGh4eLQsrEwuVywWQyJZHe1tZWqFSqsiK9o6OjaG1tTetUAIAzZ84U9BqEjpvZlJdcbQNK2uINd2B7aUQh1cpc7bp4pdfj8ZR07M1EenmeL+j6TvruF8oBEF+pg6JUGZyp0gsANTU1opReWgs7U9huLrZJKucqVX5Lua430/0IGW/kcnnG5RSJ/8dvS3euWBSV9Ho8HqyvryeR3s7OTgDiyhadS6SXDhg0KUC5kN5yUnqp549l2di29vZ2SbM3C+0zqrjFhzfHby83uFwuTE1NpUxiRVFuyazKkfTmEt5M6/RKRXpp5mYg6mwhhGBjYyOvdvMBVWMSlV66rdhKL+3jiooKaLXaopLelZUVhEKhJNLb2dkJhmFKnmREDGi5olSg28tN7U0sV0Qhk8nQ3d1ddqQ3Xf8ODAyAZdmChzjnM25KpfSmIm2VlZVoamoqW9JLiR4A0TVbpUIkEsHU1FRa0gsU1mlAoxELVbN4aWlpR1QfIK3IIQZU6QUgWumlTpFM71E+Sm8ienp6Sq705kN6/88pvfPz8wCQUukF/nRJLx0w4tO/p0sO8X+V9KYbBM1msyRracX0mdFoBMdxsYGwpqYGcrm8bJXeU6dOAUidxIriwIEDmJ2dLRv1Jv73yJYopdCkN5/wZlo+R6rwZhpVAJRHhAFVchOJBhBVeqenp4u6lpX2sVR9LgaUdCV64FUqFVpbW88ZpdfpdGJxcTGt0lssUiYWqcoVUZRbBudMSrpSqUR/f/+fNOklhKQlvUB0nW+5kV6/349AIBAjegBKlsxqaWkJfr8/Zf/V1taipqamoP0XL9QUKrw5UemVMoeLUITDYTgcjpyVXvpsSUl6/X4/VlZWkuYZIBri/Keo9OZzrlgUlfQm1uilqK6uRkVFhSjSS+XucyF7c+IAwvN8WuNaSMixmFDdTCgn0ptuEASiCku+EPPSGI1GNDY2xtbHMgyDxsbGsiW9J06cgFKpTEoYEg+qAp88ebJIV5UZ9PcAspfFEBr6UuzszYQQycObU5HeUkYYTE5OoqWlBTqdLmlff38//H5/UQ0V2sdS9bkYzM7OQiaTYdeuXUn7Sm2MiAENq81GyspN6Z2enkZ1dXXMQI1HOZHebE4FIKqmF5P0ig0ZpJlWE9sRirW1Nbjd7rSkt9DJmOg1i8n4mminxW8rNtJlbqYodP/FCzUGgwE+n08yG5HneaysrKS094qt9NIllbkqvfTZSmeP0whDMbbJ/Pw8CCFlqfRmsrWE2Gn5EGYpOA9QAqVXpVLtWLcJREmF2GRWUjF/KdauZEPiABK/Ld31ZLo3qeLby530UuVXCqNajMctUXEDogSkXMObR0ZGMDQ0FCORqTAwMACVSlU2Ic70GQayP3s0tCXdsfmOBbmGN/v9fkQiEUlJb/zYWFdXB4ZhSupsSZXEiqIUZYtKSXpnZmawa9cuKBSKpH2lNkbEYHR0FDKZLKOTrBwzOKdKYkXR29uLxcXFkuemALI7Fei+sbGxnMsBCYGQ7M3ZFKp052aDENI2NTWVsjyJFKD3LmZeEGOnFRoTExNQq9VJNhFFoZXyQjoANjc3EQgEkiL72tvbYbVa4fV6JfkeIaCqbr5KbyYFU6xtkqpGL0V3dzeMRiM8Ho/g9qSEFEpvuhwC6cYbQsi5rfR2dXUlJTYAxGdwLgTpLZbSG78t3fVkujep7r1YNYqzIZ3nr7W1FYA0aewzvXCJSCQfAMpa6c2UxIqC4zjs3bu3bJJZxSu9QkhvumNpXet83odcw5vpsVKF2iYqvRzHob6+vuThzamSWAGIEcBiJrMqZXjz7OxsSu87sK30FpLESIXR0VH09vZCpVKlPYYqkeV0P9lIL8/zoqtAFAKjo6NgWTYt4QOipNdqtRb03c7XCKXOnVwcCePj41AoFLF8LYkYGBhAIBAoWJkpIXZUIspJ6R0fH0d/f3/KagzAttJbqPeTkv2KioqYA0CqvkhVnjL+czHVXqrq5qr0FoL0zszMQKVSJQkvwDYRLtU4R8cFqUOU40WQxPEmHA6DEHJuk95U6Orqiq35FQIpSa9SqYz9XwjY7XbI5XKo1WpJlN5MD54YFEPlFoL19XWEQqEkz59KpUJdXZ0kg2AgEBDcZ4nkAyif8jGJCAQCOHPmTMYkVhTllMwq3qgSQnrTHZuLcROPxBBlv98vuC6llKpjMBiExWIpqwgDnucxPT2dVullWRY9PT3/p5TeVN53IGqMOBwO0TUeS4FM600phoeHYbPZsLa2VqSryo5spJceU2oIcSrQ/i+kmi7ECFUqlWn3CR2fU2FiYgK9vb0x9SYRhU7GlMu8kJh7JX5bsTExMZExEmNgYAAej0eSpV+p4HA4oNPpwHGc5H2RjfQWc7lMKqXXbrcLjkCgz1YmIijWVqfO1VQOD+p0LdVSmnzX5Wbrp1TnZutjsSgr0ru4uCjI4KTqjlTET6jilCtoGnyGYQQrvekmI3qMlKRXqqxouSLdIAhIl8FZTJ+dS6R3bGwM4XA4q9ILRJNZjY+PS5IYLF+IVXoLNSAGg9ESODS8GRBeBoeqjFIQsPX1dQAoqwiDlZUV+Hy+tEovUPyyRaUivYSQrEovUDpjRCgIIRgbGxNEeoHyyeBst9uxubmZlvQ2NzdDo9GUBekV0r8dHR3QarUlJ73ZFKp052ZDpiRWANDS0gKtVltw0pvJjkpEvNIrl8uh0WhKuqY3U/8V2mlAbVYAkqveS0tLUCqVqKur27Fdysg+oUil9BJCBBN8MaRXqCqfLnMzANTX10On05VsKY0QpTdT+aZM402hhI1EFI30EkKykt5wOCzIcyUl88/XoykENA0+AMFKb6Z7k5r0SuVByRWZSK9UyQ2E9lkkEsHGxkZK8rGxsVGwNUi5YmRkBDKZLKuRBUSV3kgkUhZr9XJVehMjEvJ9huPDZWmyJqFESsrw5sTa0BSldLZkKldEUeyyRS6XC3K5HEqlsqjhzevr6/B4PGmVXmqklPu6XpPJBIvFUhakTAwyZW4GonlBenp6Sk56CSGClHSZTIY9e/YU1KlAx8NMa/DSjZs0Miq+HTHIRtpkMhn6+/sLTnrFzAt2ux0Mw6CiogIAClKfVggsFgs2Nzcz9l9HRwcUCkXB+s9utwu2WcWC5m9JXOaoVCrR0NBQVNJrtVqh0+lizzolv0IjdoSSXgCCI8hS1eilYBimpEkT4yMmE0l8Pqr3n6TSazKZ4Pf7M5JeQFisenwnSJHBuNCk1263x7xlarUaHMelHUzp/fxfIr1LS0tQq9WxAScexSa9ZrMZkUgkJfngeR6bm5t5X4uUOHHiBAYGBqDRaLIeOzw8DJZlyyLEWcx7l8kAo++LGI9+PBKVw/htYs/1+Xw5O0VoCHM5kd7JyUnI5fKU2Yop+vr6sLS0VLToARqKDqCoSi8ls+k88BUVFairqyt70ktJbLoashSUlJ0rpJfuKzXppU6FbP0LFD5ZWDAYhEwmS2snZVryk49d5HK5sLq6mpG0AYXNQJyLbeNwOKDX62NhpYWoTysENHImU/+xLIu+vr6iKL3UCSDlmt50CbqKXbbIYrHsyAZP/xe6rjebvS7WeRQOhzE/P592ngFKmzQxflxIrLqRjZflupxCSr4HFJH0pitXRLFr1y4wDCOI9OZr6Ca2Rdf0Fmpda/wAwjBMRg+ikB+YvkhSlGtiWbbkpDed5w/YHgTzTdhAX6psfZZJcYvfXy4QksSKQqVSYffu3WWRzErMe0cHS/p/4j4g9wExnrjS8Gah6mEqlTjXrIpGoxEymQy1tbU7tjc2NsJkMpUkodDk5CR6enrSrssDokovIaRoZKNUpJd61tPNX8C5UbZodHQUarU6431QlFMG5+npadTV1cXm0VQoB9JL+0tI5M3w8DDOnj1b0AzGCoUi5fxOCEEoFIJSqcxooNJ2xEAIaaP7C0Xa4m1EMSWLqKoJoCD1aYVgYmICDMNkdPAAhe2/eKWX4zjodDrJHABLS0tJ+Vso2tvbi670xost+Si9UiSEW15eRjgcTqv0AqWdZzLZYjQZVTYHQCYHHP0/cR8gDd8DSkB602XzUygUaGtrE6X0StEJxVJ6EwfTbOHN6e6Npu+W8t6l8qDkikyev/b2drjd7rwnH0qysvUZVdxShTfH7y8HRCIRnDp1SlASK4pySWaVafAUc2y+Y4EU4c1arVY0YU6E0WhEQ0NDrDQTRVNTE4LBYKyeYDGRqVwRRbHLFtFM2wCKGt48OzuLpqYmaLXatMecC2WLxsbGsGfPnqTnLBUKTcrEIFMSK4re3l4sLy+XNGfB2NgYNBqNIKfC0NAQ/H5/wQzY+Pk9cWykKk0mpTfXBJ+UiGUbOwYGBmA2m2E2m0W1LwS5hjfHO1UMBkNJlN6JiQl0dHRArVZnPK6QpDdeqAGkdQBkU3qLvaY3H6U3m/0h9j3KFlEEROeZpaWlkghV2WyxdOMNzcOUSz9JyfeAIpPexsbGjGGYQssWSU16VSqVZIukU0HMAJLt3ui6AJVKJcm9K5VKyR6mXLG0tJRxEATyT25Af+dQKJRRNaNKbiLpbWho2LG/HDA5OQmfzyeK9B44cACnT59OCk0pNujvQf/P9dh8x4J8w5vpIC/23ESkqg0NlDbCIFO5IoqamhpUVVUVLZlVKZXeTN534NxReoWokECU9AYCgbK4J6GkFyjtuurR0VHs2bMnbamZeBQ6WVim+Z1+VqvVaY1QoeNzIiYmJtDS0hJzTqUDzU5ciLEjl3mhkERPDLKth6YYGBjA2toanE6n5NdQKNU7FArBaDRmDW8uVmRTotKrUqmg0WhEK73p7HGx79HMzAxYlk2rhAPReYbn+YKV+8qEbOQ023iTSz9lO1csikp6s3k/xZJeqYhfOu+EVEhUejN5EIPBIBiGyfhwAOfOvQvB8vJy2pdcijT2kUgEkUgk9lJlInxGoxE1NTUx9Z9CoVCgtra2rEgvVWzFKr2BQKCghe2FIBelN1VWwHzfh3zDm+k5+ZLeVLWhgdJFGPj9fiwuLmZVaxiGKWoyq0TSGwgEiuLAyZS5maKnpwfr6+tFLaMkBpFIBGfOnBG03hTYXvdbDiHOYkhvKUOcR0dHBfdvfX096uvrC9a/meZ3qRWqeGQrt0PR09MDmUxWkLkoG6lPBTF2WiEhtP8K6TQolOq9trYGnuczhjd7vd6iRTYlKr2AuFq9hVB6Ozo6YpnTU4E6X0vh3MtGTgsx3pzTSm+60GaKP1XSK1bpzXQ98Q8AJXO5ohxIbzAYhMlkSuv5a2pqAsuyeSm91CgWMviYTKaU5APYXl9ZLjhx4gQ6Ozt3TNTZcN555wFAyUOcxSq96cLw8x0L4sOb1Wo1GIYRpfRSAiZFeHM5Kb0zMzMghGRVeoHili1KDG8Gcnc0iEGmMhIU5Z7BeXZ2Fn6/X7DSW2hSJhQWiwU2my0r6W1oaIBOpysZ6aVOBaH9CxR23bQQIzTduEmXA+VSzlCoUqlSqdDZ2Vkw0stxnOhEVqVWegOBAObm5gT1Hx2bC9F/heqLTJU64rcXK8Q5UekFotFLpVR6s80zLS0tUCgUJYnAic/Fkgvppf2UKvOzUqnMaawSi7IjvRaLJevLFU/8pMjeTBdfF2pdqxivWbbrib/3+M+5oBj3ng2rq6sghKQdBDmOQ3Nzc15Kb/xLA2ROKJCOfADlV6t3ZGRElMoLRDMx9vT0lDyZVbxnT0giq3TPab5jgdvtjhlHDMNAp9MJJq6JqiOQH+lN5WzRaDSoqKgo+nNHlVshpLe/vx+Tk5NFCUlzu92xdbX59rlQ2O12WK1WQUovUL61emkYrVAlEiiPZFZCMjcDiCX/KRXpnZubg9/vF9W/Q0NDBSW9QsbNcDgMnucFn5sJ4XAY09PTWSNEKAYGBjA+Pi64faHI5frLYU3vzMwMIpGIoP7T6XRoa2uTvP8IIUmkV6q+oHZcNtJbrAzOUim9KpVKkoRwQiKKWJZFV1dXyZXeVGOKkPGGEJJUvqmQNl4iikJ6fT4f1tbWsv6YNPx5fn4+43H0xsWErmRqK52HQQqEQiH4fD7B6yOyXU/8vQP5kd5C37sQUI9epjUM+SY3SCS9me71XCG9hBBRmZvjUQ7JrAKBgOBnOP45TQxlzXcsiFcOgah6KFQ5TBXenEv2Zp7nsb6+nva5K0WEweTkJAwGA+rq6rIe29fXB7vdXpCENIlwu92S9LkYUBKbbU1vbW0t9Hp92Sq9o6OjqKmpSRvJkgpDQ0MFrSUrBJTEZut/oLQZnMVkbqYYHh7GzMxMQZJvZZrfs9kRmZSXTJifn0cwGBQUngsULhlTLrZNunWsxcycT/uilP3n8XgQiUQKsqZ3eXkZFRUVsTJIiWhsbATHcUVReoPBINxud15KL32PMkVMCLVzCCEZa/TGo7u7u2SkN9395DPeCD33nFF66YJrIWt6gey1es+l8GY6UCR6zfINb5aC9JZDeHO2cBcg/zT2YhwF5wrpXVhYgN1uF630AlHSe/LkySTvfjGRS3hzLglZsiGeRAHikiPFK70ajQYMw+SkOlqtVoRCobJ67iYnJ9Hf35+yjFgiqCpRjBDnVOHNhVZ6qXGRzRhhGKasMzjTJFZCflMKSsq8Xm8Brywzpqen0djYmDUxElB60ltbWxtLeigEw8PDIITg7Nmzkl+P0HDD+M/x+3MhvZSACQnPpcfNz8/D7/cL/g4hyMW2SUV6w+FwUbOBT0xMoLq6Oql0XToUgvRSRTdxfbNUpDeTwMGyLFpaWopCeimxzVfpZVk241pVoba6yWSC1+sVRHp7enqKHlFEl1NmcpTlM97kuhRDLIpCerPV6KWora2FVqsVTHq1Wm3K+HAxoIN7oTIYpxpAspUsynQ9dBvNgp0v6S119ualpSUYDIYYeUgFqZTebH1GCBG0prcUNVMTQZXaXJTeAwcOwOl0Clo/XygEg0HBz7CQ9R4ajSZn0hv/7OVKemUyGbRabU7rS9PVhqYoBekVUq6IoqenBwzDFCWZVaqQ8kKv6Z2ZmUFVVRWqqqqyHlvOGZzFZG6mKCQpEwohSawo+vr6sLa2VnD1PxVycSrs2bMndq7UyDS/Z5sTMzkaM2FiYgI6nQ7Nzc2Cjh8YGADP85K/M2Kvn+f5lCG9AIoa4kzXQwt9hgYGBjAzMyNpMr9UQk0mm1UMMpUroqAZnAsNSnrzXdOb7h2jJFGonUPfgWwRsfSYubm5opaTo89YtuiQTOMNXZqUy7m52niJKArpnZ+fh0KhyDoQMgwjKJlVvLpDCCnrZE7plF6v15tyoPq/qPRm8vwB0UFwZWUlZ2VSaJ+5XC54vd6M5MPn8xWkRIBYnDhxAo2NjaJCFSmoOlzKEGeq9ApJlCLEC5hPeHM86RVT+zUxNFrMeuB4pKsNTVGq8GYh63mBaN+3t7cXRektBekVGnIGlG+tXp/Ph5mZGdGkl5KyUoY4T09PC34WKTkuheNhbGxMdP9qtVp0dXUVjPQKGTfjPws5NxNyIW30PCkhVql2u90ghCQRPQBFTWYlNAkYxcDAAEKhUNYlgWJA77cQod6ZylNS5BvZJxRUzc1X6c1WC1uorU7nDSE1vnt6ehAMBrG6uiroOqVAPmOGFOeeU6SXJrESUrtOLOmN/5wLCk380im9QOrB9P8i6RUyCAaDQWxsbOT0HUKVXiGKW/xxpUQuSawo6uvr0dLSUnLSK/TZiz82XZIDSnrFTspShTcD4tYDx6PclF6LxQKr1SpY6QVQlLJFhJAdv1exwpuFZNSk6O7uxtLSUskSA6bD+Pg4eJ4XlWQJKCwpEwJCiCilt1Rli3w+H6anp0X3LxBV0wvhVBBqSMZ/pggEAnmRXqGora1FTU1NQUivmOtPF9Ibv6/QIITkRHoBaZ0G9H4ThZpIJJJ3BIVQkaOY4c2plF6n0ylIPc+H6CViZmYGLS0tseMzoRSVAuicli06pFCk95xa0yukRi9FV1dXVq9V4oCdj4GRyaCWAulCReL3xSPbZFOoey9n0ptvGnuhg48QxS3+uFIi1yRWFPv37y9pBudcSW8q44zWtU6VFTAbUoU355K9mZ6bK+k1GAyx9S6JaGpqgsPhKNraMqrYClXX6LGFVnp9Ph94no/1uUqlgkwmKzullxASy2NRLqCkNVdSVirSu7m5CafTKZj01tTUwGAwFJ30UqeCWKUXKFz/ZrIlhCSyEmsbEEIwPj4uirQBhVmXGn/vQmwksXZaIbC2tga32y2q/5qamqDX6yXtv0L1hdfrhcViEWTvra6uFjx0l6q5ictWqPIrpFawEIe8UFtdzDzT0dEBmUxW1IiWRDs68X6EjDe5EmaZTAaVSpV3mVagTEnvwsJCxhvL1oFikKtHUyjShTcDqT2I2Ui4UNVSCAp970KwtLQkyPMH5E96sw0+54rSazKZYDQac1Z6ge0MzqVanyzGKMn0nMav3aKfxSBVeHMu2ZuB/MKbM4WpF/u5o+RVKNEAokrvzMyMaKeDGNDfhf5etMRUIUmv1+sVVHmAgh5Xbut6x8bG0NHRISgZVCIKpUQKgdByRRSlKltE+4eGg4vB8PAwjEaj4JBKocjHIM9FDDCbzbDZbIIzD1MMDg5KXnZHSqW3WKRXbOZmIPq8S+00sNvtYFk2tv4SkEb1FpK0FIhG9oVCIayvr+f8XUJgtVpRWVkJjuN2bKfKr5B1vfkQvUSIiShSKBRob28vqtIrZF1uruNNJnswfl+q7xWLgpNeQoho0hsMBrG2tpb2mGAwGFN36OdcIXbth1jY7XZotdodL1Y+4c1SEv74ey9FOJ7H44HNZss6CNbW1kKlUuWc3IDeW7qXlcJoNEKj0aQ1DPV6PbRabclJbz5JrCgOHDiAjY2NktwL9dYJTTQST2wzDbT0sxiUS3hzOkcLUPwIg6mpKbS3twsKs6Lo7+9HKBTC4uJiwa6LOhQSS0wVMryZLrUR6oFvaWmBUqksu3W9uSSxoigUKRMCSl6FGoNAaTI4j46OorOzMyenAlXfpVZ7s42bQG6JZdJBbOZmCkrapKwmIJb0phIndDodZDJZ0cKbJyYmoFAo0NHRIeo8qZ0GNKFX/LpsKZReIeUpgfxFDqFIVaMX2Ca9Qsa7TPwh2zuWCDFKL1D8DM7ZBLd8llNkGm/i+zjVuWJRcNK7ubkJj8cjivQCmcsW0U6QivTmkqVQKBIzAgKZPYjZJhu6jRrb5Xzv2SDU88cwTF7rPIT2GVXcMiXhKEVSoUScOHECBoNB9OQYD6oSlyLEma6VEepsyjax0PeFfhaDXMObeZ6Hx+ORLLw5E+kthdIrZj0vsB0KXcgQ50Sll/5fSKWXklehpEsmk6Grq6vslN7R0dGcQpuBwpEyIZienkZra2vMWBKCUpHeXPu3t7cXCoVCcjVdiEGebk7MJbx5YmICLMuKclAAUdLr9XolTcoj1rZJRXoZhkFFRUVRld7e3t4k5TEbqNNAqqgtu92+Q/EGpFV6W1tbMx5XLNJrtVqT1vMC2+HNQpReIY4llUoFjuMyPodWqxU2m03Uu1PsWr35OMryGW/yjeZLRMFJr9ByRRTUkM9GeqWSuwu9rjXVAEILc2cLb85EeoV6jzKh1Gt6qXKbzfMH5JfcQGhIeDbyAZRHrd6RkRGcd955okpjJKK9vR1VVVUlSWZF+1+KNb35jgW5hjd7vV4QQiRRHbOFN1dXV0MulxftuZuamhK1nheIvp8qlaqgyaxKQXpnZmag0WhEZUkvtwzOVqsVa2trOSu9lJSVivSKCbMHote7vr5e1Cz7+Sjpcrkcg4ODBVN6c1Ghcln6ND4+jq6urphxKhSFSMYkNoLPbrdDLpcnRbcYDIaiKb25rIcGov1nt9tzTvSZiFRCjRRK79LSEurr67M+H9XV1dBoNAUvW5RO6aXbhCq99D0Jh8M7ohXE2DlCa8HHg5bHK9YStWwkPp/xppA2XiKKRno7OzsFHa9SqdDS0iKK9JZzMqdUA4hcLodWq80rkRV9eMr53rNheXkZDMOgpaUl67H5pLEX6ig4l0hvPqHNQNSLfeDAgZIovfmQ3mzrPcS+D7mGN0tJwLI9dwzDFC3CIBKJYGZmRrTSK5PJ0NvbW1CltxThzbOzs+ju7hblYCq3Wr1UQcyXlJViXW+upBco3rrqfJ0KQGGSWWWa3/NJLJMOYjMPU3R0dEChUEhOesUmskoM6QW2S/UUA7n2n9ROg1RCjVarBcuyeYc3CxE48o3sE4p0Sq9cLoderxel9KYiZIl2TqbnUEyNXoqenh643W5sbm4KPicf0OsXYoulG2+kIL35LsUsCumtq6sTtdYlW9miQim9hcrenDiAAOmLfQtVeqUMby4l6W1oaIj9jpmQT8FyMeHNQkhvKcOb7XY75ubm8kpiRUGTWRUbiYNnqZReWgInUekNhUJZxwKpSK/H44HL5SobZ8vi4iICgYBo0gtE1/X+qYU3z8zMiPK+A1FjZH5+vuDZR4VidHQUcrlctHofj1JkcBZbroii2GWL8nUqANEQ8rGxMUlVm2wJADmOS7tErJikl2VZ9PX1SUp6xSrVqYgeEFV6i0F6XS4XVldXc+q/7u5usCwrWf+lEmoYhklrswqFkEodFMUgvemUXiC6rles0ks/x+8DhCu9tbW1Sf2eCcVOmkivP9OSiUzjDcMwaTM//8kpvUJDmymykV4ps3kVOoOx3W5P+SCnG0wTSXjiJBgMRtN3S1Gnt9TZm4VkbqZoa2uD0WgUVDstEYmkN1P25mxhjI2NjSVVek+ePAkAkpDeAwcOYHFxUZBHU0qI8YASQgRlb85lLKAhyokkCkBWIiWV6pitTBZFsUgvDU/OhSAVulZvqdb0il2j2N3djVAoVJRak0IwOjqK/v5+Qc7FdCgEKcsGk8kEj8cjmvRWVVWhpqamaKRXKqeCy+WSNKQzfi1cJiMT2DknxicaFCoG+Hw+LCws5ETaAOnLFsXfn5AyJ6mIHpBenJAa1FmYS/8pFAp0d3dLSnrTCTX5Kr1CSW97e3vBw5vTKb1ANMRZaPbmdEmW6HsjJMxeTOZmimLX6s1G4jMJiJnW5RJCdixHOOezNxeC9Eqt9IrNUigGmQbTbKQXQFIJkEwvmVjE33spsjeL9fwRQjJm9U6HeA9VuoQCwWAQFotFkOJmtVpL0l9ANLRZrVbnpMQlghLnYqu98b9HtvcuEomAEBIbMKUkvZQsJYY3x+/Ldm6+BCxbmSyKYpHeyclJKJVKwc6oePT19WF1dbVgJNTlcsXWE1EUMryZZqPORekFimeMZEM+600pKCkrZHbuRIgtVxSPYiazGh0dxcDAAORyec5t0N9HSjU907rWTEZofKJBoXbR9PQ0CCFlSXoBZHWWF4roCQW991zndSn7L5NQk6sDgBAiWuT4v6b0ip1ntFotGhsbi670CiG9uYw3mWy8cyp7c66kd2NjI63xlKkDxYDneYTD4YIrvWLDmzP9wPTeqeF3roc3i/H8AcjJ+0c9RQzDpL1XqrgJIR/xxxcbJ06cwN69e0VneEyF3t5eaDSakpFeIc+ekJCaXAdESpYSw5vj96VDOtIbDAZFXYNQ0lusNb1TU1Po7e2FTCZ+aqAGW6HIRmIoOlBYpXdxcRGRSES0B37Xrl1gWbYs1vUSQjA2NiYJ6QVQ1HW909PTYBhGtP0AFJf0StG/ra2tqKyslJz0ZjJCsylUYmwDKUjb2tqaZARTrDO0EERPDCYmJtDS0pJTyStAWtIrVqgRArvdDo/HI0rkWF9fL5hd6vP54PP5Miq9xSS9uSi9QHGTJsbfTyYBQqw4IZRMnxPZmwOBAFZWVgQnsaKgk9z8/HzK/YkDdq6qW7yHoVDEL90Aki68mRK0dD8wfQAYhslbnS4l6SWECE5sAOSXxp7eJ4CspFdIeHP88cWGFEmsKFiWxXnnnXdOkN50x2Z7XzIhHXGN35cO6cKbhZwbD5PJBKVSmdIxFo+mpiZsbGwUfJ1oLuWKKApdtqjYpJeSVrEeeLlcjl27dpWF0ru8vAyn01mWpCwbpqen0d7eHlt3KgbFIr1SORUYhsHQ0FDRSC8dN6k6nauxTjExMYG6urq0JCIbqEIs1dgh1lAuBNETg1zXQ1MMDAxgcXERXq8372vJtL45VweA0PKUFO3t7SCESFrGKh40dDmT0iu2ZBH9HL8PSE8SKTweD0wmk+h5Bihu0sRsy9KyRZYolUqwLAuZTJYT6c2X71EUlPQuLi6CEJKT0gukL1skVXizmLWFuYAQklciq/hrTNxPr1uq7M1C1r1ICavVCq/XK3gQ1Ov1qKysLBjpFRNmGn98MeH1ejE+Pi7Jel6K/fv3Fz2Ds5SkN58BMVN4s1Cll2YjjD9XDAmj68izZQduamoCz/OSlaVIh1zKFVFUVVWhrq6uYOt6XS5XkhJSyPDm2dlZyOVywWNUPMolgzMlUbnWkKUoBCnLhlySWFH09vbCbDYXXKVbXl6Gw+HIu38B6ZOFCcmFwDAM5HK5JKR3cHAw52uljjap1MrEZWDZ5oVSJ7LKt/8GBgZACMl77A2Hw/B4PJI7AMSUpwS2yXGh1vVSFVdqpTf+ORPKL8TWgo9HKZTedMQ2frwJhUI78j/QfUCyDS7WxitrpVdsjV6KhoYGqNXqopNeqdVOr9eLcDiccyKr+GtM3E+vWyqlF8i+7kVKiPX8AbmXLRJKelmWRW1tbca2amtrwbJsSUjv6OgoeJ6XlPQeOHAAk5OT8Hg8krWZDWLC54R4F3MdCzKFNwtZ06tWq8GybGybUMIcDyFlsoDiRBh4PB4sLy/ntV68kBmcMym9hUiwNDMzg87Ozh2/sVCUS63e0dFR6PV67Nq1K++2ip3BOV/SS9soJGh/5Kv00jYmJiYks0Pix0ae53c4tTPNibmS3nyUSp1Oh7a2NslIr9h5IZPS63Q6CyoIhMNhTE9P5630Avk7DahNWgill+M4wfXO84nsEwKpld58wptzqdFL0d3dDbPZXBTHDLW9OI4TRE7j+UQmse5PjvRyHIfW1lZR59F1PMUivYVKZEUfxHwSWaULEwCkIb303lN9VyFBBzMxCXNyLVsU/8Kl+51NJhPq6+uzGrgymQwNDQ0lCW8eGRkBx3GSqAoU+/fvByEEp06dkqzNbBAa9pN4rNQDYr7hzalURyHnxkNImSygOBEGlCDkQ3r7+vqKTnrD4XBBxq5cMjdTdHd3Y3Z2tqjZjlNhbGwMQ0NDouoMp4PUpCwTeJ7HzMxM2ZPesbExVFRU5JT4LRHDw8MIh8OSRErQfCXp5vdMc6KY8Zl+V76kF5B2XWoupDddRB4gzpEpFvPz8wgGg3n1X1VVFRoaGiQjvVIrvcvLy2hubhbsQNRqtaiuri4Y6RWi9Ho8nqwRAolLLVO9R3K5PKOtPjMzA51Oh7q6OtH3UcykifHRIYn3QzMwZ3IAZHOypeNhmfo4FxSc9HZ0dOTkKc9EeqlUnio+XAxySdggBtQrlslrlqokUaZwTamU3sSyBLTtYmFpaQlyuRwNDQ2Cz8k1o1+ioyDVQCZUcQOKl0k3ESdOnMDu3btzWuOWDnv27IFcLi/qut7EMJlME0v8O1qo7M3xREqpVEIulwsKb05FwOLbFQIhZbKAaPQLwzAFfe7yKVdEQcsWFYLsZXI0FMIozaVGL0VPTw88Hg/W19clvipxkCJzM4WUpCwb1tbW4PP5cia9FRUVqK+vL4rSK5VTgTozpVDTE/OVAMmhl+mUl8RSK9kM/+XlZfh8vnOW9IZCIXi93rQReQAKGiZP77kc+i+bzZpPeLNYx1CuIocQWK3WWO3hVKBkOJvam6mcjpAEqsB25uZcxpBi1urNxD3iq2xkG28S7bhEHnZOlyyan5/PKfMiECW9mRJZSUH8Ch3enM1rFg6H4fP5kq4p0w+cKTZeDBLvnbZdLCwvL6OlpUVUlthcw5uF9Nm5QHpHRkYkDW0Gov0xNDRUEtKbS3izlKQ3VQkcQFhyJJfdDZPVAAEAAElEQVTLlZb0FiK8WS6Xo7a2tqARBpOTk6itrU0b8iUEfX19cLlcBblOqRwNQsDzPObm5vJSeoHiGCPpEAqFMD4+LllkiJSkLBvyKVdE0dvbW3CCTkmvFKiqqkJLS4sk/ZtqfhervAi1i6QkbTMzM5IssxIzL2Sz0+KPKQQmJiag0+nQ3NycVztSkN5sfeF2u5PKaAqBmEodFIUsW2SxWFBVVZVWkKNzYLZ1vbmqm/HINXMzvc6qqqqiKr1A9jEjfpvYc8/58OZ8SS/P80n74pW7fGrMJnZ24rqXfJHNaxZ/DAVNwJAtezMg7b2n+q5CQkzmZoq2tjZYLBbRGQqFDD4mk0nwepNilY+JRygUwujoqGSZm+NR7GRWuZDeTMkTaFZAlmVFJ7JKJFGAMNLrdrvzDm8Oh8PY3NwU7GxpbGwsuNKbj8oLbIdGF4JsFJP0rq6uIhAI5Kz00nmvlOt6p6amEAqFJFN6pSRl2TA1NQWZTCa68kM8Cp3BmToVpOpfIKqmS1EWKtv8TsdNeky+pFelUuUd4j0wMIBQKJRW7BADOufTe8w0L+Rip0kJGhqeb7TAwMAAJicnU9rMQpFpTS8lwk6nU3S7uZDeXEUOIbBarRmdu0KV3kzPmVBbPZcavfEoVtLETLwrPjokFXfJZ7yh/chxHBiGKd/szYSQvEmv3+9PSS4KpfQC0qqdYj2IhBCEQqGsa3oLde/FDm/OxfMHiE9uIKTPyl3pHR8fRyAQkFzpBaKkd2xsrGi/fz6JrBKzAubzPqQiroCwjMCpCBgl30IJ2MbGBgghgp0thX7u8ilXRNHV1QWZTFaQdb3FDG/OJ6MmAGg0GjQ3N5dU6aXkqRxJWTZMT0+jo6Mj9m7nAkp6C7Wuenp6WlKnAiBdsrDEMRYorNLb19eX0zK2eFCleHx8PK92gOTszeWu9OarkgPR/vP7/VhcXMy5DUrupQz15nkeKysrZRXebLFYMpbXKpbSGwwGsbS0lPM8AxQvaaKUSm+2RFapbLxsYeJCUTDSa7Va4XQ68yK9QOqyRVITPykXScfD4XBAJpOlVJPooBI/gKRah1No0luoe8+GXD1/9FwxyLSeAIgOykITCgFR8rG+vp6XR1UsaPjxeeedJ3nbBw4cQCgUwtmzZyVvOxVo/3McJzqRVfw2+n+u70OqEGUg9/BmhmFEldARWiaLopCklxCCycnJvJVepVKJzs7OgpDeYiq9s7OzYBgmL6Wx1BmcR0dH0dTUlHPt1FQoVgbnfDI3U/T29sJutwsqPZILpCoHFY+hoSEsLCzk7cSJHzfzTWSVrZyhVKStqakJer0+7xDdSCQCnucFO/QzKb2FJr2EEIyPj0tGeoH8Mjg7HA6o1epY/eZ45NoX6+vrCIVCOYkcdru9IHXYsym9VVVVseMygaqf6WyTbElnFxYWwPP8OaH0iik7FL+N/p/t3HiVOD6EXkg/ikHBSG+u5YooOjo6drQTj0KonYXIYGy321FZWZkybIUOsPEDiBD1VaoHoND3ngmRSASrq6uiPX8tLS0AxNduy9ZnFosF4XBYFPkIh8Mwm82iriMfjIyMoLe3N6UymS/27t0LhmGKFuJMfw8hnrtCkt5M4c1ClN5Uv4UQwkwhlvQWMqx+Y2MDTqczb6UX2E5mJTWKSXpnZmbQ1tYWGzdyQalr9Uq53pRCKlKWDVKRXtpWIVAopwKAvNX0bE7tTONmKpU40zpbqUgvwzCSrEsVG8WWSelVqVRQKpUFC282m82w2WyS9F97eztUKlVe/ZeuXjGQu9KbS3lKIHeRQwiyKb0sy8JgMBRc6aXzQz5Kb3d3N1ZXV5PyA0kNqZTeTE42qW28VChb0qvRaNDU1JSS9EqVzClbCFC+SFf7DUjtNRMSbi3VA1Doe88Ek8mEcDgsehBUKpVoaGjIO7w5sU8pkRCzpjf+vGLgxIkTBQltBqLEob+/v2jJrLL9HvFIzN5Mz0/XllilN114s5A1vbmqxBQmkwkMw6C+vl7Q8VTpLUS4JlVm81V6aRtSK708z8Pj8RQ1vDkf7ztQHkqvlKG3gHSkLBMikQhmZ2fzJr309ysk6ZW6fwcHB8GyrGSkN50tISTcMJ4wpxuj7XY7TCaTJKQNkCYZk5Skl24vlNIrVRIwIFpOsb+/P2+lV4zNKgS5lKcEtklyIUKcsym9gLBavZSLUGU80XmUzTaZnZ2FUqkUXdY1HnScS1ftRiqIJb2ZxptsTrbE9cLnDOmtrq5O+wIJQbqyRWKM5kwo9LrWTF4znU4HmUy2w2smhIgmPgBS3nuxsjfn6vkDcktukI0Y5RJmGn9eocHzPE6ePFmQJFYU+/fvLxnpzUfpzed9yIe4pguNFhveXFdXl5Q9Oh2amprg9/sLYoDRxEH5Ej0gqvTOzc1JkoWVwuPxAEBSn1ODoxBKbz7edyDqgbdarbDZbBJdlXC43W7Mz8+XLSnLhOXlZQSDwbxJr06nQ1NTU8FI79jYmOT9q1Kp0Nvbm3cIudhxU4zyEg/q3BocHMzreikGBwcxMTGRl2NPrG1jt9uh1WrTjsO0vGQhMDExAZZlJRl3ge3+yxWZbNZcSe/S0hLUarXoqgAtLS1gGKYkSi8QXdebSemND6NnGAZyuVywY4liZmYGnZ2doqqYJILOU4V2sCZGTKZKZFWI8UYqvkdRUNKbq8pLIYT0Cimeng6FJn6ZvGa0RlgqpTfTOttChHYXW+nN1fMH5JbGPpuniJJXsUpvsUjv7OwsXC5XwZReIEp6T548KWn28nQQ47kTEqaXa7h/OYQ3C3W0AIWNMJicnERHR0de4bwUfX19iEQiknqeU9VUphDT50JACJFM6QVKk8H5zJkzAKRNYgVIR8oyQYpyRRSFyuDsdrsxNzcnef8C0RDyfPtXSCIrodlUE8+NByVYUkSIAFHF0263Y2NjI+c2xEaxZbLTgMIrvV1dXZKMu0D+SnmmvlAoFFCr1TmFN7e1tYnOTi2Xy9HU1CQ56SWESKL0xr8n9K/YKDQp5pmmpiao1eqCL6URkwcgflviuekiS3IJjc4F5yzplXpda6HCm9N5zYBkD6LQNb2FIvzFJL1arTZj36RDLhn9svWZyWSCwWCASqUS1J5SqURVVVXRwpupAltI0nvgwAF4PJ6SFDnPlCilkANiOYQ3C3W0AIWNMJAiiRUFXRcsZYgzdULkmm1bDMxmM5xOpyRKL1CaWr2jo6NgGEYyBS4eUpCyTJiengbHcbG8HvmgUKSXOhWkXjMNbCcLk0rtFLsshP7PcVxW22B8fBy7du2CRqPJ+VrjIUUypvh7TxV2mohM6iYQtdMKRXqlSmJFMTAwgI2NjaxhuemQzWbNxQGQS3lKikLU6vV4PAgGg3krvfEOefo3nWMpnW0iRUQRwzDo7u4uitKbbczIRZz4k1rTKwXpNRqNSXVZpVY7M9XFzQc0kVU6pFN6FQpFrO5oKtIrJeEv1L1nAi1XlEtdOhreLMYgyNZnYhU3oLhli0ZGRtDa2oq6urqCfQcl1MVIZpU4GQDpE6UEg0HIZDKwLCt6rUg25Epcw+EwfD6fJOHNYp67QpLeqakpSZJYAUBzczO0Wq2kyayKqfRS4yFfD7zBYEBNTU1JlN7R0VH09PRIRkbiIQUpy4Tp6Wl0dnYKDvvPhL6+voKULRodHYVMJsPu3bslbReI9q/FYsH6+nrObQgxQtM5C2kkDsMwWW0DqZJYUXR3d4Nl2bzKFsXfu5BkiUKU3kKGN0tNeoHcHY7ZbNZcQr1zqdRBUYiyRdQhUGqlNxKJYH5+XpLQ9p6enoI7V6UKUU7lHOA4DjKZLK2DruyzN7vdbiwuLuZdrJyS5sQfU2rSK5fLYx7BRIKdKwghWFtby1i7TqfT7ZjYsr1EidcntcpN180VGjMzM7FMzGLR1NQEj8cjyvCPv69UfbawsCA4mRBFfX09FhYWRJ2TK5577rmChNHFo7q6Gm1tbTh+/HhBvweIqnZ0DUs2JSH+XadOEuooiq9rTdsS+j7wPJ92QlOr1Rm92ZRgabXalPuFRADwPI/5+XlR0Q46nQ5qtTqmMkmFYDCImZkZScJJgejvJHUILO3TVNEYMplMUjXg5ZdfBpB7EsZ4tLW1xdorJl588UVJjel4DA0NwWKxYH5+viDtnzlzRrI1jt3d3XC5XJJf6/PPP4/Ozk6o1WpJ2wW2Q9LzcUBSOyEX9WRzcxMsy4IQknV8PnPmjGQRIvRaurq6cOrUqZzb8Pv9ABCz6bLNCxsbG2nHciCayXdlZSXn60kHr9eL+fl5Sd9TOoYfPXo0p/MtFkvGvtBqtaJDz+fn53O291paWiR/dymJzpZvSKVSYW1tLW1pynxJ7+LiIoLBYN5KLwB0dnYWpGJCPMxm8457zpX0Ajtt8sR+ij+X53mEw2FJlV6QAuDHP/4xAUA+8pGP5NXO/fffTwCQt7/97bFtTqeTMAxDPvvZzxJCCOnr6yM9PT05tf+pT32KMAxD3G43+clPfkIAkI9+9KN5XXP8dQIgVVVVaY8BQOJ/gt/85jcEAHn00UeJ3+8ncrmcfPCDH4zt93q9BACpqKgghBBy6NAhUl1dndP1fec73yEAyNjYGHn55ZcJAHL55Zfn1JYY8DyfdN9i8Hd/93cEAPna174m6PhwOEwAEIVCQQgh5Prrryd6vZ5EIpHYMblcTz73IAYWi4UAIA0NDQX/rmLdk0wmi33Pf/3Xf8Wew1T4wAc+QDiOIz6fj3zzm98kAMjf/u3fEkIIWVtbIwDIl7/8ZUIIIe3t7WTfvn2CrmFhYYEAIL29vUn7zj//fAKAnDlzJuW5v/rVrwgA8r73vS9pn0qlIgBIMBjM+P2zs7MEAOnv7xd0vYQQ4vP5CACi1+sFnyME3/ve9wgA8rnPfU6yNqV+lt797ncTAOQ3v/lNwb+rqamJACAWiyXvtor1TsWDjhn19fUFaZ/OlX/5l38pedt+v58AIDqdTpL2/uM//kPyZ5uQwv6uKysrBEDOdg0hhLz5zW8mAMhDDz1EVldXd4yTgUCAqFSqmF116aWX7phf2tvbCQBiNBrJQw89RACQ++67L+k7RkZGCABy6aWX5nydqZBv395yyy0EAPmXf/kXEggEiEKhIO95z3ty/j61Wk0AkEAgkPM1pcK//uu/EgDkn/7pnyRrM9FGFIP19XUCgLS2tqY9Ruxv88orrxAA5ODBg6KvhxBC9uzZQwCQmZmZnM5PhY985CMEAPnRj36U8biBgQECgMzNzaXc//zzzxMA5Be/+AXheZ7o9Xpy/fXXx/Z3dXWRgYEBQgghn/zkJ4lMJiMulyvpOn7+85/nfU+XXnopAUBOnDiRd1vpEP/b/+Vf/iXhOI54PB5CCCHf+ta3CABy9uzZ2HP093//94QQQoLBINFoNORtb3tbUjuEEPK+972PyOVy4vP5yGOPPUYAkLvvvpsQsm3j0XektbWV7N27N7/7yOvsNLBYLOTSSy8ly8vLebXjcrlIf38/efDBB2PbFhcXCQBy1VVXEUJ2GtBicdFFF8UGd7PZTHbv3k1OnTqV1zXH4z3veQ+5//770+7/1Kc+tcNw/spXvkIAkFtvvZXYbDYCgOzevXvHOddeey357//+b0IIIbW1tQQACYfDoq/tve99LwFAnnvuORIMBsmBAwfIQw89JLqdXHDNNdeQf/7nf87p3M3NTXLw4EGyuroq+JwbbrghRpLb2toIAOL3+2P73/jGN5IvfvGLoq7jS1/6ErnppptEnZMLeJ4nr3vd6zI+R1LhM5/5TM6Tkxjccsst5C1veQshhJCPfexjBAD54x//mPLYoaEhAoBYrVZit9vJoUOHyNraGiFk2+i6+eabCSHRwZRlWUHXwPM8ufnmm8nTTz+dtO+BBx4gw8PDaYmr2Wwm/f39KSeYX/3qV+RDH/qQoO+/4YYbyHPPPSfoeik++tGPZp2sxWJiYoK0tbWRs2fPStbm5z//eXLo0CHJ2hsfHyfXXnttSsPzK1/5Cvn6178u2Xf95Cc/IX/+538uSVvf+c53yF/8xV9I0pZQ8DxPrrrqKvLAAw8UpH2Px0MuvfRS8tJLLxWk/QsvvJB8+9vflqQth8NBLrvsMkmfbUKizrh///d/l7RNikgkQi644ALy1a9+Nec2nnvuOTI8PEw8Hg8ZHx8nAMgNN9xACIn2CYCYQV5RUUEAEJ7nCSHR8e+d73wnIWRbwPiXf/mXpO9wu92kq6tLcrvh05/+9A7yIBazs7NkYGCALC0txe41k3Px7W9/O/n85z+fdv+dd94paEwXi5GREbJr1660pCpXvO9978vp2eR5nlx88cXkF7/4RdpjPvzhD4vqC4/HQ3p7e8mjjz4q+noIIeS+++4je/bsyepEFoPp6Wly1VVXxQhbOjz33HPkpptuir0Xibj99tsJAHLLLbeQUCiU5GiMt0cuv/xyAmAHJ3rqqadIT0+PJM7Vhx56iHR1dWW9p3zwxS9+kXzzm98khGxzJ5PJRAjZdkofOXKEzMzMEADkuuuuI4RsC4DUifeP//iP5M1vfnOs3d27dxMAxGazkVtvvZUAIF/5ylcIIYS8+uqrBMAOwiyXy/O6j+K6oCXCr371K2K32wkhhJw4cYIcPXo0p3Y2NjbIXXfdJeWl5YVwOEx+/vOfx16y3/72txnJ3fT0NHn44Ydz+i6v15txcPtTxeLi4g4nymsoLYLBIPnpT3+adr/RaMxI+G+//Xbi9XoJIYQcOXKEvPzyy5Jf42t4Da/hNZzLuOOOO4jD4Yh9/t3vfkeMRiMhJOpQeuyxx1Kex/M8+fGPf7wjMupcw+9+97u8BZjX8BoSwfM8+fnPfx4TnR5++GEyNTUV23/kyBFy8uRJQgghVquV3HHHHSW5zkLAYrGQe+65J/bZ6/WSW2+9Nfb5zjvvjHE0QqJcZmVlJWVbq6urMRuPjjfxQt6tt94aI/NHjx7NW81mCClQNorX8Bpew2t4Da/hNbyG1/AaXsNreA2vocQoWPbm1/AaXsNreA2v4TW8htfwGl7Da3gNr6HUyKkmwPLyMq65+iqYzeakfYSQjKVozr/gQjz62GOxYz75yU/iyPPPpjyWEIJgMBjLnsZvfUYKbVqhVOJz/+9vcPHFFwOIZvmNzxjn8XgwNTWFU6dO4dvf+k8EtjL8pYJcLk/Kurx333m47fbbd9zbF77wBfz8pz9JKodAP3t9fjCy1H4FhmFQX18PuVwey0IbO8/rhde9XfaEZWWoq6sDzxMQEMgYGeSJ5RwY4NBVh/HJT34SNTU1OzJn33LLLbjnrjvT3m88OI5LWyqC4+T4uy99Ce94xztS7v/yl7+M39//O0HfkwlrJhMC/gA4jk37LCU+Z8FgCP5gCIjbptPpUFtTC0IIHA47vK7kjLwajRpVVdVgWRnk8u3scoFAAD6/H1U51BKOR119Pe68627U1tYmXf/rr7sOryZk6Mz2/iRi1652HDlyVHQW0c997nN46onHRZ0DABqtFt/7n+/jggsuyHrssWPH8Nf/72/g9foARDPxBQKp3ztCCDRqNT7+sY/innvvxYkTJyCTycCAie1PruW7871Tq9X4zGc+gz179uCXt96KZ555GgBimaIZhgEhBF6vDzyy9zEjk0Gr0SDk35nRPRyJIBSJ5mNgGFns95LJZNBoNLHPXq8HkVBypsH42pmpwLIsOE6OQIoshdmeD4Zh8NGPfhRf+9rX8MQTT+BLf/8PKdsRAwbAFa+7HN/73veS9hmNRrz3fe+DxZy+nmE6dPd04+677oqNtd///vfxz//4laTf2evzIcJv/9ap+kClUsWytaaCXC7HO97xDtx79107Sl6lay8TNBoNbr3tdhw+fBgA8OMf/xhf/oe/RygUEjxeJaKurg5PPv2MoCynjz/+OD70gffD5/OJ/p4bbrgRv7rjjqzfEYlEcOUVV+Ds2e1M4WL7CYiWOPnDQw/vKO1z66234rvf+Xba2typwDDAe973AXzhC19I2nfy5Enc/OY3wel05n6tDLB37z5oNBq8eOxYxvOFvIMf+8Qn8W//9m9pj3n11Vfx6U/9FTwSlNqSsRxIdKkaCCEIBAIxm4naFvRzbV0t7HYnNs2b0WsFAzA0M350tOUJH7uPQMAPJkX2Wrlcjo7ODsiYZPtGoVDga9/4d1x77bVZr/3MmTP42Ec/CpfLmfVYirq6etx5112ora3FHXfcgf/8j2/GnqVIJJI2uyvLycEwTOxYhUIBmUwGQggWFxfgT6jcodFoYvsBZPzN9Xo97vntfbjwwgt3bP/FL36B//7uf4EX+qwzwNWHr8V3vvOdrIe+4x3vwNNPP51yX7ZnlBCC6ioD1HHZ8MPhMJZX13aMtUDUJmxrb4/No6lgtVhgtdmiN4DoHNbW2prWlty3dxi33fZLMAyDubk5fOhDH4LdbkvbfjYcPnwNvv3tb+O2227DFz7/NwgGg1nfX0JIdG6JRICE/mJkMmi12thxABCJ8KA2ByEk9k6df8GFeP3rXx97rpaXl/HoI39EOByO9UV830Xn92i/yBhZNDNxmp/qikNXppx3v/71r+POu+4W3D/XXnMY//mf/5l2/09/+lP8wy1fTjmHUdsr2m877x0ACM+D3+ojnVYLtUaDUDgSu1c27t5lLIvIVr8AABiA8Nt9Gg6HY/3d2tKCt7715uhhDIOWlpZYv2k0GrS2tsautbW1FY2NjYL6Iqfw5j/84Q9405vehDfsqYVBw0HOyrBs86NSzUGv5LDpDqLVoEQwQqBTsFArZFhzBDC66sapNTdcLhd0Oh14ngfLsuio0aCzVguDRgFfMAKOZcATglWbD6dWcisKzjAMlpeXY0bE3vP2Y/TUydj+i3ubUKVTQq3gQEh0Ug2GIyAE0KkUkMkAjpXB4vJjYcOB8RUrzGbzjoLWg3298FpWcKinZqsPfKhUy6FXcRg3ufDivB2XXXYZ9Ho9qqur4fV6wXHRCerVV1/F4uJi2uuvUHF4+/ktWLB4EYrwWLH5MGcWXk7ppZdeig3AWo0aBjWHgdYaVGlV8AbD4GRM7L4Jid5rOMLDEwihuVoHXzAMjYKDzeMHIYBGKcejJ+Zw9etvwP3335/yO+vraiHnA+hvrkKVTgVvIASOle0YZOj3eANhNFVpo9+jlGPT6YVKHu2bR04uoqOxBkNdzTDoNFDIOWiUCtjd0ftXKxUIhMLgeYLWegPWzA4cGZ3B5IoFNcNXQqZQAyBwr0zAuzYNAGBlDOp1CtwwVL/VpwSVag4MALWChYqTYcnmh07JIhDicWrViQ1XEK8/0INQJIIqnTrj/Xj8ITTX6OELhKBRyuHyBeELhPDYyCwefvhh3HDDDTv6yuVyoaKiAucNDaK/pwt6bZQssRwLvz8AQggq9DqsmTagVCrQWFcLp8uNmuoqKORyrG+aMTU7j2eOvoTR0VEMDQ0JfjYAQKlUoL+lGpcOtmPeZEUozKNSqwLDRH9rpZzD8qYDWlW0r9vrDQCAHz/8Mv75n/8ZX/nKV7J+x5e+9CV84xvfQM3eq0DCIbjXphC0Zy93IGNZtHb2YOj8y8BxcqyvLsJm3sDU2Mj2QYwMIKlLCQDR37u/tQ4XDbRBJecQCIVBAGw6PHjo+AQMrT3Q17VCqTMgHPCBYbloe1vtylg5+EgIptPPoU7NoLepEuEIjwqNAuOrNsyuuzH8+ndBxnKQcXI4TEtQ6Sqh1FbAY9tARUMbJp64GwZ5GIfP74ecY7G0bkOlTo0KjQobNhfa6qsQDIehUyuhUSowu2aGTMbgN0+eACEEH3zXW8FxHBRyORaWV2GorEClXof1TTPaW5sRDIag02mgVauxvGYCy8rw8BPPotJQjdGxMXziE5/AT3/2c/RceBUi4SDU+iqE/F7IOA6EJ2BkDAhPwHIcIuEwQn4vKuqaEPL7oFBp4HXZwMhkWJ8bh3l5FjzPJ02Iv/3tb/Fnf/ZnGNh7ALX1jVCqNaADSygYJZdqrQ4ymQwcx8FuNYNlOVg313H6lRcxPT0dK0/zhje8AUeffgxvGKrfMZ4+NWNHdUMLDh8+DJVKhUAg+n7Y7XYolUrY7Xacf/75MJvN0Ov1cDqdcDqdUCqVCIVCUKlU+M1vfoOGhgasLMzihoFq8IRAq2DBMNFnJRDmQQigV7IwuYJQcDLU6+Rw+SOo1nBQK1gYnQGo5Sx+dHQNX/7yl/HVr34VAPDWt74VT/3xD7ii24BKNQcFx0AjZ2H3RSd3tVyGYIQHzwPNBiVMzgD0Sg4hnoeClWF604dHxi148MEHcdNNN2V9P2655RZ87Wv/hncdaAArYwTNv0s2P0aWXVh28fB4k8lyIoxGI5qbm3FZdzW663VQyaPjIgHg8IWg5GRw+ELY11oJqycIrZKDyx9GmCeQMYDLHwYrA+55ZRW/+MUv8MEPfjDW9uGrr8LxI8/h8u4qqOQsooYkg2A4+j5rlSxkDCCXybDpCULBMji54oa6pglTM3NJ1/qjH/0IH//4x/HBy7sQ4Un0WsNb1+oNbl9rW1XctYbg9ochkwEqjsXpFRtGFqNG994WPXZVa2BQc1BwMqgVLBzeaB1xtSLaNk+AlkoljM4AKlQcvMEIvMEIanUK/P60CRVNnTg9djZt//7rv/4rvvzlL+P6C/sRCu+cX3hCIGOiNpCclSEU4eH1B9FcUwFfMASNUgGby4twhMeG3Y3RhQ00NdRhsK8LswvLmJnPXtd06MLL0dLRA4VKhVAgAAKCYMCPpx9Ido7va6/Ghd11mN90RcdAtQIyBlArOCjlLNYdPshZGQKhCNprdbjt+Rn8xYc/gv/93//Neh3//d//jc9+9rP42NuuxeyKCTqNCiqFHF5/AJU6DWSMDA63F4FQCLua6mCxu3HPE8fwxz/+Eddffz1uuukmvPjCczh/sAPhcATHzszB7w+k/T6O43DNNdfEyr95PB5otVrcfvvtGGquwP72SsgYBjIZEOEJlJwMPAFCER7+EA8FJ4NWwUKr5MDKGKzZfQhHCO56ZRXf/e538ZnPfGbH91191VU4c/IVvOXyYcwbLQhF6DzLxObZVbMDKgWHYCiCVYsDkyuWJMdcKrAsi0sOXoG29l1gWQ5yuRzLy4uorDRAX1GJzQ0TWtt2IRgIQKvTQa3RYnlxATzP4767foWaSi3O625BKBJBpVaNTbsLR88soG3oYshVGqj0BoT8PsiS5kYOfCSMoN+LitomhAI+LJ4+hgjPo6pjCCQShlxTAUbGgFWowSpU8JpXwSrU4MNBBD12bE68jM3NTdTW1uLWW2/Fhz70IXz8Q+/F6NkJVFcZoFGrY3ZWYEvo0um0kMmigs+mxQo5x0Kv1+HEqTFMzc7D5/Phfe97H+6/5ze4qq8GlWp5dCxWsLB7t8ZihQzBrfe3WiPHd59ewPk9TWitq4RBq4JSzkGtkMPu8W0dL0cwHMFLkysYW4yzXWQswKd3ZCjkHA6fP4BgOIIqvQa+QBAcyya82yxCkUj03a41wBcIQqNSwGx3IxgOY3ndhsklU8oa4+27OuAnLGpbOxEJh6HWVYBhZFCo1OCUKpiX56DWVSIcCsK+vgrzygz8KZykFG9729vw8GNPoPeCq6DWV4KTK6FQqeF12bE+P4HFsZe2D6akgX5Esg7Zc8l1iIRDUMc9Q4TwWDrxDPw+YTxGxgC8QHYql8uxvr6OqqqqrMfmVf39a2/sQa1Okf3ALdx/egOfvHsiaftnrunFuy9Orun7X49PYdTowZ5/eBC200/A8uxtOGDw4yuv78ATUza4AxFc0KaHgmXAE8ATjMDqDUGjYPH/7p+F0WiMkd6V5RXUHXwHwMjAnX0ID/7DzYKv++FX5/CB7z2S8uG7cU8D/vENyXXqjs5Z8bYfvYpf/vKXKWsOvv66a1EdseAbb+jC159YwjMzdgx/5REAwPRPPo0LKu3417dse8c//quTMMmb0f2R/4Ht9BOI+NzQ91wAhlMAPI9IwIuwywJ1YzfGv/NurKysxEhvJBLBB64+gL+5+RLB95wK7/7P+1P2AQUhBB+6eg/++g0H8vqe9o/9FO88fCH+9t3XCT7nw9+4DZvaLuz/m9ti2878+K9R41vBT9/Zi7/4zQQO9dXgX9/UL6i9D/3yJJ6ZseGOv3u76OunMNnc2PPx72Xss89/8i/w9jfdkHZ/Jhx/9RSuePN7cjqXEOD91xzAX16fXbGNx4MvTWe8n53fQVDR2IELvhBVlo586TA07cNoe8vfJj3D9tNPYf3pW/Hox/fibb+cwPV/9n6886Ofi7X1k3//MkyzY7jnA4N4YsqGn75kBum6LGVb4HnM/eSTeMehvfjMWw7uuCa724eHjk/g4g/cgu6Db8h6D/d8/FLc0CvHv7zz4ti2f7nvFdxxyo43fuF/Mp67MvIsXj9Qif/4+JsF9RfF469Mwexw48ffTq8UpYOc+xqeeTEaPUAIQXPPHnzoP+4S3U48XvrDbfjtNz6Tch99Fr73m4ehrzQIbvPEsefwybdfl/AsEVzUYcA337Znx7FXfOc43vTmN2f0VGfDmTNnsL6+ju56Hf77bfnVI35w3J607fz2CvzwXYM5tbfuCuKRcXFKeWu1Dt96q7j6nj89uoJvPLUq6pxPXNWDa3c3iDqHIhzhcc8ryd9HCMG1A7X4wbv2pDgrNf7tkVk8upx+3GFlMnzjHbnPOw+dWsVf/uwYAOAjl+/Cnx1oyrktbzCC4/bMxxBC0FBdid/8fW7jN8WTI9P486/9Bm+89kp865/+Fl/8t+/gtjvuwm/eN4Anpmx4adGJZ2cdePTje/HElA2/ObGBFXsAf/aRz+HCK6/f0dbJo0/j6QfuRN8nfgSvcRphrwumx36EDx3qx7sPCq+b/PK8TdQcoVWr8J+fe7+g441mG+554lisfUJ4HNzXi1//y18BACqu/DCarv0wai/9s6R5Yf3p29AUMeGPf/zjjja9Xi9uv/12fPKqLty8v1nwfcbjD6OpnbmE8Dh0Xg/+/WNvEtTOTx86hr//2R+zH7iFN73tHXjvhz4i+HiKB393Nw7t68FPPv+u2LYnT0zh6D/+HDd/+SeorG8V1d4vPn0DFHUdOPiZZFUyEcsvPYJnvv7+uN8w+ve73/jnjGpyOnz/p7/E3/3T12Ofh1sN+NF79mY9z+EL4btPL+BTb7oEb7ok81j68e/9Hl63C//79l48MWXDd583ofLSt6Hx8F9g5md/jebAIn7wZ9F9vzhuRFNjI+7810+Ivpd4/PLhI/jMt1NH5RBCcP61b8MbPn5L1naevecn+P1//0PW4zqGLsL7/+2XSdv/+MOvwjozgns/GLW9fvayGXzHpWi7+Qswv3Q/jI/8EF+6ph1hnuB7LxjBqCvxzq+ljiz95vVN+MCFDXj3+Q34+XEj7hrZRO/HfgDf+hxsJ5+Af2Meuz9/F2ynn4D5yZ/idc0MPn9VW0a+xxPgK39cwObmZuFJL8W9I+uw+8O4qrcq6hnjCVyBCNZdQfCE4Jr+muyNJOCeV5bxyoINCk0FAuZlVPZfBvvx+9BqIFiy+XFpRwXsvjD8YR4r9hAGGzW4oF0PTsbgd6c3U7apbuyGe/4UuLiQnLuPTMLuDeDwcDuUchYRnsDlC2LD4YWcleF1u4W//PecWIPDF8ZVfTXYdKUPKbz99tuxtLSM7goFlmx+dFQrwak0CJiXIdfXgFPrAdi32311FbNmDxSGzlhfhD128CE/gpZVaNoGUdF7IRgZB/vZ5wRf793Pn4Xd48fV+zqh2nHvHoQjPK7b3yW4rYzfk6GPtSo5Lu4VZmDc+cTLsLu9uOaCQSgVXLQdjx8WpxsmqwNAfezYtRfugXt1Ct06RUzBjce9J4yw+0K4qq8GSjkbfWb9YXiCEVzUYUh7DXc9Nwq7x4/D+7qgotfgDWDD7kGlToXze3KbNCl+fe/vYXM4cd1Vl0OlVCISicDldsNstSMQCOKGw1fk1X463PXM6eh97e+GSs4hwvNw+QJYt3ng9Ppx80HhBmoqrL1wD0IeO3R9l6R8hmVboeVLNn+S2/Dx392BqdETMGgUsXf/1yNW8HW70r4PjIxNuoa7njkFo9WVtJ1i8sm7EXDb0X7+1WAVKhA+gkgoAECOu4/NwOEN4uqhFrh8ye/26GN3we+2o+vCw+C2zg0H/QAqY8fc+dQJONw+HD6/D0q5HDzPw+nzw+r0QinncMnujrTX9qt7H4DdHvdc8DycLjcsVhsCwSBuOHwoY//H48Qjd8LnsqPv4mvAKZQgfAR+jwtehxWcQomOvfk5x/5476/hdNhx6VXXQaFUgo9E4HG7YLeaEQoEcdnh67M3AjqehhCKpFb0b7/9dthsNlx//fVQqVSIRCJwOp1YWVkRpJhS3HtqAw5fBFf2GKDiZIiQ7flLr2RxYXuF4LZibZ5ch8MXxpW9VVttRtXPdVcQMobBlb3ZJ2fB3zWyvjWWVe+cf50B8AS4ZkD8/JsO97yyDIc3hKsG6qGUyxDhAbc/BE8wArs3hOv2iCfI946YYPeFU15/lUaO/W3i+x8A7nlpEQ5fEFcNNkLJsYgQArc/BKs7AKWcxUVdtdkboW3Fze1U/aPzBYCMc4YY3PnMSTjcfhze3wOlggPPEzi9AWzYXYjwBNedn+xgp/j1fQ9iZGwc1Rp5bJxcdwXBzDpin/941oKVFOc+df8dmDj1MgAg5LKisv8yhNw2mB77UeyYu1+cg8MbwNV7WrbmcR6urf70ByO4bq84opQKv3nkBdhdHlxz8V6oFPLod3h8sDjc8AdD2Ne3K/V5jx2D3eUBAKib+1PPMRwHho9GqsSPHekI+j2vrm4967VQcls2QiAMTyAMpy+Ma3bXpzwvHVKP/wFYnZ6s479Q3Hvnr+Cw23DVNa+HUhkdE90uJ4xrqzj8+hszXtOmPX2o/enH7oLfZUf3RdH5jecjCHhc8FjX4ffsDE2fe+ZuBNwOtOy/GqxCCZ6PIOR1IeCyIpJmeVMq/Oru+2CzO/D6w4e2bCEeTpcLq2sm3Hjd1cI7BantPaMj9bXc9dwo7G4/Dp+3bePZPX7U67bfq/85sg51Y0/UZq+oRb3fGNt398hGymjlOx8/HrVfL9wNpXzr2fb6YXG4EY7wuObC3SnOyo6XHr4TXpcdg5dcA/nWfOv3uOCxWxCJhLM3kAGvPnInlidOoDLO9rpjxIpwXTsC5mXouy+AEYA7EMFVvQb871ETIinuntpHIAQ9tWos2fzY06gFsImQy4bK/svgXTqDsMcWe3dtz/8a7QL43r0nU/O9dMib9D58xoy2KhV0vhDGjG5sukIYbNRiT5MWu6pVOGvy4J6RdfQ3aAS199BpI2p0CuhVcmiULHiEUHN+9GVlNZUAXLhxd+ZJfH+rPu0+dVM3yNJRAMCDr8yirVYPvUeB04ub2HB4saetFkPtNeioq8DRyTUcnzYKu+6xdbRVqaFXhjC25sLxeXvK4+677z50dHRApVYBQeDG3TVYtgfAwBW7T4WhAfAu46FRE2q0CuiVHFScDIQgdkw6VPQLM1gffHkabXUV0KkVGF3YwIbDg91ttRjuqMeu+kqMzJrw2Mhc3sT3wVfm4vrYvNXHNRhqr93qYyMeO7mIap0SF/Skjsn//QunUFupg16jgpxj8fjLZ7GnswXD3S2oqdDC4nRH1w1sTV7rLz8EdV0bWJUWCBHcuLsGPziyBgB4eGwDNVo5dEoWcpbB05MWDDbpsKdJj2qtHGeNbhybs8G2Fc4Wjz8cn0R7nQF6tQ+jC+vYsHuwu70+2mcNBkyumPHUyTlcfZ74Prv/4cdRW1MNvV4HhUKOR596HsOD/di3px+11VUwW+0IhcN47tjLaKivRX93p+jvSIU/vDiO2got9Bol5HIWT5yYwZ5dDRjubEB1hQbrtuiEfHrOiL1duakf6y8/BHVtWzRMCqmf4fVnfw0g+j58/g/bYf/PP3I/Glp2QaOvACEk9u5rlSxcadoCsGNtN73P9noDZLLUi2dmjzwIfUMbFBodNmdH4bVtoLZzdzTsGYBGyaG9Vocpox0mu3dH2M3Ec39AZWM7FC491mdOw23dQH3XHsi47TWmfzg6hvaGKtg1SpyeW8OGzYU9HU0Y7mpCR0MNTkwv48WzCykNn989/Bg62lpg1elwcmwc65vmrWdjAF272vD8iy/j2aMv4dBlF6Xuiy2MPfN7aA21UGr1YDkFJl98HE3de9DUuxfayhoEfR7wkTBWJk5CJpOhuS+7tzweTz98P6pqaqHVV4BTKHDsqUfRMziE3j37UFldC7vVjAgfweTYyaxtbY+nHIKRZKOUjqMVFRUYGRmByWTC3r17cd5556Grqwt333132twDFA+ftaBGK4deGV2i8/S0LTp3NWpRrZHD6g3B4Q/jxQUHdEoOQ01aQf3w8Bkz2gwq6JVhjBk92HQHMdiwPSeOmzx4dNyCOp0cclaGer3waKmd37O5cyybsm7NvTpUa6PXb/WEcN/JdQy3pJ8TheKh00a0VWugV4UwuurApiuAwaYKDLVUgJPJ8MT4Ou4fWUWtTonLe7MTyofHNpPH4kYd9jRHr3920wu1XIaXFu3ir/XUKtpqNNB75BhdsWPT6cdgcyWGWg3YVaPFyKIVdx1fQE+9Hud3prcnHhpbj83BClaGpyYt2J0wX5gcfpxedWJvS27knOIPx86ivd4Au9qH0/NGbNjc2NPRgOHOJnQ0VuGliSU8fHwcDVV6nN+XTDC1GjXqa6qxMoPYODm96QOY7c+1uuR170cefQD1LbtgWomOu4ahK6Gqa99BBh8cWUJ7jRY2lRyjy1ZsOHzY3VqFodYqdNTqcWbFhnuPz6GjLvfn7IFnX0Z7Ux30WjVOTy9i3eLAUE8bhnt2oaOlHq+encPTL4+lPFerUmBX4/bvmGpe8G8uAuurSWPH0lJyOPhDo6bY+DO26sSGK4DdTRXY01wBTsbg5UUbRpbs2N9uEHRv2+O/CqfnjFvjfyOGu5rR0VCNo2fm8eSJKWEdlQIP//53qKmtg15fAYVcgacefwSDe/Ziz/A+VNfUwri2iqPPP4vLXrfTOapVKdDeUIWp5Q1MraRWq8ef+wMMje3wafQwTUfnt4buPWjoGUZV8y6sjZ9AwO2Aog5YOvYgtPXtkKttsM6PwmfbQFXHblR1DkHf2AHbwhkYT6XO4UPxuwcfQV1NNSr0OijkCjzyxLPYu2cA+4Z2o7amCm6PFw8/9hT0Oi1ed9nFGdsCojZfW5UKOiWLsTUXNl1BDDbp0FaVnAclnY2nVcrhinuPuC07oub8G2F55UHAz8T2Vai4pDW6v3/+JNoba6B3qnBqegUbNif2dLVguLsVHU21eHViAc+OTOLQfmGRiBQnn/49qpvaodLqsTJ1Ck7LBlp69qC1bxi1LR1YnTkD49y4qDYBYDTOVlCotPASfoft5di696B9HQBwYbseF++qgIJlkCqIWq7SoLKxHWRL0bhxdw2OzkeXrhqGDkHd0AnbqSfgXZ2IvbsypRaAOyvfGxDILSnyJr037sk8uV20qxIX7YqqHXPm7GuJqjRyjK040NsQZfEyhoFj8hi8y2cR8bmwwQTxsxeN6K1TwxvkcUlHdBAyOYNQyWWweEIYX08dM+7fXELAvAwN4XFkYhVrNg90KgUIIbhqqA2cTIbTS2acXbFiV60elVoljDYPzI7sMeg3De30cNfpFfjFseWk42pqajAyMgJWxsLiCeFnLxoxZ/FF1x9t3WfIaYYtGITR4YdOyYEAqNMrMeF0wPjEz6Bu6gUf8KKi/xIwMg4B2xpYpRZBuwkkwzpHiiPjy1izuKBTRY2tq/buAiuTYdXixO+PT+HmS/qhlLMIhiOYXrOit7k6a5tJ3zGxhjPLZvQ1VcHmDuCygWZwMgbjq1YEwzxemjbisv5mVGoVcPmCmF13oL5Sg/a6ZMPhTZfvy/hdV+7vx68ePQ6sM7COH0XAagSn0gGEwOWP4GcvGuHeUg7WHH5olSwIgEO9NeBYBmeNbsyZvXD6w7hwVyWOzNog53aG2Rw5u4Q1qxM6tQIEwFV7O8GyMkwsb+LM0iY66g2IRAgqtEpMrVrQ1yJOXXnLjZmTflx9eX7qWyrMGi0IR3jo1EoQQnD1vi6wrAxGiwsTK2Ysb9hxw4X9GFtcx7rdg8dfnUZYRPIZCrmuCs7FMYCRIWgzpnyGg47o4HlswbFD2Xvd9W8BABx/+hEsv/okji04cNbkhS8YSdtWwLaWtN73jZdEQ0/t7tRjkKqiCubZUVS19YEQoP/wOyFjWfDhINZsERhtXuhUchACtNXo8fLGtmI8cMUbU7Ypi1Ob33hZ5jXXh/alDx+8+cbMYf43XnNlxv1zIy/AODOGul398Dqt6DzvcrAsC9v6CkJ+LyaPPYbm/n1QqLUgfAR8JIL1xSmwCmXKRFypcOrlo9gwrkKj04EQgouvuAYsx2FmfBRLc9Pwed3Ys/8iTJ89DfO6ETPjqY1Xivjx9GuPzSftf+tb35rx/GyEF0DWyfR1XYasbaRsN8uceOGuyh2f1zNEBWX+nrqM+1/XvVNNfnbamtP3UNy0N7PT6y37syfhojC7g1hzBuLG4mpwMgZja248NWlFhCe4cU8tXl50gA9hywmZPvlb0rXuy3wtr+sXpkgnzuuJkErhPTI2jzXL9vxy9Xk9W2OxExPLUTJy8UA7Hj8xjVAkgulVM3pbtp+zVdMGVo0bsfGZjpM0coZ+tqZw5h58fXT5RXjrXXfNnYDt1ONQNUbHpJl1B5oMmi1bhODKwSZwrAxnVmw4u2rHms2D6/e1wRMIw+ENwh8Sry69MDKOtQ0r9BpVdC66cBgcJ8OKyYL5tXU0VBugVMhTqrJmuwurmzboNNGkTD7TbMp5IeyxAWTbBhscHAQhBO9+97uTEqTdNJw5Kc5V/ZnfvXhs2t1YMzu259n9vWBlMqxs2nH/C6O49oJ+VGpVcHj82LClj0TKhBvflHm5XiqVd+d1Afu6k6PUFk8egWtzDUqNDgQEXRdeDRnLYmP2DKzLM6hp7wMfCQMMA59tAx6LEZw6emzTeVdCxnLwWowIeV3wbeXzUFamHh+fO3oco2cnMNjXA4vNjisuuxgcx+L0mQlwHIs/PPIELjywDzqtBmqVCq+eOo1d7a2YX8y8hv3GodSKvMOX/C688eLUpPPXT5+C0x+OcY8wT+DfXITxiZ8h5NiAwxeK7XP6w6iM42EvnJrGmtkGnUYZfbcvGIy+P3OreHViAf3tjZBzLIa7WzG1ZMKiyYKOpuxOQ6txGbqq2uhvQwgGL74aMpaDeXUBAZ8Hjk0TAl43tJXiI32Gr9wOx18+8yqcZ5+JjSHeYARBmwnGJ34GTh+9zol1Lxas/miCT27nO7p46ghc5jUoNDoAwLzFj5+9aIzZee65EdhHn0LAvBxNOrvFg/igF0Znar43vu5Bf70G8xY/xtc9ou4tb9J7bN6OMyYPeus08AYjuLSzEpyMwVmTB95gBBuuIG7aU4djC3aYnNkX51/WU4vLeqIdObJkw/2nNhCwrIKPhMEHfAgqCQxqDhPrXkR4gjBPoJFHE2WxbJSonDWlDtMgkRAYuRIgwMGBFhwcSJ4Yuxoq0WiIevRbaqJeyzueS5+QguLonBVnjW701mnhDUXApskcd+jQIRw6dAgPPfgHbG5E72XDFULY7wWr0oHVVCLsc6FKr8CHL++InffASSP4UACsphKelXGAj4CPhCBTahC0GsFq9CDhEEKO7FL/wcE2HBxsS9pu0Krw/quj6s7F/dG+Mdlyyy55cKAZBweSB9G2Wn2sfwHEQpsDoQi8gZ2D0AunZzA2t4q+tgZ4A0EcHO4Bx8pgNDtwcmYZkQiPA/3tCIYisLm8AFGgevAyVA9eFr32Y79DwHQCBjUHf4hHQ4USHz6YvHZ8V7UaDRXbBtV1u+uSHBYHd7fj4O7kc9vqDGisir7MLbVRwi62z5479jJOn53EQG8XPF4frrjkAnAch9HxSXAsB7vThXAkjCsuuRCPPPUcFAoFaqsNYFOE8IpBd1NNyjW9Hm0Qfa21uGQg+ozQv4FQGDKR2VsBxH6TlWd+Az4cTPkM+9ajxEav3B6STh1/HrPjo2jv7sfKwjRsngDWHEFEeBJNJpOmraDVCJKQcfTImQWMLayjuSa1EtEyfBAtwweTtstYOZqr1PjI4e3Qo1fnd75ji6eOYGN2DDXtfQj5vWjfdzCapTC0Pd4dGZ3D2LwRfW318PqDODjcCVbG4syCER5/EBcOtOPo2Dw6m3ZOUM8dewmnz8Q9G5deCI7jsLS6Br8/gIa6WkzNRvuuuTG1gd61/3J07b88abumogoVXYNo231+0j66zWk2pWwzEfsuvAyXX5NsWLW0d6K2oWnHcQDAZci0DNDx1IXeOh28wWRHy7PPPotTp05hcHAQHo8Hhw4dAsdxGBsbg06ng8/ng0ajyZjgjU7i0Qk1gks6KrccqAHYfGFsuENQcgwu3VWJY4sOdFSr0VObOUv6sXk7zsbNh5dszYfjJg9YGYMlmx8VKg4X76rEiRUnvEE+Z6X32LwdZ4xu9NZr4A3ysbnX6AzC5g3B6QtDxgAXdxhwZM6GqQ3PjqybYnB0xoyza070NujhDYZxaXcNOJkMo6tRb/2a3YfrhxoxaXLB4QuhrVqDjpr0HvhanQIfvixZreysUeOSTkPs85V9NSCE4MlJ4Wuej05v4uyaHb0NFdFr7akDJ2MwYXQiGObhCYZxaXctjs1Gq0901urSt5Uwr1/aWRVzlHIyBg5fCBd1GDC57oFexaG3Xlg0QCIODnXi4FBy9I5Ho0Jf6zbBuvngEAgh2HTsNPRaGuvxVx/6cyyvmfDsc6HYOLnmCIIAsc9uf/LvP/rS85ifGEVwK/Q0aFkBWDk8S1HHVE9DZco1vR11OjTEWfdX72kGIQT/8sBp0fd/+f5BXL4/eU18VYUOg7WG6D3WV6OjOZls1hr0+MTbrtnewIdTzwu2dRCOxGwwCm9C1uajsxacXXOht0EbtWm7asDJGKzaffAGI+hr0OGlBRtaq9TorU//7FDUGXT42JuS55YqvRofvD4andNSG3WEnZkXFllIMTczhZ/98Hvo7RuE1+vBJQevAMdxMBlXcfrkCVx86eVYXlpER1c3XE4HeJ7HwtwsCCFJ15VKad513kHsOi/52g3NHdDXRB0D3RcdxnO3/ycUVfUYfEPy+mK5pgKa6gbo6qN2hNOY7MQEgCsuuxhXXn5p0vauXe1oaqzHxefv37H9wL7o2F6dYR3nsTkbzhhd6K3f+i233t8JkxvuwE7nzJGzSxhbWEdfay28/hAO7m4Dy8pwdnETJpsb/hAf4x48ISCRUNRe9zoRCG/vo0n0KC7f14vL9yXnkehoqkVjTfR3b2uICksVWjV62xqwac/u/KhuasOV7/x40nZ9dR0qaxtR1RAdX5cmTmVtKxGzW47y+l392Fyeht0T3GF7kS3by2eMJopddQTQUa1CJIVTate+g9i1L/oMMUx0+ZBBzeHV5eg9BizLYOQqBJ1mhN22bb4XCiDEp+d7M+boeHXGWETS+78vrKBaK8eaI4DTqy7wBDi+6ICClcHmDcYWpZ9YcaGtSoVnp1OnJL/1yALOrG6vC9h0BeAJhrFm94GPhDH7s8/G9h2xAEfms6e3ZxgGTU3bxlZrWytGj0RTfNsBfOlXz2PT4YUnEAIhgEGrhJyLZnYLhraMLAZoNGhxenEz1mYinpux4PvPLAAA1ux+nF5xgucJgltejC9+8Ytobt4mf+vr63C73Thzdhyrq26MrMzE9o1+dXut2ysqDrfcf3arLyKYWnfDazPu6ItMaG3dNihYlsW9Rydgdm4P7tF7D4LnAYNOCQUbVXYDW6nGGSBG5iiOT67iyvbhtN/JMAzuOTqFdXvi92Tv43iEIzweOT4GORcldadnV7G6acMfXjgNnhBoVApU6TUIBMN4aXwBADBvNMNuXsT4rV9C0GlGJOCBxzgLv82Hz9w3A1YWDZ+75feT2HQF4A1GwBPAoJFDzjIIhXkEtsIoGQDjJjcCoQj+7uePxSJlNx0eePwh8ITAoFVBwW312ZZnm2GYHX1mc/li29PhV/f+Hq+7JJpw7OTYBFbWTHjgj0+C53moNSrUGAwIBILw+f14+PFnwTAMdrW14JVTbqysipsg48EwwG1PnMD0qhkbdje89L50aig42dZ9xT0L1VGyaLI6BZcCYRgGTtMCzt76JQQcZgQcG3Avn4X99JNpz3n9D09DxrJ44bHfIxIOY9O4iolTr2B9dRlOXwifuW/rfWFkwOkn07bFyhg8/NLkjm2rZgdemow6M07+9n+wenJ7/bvXvomw3wtCeCh1Bsg4OfhwCD6HBX88ycPk8MITiKbTX7a4YTW5cOSOaFkJ5+YaAh4nVsZfgdZQi5WzLyMSCsDrsOKF0y5897fPYtVsh9MTwKvTy6ir1OGVqWUEQmFYnR5oVAo8/OJZtDdU4ZXJJVgcbhBC8B//8xMwDIOVNRNOnB5DhCd44fgrUCoUsNjssfFVtvVMPHPkOJ564RhknDLW/2szZ3D/tz6/ox/c1k0E/R4QQqDWG8ByckTCIRDCg0R4yDgOmoptQ2JH5sYUvzEAfPsr/w8anR5W8wZ8Xg8IT1BRaQAnlyO8VY4twkfAcXJUGKqwMD2x4/yt1nBqxYnvPxM1iuh46gmG8fjjj+Ob3/xm7Mjl5WU4nU689NJLqK+vx/HjxxEIBGA2m2OlJqqrq1FREXVEjY2Noa6uDrMbbvzghZ3JlR6bsMIViOChsxbUauUIRXhwrAz+UHQMf3LKhtZKJU4su6FTsli1JUf+jK258YPnl+PatMAVCOOhM2bU6rbalMng38pQ/PiEBW1VKoR5gmdnxJfqWLG6cWI5Og8+Nm6Byx/GQ2ObKb/rsa3vmtrwii459JvjS5g0bRtgj54xweUP48FTRtTqlQhGIpDLon11fM4KhgFaq9Q4Pm+FikudlIZhGLwwa8Mtf5jCpju4PRaruehYHIkaVkB07GmoUOLpKSvkVenVtwjP43uPT8Tub83mxaklG3gCvDhjhoKTweoJgt0KS3xizIi2Gm20ksK8BWfXtqtE3DdixHqcgz5+Xj8+Z9tqKxRr69Gzm2irUsPlD0Ov4vDCrBWKDESa9sG61YG/++lDO7ZHx+Jg3FicMMeAiY3FAHB2MRoh84fHn4HJbMaZiRlYPcHtcXILiZ8fvftWzE+Mxj6bTavYNEZX+y799us7jv3Fs5MYW7Fi0+nbGgMBg1YBObs1l4e3nVKNBg1mjDZcIWKO8Pj8+Px3bsOmzQGPLwCeEFTptZDLWYRCEQSCIXowFFslS+jvzDAyHDk1jQ/80w/h8QegVCphfPynab/Py3F45zvfCbc7OsZWVVXFxtF7X13Fmj06Z6/ZfTi9Yo/atHPWpOeHAWDQKKBXRat/JDrst+9PhmdPzuDvfvT77d+WJzDot37bULz9AMybrKLe0bFTJ1FdXYvTI6/CuLqChx+4L2o7qDUwVFfj1KuvRMfecBhyhQK1dfUIh8MIhUJ49tQMPvTvv45dE1XoH//BLdAatp0LHlvcfBE3NxJCQPgIZCwHu3EJ4ZU5PPvNv9iaRwkU2srYsUD0WIaVw2teSfgNo38/+8V/jJWvW980w+Pxgic8qgyVUMjlCAZDsfJ7DBg0NUYV3OePvbSjzyaMTnz/2YXY5zV7dPkBzwPH56Pvr80TQnhrjdJdz45iYd0OAFi1OHFqzgSeEBwbX4ZSzsLq8sLm9mHO4t9+j2QsNo/cjc0tTjGLne+Y1W/CF/5nZ0mhDZsTHl8QhBAY9BrIORah8PbzzTBMjAQDwItn5tI+CwzD4NXHfwvTwhQCvuhvo9EbwMrliIRCAOHB89G5fH1uMmm5VyqsTJ7CU7d9O/bZvrGK5bMnYDUtw+WPt70YYPQp2Eef2votgF++vL7dUMCCR777tzva9tg2EfJ7IJPJ8MuX13ccv/y7b+44lnIcGQM87gAen8w+P8rlctTVCYu+yKlkUaY6vT6fD8FQCBqNJrmWLIALLrwQjzwqvE6v3RFdhM/J5WhpaSlYnd5gKIjVlVUolUrs2rUrrzq99PvCET5aOzLFA8cwDCorK7G5uYnq6mqot1K0A+nr9DqdLjjsdqi1GjTWJ6g6edTpDYVCWFlZASOToae7u2B1eiN8BFOTU5DL5SkzWlPQOr1yeerrCASCCAT8UCqVsXqn6er0VlZUYHFpCSqlEjKSrBhFa6kRdHV1ia7TOz4xAY5l0dubPhus2Dq9cQfE6k7q9LodobLxkLpOr9PlwurKCuQKBXq6u5P2S1Gnd3Z2FnK5fMczCgAatQof++hHce+99+LVFHV6w+EwfH4fZDIWKqUSqer0fvazn8Xu3buT6vTS95bW6Q2T6P9smmyREZ6HjGGgr9AjlJBi3x8IgIcMDIOkOr1KpRJutxsqVTTZR6rwYKVSCb/fD5lMBp0u2TjmOA4sy6Wsr8tHInC73eDkcmg0yUpaYp3ev/+HW+DPUP5iemoKwVAInZ0d0GhSq1S51uldWl6C2+VGXV1dyglJeJ1efyxsM6URQKIrhXQ6Xdrsn5nq9FLwPA/X1rhbUVERe/YSka5ObzicOqzT6/UiFA5Dq9WAY1OPaWLr9P7FBz+QpFAB0VJoPCFp598bb7wJt//611m/I1Wd3qTvcrvB8zwq9Pq0xpmYOr0Wixmbm2YYDJVobNwZSs0wwHvf/0H87d/uNKYA4NSpU7j5zW+Cw5G6vGEkEoHb44m+z/o0a04ZYN/e86DWqPHisWNp79nv9yMQDEKjVqetCy1Vnd6FhQX4fD40NTXBkGEeSlWnd2V1BYFAEJ0dHQgGgxnr9DKxPAfRJ97jiSonGq0mbZ1eIPq+dHZ2QhVX6xWIjm//9vVv5FWnd3V1FS6XCzU1NUljR7Y6vcvLy/B6vWhv3xWL/gNS1+m1Wq3Y2NiASqlAMG5cYBgGarU6VqfX6XJBIZennWfF1ukdn5gACEnuP4nq9LrdboTDYVRUVKQcE1PV6V1YXILb44FKvXNeia/T63Q6sLy8gubm5h2ZclPV6a2pqcbS0hKqDFVJ49q+fcO47ZfC6vQuLy/D7XZj164OaDSp+/+aa67Ft771rVid3lAotRMCABxOJziOhUatidXpTRy9aJ1el8sFhmGg0+nS1um98KKLce2114qq07u5sQl/wI/urm7J6vRubG5gc2MTVdXVaG7aOX5ed+01+I//+I+0fULr9Kaaw+iY4vP5IJMx0Gg0edXp3dzYgNfnRVNjE1iOLXqdXhCJ8Z73vIcAIL/85S8lae+ee+4hAEh9fb0k7aXD0aNHCQCyd+9eSdo7fPgwAUBeeumltMc8/PDDBAD51re+JajNr3zlK0StVpPDhw9Lco0UR44cIYi+zSQYDEradjwWFhYk+S3/5m/+higUCvKpT30q67FnzpwhAMgnPvGJlPs7OzuJWq0WfQ2hUIgAIHV1daLPFYL5+fnYb/Lss88W5DtS4Xvf+x6RyWSkoqKiIO27XC4CgLS2too+95VXXiEAyFVXXZX3dbz73e8mAMji4mLSvvX1dQKAvOUtb0l57v79+4lMJku577nnniMAyFe/+tW03725uUkAkK6uLtHXTd/VG2+8UfS5qVBdXU0AkN/+9reStBePSy65hFRXV5OPf/zjebdVWVlJmpqaUu770pe+lHWsFYL4cXB6ejqvtuJx3XXXEQDkgQcekKzNVOB5nqhUKsIwDPnhD39Y0O8ihJCmpiYCgMzMzEjS3mc/+1mi1WrJW9/6Vknao3jooYcIAKL9/+z9d4AkR3k3jn96pien3dl8d3s56045oBxJEllgkcGk16+NwdgGG39fYwz8wDbBGNtgY/S+BBMkBEhCEpJQQOGU8wWdLt/e7e7sbJoceqa7fn/M1mxPT4fq7uq9Q9bnn92Z6VD1VNWT66lYzPWzPvzhDxMA5Lvf/S6Hlplj9erVJBaLkb//+7+3fe9ZZ51FBEFw9N6BgQGSTqdNr7nmmmsIAPLwww87eocVLr74YpJOp8lHPvIR2/e+9a1vJQBIJpOxvPZzn/scAUB27NhheA3VW97znvfYboseZmdn23zmtttu4/JMLS666CICgDz33HPM97z2ta8lAEihUDC85sYbb2Se/7/5zW+40O2KK67gRqtqtWpLh4hEImTNmjWu36sFHZ9ms8ntmR//+MdJLBYj73jHO7g9k+Kb3/wmEUWR9Pb2un7We9/7XgKAHD582H3DHMD+oVgWKJVK8Pl8hl5Xu8hms/D5fJidnXW8H4kFtL163nMnkBaiNCUTTy71DLH2K5vNIhaLIZvVr7LnFOrn6UXveYEXjefm5hAKhTA3Z12YhUZ1tFEFCkVRHM0r6g1nOUTeCTKZjO7/XiOTyaCnpweFQoHbWlCDrgdJJ4rp5b1a0DHXGz/6ndG8oHOG6GR40LaZzamThQayLGNubg4+n487TwEW5xKP+Wu2TunadrsWvVpzdB3xkolGKBaLqNVqSKVSS8IzePcrm80iHo97Jt/K5TKqVetimmYoFArw+/2ejyUhBJlMxvFYUv6kx6NY7rWSiXStmek3buCGd5jxdifXWskDu6B9EgQBk5POtyiZgUX/1IKFFuqIuhXou93yZZ58xu5YOtUPrcBLZqnhFf8E0OZF8/PzrttsZ316Ae5Gby6XQzAYRC6X4/K86elppFIpyLKM+Xn7e59YQdvLi4nXFtKnzZ5HUzBYFxWlxfS0vXOpWJ5L0wR4P1sNSuNy2XlBFQCYnZ1FLBbD7Kx1cRPK/I2Ev1OmxouhG4EKw3A47JlgNHovTSfzQnGmdKtpthd4fa8WdMz1jEcrw5V+r5cKZMfoPdE0oOvHC55CCGnPJR7z12yd0rXt1hEwOTnZTp/iueaoocRLJhqBtpkXzc1ACEGx2EoF5y3rvZBvdCuA22fncjmEQiHPxzKfz6NWq2FwcNDRWNK1YpbmaXavlUxk0W/cwA3vMOPtTq5l4el2QPuUTqc9W6dOxoeFFvQaFlrwklWFQgE+n4/LmrM7ll4Zvbxklhpe8U+gNWcHB1t7qN3qhXbWpxfgbvTm83mEw2Gu3t90Ot3+3yvk8/lW4Z2CdZEsFlCPMlUM9GB3AWazWfT19WF6eprrQsxms+39GV7TGOhUmJxgbm4O8XicKdLLYsA4oSVtf71eZ/J62gVVwEdGRpbc6KWF17x4L6Wbk4iLm3u14GH0OrkXOHloQNd6Op3mvu5zuRzq9TqWLVvmudHLS4hOTk5ieHi4VQyH49zP5/MIhUKeRwdpm3nR3AyVSqVNd96y3otIb19fX/t/N/h9GUs3a4JFJrLoN05RKpVQKpWWpO8sxodXRu+yZcs8y8hwMj4sdKOOXhZaFItF+Hw+1xljhUKB25qzO5ayLDvKlrCCF4Yf5XNe6PA89cKXpdEbjUa5eUKz2SyGhoba/3uFfD6PSCTSKjriwDuqBU1/NfO0OTF6BwcHuUe96XMBbyO9aqblhoHNzs6ip6fHVqTXyDCVZdlVpFf7Py9kMhkMDQ1heHh4SdObJycnsWrVqnYbeIPSqtFo2GZ69F4eadd0PpwIo1fdD7sClW4fofzFDSg/HRoa4s5b6dxZuXIlMpmMa8XBbJ2ajaUdZDIZjIyMcF9zVCYulaG0atUqz3kGL16uBpX18/PzXGQwxfT0dFu+8TB6l2Is6fiNjo66SvF1siZYZGK5XIbf7/dM9gEt3jE1NWVbPtvpOwvv4G30ZjIZJBIJT51TVEbyjvRa6VNqlEolBAIB144RnmvOzliShWJVXgQ1eMksNagePzs7y73Nk5OT7cKjbmWLF323A0/Sm2OxGDehMD093fYweJ16G4u1qpfyaHu5XG5XcjWCHQYCeEeL6elpDA0NIRwOe+pYyOVy7fRBN06Rubk59Pb2con0Uk+eXSbhtdE7OTmJkZGRJY/0ZjIZrFq1CsFg0JP3qmll13CjQpQHvVkMVzNHidN7gUUaEEJsR2xLpRKCwSAXGlAeMjIywp230rmzbt06SJLk2klnpnzwjPTyXnOKoiCfzyMej3ueEpvJZNpVLb3mGbQv4XCYS78URcHMzEz7mEGetSWy2Wz7uTzSm2Ox2JKlqq9fvx6Tk5O2nUZuFEsWRZ8nH9JCzTtkWbY9F+z03Y7Ry8uQWArZXi6XIYqirfGxQwsWp1SpVLLUgVnaVCwWua05O2NpZ/+yXfA2/GRZxuzsLJYta52VzRIQsoNMJoPVq1dDFMVXIr1qEEKQz+eRSCS4en9pqWqvI730OAMebS8WiwiFQkzpzSwMpNFoYG5urh2F40kL6mEfHBw86WlMF/Tg4CByuZzhMSEUbgwYM6jH9eVi9MqyjGw2i2XLlmF4eNjT9Gbt/6z3Wq0pVrgxXFnuNZuXbmkQDoe50CCbzSIYDGLZsmXc1z2dO5s3b+747ARk4SgDI5rS709Go5eeB8pTJhqBtp+mTXqRlkdB+8KrX5SX02gCb/k2MjKCVCrFJdK7VGMZj8exeuHIIbtOI7omnNScaDabTEYvLz6kBV17W7Zs6fjMit8no9eLjAy6fcyurGSZM/V6HYIgMM0r2gY3+hHdbshrzdkZS97jrgZvo3dubg6KonjCPxuNBqanp7F8+XIMDQ25lo0vq0hvaeHcvp6eHq7FLahB5nWkl56F57btsiyjWq0iEomYLng7DIR6blavXg2Af6R3cHAQAwMDJz2N6flzNOXd6jmUtkaOBafKgXpcvRD8mUwGw8PDS5renM1moSiKJymeFG4i5KVSCZFIBPV63XX6I73frHqzlZGldy+LI6tUKrXPpnVKA2pMucH09DQGBgYwNDTEfd1nMhnE43GsXbu2/dkprDzubhR8NbxYc5Q/pVKpJYkOUmWaOkm9Au0LL1lP5x+dL17IN7c6RL1eR61W46rfGEE9F+lnO3CjWMqy3HFephbUqLLSb5wik8kgFAph/fr17c92YIcfmMkBCit5YBfqsXUSxbcCrTNid3xYHQCCIDDNKyqr3OhHvPmMnbHkPe5q8JJZFJSvrVmzpuMzD0xNTQEAN72QZc15Ca5GL/XE9Pb2cvHKNJtNzM7OYmBgAAMDA55HIWkxJ7dtbx/uHo1apjezMhDa9zVr1nCPemezWQwMDCxJpNctjanxT9O8rdI4vIr0LmV68/T0NNc9bkagzGx4eNizCDNNeaL/272XVmF1u6fVTbTWLLJIHVlm80ndD6c0kGXZtdCge4AGBgYwMzPD1aOtnr/0s1O4GQ9WyLKMqakp7pFe3jLRDFpDycsMEdqXnp4eLv2icocaOrzkECGkLd/c6hBLOZZu14/TNaHe6mO03pwaVaxYyr43Gg1Lfs2SvWMH6v7V63XuDhQ6Jlb6pxYsdLNr9NI2ODXsea85O2P5+xTppXxtw4YNHZ95gLde+LKK9NLF29fXx2Uhz87OghDS9tJ6bZDRCo9uFxf1bMXjccv0Zp/PZ8voHRoaQn9/PzdaKIrCzRNuBWr0BoNBxzSm0YsVK1Z0fDaCVwpzsVh0bLhYQauAA4veNi9BmZmXadV0fw79f6nu1cJs3K2EndW9Vmv6ZKEBNXoHBwehKArXyCBV7KLRKJLJJBej16iSph0+agRaEV/taOKh5FI+19/ff9IbSnaQz+fh8/nQ19fH1ehdvXo1IpEINzlULpfbR/+41SGoTtPf37+kUXv62Q6cyjW1c9XoXirvrPQbp6B9D4VCjo71sdN3Ft7hpdEL8C8YScckFos5Sm/mZfRSWdVsNh3zZvWaO1HpzV5GenkbvWvXrkUwGORqK/HWC3n33S48ifTymqBU8FEvrdept/39/e3/3UAtFKwivazKGu07b+M0l8tBluUliabT9GY3qX40skvTOFgjvUaRUvq9k0gv3Z/MW/DTqBtNJwG8qaSsBWVmQ0NDnkZ6Kd2cRDmd3qsFi9HrxFHCsqZPFhrQ9GZ6LjNP/kqjjgBcp0Spaam3jnkYvWrBPjw83I4QusWJMJSWgmfkcjmkUiluadvT09Pw+/3o7e3lKofoc3joEGr9plAoeHJ+J4Vbp5FTxVJ9vdG9aqe+l5FewBnvsGv0LmWkt1qtIp/Pe5qRQcckkUh4Eull5bU8dCT1muNZyIolc+73yeidnp5GIBBAKpXibitNTk7C5/NhcHCQS3rzy9LoHRoaau9/cQMqsJYq0ptOp7mURmdlOnYjveFwGLFYjCsttDT2OtJLFSW3kV47Rq/f79elsfo8QqdGryAI3AW/Np0E8DZqo35vf38/AoEAhoeHMT09zT2152Qx+MycHVaC8eVi9KojvfQzL6gVV7cOFHUat9EebLdGr1drTi0TvYz01ut1zM3NYXh4GJFIBKlUyvNIr1tergZNQabKlVfyjUd689DQEAghnhh8FG6dRk73zbEYvU6NKlao++6Ed9g1eo30A/U16ue6AR1HLzMynI4P6/5mv9/PNK94yCq65gYHB09YerPZ/nancBpsMQKV5YIgcLeVMpkMBgYG4Pf7MTIy4ugYMTV4990uPElvpovZ7STVRjeXIgrJY8M89WqlUilu6c00BVkQBE884XRvXz6f92yDOQ8az87OQhRF9Pf3IxaLMaU3G9GYJZXLCMViEYlEArFYjLvgV0edBgcH4fP5lsTo1RoqiqJwX3PFYhHJZBI+n89Ram8qlWr/7waNRsNwXlgJRiuDmSW92Wk/eNKARnq9OKObp9FrpYjzjPTSLAf1d26Qy+UQCATQ39+PWq3mGW9VFxuhf73kGTzlJbA4FwFwdb7qZUg5VWBpP6lB5lXkvlarYX5+3tVYOlUs7Ri9PT09nqY3A973nTW9mTWl1wpq2R6LxZBIJDxLb7bSP7VgoZsdXquWVU51pFwuh3A4jP7+fpTLZde1TZxEelmvtwPehp/6LHIvIr3q9dhsNl0dKWemey0FuEd6RVFsE9+tUMhmswiFQojH4xgYGMDc3JwnqQb0LDBenmu1ULCq3szqNaOeHMAbpcAr5VcNXpHedDoNQRCQTqctI71mNFZ/5zTSm0gkuAt+tQLu9/sxMDCwZOnNauambgsvqOnmJMpJq3+7dTTQ6KDZvDBal3SuGFVvtlrTpVIJyWQS4XD4hNFAklrHoAwODiKZTCIQCHBzcNRqNeRyOVfRGm1b9f5Xf8fKR40wOTmJ/v5+BIPBtnORx5rL5/Nt45B+9gJqZZr+9ZJneBHpVSttvJ26fX19GBgYQLVadVwEj/aTl1PfCOpoIP17Ioxeo/WkNqp4O3zp8Shu+m7HSGXRwezoaVZQZ5TQv15Feq30Ty1YjV6ryLi6HZTvuUlvpnwGWDzCyClou1nnhvY+XrDTDhbQTBkA3AOEvPVCnuvJCbhHelOpFLcqyNqQvReHLgOLC4mX55oymt7eXsv0ZlYGop7UvJUCURTR09PjudHLK9JLC4719fUxRXqNaMwi4I1QKpUQj8c92deUyWSQTqfbVY6X6qxe7V4q2haecEO3UqnU5i1uaW41L4x+o2fG0uu0oAzdKr3ZDQ14GL3UU+tFSpRWaee5p9fueLFCnVIpiiIGBga4RXpTqRS34/CMoGf0LlWkN5/Pu07/89Kpm06nEQgEXKfx53I5JBKJtvzxaiz1DCM764cQ4lipZlH0WfUbJ6Bj4ya1244TjDW92S1/oZicnEQgEGjPIS/WqdPxYZkzdo1et/JazWfoZzewOsJSDTf6oRV4H9uj5Z9eGb089EKe68kJuEd6aaEi+tkN1ClPXhRboaDt5OW5pl6tdDptmd7MOvjq9IXBwUHMzs5y2W85PT2N/v5++Hy+No29SCOXJAm1Ws01jWdnZ5FOpwGAKdLLavQ6TW/2wuhVMxlg6YxeteI/NDQEQRC4v5fSzUmEvFgsore311FqtBaSJEEURdtGlFVKvNlzKdzSgCpMbmigzvCgf3nxVj0DLJ/Po1qtOnoei9FrRXMreLXmeMtEI2QyGfj9/nYxRi8iSGqoIzCNRsPx2FJoZT1Ppy4vHUIbdVrKqL2dsVTrBV6mN/f19XmW5aTue7lctvUeO3oVq9Hrlr9QTE5OYnh4GIIgAPAmI6NYLLaLGtlNb+blAFAUBeVyuS2r3Ozp5bnm7DiD3OiHPNvBAi3/9LIoJeD+CMKXldGrnqA80pvVhh79jjd4G700ksNSyIqVmWqFN6+otzatDDi5HQtzc3O2I71mxo3e/yxQR+u8EPxqBZxHxTwrEEI63kv3IXrhhXYT5eTlaLCaF07nDAtDd0oDqkj09PQgGAy6ooF6Lz/9yzvSq05vBpwLSpZCVm6FqFdrbikNpaGhIfh8LZG+lOnN9LMbaGV9oVDgEgXROovpu5xgKVPVRVHsiAbacRq5SctkkYnUqOrp6UG5XOZaxVrP6FV/zwI7ehXLtTyVdLUBAXiX3uxEvlBamK07lmsAtLcQuHXQ8nYa2nWI6P3vFoqiQJZlbvvEgW7+OT8/z2UfMiEEmUymvQ6dHiOmBk8nkhNwT2/u6elBMpmEIAhcIr1LYfRS45xnejNlOo1Gw3RvIOvge0UL9WKJRqOIxWInNY2dRHq9NHq9qGCpFYxLEenN5/Oo1WqeG9tOBTJdR7wcDVYZAG6MXqs17ZQGlUoFhBAuafXaSC9Po1ertLtNiVqKSK9Xa24p05u1kepCoYBKpeLJ+3imHcqyjNnZ2Y65CPBxvqrlG42Cu0lvTqVSCIfDCAQCnqY3qx0YdtePm7RM1kgv5UEAHO+R1kMmk2kX6wSc8Q4vjF6ekV6vs7jUdTPsOCXq9bplP1muoW0AWinWgUDAVXozT/5Jx1KWZctMSa+MXmqM8ppTjUYDc3NzXcErN8WmKObm5iBJEle98GVl9FLvr8/nQyKR4BLppQMYj8cRCoVO6igkRbFYbBtEgHFqB+vg1+t15PN5T5QCdVoEffbJTOOTJdK71OnNmUyGe9l8NbTROfrekyW9WX0MAw9HgyRJCAQCjo1es8rPRs+l4EUDN4Z/NptFJBJBLBYDwD+9eXh4uCPqSL93Aq+NXm2WA8A/vTmZTLY/ewG9CBLg3VFnPCO9c3NzUBSlS2nj5dSlzxNFEel02nV6syAI3Ap46UFvLtLvWUDXgZPoJKvRS3kQ/cwLk5OTGBwchCiKAE6eSK+XRm8ul3N9vKcaVP+045SQZRmKonCjBZVNbnUkL9KbA4EAAOt9vV4ZvfRZvOYUDfxo7QMe/NMLvfBlZfRSrwyAdoELN1B7ab04f4qCGufUo8Qj0ksXO/2sh3q9jkAgYOmNVR+7APBXCuhz6TuWItJbrVYdTXq7kV7qmfSierMX6c16Cvjw8DAkqVVt1yto08ro/ydL6hW9llfxMKt5EQgE0Gg0urzk9HqjdWuV/kXP9zzRNFAXCQT4pzerhSQtJOSl0cvCR41QKBRQrVY9cTRRmej3+7k4go1gZCh5keJMTzvgFenVS7UH+Dl1eck3Gt0GwO2oJj3wMnqdKJYsUWKtUcXb6FX3PZlMIhKJMPedFvGycjxSsOhgrHoaC9SpooA3BSO1kXiW8WGdM6wGi1ZWOdWR6JoLBAKIRqPcIr2AdRaEV9Wb1ToEj+ca8U8e8twLvZDnenICTwpZAS0D0s0ElSQJuVyuIwrJe4M2RT6fRygUQjgcbntw3Sg7WqZjtOBZmbPW6E0mkwgGg55EenkWEVFDG+lVf8cKRVEwPz/fEektlUqWTNosokfhtHoz7/TmUqmESqXiSulxAiPmxlMYN5tNVKtVLgafG0eDlWKkFoxab7CVckAZutGcdJOiTPvMgwZ6657XkXBaxVUQBFcpUV5HerXVpoGWMlqv110rWVqZeLJGB+2AnnbAKwKjV1QNcK+0EUI6Ir302W4jvYC3Y6k1jKjTyG56sxOlmrV6M4t+4wTavtvlHerUUdbqzXYMPTd6oSzLmJqa6oqaAXzXqTqTiH62AuucYdVZ1fLajY7Ee81R+QxYG7Ju9EOW5/Iy/Iz4Jw/7QE8v5JHezMvgd4KTNtKrPlKDwqsopFox6enpaSvnTmEnvZll8Gmf6WSme17c0kKWZczMzHTR2Mv05mQy6bgQSD6fh6IoHZFeAKYpzixGr92CApIkQZIkT9KbKZPxWjDqvVetyNA2TE5OckurpmlWTtJz1elSbh0N1LAzmxdGgtFKObBa025SlHmmeOtleAB89gFpDTDAnXfYSvmo1+sIBoOOhaiXa06ttPHIftKDoiiYmprqoHlPTw9CoZAnPIP2oaenB/F43HX9Dm2kIhKJIB6Pu5ZDhUIBjUbj9zLSq56L1PBjHUs3kaSTIb1Z3XfAHu+wa/BLkmTJO+g1hBBXJ2ZMT09DURTPMzLcRHqtDDHWrBpe6c3aNcczvdmO0etFerNXkd5YLIZIJMIt0ptKpRCJRNrfuZHlNI3+ZWP08oz0aqOb9H+vUm/V3iT6nVOwpjezMFyg25MD8KHF7OwsCCFLRuN4PA5RFB3TmBq36kiv+ns9qGmsNd4o3e0qzDyjjloYedYAb1IVKbQpqbQNtVqNm6LuJj2XZ2qv1bhLktQ+I9nI6DW712w+nSw00NvLD/DbB+RGcdXCKvrEykeNYJTlALhbc41GA5VKhZtMNMLs7CyazaauoeQFz1BvB/L5fFxkfTAYbO97BvjIIa0y6Pa5SxHppdFAN04jNY/yopDVUqY3A877zmr0skY31c93Ar2MknQ6DVEUuTqnnBi9dJ5Y0Y3VwchDR6rVapAkqWPN8UhvtmP0GukBbtsA8DV61fU56FZQHsErI1lu9xgxCt59dwJuRm+z2US5XOYmFLTRTfq/V1FIrdHrpu2805uz2SxisRii0Wj7Ox600DOmT2Ya0/272kiv2b5eqhAD6Erd5GH08k5v1lPAo9Eoksmk55FePWVD3Sa30Kbnnqj0ZtZorfpa7b1OjV43NOCZ3qyN9PJKiTJS2t2mN9O9x06i61aYnJxELBZrR65oe+lvTqHe0kH/emEo6fEM+tnLSC9PWT8wMNAeY+Dkk2+EkCUxemdmZiDL8pIafnr3av9Xw6v0Zu3xKBR2eIcTo5c10qt+vhPoZZT4fD7uxxa5SW9mpQWr0Uv5qhMdyQv+aWcseTk79J4LOFufeqAObC3/5BXp1VuPgDOHMO++OwE3o1ed8kT/8jZ6vYxCqttNv3MKO+nNLIOvVVABbz3hpVLJVXq3HnjQ2E2kl/6v/Q2wvwC1qTs03ZkHMpkMIpFIhwIOeH9sEW/mpge91F7W1Gme6c1WXm03c4Y10usmvZmHs8UovdktT+GhtGthNh6EEDQaDUdRLQo9bzZV1tysOXXxPvrXi0jvUhu9vPu11PItm83a3rJRKpWgKIrnY6lXLZV+9srw07vXrPIzzWSjkSVeTt/5+XlIksQlvZm17yyRS3qN+vlOQPswNDTU8T3v2hlu0pt5Gb3FYhGxWAw+n89xVpIX/NNO9JaXs0PvuQA/w88r/gnwD4a8LI1eXqkI09PT7XNjKQYGBpDL5bgTy4tIbyKRQDAYhCiKlkYvS/VmtfEP8Nl7a+QJV//GC2oaOz2+Qxvp7e3t7fheD2rGpaUzr/RmgN9ZhZTJqL12gDdn5qphlMZC28QDWrrJssxsqJRKJQiC0N7v52V6s5mSY5U6aJZOT/sBLNKgUqkw7xMrlUqIRCLw+/2uaFCr1VAsFjvWfSwWQzgcdr3ujZT2kZERZLNZR3vizJQPWrjGbXqzVrAD7o3GpYr0UpprlWneESQK3v3Sk288IhXZbBaCILTlBX1uo9FoF+Nixe9T1N6t0SuKoqleQo0qv9+PaDTKzeg16/vMzAyzEQuw9Z2e1Wqlg/GM9Pb397efRcF7ndLxseOU8CLSS3Ujp7LqZIj0emH02pmjLDDin16mNwPO9ELa91Ao9Ptv9Op5ZdxGevW8FwCfYitqaAtZ0e+cgi54QRBMozn1er09+GaeZz1a8FIK9PZS0d94Qk1jURQRj8dt03hubg6hUKid5h0IBJBMJk0jvWYGjJr52IkSaSNuAL8UL68UcCfvpYaZV+nNAHuUgHVNsYDOg1AoZGi4Um+w9ncrpq2eb3rnAOrRoFKpMLWbpq3R+53SQK9eAq8j4cwUV0VRHD2fjodeRVYeQtRozbl1NGmVNq8KWU1OTqK3txfhcLjje94RJIp8Po9wONxeI17Jeh5O3f7+fvj9/o7n0nfawVJH7fWigaxOIzdKNeVfVls0KB9yy4vVMOMdADA1NWX5DCvergblz1a8w0we2IGeAQHwl+10fKhTwm56M4sDwIoOaqPX6RzhbVMAnfKZ5cgiHuOuhZ05yoKljvTaPUZMDdZ55iU8jfTSartOoD1fD/DOIFMXsorH4/D5fFzSm+nzzCK9oVDIsiqgES3m5+ctD9g2g/asTvpc+htPqGkMOMsEoGf0qttrdVavWTqLmvm4SW8G+KV4LZVgVKNWq2F+ft4TxV8NbWovwO4s0Bp8pVLJcVVpq3F3m95slj7lxmGiVSSczjm9DA+Aj6DU27em/uxkLpkp4k7XsBperTmt0uZVISszR1k2m+VyDJUaPHi5GkbyjYdTl5cOoaffVKtVV/JXD5lMBul0us1DKIaHh6EoCpMjwI1STXmf1RYNt1E8PZildqt/N4OdKDcr77CTEmsGs3XKS8YqioJyuWx7fFidh+pAjRn05LVd8M4eBU6u9GZe0U6vnIaVSgWFQqFrzropksi7707gqdFLCHHMELXn6wFLk3orCAKSyaRjjxLd38my4CVJanvnzSaAGS3cRL310iL6+/vbv/GEmsaAs1SVubm59j5eir6+Pss9vUY0lqRWoQK7C1AvvZlnipfXglEL6kH32tjWpijT71jvVQvyZrPpmGnS+8LhsKHhSkv0GxlZZvearelSqYRwONzOdqDfsUBLg3K57MipqLfXEeCTEpXJZNDX19eVwud2H1AoFNJdp1bjwQKv05tpJg2PM+D1YGS0Dw8Pt8+q5QkevFwNI/lWLpeZsyD0YJT2R3+zA72aJervecFsLtLfreBmTVBF30gmUp3OC6N3cnISyWSyo2An4F3fWa/12ugdHh7G1NSUq+OQKKrVavsceIB9fOzQIhwOQ1EU0/bySm+m+jjAh3/aNXrD4TD3SsO8DT8jPlcoFFCr1Rw/18gJBTiXjS8ro1d9jAHgviCUUUov/Y0n1EWWAHepS2qDCDBP7WBdgDw91lbPDYVCSKVSJyWNaaRXDZZIr5nRGwqFHO3p9fv9CIVCS5bePDw8jHw+z73AGH0n0J1WRr/jmd6sLm4BODP43NKcJdJrlR3g1OjVZoEA7DTQes8JIY6MAr0igQC/SK+ekKTpmk4FpVeR3nq9jrm5OU+yHNTHtAEtnqcoCtdq74C1ocTbWcZTXjYaDczNzRnKNzdOGD35lk6n4fP5HKc38zzaUA88jV4na8JKJlYqFRBCPEtv1uv7wMAAfD6fZ0YvS6SXJThhBbOMElmWuWzbU2eh0b920pvNaEEIYaaFXlaSXWM1l8shkUjA52uZKT09PWg0Gq50IDOHtt61VlkPTtsAuHPUUtTrdeTzeU/4pxd6Ic++OwXXSG80Gm2X+HZbEErPexGLxRCLxbhGIWu1Gur1OjfPtdbodRvprVQqKJfLugoq4G5S66WVAd4cW3QiI71mBowTpkaND0EQuEZ6JUnC7OysoWAE+BWVUsOMufFOb1YLY8B5ejN9nhPQVC4nhqsbg5m22SkN9Ax/JzSYnp5GPB7vOHAe4LPujRTXQCCA/v5+xylRVkZvOBx2tEfIKsshl8s5VrL0eB79nid4GEp2wDPSSx2WSyXf/H4/+vr6HEV66R5JwLuxNDKMaD/spPi6ifQayUQ7+o1dGPXd7/djcHDQVt9ZDH4rOaC+zm2klxCyJM4pp+PDMmfoNgkWWmjltaIotvmoF/zTSXrzyWz0UkeJF1mxXuiFLyujV7vPx4tIL9AaTJaCBqzQpmUDfCK9VgVnZFmGoiiWG+WN9t/Rz25ooZdWBvA/Gkp7xiGwtJFeIxrT9GYnhaxoZUSeZxXSsVxKBZY+UxTFLocCfS/P9GZtlNOOwceL5mrFyG4hK0mS2lF+u/fSfrihgdN71TBb9255q5HiCrjzDhutU6uxtIKVNxtwrozylolGMIqu03oNvHmGXr8KhYKj9EyjrAOv5Zvd59I+03oSXo6l3lwMBoPo7+9njnYKguB4T6+ZTNQzqryO9ALsvMOOE4yVd6idoE6L7xQKBVSrVcNtCAAf2e50fFhoob4GMKcFD3ntBf+0ks/aa53ohyxtAPgUsjLL2lL/7gSTk5MIBoPtU1LU4JHe/LIoZKVOeXLjlaFHaugZvTw2aKuh3asDuPNcq6uzAsYFZ+iAW6Va0L5qqznGYjFEIhHu6V8AfxqXy2XIsuyaxk4ivfV63ZDG1IPrJL2ZOjXC4TD8fj8Xb7eVZw3gn6pInzk0NNROI1JjZGQE8/PzrvaGUOhFa1mPetKLkDqlOR3rSCSiO+5O54yiKGg2m6Zr2g0NtFVTAeeRXqN1XygUXAkjHoqrFmY0V/NRJ0WFvFxzPGWiEUqlEsrlsm77RVHEwMAAd55h1C8nxo+RfHMbqaBFn3jJt6UYS7NoIMC+ftTrxe6asJKJeumzXtezAOz1HbCX3kx5h1H6rZ2UWCPQNWjGZ3gYvU7Hx0omaq9Rf9YDD3ntxZozk+161zrRD1naAPCJdlKjljf/BBYd2NrjMwF7x4ipoZbXL4tIr3afD+BsghpFN+l3Xhu9bkqjs6aXqD2S6s9aGHlyBEFwRYtGo4H5+XlDGvOM9PKisdNIr1lRIjfpzQDaKc48BL+ZYEyn0wgGg55Fes2UDXXb3EAdqaR0PxHpzVYC3iq92SrV1kyoqmlAPeFuIr1OaGCWRQM4L45npbS7SYlioXmz2bRd2CuTycDv97cL+KnhNrtCL7uFfs8LZkY7/d6L9GZeyqiRfAsGg0ilUo7lWy6XgyzL3HQIrX7jxZ7eYrGISqXCJdpJ1wvv6s1epjfz4B0sxpvetYD+EXP0OrdGr9k6DQaD6Ovr8yzSa6d6sxndWAM1AB95zdOmoLCzP9vL9GYnBVT1YGQr0WKhbiO9ZusRsB9JtrM+vQLXSK9awNOqZ06EglF1UfodT4NMW6CC/s8zvdnM6KV7hOwavYA7WlDF9veFxrIsI5fL6UZ6q9Wq4X4RSZIMaUxTXZxEeikjB/ileE1OTsLn8+kq4LRM/FIbvTwjzHp0c1q5mH7nBCxGr9WcMaskzGr0+nw+xGKxJaeBWYYH/d0JeCntWtihud3I1uTkpGGWQzqdRiAQcLzmlsJQOhFGL8+0w2w2i0gk0nYAqeFGDvHWIbT6jSiKiMViXB0YZtVS6feshp/RemG516x6s1dGLz0exe3WCLVeZdfoNYtwemn0AvxqZ7jZ0ysIgmn0kVVnpe1wuxXHaE8vj/RmlrXhZh2xPJeHMZ3NZnXrcwDu9XiWYIhd2WJnfXoFz4xeQRAcpwmbRXq9Sm/mVZhDL71Zb7GzMpDp6Wkkk8muc/sAd7Sg95kVsuJ1tIYZjVnfMT8/DwC6kV4AuinOsixDlmXLSK+Tc3rVxhuvFC+qgPv9ft3feRaVUsNqHyZtm1uovb+APWeBF9WbjRiv0+wAljWtRwMn1Zvd0ECvSCDgPiXKSmmniqtdvuI2um4GM8Hu8/kwNDTkKr1ZzfOi0Sj8fv9JaSjZAc8CM3Qu6qXQeS3f7EAb3QbcZYTpgZcDw02Eykohd1od2ApmWU70+0wmY8k73ER6vTR6M5kMotFoh96gBi/nFKv+qQWLLmSH16p1JF7pzfF4HIIgcClkxXqOs1eRXid6px6MZDngPivWC73wZRXp1Xq1AecFocyim7xTb2n76FlggPtCVj6fr51CYRXptWIgRlEZwB0trCLI1WqVea+hFSgttakqsiwzv4MatXqRXvXvatCoj1nUzglTU+9XAfh5uzOZjKHQB7yJ2gDmin9fXx9EUeSWeuXUWaA2+ILBIAKBgOvqzWaR3lAopHs+n1ujV48GTgx/GhnzIr3ZKU9hiWbUajUUCgVbz7VDc7vpnF6uOa1MFATBlWzRw+TkJMLhcIcRqgZvnkFPO9BLO3Qq60+EfJuenraVCq+NbgPuMsL0wGr0shh+boxelvRmdZEir+tZAC3e0Wg0TLcyAa32i6Joq3qzGb8mhKBerzNFN81AZayecwfgt07V58AD9iK9VnOGVWdtNBqo1+tc0pvVa87n87lec3bWhtdGL69IrxH/9DLSa+cYMTW0Ri/vM+tZ4FmkF3AeMc1ms0gmk23DUY3BwUEUi0UuhXWAVrsTiURHdC2VSqFYLDqqRkkNIsrcKNPRDi6rsmZUjAPwNv1LfY1bGEV61b9ZgQo7o0ivnjDUMmm9yq9O9j55md5s5FkDvDF6ZVnG1NSUZ9EuNZymNxNCXKVGayFJUtsxRbMBtL8bzYt6vW74m930Zjv9kGUZ1Wq1fa/f70ckErFNg3K5jEqlorvuaSTCK6PXjXfYy0ivV2uOp0w0Aqsy7XXWjvo3O/BSvomi2OWIp8+VZbmdPcSCpRjLTCaDSCTS4VBVg9VpxMvoNarerDWqarVa+zgbp2DJElFfZwQ1f7Yb6dXrryzLIIQgHA7D5/M5LvJnZkAAfNObncgXO0avlQOABjJ4pzcD7tecmfzWwql+yLMNVrAyep1GepvNJrLZrOGctXOMmBr1er2dRk8Icc03nOCkjPRahezpNTxg1G4AtiMSgH7qq94ZZaxFAYyOXQDcp38Z7aXygsZ+v7/jXXajA04ivVY0tiMg1fAyvXkpBKMas7OzkGV5SYxtp+nNkiSh2Ww6jpDqPY+OO/1MoSgKGo2GqZFl9Js2cqAn0JymN2trBdD/7dLAbOsI/d5NerOZ0s7D6NVzQgBs+8z04NWaI4RwlYlGMEtBA1rtr9fr3N6pl7UTDocRCoUcR3q9mIvT09Po7+/X3avtRL4txViyODDodWZwKtdY7tXyL7eV9Cno8ShapzYFa9/VvMKqsB3tH9VLjLJ+ALjeg8maUeLWOaU3PixOCRYDjzVQo02xFkUR4XDY1hxRFMVwS8FSRXrdrCNebbCCla3k1GlItzfy1gvVqd3081KDi9Grdw4r4C7Sa+a9oNfwgFG76W92oedpo9+rQQeb/u40vdnpESMngsZqYc4r0tvT0wNBEEwjvXQv3cshvTmbzTrKQDCCVXSO/nYi05u1+8gA95FeWqCCfqagKfFGSg5L1NFMiXKa3qwtUEL/t0sDswwP+r2bSK+Z0u60KBpVPswKWVnxUT0oimKa5QA4n/uVSgWyLC9ZpNcIPKuvA/qRXvrZC1mfzWYdGQK85dtSRu2NYMfwo/zLi+rNLPqNXdCMCyveYcfopZ/NrgXMHWb0O7dGCktGSaVScZ0x5nR8tDxWb83RuWQm39TvciOvaXYk7zVnN73ZiyOLfh/Sm73SC+2sT6/AxeitVqtoNBpdE9RpoQcz7wUdYF5RSCNvEv3NLvQMIvq9GiwKMmCd/kWvsQuz59Lo6clE47m5OUSj0a6Ud7/fj56eHt1Ir1pgGSnMJ0v1ZkKIZdRmZGQEiqJw3dPOwtxOdOoVL4OPwozxss4ZMwPMaE3LsoxKpXJCaeBlpNdKaU8kEojFYo4EpZkTAnAW6Z2dnUWz2bRcc1NTU7YdTUbGoRfFj3gYSqzQO36OfvZC1tdqNUe1Jczkm91Ib6PRQLlcPimi9vQ6M6ijKU7Tm82qN3th9Fr1PRKJIJVKMfXdyKGpdy1g7jCzkgesYMkoAdw7p/ScqvR7M6h5LADdyDCrzmokq+zoSHoZJfSzU/5JCLG1NtysI6vn8jKmrSK9lUrFEf/0Si+0sz69Ahej10gQOt10bhXdpNfwgFGBCvqbXeilvtLv1WBhIIQQy/QvwBktzJ4bCASQTqdPKhrrndFL0dfXZxrptUpVtcPUCCGepDfPzs6i0WgsqQILLApZ7eHm2ve6fackSZAkyVF6Lq/UXnVbWIxe3pFeKnyceMD1ot1OaGBW4AfgE+k1g1vvsB7NafocYK+QFatgVxTF9tnFRkob7+JHrIYSL56hd/wc/Wy3X/V6Hfl83hNZbybfenp6IIoi83PpNqcTHelldRq5iSRZKeRG6c1unb68eMfJGOmt1+uYm5tbEtmut32Gfm8GFrqxGr3a9GbAvo5kllHilH9SQ/5kqt7caDQcp7RXKhWUSiVPgmKZTAaCIBg+G/gfHuk1EoROvTJmRm8oFEIymeSaess70msnvZkyED1lrVwuo1areZKGbEZjgG+VbD0ax2IxW8d3zM3Nde3npUin05aRXqPCQ3aZWq1Wg6Io3NObrQp5qH/jua93cnIS6XRa90gsCqfRLjXcRCr1hKgbmqv36tDPFFZzhqWQFS30op1TejRY6vTm6elp9PT0tPuuhRuj18oAA5x7h1mcEPSznfbSNhnBqTK6FJHeRqOB6elpU2U6FoshkUhwTW8WBKHjtAPAmQFIHQlWWV285ZvP57Ml38yiTl7s6TWDXcPPaaTXrJCVV+nNPPqu5e1m/a/X6wgEAm3Zp9df+p2bwkNTU1MAvOEzWjgdH55GL4/0Zi8ivVayXe96L4xe7Ry1e7Y8hdmxbIC72jyTk5Po7+9HIBAwvIb1GDE1zHSvpcJJGek1C9kD7s+fUoN3pNeu0RuJRODz+XQXlVVUxs2ktqIxz/OQ9WhMz3E+GSK9doQZj9QdPbBEnYaGhiAIAtdIL6uyIcuy5XERZnBjtJ2o9GarOaOt/KxVkFiM3qWmgVkEDPA2vRnwJtLr1Oil7fBCGV2KSC9Vpr2guRFyuRwSiURXgSgnBqDV/nIv5ZudeW61j5lHZWxJkjA7O8s0lqzpzcFgEIqi2HJWWhXv8TK92arvLA4zu5FedUqvmaHnJh2VRbYnEglEo1Eu6c1OCo3ZMXqt6ifw0JG8iPRayWctnOiHLNDS2umzrbYquXEasshyeoyYXsDJCC+bSK/ZBK1Wq7Y6ZnakBoXb86fU0CtQQXPOnXiUWNN/WBaglVIQiUQcHzFiFen1msaAveiAk0ivFY2dVOczS91xo/ywKOCBQAD9/f3c05tZonPqNjqBm/TcpUxvpnOGpZAV0OmltfIkuynIxSu92WyvI9Ba96VSqavavBXsKO1uKj7qRd6tFFcjTE5Oore3V/doPAqa9m9XGeVd8EkPLJFq+jvPPb1ueTmFlXzr7+/vuI4VsixjZmaGm3wz28dM9+m7BUs0kP7OEu10uiasoltepDfLsoxsNmvZdy/Sm1kNPTcRP7pOzXijIAhc1ql265Xd9GazqLc6HVwQBNPqzT6fr31qBuA8vVnPacgr0ms1lktRvVndLrtgdRo60eNZ9EInDuGXjdFrlooA2EsTtvJeAPyjkHpn+TlNXdJ6QmkqiFGk18yDaJW+QH+zS4t6vY5CobBk6c08aOwm0uukEq8RjFJ3ZFl2dXZ0JpNBKpXqEBR64H1sEWt0jl7rFEbe33K5bHqsBMA/vZl6+PWKKdiJ9Nq91216syAIHfPDaaTXat0D9qNrdpR2J9Wbrdawk8IYLII9GAyir6/PUaRXe0wb0OJ55XLZcUqbGiwRJPo7z0gvL3lpJetFUURfX5/tuTg3NwdCiOU8Z32u2T5m9e9uwHMs3awJK5mo1W8ikQgEQXAV6c1ms1AUxZO+m0XRlsronZychN/vbztxjMBjnbpJb+YV9aZtUFfidlLIKhAIdDkke3p6UCgUHG21sjuWaj3hZDR6Kf8ymlfBYBCpVMpxerMXeuHLxujN5/Pw+Xwdiw1wdvSPlfcC4GeQKYqCQqHAzXMNdDMdumfEyOilDNos0msU4QScRWSX2rGwFJFeq/Rmo2q7dAGyFhQwMt7UvzkBC5MB+CqwrO+l0S4vjF5CiGVUsVQqQRTFjn2oJzq92cpg1ptvRjSo1+uWRlCpVEIsFutIK/UivdlpSpQdpX1ubs5WSped9Ga7hay8WnN6x7QBizLRyRnwWkxOTsLn85nKSoAtJZYVvCO98Xjc1NHnRNZbbQsCnEV6eR5tqIUXRq+TNaHmbyxGryAIrmtasPZ9eHgYxWLRtBoti/GmvtbKOcDL6B0aGtI9M1oNXkav2iFPo7KsRxaZ0a1er8Pv98Pv9zMZvWrYnSNW/NNJZoGdsVQUBc1m07NIr9NMDDWy2SxSqZRpPRanGZus6c2AvSwoXn13A26R3mQy2TVBqUfYjieUxejllXpbKpWgKArXSK82/QfQj+ZIkgRBENoMRE8wTU9PI51Om24md6MUsDgWeOxX4hXpNTJ6+/r62t59NazSTbULkCX6YpTeDPx+Gr0s0a5QKIR0Ou1KcTZKz1X/ZgQqyNX8ZSmqN1sdcwWYF8HS3muU3gzA8lgBVr5iBZb0ZnqdHdhR2gH7gtKrPb0sa85JdFqvjgHgTCYaIZPJYGBgAH6/3/Q6nunNZrzcrvFnte8WcCbrWXUIO5HeaDTaJYd5j6XP57OMBg4PD2N+ft51BJPlXr138OJDarCm6bPwDjuFrFicAyzBCSuw7FcG+GRxadObqVOCV/Vm+ruZIahtA2A/vdmMz9Df7cLOWFJd0Auj184cNYOVLAec1ehgOT4TWDxGzI5sUZ8HDfweG7161XkBZ55Qq5A9wK+QlZEHl35nV4gTQpi9XJSBCIJguqfXalI7iciyRnobjYbriESz2US5XHZF40ajgWKxaJjenE6nIUlSl+FgN2rH4hE3Sm8G3O1rYmEyAF+jl3rNl8LYdhMh1xOidE05ccrwqt6svl79fyAQME1vpkdkAPYMf7fec6sj0ADn+yhZU/jseoetPO5uFHwv1xxPmWgEO46yXC5ne5+2HswivbVazVZUkUW+OZH1LPJtYGAAMzMzTGmSZn2mv7sFjQZaOTBYDD+3Rq9Z+ioPPqTF5OQkBEEwPTYPYEuntNN32lfqzDCKbgKLKb1Oig4tlUNblmVUq1VHBidPo1cbbQacFbLivebsjKWVHuAGTvROPVjJcsCZ0zCfz6NWq3kyZ91kofACt0ivmVfbbnpzb2+vaXRzcHDQ8aHLahhtlqff2V1Y9XodsizbMnoBYwbCMqm9TP9SX+sU1Gh2Q2NapMos0qu+jsLN/kwjUMat3qu3lOnN1BvMIwLPGp2j17g1ev1+f0cqDquzwEjRYkmN1gOP9Ga9e6lBbOTIMkpRpr+ZwYgG1WqVeX9TqVRCvV43NTRCoRBSqZTtdZ/JZDA4OMistLPOJSuPOx0PM8XVCEuR3qyFm+PwtLDTfmBx37Ub8DTmWZ26TuRbMBjsOlZJ+1xCCFNFei+iTlrYHUtehp8Waqeetjo9LdrlhdFrdTwKwFZQ0U7faV99Pp/uEXPq+92mN7M612ZnZx1Hv/TOgQfYxsfrSK+TI4vM1pwT/mlnLHmMu9mzeUR6veKfdvRCu1lEL6s9vXoTlAodO0KBNeWJXusGRgUq6Hd2hZle+iL9rJfeTA0Ao0XFkr7gNNKbSCQs91IB7o1eHjSmxqxZpBdAlwJDacpaiZdlAZZKpY57gKVPb67ValyUZpaqkhRuU69oWpw2RRlgM/j01hR9rl2w7Mt1MmeslAK91EA70W4jGrDOO5a0T8BZdI11/vb398Pv9zMLSvV4mKWbC4KAQCDALERLpRJKpRLzmrPraDJyBPMsfsSaNsnrDFCAb9o2q6x3It8GBwe7tlupYadgm5EDw+5Z82ZgzTpgyZRwum9OlmUoitLB39RbfoyMKh7pzSx97+3tRSgUYopys6RPshhxPIwfO+nNgHPnlN7WK/rZbvVmK6PXLD1Yz0GbSCRQqVSYHbRWkV636c2sRu/JXsiKJShml3/a0Qvt1ot42Ri9RoJQFEXE43Hu3l9eBhnvSK9eCif9rFVMqZcRcBfpHRwcRLlcthX1Zn0u4N6xwIPG1Ji1G+mlqRO0CJKWxk72VhhF3ADn6c3lchnFYpHZGwzwUWBZjklSv9dtpNeIbk7Tm1nu1YOZUmh1zJUdo1ebumOkDNA+msEN/ShYMjwA595hFiHp8/kwNDTELCi1igpNd6ZQ81G9I42MwLqPkF5TqVRsp+ctRXqzHUOJB89Y6kivk9oSduQbyzw3ijrZPWveDHacRqIomo6l031z2rWmvdeOfmMHrH1nOdbHbnqz10avoihL5pzS23pFP9ut3my0v1kdqDHitWayilVPNVpzbvinnbG0e6av3XYsdaTXDv/0Ui982Ri9Rl4ZwH7ElHUg6bVuwDvSayYU9CK9VgyXdaM6vZYVLDROp9MQBMFzGpdKpQ4lVg9uIr1G6aaEEMfpzU6jdUawG3FV3+MGk5OTiEQipmmAFJS5OU2rduMs4O1o8Cq92WpNn2jDn+UINPq7E+8wi5AE7AlKrfIB2KO5Eeym9qvvYYGRIzgQCCAajbo2lGixEZb29/X1IRAIuOYZiqJYpm17EeltNBqepE3TNljBSr9ZylR16jSyY/ixOoKsjF43kUQzsPYdsOYddvq+FEbv7Owsms3mkhq9TsaHtXoza3qzWx3JaM2Fw2GEQqEli/SerEYvIYTZPqjX67Z008nJScTj8a55pIf/0UavnlcGsC8UWAQhLZbCIwopiqJumq8TYWaW3my2p1cvQkGLzvAU3hQsNKZFaXhF081SVayKZVFj1sjoTaVS8Pv9unt6jWgsyzIIIbbTwPQMF7qInQp+rxVws/eOjIyYpgFS0GiXU8PejSA0S292GukNBoPw+/0QBMGwkJXeuqRnxuoVobBK//KKBqzzLpvNQhAE0yPQAGd1AngqrmpYKeInq9HLUybqYW5uDpIkcYuQsYAWjuNRYIbyEi+cuizyLZFIIBgMMs1zs7F0khGmhaIomJqaYnYaWW01capYankf0Mnf3EQSzWDHYWbVd/WZ3gBbISvAOEtEkqT2nl87mSQUdqJm/f398Pl8jp1TZk6JpS5k5TSjicIL/mkl242upRlGTs4G1oOdOWqEcrmMarXKNaOFwo4sZzlGTA3ad3r01cuukBVg/+gfFkMvEAigt7eXSxSyp6dHV+nv6elBvV5HrVZjfp6d9B8rBpLP59FoNDyZ1Cw0ps/2ct80a3RgdnYWiUTCsNCFIAjo7e01jPQC3TS2EvBG0GPogLsULzupltQDx8PotRudA9x5obV08/v9iEQiJyS92SgDgP5vVIHZTDmgDB1gj/RGIhH4fL4lSW+mR6CJomh6nd30ZjspfIC9/eFeGb2ZTKZdtIulvfQeVvCUiXqwwzPodW55Bm0zj/oddrIOAP7yTRAE5nluNpY80pvn5ubQaDQ8i3ayrgltdVvtvV6kNxNCPIn0shS2Y430OuEvFHayuPx+v2UU3wxu05u9NHrtyiov+Kd2ftuJ9KrvdwtKRzfVm1nrczjhn070Qjvy3M164oGTKtLLGrIH+BhkVmlL9BpW2E1vNlOQWZUCJ1FvVho7ifhokc/nEYlE2hNdDVYaz83NWUan6Fm9apjR2EqZNoJetA5wJ/gnJycRCoXQ29vLdD2P8/zoe+0oG/QeJzByFrAUQTE6AgFwlt6s3QeqnReBQAA+n29J0pvpOYpLYfizOrto8QvWVPa5uTk0m01P0pv1nFNamlsVBNSDnSyHRCKBaDTK3OZms4lSqeRppNdOpJpe59boNcva8fv9SCQSzP1iOVYIcJ7JZGeeW8Hr9GbeY6ndn+kk0rtU6c12jkcB2I1elsJ2LOm6rCm9RrAT6QXcrVM36c12jV6z4k5u05slSUK1WuW+5pykN7uNyBo9222KLyv/dJIp46Ve+LIwemVZRqFQ4OKVKRaLqNfrlgMJ8DHIjDbLA872KDlNb9YbfFZPTjAYRE9Pj21POAuNeUV63dJ4dnbWMLWZIp1OO470uk1vBtxVsKQFaVgUcIDfWb1LafS6cRbw8ByrYTUvjH7Tq25qx+h1SwMe6c2s675arTKnLDlR2qempqAoiuW1VsqHluasXnM7c18QBFtrjm7X8DLS60SZdusoM4v00u9ZlVFW+ZZOp+Hz+ZjlW6PRwNzcHPM8t3ouIcRShvEaSx6Gn/pca68KWfFMb7bb9+HhYUxPTxvWAWE1zLTXehXpnZycbFedZoEb2U7lgPoceIA9vVmddmpECysHIyHEdXqzWfFT+r2bPb1GWVx61zpZRyztcGv0svJPGhTzMr0Z+B8W6aWTmIdXm3Ug6TU8opC8I710QanhpHozqycHsEcLer7xUkZ63dLYaaTXjMZWBXKM4FV6M6vyCvAzeu28lx5x5VRxdkM3vSinKIoIh8OuqjcD+vPCqaPEygBzG+3WS40WBMFWejMrb6XXs8CJ4tpsNpnOSLVKMzOL2pvB7pqzk11hFhGl37uNDmYyGSSTyS4F1wg80ptZ+mU3vZkqZUbw+Xy2akvMzMwAYNchrOZ4tVpFs9n0fCwBe6nqRk4jp85clnspn3FiVBnBbt9HRkba9U70YEepXqr0Zla+CLjL4qIyQn0OPGAvvRkwdh6yXtNsNl05qb3in5IktY16q7F0qh9aQV1A1cnZ8hSs/FMURaTTaVvBKzuykTp0/kdFes32bAL2vL92DD0n509pYVWggl7DCjPFvlwudwgpKwaSzWbh8/ksI5yAPVp4ZUwbwSr1nV5jBl6RXqOCRSdDerMdwcjD6JUkCTMzM55Fu7RwavBRz7ERzd1Ubwb054XRb3qC0OxelvRm2g+zuSNJEiRJ6rrX5/MhFot5kt5Mr2eBk6ij+j4zeFm92as1xxKp4JESa7f9U1NTroqxWPXLroM7lUoxRcC8km8sTl2W6DaPSG9PTw/C4TDT9SMjI5BluW3gq8Hb6FXzt2KxiFgs1mVUxeNxNBoNR3sTnUS51fdpoXVaWhUrsjqCh+UaMyylbDeTL8Vi0XS7Ci8HgFG2YywWa7fRCjwzStTQa78RTdysIzM0m00QQhAMBtsF0pxGelnqcwD29PharYb5+XlbeqEdh6qd9ekVXBu9PL2/Sx3ptSpQQa9hhZFBRL9TpwtapeFks1n09fXB7/dbvtcOLezSeGZmhikN0QhmNA4Gg4hEIpY0drOn14jGVgLeCF6lNy+VN5hiamoKALuyQa9d6vTmarUKQoghzZcyvVk9Z/S8tFZRR6c0MEorpN+xzjuWqraA/eIXmUzGttIOsBm9dqPrJ4PRa+UI5lH8yEn7FUXRNZRYkcvlEAgEDMfZjgHI6oABvJVvVs9diqi9k7Gk92mhXi961enNoHYw6aV0Gjkf3VTSt3M8CmCdTsmSgqu+1ipLhEd6s90srkwm40jn0suIAlrj02w2Dduujj4C7vY3G+0rpg5aO+nNvPmntv1AazuEHpzqh1ZQb9ehz3dayMoL/mmn8BqF3cKUTmpw8AQ3o9fK+8tSFGV6eprpSA1gMTXJ6bmhgHnqLWXkvCK99HcKKybDmooIOPOEs0Z8ZFnG/Pw807P1YEZjgE1p8HJPL48ji4ClT2+en5+3VVlc750Ae3SOXrvU6c1GxVNY7jWC1bxQH2Oh9gar54xR5WcnkV4rw9VIkaDfsdDATpFAyn/tpDfbEZJDQ0MA2PYBWe2tciJEG40GZmZmPE9v9rKQlZP0bMDdUWeUlxvVHrDTL1YHDGCvtoRd+TY/P2+o+AJsUXuWs+bN4HQs9eajFY8yA0t6M6t+wwq7fR8aGoIgCIbz2Mv0ZjvbJyicpDc3m80uBz4LzDKi6O96oPPfjgPA6Boessor/qltP/3O6FqAf6RX/Vz612l6Myv/tGMfONEL7RamdLOeeGBJ0ptlWWYqimInukkPXXZzKLpZgQq/349kMmk70msmFNRttVLWvPaEW+0FoM9V3+MEZjQG2KIDdiK9aieIGY2tlGkj8E5vbjabyGazjjz9bqK9dtPK6LVOlGaj4hYAu8HHM73ZqnqzWiARQtopoVYCy2y+0fS/E2X4sx6BBrQKfaTTaVvpzXbmUTgcRm9vr61IL89CVtlsFoQQ23N/dnaWiUewyMRcLufKYcszOsgKHrycwo58s1NbIpvNIhKJtNMpzUDfbxb9ZonaA9ZnzZvBSaYPvU8LLY+yo1harTU7+g0r7PZdFEUMDAzo9l1daBCw7vtSVW9eqnVq5ZQwGh+96KOR0Wt1jVF6M22HnfRmegyaFm4KWanbT78zuhZo0YRnISs361MNr+wDr/VCt5kTPODa6KUeBCOhEIlEALAp6Hv37mU6NxFYjEYcOXKE6XotZFnG3Nyc4dmvQKvthw8fZn7m7Oxsu79qUKaj9k5ZDf74+DjzETbJZBKZTMbUY02xd+9exOPx9rvNQBXkiYkJpnZoQQhBJpMxdWIEAgFTGheLRVQqFUslJh6PQ5blDo+W3VRVlmIP5XJZtz/hcNhRRDyTyYAQYtvbDQD79++3/T6KPXv2QBAEZm8h0GKe4+Pjtt9VrVYhy7LhGE5NTRkaAHQ89VIqw+EwUzEkNSRJgizLHd5tMyOKfqf+azSn1PNH+xtVBoxoYCY0KN/QU2gikQhTyip9Put4p1Ip7Nu3j+na/fv3M/NtiqGhISbeSp2lLOnNkiQx0eLYsWMA7Al2SrdDhw5ZXnvkyJGO9moRCoXQbDYdR3ubzSaOHTvGLB+ARZ6xZ88eR+8EgMOHD5vKDVEUTdeyGhMTE8ztTyQSOH78ONN+5L1795oa5mrQ7CEzHYLyH6u6FG6yoY4dO2aLD4dCIfT09OiuHy2PEkWR2RitVCrte/XWmpV+48QQOXr0qK2+A625rDdm2r77fD5DZwR1xKpTuvUU8Gw22yErms0mc+rxzMwMSqUSU4CBgvKko0ePMt9DYTU+RrSgNKB6jREt1IEro2uonq/XjkgkwhRxnJqaQiwWM9yvGgqFUK/XbTuaCoVCRx8Ba6M3EAi09UO6PtxAO0f9fr/tfhBCcOTIEeYtAb29vcwBkj179sDv9zNl21Kw6oWEEDQajRNu9IK4xNatWwkAcujQId3f//zP/5wAIF//+tctnwWAsDbpn/7pnwgA8pd/+Ze22kvxzDPPEADkVa96le7vsiwTACQYDDI/06j9//7v/04AkD/5kz9pfzc4OEguuOACQggh1157LYlEIqRerxNCCGk2mwQACQQCTO+96qqrCABy7733Wl6bSCQIAFKpVCyvveuuuwgAcvXVVzO1Q4vp6WkCgIyMjBheYzXmP/3pTwkAct1115m+68Mf/jABQL73ve+1v9u0aRPZsGEDIYSQT33qUwQAyeVyhBBCrr/+egKAPProo2T//v0EADn11FNN33H//fcTAOTKK6/s+m1kZIQAINPT06bP0OJzn/scAUC++MUvMt9z8803EwDkrW99q613qUHbOzMzw3zPxRdfTACQJ554wta7fvWrXxEA5O1vf3vXb8lk0nQ+0nHT4x92+AXFI488QgCQiy++mBBCyOjoKDn99NPbv5977rlkcHCQELLIY/bt20cIIeT2228nAMivfvUrIkkSCYfD5Nprr9Vtz3ve8x4SDAZJtVolhBDywx/+kAAgH/zgB7vaFAqFCADSaDR02/yRj3yEACDXX3+9Yxp88pOfJADIt771Lctr7Ty3Xq8TACQcDjM91+7zL7nkEgKAPP7442T37t0EAPna175GCCGkXC4TURTJhz/8YVvP/IM/+AMCgPziF79gbu+XvvQlAoD8zd/8jeW1VrzguuuuIwDIDTfcwPx+NXbs2NExh1mQyWQIADI6OuronYRY03flypUEAJmcnDR9TqFQIABIX18f03tPO+00AoC8+OKLltcKgsDME/7rv/6LAGjPHz2ceeaZpu/+/Oc/TwCQz3/+80zv1GJsbIwAaMspFpjpJpRH3XTTTWRubo4AaPMzK7zxjW8kAMgdd9zRbtfnPve59u9G4//973+fACAf+tCHmPtACCGNRoMr79i3bx8BQP7hH/7B9DpCFtfDihUrCCGEnHHGGWTZsmWm7/q7v/s7AoBMTEwwtfM73/kOAUA+9rGPMV1PCCFPPfUUAUAuuugi5nv02qrGV7/6VQKAfPrTn9a978YbbyQAyLve9S5CCCHpdLqLtyiKQgAQURQJIYRcc801JB6Pk2az2XHdW97yFgKA3Hzzzczt02JgYKBDV9Pi2muvJQDIL3/5S8tnqRGJRAgAIklSe+0/9thjutd+/OMfJ4IgkFKp1L7Wzjga4YEHHiAAyPe//31SqVQIAJJIJGw9I5/PEwAknU4zXW+Hfw4ODhIAZH5+nrk9559/PgFAnnnmGdPrJiYmCADyt3/7t4SQlrw47bTTmN/DC66N3h/84AfkvPPOI7Is6/4+NTVFLr/8cjI3N2f5rC996UtMSgUhrYG/9NJLydGjR221l0KWZfL617+ePP3004bXfOITnyD/8R//wfzM97///eTjH/941/fZbJZs2rSJPPfcc4SQRQaSSqUIIS3jDADJ5/Pte1796leTf/zHf2R6765du8gVV1zRNprN8F//9V/Mi7darZLt27eTO+64g+l6PVx33XWm93/hC18gX/jCFwx/L5fL5OKLLyYHDhwwfc/Y2Bi59NJLO2ioZrKvfvWrCYD2c/70T/+UACC33HILkWWZnHvuueTGG280fYckSeSqq64iL7zwQtdv3/ve98j5559PFEUxfYYWu3fvJuvXrydjY2PM90iSRK688krbxqca//3f/03e//7327rnt7/9Ldm0aROTw0SN+fl5snHjRl0Bc8MNN5D3ve99hveOjY2Ryy67jBQKha7fPvnJT5L3vOc9ttpC1z1l0GpBTggh0Wi0PWc++MEPdjiTvv71rxMA5Jvf/CYpl8sEAFmzZk373uuuu66tWFBBMzs7Swhp8YANGzaQZ599tqtNP/7xj8lHPvIRwzY/9dRTZPPmze1nqfGxj31M15DW4umnnyYbNmwgU1NTltcSQshf/dVfma5LNd71rneRH//4x0zXUvzhH/6h6bhT3HHHHeSMM84gkiS1HRZ0zKnieu655xJCWk6Kv/7rv7Z85j333EO2bNlCSqUSc3tzuRy55JJLyLFjxyyvvemmm0zX1qFDh8gVV1xhex1RSJJErrjiirY8YcW73/1u8rOf/czROwkh5Mtf/nKHEaTFXXfdxeyIu/DCC5ll62OPPUZe97rXGeoYanz9618nf/7nf8703EqlQi699FJTZfBnP/sZOeuss7qUe4ojR46QjRs3kv379zO9UwtZlsmpp55qe1ze/OY3k8985jNd33/zm98kAMg3vvENQgghl112GbOj6/777yennHIKKZfLbQfTNddc0/79wx/+sK7uMD8/TzZv3uxIHl166aXkq1/9qq17PvrRj7YNNDV+97vfEQDttffOd76TfPaznzV8zjve8Q5y2223EUI6+b4aX/va19rPoMaWmc6oxvz8PLnkkkvI8ePHma4npOUIOO200xyt0+uuu4588pOf7Pp+fHycbNq0iezevduwnZs3byZPPvkkIYR06KZqXHPNNW3n/KpVq3Sd1S+88AJ59atfTSRJ6rr/ve99L/nEJz5h2Y+vf/3ruoEFiv3795Mrr7yS1Go1y2ep8ZWvfIW84Q1vIIQQ8pnPfIYAID/96U91rz333HPbDryZmRmydetW8vzzz9t6nx6og4jy0de//vVtJ64dXHvttcxG/6233kq2b9+uOyZa/OAHPyAf+MAHbLXljjvuIJs2bWo7+I3w7LPPdgRrABC/32/rXTzg2uh9Bc5w5513kr179xJCWh4QPc/YK3CHRx55pC2IC4VCB4Or1+vke9/7nm0j9RW8vPDwww+Tp556qv15586d5MEHHySEEFKr1Tqiq7Isk+9+97vtOXPbbbcZOt2y2aytSOIrYMMPf/jDDkXr5z//ua4z4BW8gv+JkGWZXH/99Vzk2k9+8hNdZ+PJjO9///tMzn8tdu/eTe6//37Ta8rlMvn+97/vsGW/P7jvvvvInj17TK8ZGxsjt9566xK1iD+azaap/pfNZh1n4phBURTyf//v/2Vy4L0c8aMf/agtv3fs2NF2tCwlBEJcVNN4Ba/gFbyCV/AKXsEreAWv4BW8glfwCk5iuC5k9QpewSt4Ba/gFbyCV/AKXsEreAWv4BWcrNAvj6aDfD6Pd7z9WkxpqoCRhUpi2qMi9KpXVqo1NJvd1boIIRD9Yldl09b1rcp5giAgGo3CJwiG5wRqITUakCQJkUikq+IuIQR1SUJDUz2MENI+3y4U6q4YCwDVWg1KUwIgwCcIGFk2glhssZLaxOQk6qozVOkRHQBQLJaQz8+3fwuFQqrKpwKCgQCw0D2/z4/AAg2PHTvWUT2OEIJAMIjwQjl1ilq9joYkQRu+J4TA7/MhFo/DiHw+wY++gX6EgiH9C1To6enB93/wA8zMzOAdb79Wt0IkIQTVag2y3GzTVQ0xEEAkHEG1VkOz2dRtM71HFEVAUSDLzY7fI5EIRFGErCjAQtICIQQL26YBAJLUAIgCQWhVdOzr62tXBhQEH4KBAKRmA5OZaciK0kEfmghBFBn+hblnNf/6+vra1e8IITg2Po7mQgVIn8+HkZGRdhl8I8zncpiZaVVj9Pm6fVN69KSo1Wqo16pt+uhVKDe7nxCCZlPG8uXLEAwaVzfX3jMxOYWedH9H5cZSqYiJ8XEoqoQS+m5CCIiiQDshtW0TAAQCIhS5Cb0WB4NBrF61qn1PJBrF7Oxs11mHtF/00YqidFSaVRQFff39+OhHP4be3l6Uy+V2xdje3t52hdZGo4Ff/PJXyC9UXaxVqygWi4ttEwRVlwT09KQQi8UwcfxYi9+o+ibLCnw+9ZwS4PO1/lcIgSwTCD4fAsGgbt/VEASAQNC9ThRFjI6OtudStVrB2NixViVSQUB0YZ7pzYlarYqG1AA0K5QQgnA4rFtZm77zK1/5Ch577DE8+tjjhu1WFAXHxo621jBa451Op9tHRtF3TWamWnKGtpEQhEKhdruFhb4JaI2RLHWfY+3z+bBs2TJEo1Gd3wScdsZZuPvO37SrSmrnIiEElWq1o4IrvUYQBEQiEQiCD5VyCQrprPLavg4CorEo/D7jqvaVShWEKF0y0Wrd1mo1BAKBNn9TX09pqb2fEIJKpdLmfdFoDH6fr+tdjWYTtXqnbNFe4/f7EY/HQRQF5VIRQhdXByKRKFasWNH1/fj4OMrlMiLRKASddlZrNTQbDd33+/1+xHTGFGid1FCp1UEACBAQi8XgF/0d9xNCUC6Vut7p8/ngw6IsaUFAOt2LVKpH9316yGSmEAwGmKui+nw+fOLPPoU1a9bgrz7zad0z2el4N5syprLTUFRNDIdD6FdVRRb9i7oEAMxMT6NYKmPFihUQRRHT2SkUc/pnwyoE8AmL49H6oz8H4/F4x1EqzWYTx48fb6+Xnt4epHvTlv3vHxjAT392A3bv3o2//uvPdumXtO90Ts/NzaFarUIU/RgcHEShUMB8Lt/B3xfbLyzwLAJFUVCvVkB01iohQDAQQNBEH4on4qiUK/D5O2W00TpVFAXVWg2iX8ToypVMp2hoMTU1hUKpdYrEihUrEBADqt8yqJSKHcMTj7XGJDM1hVK50qXfRKMx1KpVNHWqUgsQkEqlEAiKEAQfpqamus6kVveV6umKLKMhSbq6ZjgcxooVKzA2NgZFUeD3+7Fs2bK2niJJEo4eOdyl6/kEH8LhsOWRps1mE/V6iw+uXr0aguBrn9qgh1w+336uAJiOSSAQMHx/KBzGP/zjP+GKK64A0OI7u3btalf//va3v40dO3bo3uv3+xEIBFAqlXB8fAI+n69DRpnxfS0q5TIAguHhISQTyfb9R44cQV2SOvVqvx9hlb6m9x5JklCXGi29BkBff79lRXJCCOr12oIeDhBFgdSQsP2UU/Ce97yn49poNIpVKv1t+fLlzMcxOQGz0fvss8/it/fci7M3Lkc8HEAqGl4Q4MDOcgVnrohjVTqCWMgPQQD8goB6s6VUJsIiMgUJOw6VEQ0HcdnGXgT8PhybryEVEZEIiZguSVjRE4IkE8SDfkSCPlz/6ARCkSDOW9uPeEhsPdcnoNZQABAkwgFM5msIiT4MJkMoVptIx4MQBAG5ioRHD8zgwJSMa7YNQvQLCPh9GJstIxUJIhkJ4PbnjqHuC+HV521DfKE/ot+HWr0BQgiSsQgmZnIIBUUMpVMolKvoS8Xxf2/5HVLRANb0RdCQCVLhCgShgkjAj5AoYOfcPFYNprB6sGXMPrBrDDNzi4ZuRPThvNVJ9ERFVCUFor8GhRD4BAEKqSDgE9BQCCqSgpFQENWGgp2FIk4f7cX20R6EA74WbQFEAn5UJRkEBKlIELc9dxwlfwDXnLa81d+5xf5mCzWMpqOQmgpiYRHRoIiJ+ZYhLTUV/OzxIygUC7j8VWei0ZSRSsRaiy8cQjgUwpHxScSjEVSqddz10EN48MEHkcvlcHTsGN510QYEfL4FGpeQigaRjATxs0cOYHTZILZvWI2eZByhgIhoOIT5Yqv8fSQUxC33P45yU8AVr3sjxEAAE8fHkEymEE+mMJOdwrIVK1GtVnDTj76HszevxPY1yxAOBlCXmiAgeOHgOJ7ed8x4kvsE9MUC2DIcR08kgGpDhuhT2sJcITVMN+o4Uq9h08VvgF8MIhiNA4IAn8+P0lwW+x6+DaesGkB/MoLeWBgVqQnR7wNRCASfAKIQiH4fmrKCcr2BZWmCqtQEQLAzl8dFZ56C7RtW49DxSTQaC7QVBEQjIYSCAYxNTiMWCaMuSVi1bAj3PDaHQDCIT3zqL3DgwH6IfhGBQABjY0eRSvUgmUoiOzWF0ZWrINXriCfiiEZjeGnvXjz5xGOYnRrHldtXIRULIST6EQmJyJVbikMkKEJqylAUguV9CUzOl5CMhFCRGoiHg9g9NoO7nzuC/mATW1cP4PDkbGs+xMIQfAKioSDCQRGHJmYRDgYAEKSTMezcNYuyL45YbBT+YAQEBOWZfZDqNZz5pg9BkZsQgyE0GxJACAiA52//IfrWnY7ksjUIRGIABPj8fshSHYQQBKMJVOYyyB3bh9yxl/DqM9ahIctt/hMNBRAOipiYLSAg+tFoKrjzid0AgFefuQ7L+5II+P0Ym87h+cNTmFcdKyRAa8YBx4+P4+/+7u+65lBrnnR+17fhTIjhGHLTz0NQZJx53kVI9vSiVq3CL4ogigLB5wNRFDSbTezftw/nrh3A5mWp9jp59ug8iBjAmVvWoTcZR6VWh+j3t5wlmRk8s+cAVp1+BQhREE70oFmvwufvfLZPDECW6jj0+F1Yc8qZWLvtLGSPH4bcaCCaSLUcO5EIAsEwctOTEANBzB7Zj3qtitPf8EEosgwxGIbcqIOAIBCKoFGrAiAIxVLY/8gdCFZzePNbr23PwZ6FOTg1NYWVK1e1ziBemIMHD+yH3+/Hb26/DbfffjtuuukmrNxyBmI9acjNJiLxZKtN4QjEUBiZQ3uRz+exZcsWbNy4EZFIBLt27cKuXbs0oyCgf902DKw/Hf6F9oIQ1Mt5+AMhSOU8+tedhnpxDkcfuwO+ZgUXrk4hHFhUSCWZAMgjJpbgEwQE/AJy1ZYz5dmxEn49dhyNWhnvPGMAAoBMUUIqLCIc8KHWUFCqy7h5VwFnbFqN0zeuhN/ng88noCkrCAdFKArB1HwBv7r/KZy3KollqRBiQX9bdtUbCggIEqGWTAyKAgYTQRRrMtJREQG/D9MlCT99poA1fRGcuzqGgF9oycqwiESYysowJFlBPCgiEmzJ0nK9iVt3FrCpP4htw2H4fS0lVFYIQqIPCiFoyAS1poKQ34do0IdY0A9ZIfjWQwVsX57E+sF4t6xdkOEPHZjFi6UG3vq+j0JuNhEMR9Co10AAlPI5BIIhlAp5bNp+Og7u3Y0H7rwFr9/aj5FUCEdmq2goBKmwv+UcCMwiLPoxNl9FLOSH1CTYXy5i/UAMF67vw2S+hp5oAOGAH7WGjEaT4P6XakAwiAs2DGja2FJmE+EAJnNVhAJ+DCZCKNZa+sDBqSJue34Cr33zOxCNxyGKQUweP4pEqgfxRBKz01MQxQDuvvUmvOUtb0GtVkM8HkckEsGdv7kDUjmPM0ZT6ImIqDYUiD4BCmnAJ8xAIQQBvw8NWUFFkjGSCqPakBEN+DFdktpzb/fcLLaO9mFAKKApK0hGg/AJAiJBEeGAH+NzJQRFPxqygpX9Cdzy5AH88Affx+lnnImnnn4aH33jxTg0MYNmU0YyHoFPELD78Dj2H1s8f3Nw3TakBpdDDEVaDmBBgNxoOW/ESAzw+eDzB1Cez2I2fxhiNIH5wABkqYb5bAbJsIjTV/aiJxpEVWpC9LXmzGOHZgGfH6evHUZvPIJKvdGSfSqHQVv21RpY1udHtd5ANBTA3uPzKJTKOHX1AJan44gERRDSMoakhgwCIB4OwOdr6V6zhSqqDRn33b8bTzzxBO6++248/fRTOOuiKyA3m4glk/AJPkyMHca+fS+1+x4IBLBy5Uqcdtpp8Pl8eOihh+ALhrHl0jd3yJxaKY/M/heQmzjcwVlet3UAA/Hggl5aRbHexGOHc6hJDdQk46Mgi6UStq4cwFnrh1v3zhSQioaQjIaQzZUxOpBEvSEjHg4iGhLx6Evj+N3OMZxz0bmIxWJIp9OoVCoQRbGTnqKIZrOJcrmM5cuXt49tnJqawv4DhxDoGURieBXyzSaCsWRLdw1FkN+/H6tH+rB6xQgazSZSifiCnhHGgYMH4Q/FsHbbWQiGIyCE4KUnf4eZ6dYcGlizFbH0IMKJHjRqC3KGKJg7dgCZo4vHI6Y3n4dw7wjEcKxlCPlEKI2WA0KMJFCfzyB/ZBeERgaXX345Go0Genp62oZcJBLBzp07sWvXLrzh9a9tHyGYSqXg8/kwOzeHvXv34tozVyAa8iMc8KO+MFfy1QZCog/5agOnrejBXFlCLCSiWGugIrX4wEuZIp47VsZ7zh7GZH4GuUoDjx42Px5u7XAvVvenGOZ3Dcv6Eu35PVOoQiEKwgERtz+5B7/61a/aRu9nP/tZfPWrX22/QxRFbNq0CStXrtSlydjYGA4dOgSpXsOmy98OosgIROILDl0/ZKnWcsTEEijPTsIfCCHaOwipUkQkmYYYiqA0M4mX7v0ZNq5ahhXDA209vi41sHNXCee/6lysWLYMvT09CIWCiEajmJ/PAQCikQjqUh2yomDlihUYn5hAKpnEr++4Ey/uP4DVp1+MSKIHjXoVjYW5IQg+EKLA7xchy000ahUk+0eQObgLmf2L6xOCDyAKjo+N4Te/+Y3pWAQCAWQymfaRcrzBbPRSj9l3P/FmrB5aPF8vM1/Erx59EZ+6fBWu3GTeyKv+7Rm8anUKX3rDeqZ33rpzBhdtGsaX3nYqazM78MVbd6EsTeCb7ztf9/eJ+QoQS+P6v/2Yref+/LeP4Q2bYvjsa9Z0/UYIwY+ezOBTbz4X771sO3773CE8sGsMmz/xfZTGdmHyrv/EeStE/Pj9p9h65y07H8b7LlyN95zf/U419kzkEQsF8NV3nWPr+QBw63Pj2LhuNX71H18xvU6WZSROfU17TkRDAfzLBy/Rvfa2Z8dw3esvwV9/+B3GbT58HIGh9fj8N75jeI1Ur+OmH30PH7nmQrzzyrM7fvvf3/gp9uR8WP9H/4n5F+5BfveDqBx8End8bDvu2TePbz04jj84awSffe06w+f/emcWT/1kF974mX9DKNZ5KPrM2D7se/g2fOX9l+K8jcsMn6GHyfkSfvnYfnzqA2/D6y462/qGBXz0c9/E/pkqPv1Xn7X1PgD44Pveg8yuh3H9x19n+14A2HOsZfR+6h2X48qzNjHdcyw7j5/c8xQ2ffAfkN52afv7w7/8KmYfKeP1f/a1rnvKuRk8f/sPcdp1n8Kq815v+vynfvBFJKQZ3PA377Rsy4r3fhWVuoS/f++V2Dy6GO0478+/h9qKczH6lk9j+vFfIXPXf+L/e/VKSDLBE0cLeOBgHts/dyfmX7gH04/cBH8oinV/+A3Mv3APJm79Bv7wnEG888xBXP/YJG58bhoXfuo/EB9ahds+cSHWjw7j2z+73bBN01OTeO0Za/DJ123FVduWt79/zT/ehXPOOQf/8jf/u+ue//71ffhff/cveOsXfwKf35xVN6U6vvXG5Xjtu/83LnyDNY3uufF7+NE/fBqv/bOvW147P34Q63v9+Lfv/KfltWq88XWvaf9/2Tv/N859/XW61x3ftxP/8N6L8MMf/hBnn91aI//rf/0vzB0/gP/3zo24Z988dhzK45EjRWx93fux7Zo/tHz3zQefx4UrmvjmW9lkDQB8/s4j+PmeCjYMxfH3V6/VvWa+0sDNu2bwl++9Gm+8+Ezda/YemcCv7n8Kn33NapyzMql7jRVuej6Ld569DH908Urme6aLEm7dOY1PXroCr9nMrjCU6jK+9dA4/uTydXjz6cb87dv3H8Q3HxzHp7/8r5bPfO7xh/HAnbfgs69Zg/UD+hFYLbZ8aQfedtYo/uQK/TF7w788hA1DSfzzu89ieh7Fzc8cw23PT+Bvv/YdRGP6Z1s+98QjuPvWm/CVr3wFmzdvbn9/8YUXYKR2BP/yB/bktRajf3Mv3nfJZnzoCrbn5Mp1TLcKjWLTqmX4pz++tuua93zheoiNEt595hD+zx2Hcd2Xf4rkwHKdp3XjOx94FdLbL8OpH/gCKjPHcc+fnoPXn7oM33jnGV3XvvYbD+D0DSvxjY/Zlyd3PX0A7/6nX+Bnf/EmDKbY5kE2X8HWP71+IdpKsHbjVnzjR7d2XPPNv/sLzB19ET9+zybcs28e1z8xjWuvvRb/+I//CAB429vehp0TRVzzF9/sev7P/urtWOObxj+8YS3+69FJ3PT8NL74pk1Y0bMY8fqvh8fw2OFcWx7I1RIS68+GIAZbGWf1CprFWRy94e/wwSu34w+vPI2pbw/uHsPvdo7hhz/8IdasMdfljDCyfAVGLrkWZ777M12/3fDBrbjumqvw2T9+f9dvdzzwOC599x/j6g/9Rfu7z7xmPV6zqRd3vzSPK//ky1h1+sVd9/3m659EtHQcn3v1KD524z5sedf/QXqjuX753H9+CiPVI7jjjjt0f3/yySdx7rnn4ouf+xucuq1zTfz6jjtx3+8exOffsg0DCeusQy2+dudeTOYq+NIbNwIAbn5+Co8ezuOUz/wC+X2PdowlaUjY9+2P4M/fej7edek22+9S49LP/rAjs2B8fBzrBqL49rXrcc++efzbjgw+8IEP4NOf/rThMz7/+c/jG//2n3jdX/2H43bsf+AXeN9bXotPfHBR556cnsUdlz2Kv/n0X+BqlVxmwURmCiUxhfd/7RfM9/z2P/8eleN78fMPbME9++bxvSdmQNZegNG3fNp0PUEAjvzkb5HNZk+80avGDQ/sRK5cw5Wnr0WxUte95qZnp5CrNXH5ht6Wl1kB6k3F4hqCYl3GVFHqSIdU4+dPjiFfaeDyLYMIBVpe6lKtiXK9iUKtgau2Dhu2+8bHDyFflnDFKcsQCvhRkZqIxrqv++ndjyJXLOOqc7chHAxAVhQUyzXM5kvw+zpD/9o+yPJiH298aA8e39c6tFnKTyO16QJM3fcDCOhMDwGAm57LIl9t4rINvQiLAmQCFGtNTBUl+EzSGlr0kHD5liGERD9qkoxYqDMl9edPHEGuIuGKLSMIBXwLNGtgtixBlhVcvnWk67k/ufW3yBWKePVF5yAcDEJWFBRKFczm8piZyxnT+NH9LRpvW4FQwN9Ob+ii8R0PYL5YwqtfdQbqdQnqFv/65z9GITePC694DUKhMGRZRm5uVvc5P7v3Kbw0NoVgagj1mWNIbboAtcwh+Mefw9h8DeevTuLfHtI/OPumZyaRqzZx+cY+zJb1D8neefcNmD22z7i/D7+IXLmOK05dhXCglWZdrErI5lsR9C2j3elsP7n9fuQKJbz6gjMXaVuuYDZXQCIawdnbNhq+7yf//SPkcvN49Wteh3C4RZtCoYCJ8eN43dXXGLdzx95WO7evbLWTkFY7c62I+xWnrjK892f3PY1cqYqrztqEUECErBAUKzXMFcoIBQN41dbVXfdkdtyEZjmHRmkeRCfFcefdN6AwfVz3fQfuvxFSKY/lZ14BfzAEosio5qfb6etq/hOm7anWMZUroWDAj+g94Y2rUZ85huTas5ABUJZkXLKuB1NFCThUaM+h3PP3Qkyk258nhH/G+oEIxuZr2Dq8qLwd/t3PIZVyALr5zm03/RjFXA4XXP4alIrdnuafP34YsyX99v7ktvtx32PP6v4GAHvuuRG1Ug5rzr4C/mAYzXq165qHf/1TlAs5nHrhVQiEwlBkGdVyEaXcLI7v36373F2/vQG1Ug5rz7kSYiAMRZFRrxSB3p6O63764x8hN5/DVa95bXseFosFjB83n4dP3PEzVIo5bHnVVQiEQlBkGVOqKALF/v370RcNtNfw2HwNONK9heKle29EvZTDyrNadCCKDKlShFTOAyp96abnp1v8dX0PwqKvNf8XZM0VG3q7nqvGTc9lka81cdn6XtQb3SmAQKfMmJzNGT/HhMdfZtIONa8KBaisbGKqIKFUb+JNpw5ZtF/u7ntBQiLkx5ZhHSG4gJ8/fbwlbzcPIF/Vj3j95hc/RjGfw6suew2CC2N6/MjBzjY8O4VctYHLN6Y7ZX2hDpkAr97czSd//uQx5KsNXL55EKGF7CbdNmpkoExa8m2uJOHiTd1pcup1GQyFoCgyjh1ebO+PfvQjzM/P43Wvex3qkv76BOiYNBbGpCXrirUmypKMc1f3GN534yP7kCtLuHL7igV+qqBYbSBbqOCKbaOG9wHAz+55ErlSBVedvQXVuoThRBDTpU7ZtfNu1RpeWBP1ShGluSnUywVsveytHdePP27srPv5k2OYM+BRNzy4q8WHT1uLcHChHxUJ2VwJDVnBa8/qdl50y6EFeZlryUszOXTnL36CYn4e5132GlTKRaRjwTZ/+NEzi/rBj370Ixw8eBAk3D32O+++AfmpY9iUDC7y8uc1fX5mAo8dnocYDLf5f7Ocg9KoQZodR3R0C5IbzoHgE3H0hs6soBsf3rOgD6xGeEE/bekDZQRF87Rc9bxTy/bjx4/jmmv0eer++2+EVMphxZlXLsjKxTXyk1vuxnyhiNdcdC5CoWDHlgwAePS2n0KqVbGix3j97/rtDZg5shcDsSAmC/rz4NhDP0ejnMfgaZfDFwgBigypNA/iJ4b92revU6f60U9vRC6Xw2uvugLTM/q6XosfSLh885BKj23p/pP5Gt58RrfD56ZnM3joQCvLsj4/2TWWkWUbDPt+w4O7F+b3msX5vaAzNZqy7vzWYiixOEe/88jUYn8NxlpLF4oX72nJuVVnd8q5ylwW/kAQK067qOsetQ5fWMis1MOPfvIz5HJ5vPbVVyIcDkGWlda8m5jANa97reF9z999A6rFHNafq+Iz5RafmZ84glQ01O77j5+dgzKwynI9TT34Y0uauoVto/fe5w5i68pBJEpBvHB4CgcmuifoHbtnMNobRrzaxK7JMqaLErYMxyCqDMbFaxrYNVnCdLGBLcMxnDISw6p0GPftm0e10ZmDf/vz4xhNR5EIS9h5PI/pYg1blqWwbXkKok/Ak4fncOtz40jHgrhow0DHvbc9O4aV6Tjmw3XsPDaHbKGGqtSE1vd464NPY9VwH5LRMF7YP4apuQK2rVuB7etHsXrZAJ5+8TCkRtOwD5uHFp8YDQewerAHANB76pUI9gzBF4oA6FTe7tg9g9GeEBIhf+s5JQlbhmI4ZSSOVekwXsxUoMXtz4+jLx5CItxKibtvzxS2LE9B9HcayLc/dxyj6Rji4QB2Hp9HtlDD1uUpbFvRi1X9cTx5aAb375nsMHxv/u1DWLV8CIl4FM+/eABTM3PYtnEtTt28HmtGR/D8iwe62gMAtz19BCv7Ei0aj80iW6joGr233P8YVo4MIBGL4Pl9hzE9X0B8IaBxz+03Y9noKsTiCezd+Txmshls3LodazZu7nrOrTtewMqhNGLhEEgF6DvragBAYf/jKO704eqtLUVKby/EHbuyGO2NIB5uYNdkEc8dK+j2KRCOom+lfrTzticPYHQgiXikhp1Hp1se6tE+bF81gFWDKex48Tge2LWYdn3LfY+ivzeJZCyKYEDE3TuewbYNq3DqprXo60mgXKmhWpfw8DO7kS+Voa4zd8uvfon+gQEkk0kEg0HcfddvsG37qTj1tNPR19+PifHjuPOO2xFPJHTaeRCj/UnEwzXsPDqjamc/Vg0ksefYLG54eC82r0jjtNWdisKtO3Zi5WAaiUgFLxwcx9R8CaesHsapa5dh9XAaz+w7hnuffqm9HxMApp+6A+H+UTQiccy/9FhXXvDeB3+N1PBKXWP4yKO3IT64EvXoPGYP7UQ1l0V61VYEownUBQG/fnwvVg6m2vwnmyvhlFWD2L56CKuGenDPswe7nknvCfh9UNCaJ/W5CQDAOSuTOG9VEvunW0YjnUOB1CCI0mx/ppuTrt7ah4cOtQzYiWfvR8/KzRD8+vueI9EYlo2uwuH9ezGd7ayFcPuzxzDaF0PQ371f+5Z7H8WqZYPo69GPEu5/+DYkh0YRjMaRPbAT5fksekcXhfeT99yCZLofkXgCYiCIF3b8FqMbtmHV5u1I9PZhfmocgmY/6UsP/RrRnn6Eogn4xSAOPXEvBtZuxdC67QiEFiMgt9z8S/T3DyCRaM3D3951J7Zt347tC/OwVCrhxz/6ATZs7F4zz91/K9IjKxGOJXB83/MozGaxfP0pSPV3Gmy//OUvEY/HMSsI7TX83Hip63kAIIajSAyNYv7YPjSlOirzWfSv2YpAOAYghzv2zKIvFkAi5EfAL+D+/TlsGY7ilOEY0tEA5ipN3LV3DiPJIGbLnUbdHXtm0RcVVffOY7Sne7+XVma8cKBzq8Udu2c0bZhr8/d0VERFUjBXaeCZY0Ukw/6OyOgdu7LoiwURD4sIiD7cv28WW4bjOGVZHOlYAOW6jGK9iSeP5rt4bav9ASRCLRlx//75hfe2+j6Zr2PSwMF8+85J9MVCSIREBP0+3Ld3GvOVbsfg735zM0ZWrEIsnsS+Xc9hdnoK67dsQ7p/kY/csXsao70hxEN+7JpYkG/Di/JtX7aC3+2f62j/7S9MtGR9RcLO8TymC3VIGqPXSAZuW55CXyyIuZKEG544isPTnXNHvS7r9Rpmp6faMuLuu+/GGWecgWQyiWeffRZzs3NYrfFFtMYkgDgdz5dmsWUkjlNGEkjHAtgzWcKjh+ahEIIL13VGK257+jBG+xNIROp4YWwW2XwFp6zow7aVfVg9kMDdz4+hP9G9R/7Wh59HfyqORDSMgOjHb5/cg0pVQgTAOSs7eX4gHEVqeCVmxvZBlmoozWUxuPYULNt8Fnx+Pw4/80D72vHHb0ck3R3dv/35CfTFg0iEAx16G8WvH38JKwdSSERC2HlkCtlcGVtXDizw4RReOj6Lx/d2OjVve/IARvsTiIeDKnnZvyCHUnj20BR++/yRLhkEAA/85maMrFiJWCKB/buew/iRwwAhbf4QWUgj/+Uvf4nVq1cjGo2irPGRULkjBlv0vXprHx44kOvs964pjPZGkIqIIFiUB8ZYpM1tT+5vydlIHTuPZhdpsqAPPHswg73jM7pPoe2m8y6TyeDUU0/F6aefjrVr12LHjh2o1+vt1FkAOPLIbUgMjqIeSWD20AuozGfbRu/Ndz+IlcuHkYhH8dyL+zE107m+nr73VvQtW9W1F1mNlx5q0SsQiQEFgkvW9QA42nHN5BO3IzowikYkgfyRnajnppFcuQViKAahmTPs1/Bwy0l87+8eRD5fQDIRRzAYwJ2/vRelcreBtsgPxAV+UMOWZcm27g8A9+/N4vLNKr6zaxqjPWGkYy0zJ33Ga+EPdWr8SrPbkffrJ/ahPxFBIhpEUPTh3ucOYeuqAWxfNYR0IoJyTcJssYnHXzqO8zZ11ybQgs5R0S9g586deOihh9p63G9+85v2OPf39yMcDndEiwHgwMO3ITk8iloxjumDLXnfv2YrBtZuR2p4FWYO78Hx5x/uMnyjkTBWLR/C3kNjmJruttN+ecuvMdDf127LnXffg+3bTsHpp25Hf18aM7NzuOu39+r2ac+Dv0bP8EqEoglk9r+A0lwWQ+tOwfD67ehdtgrP330jiKK0+x4L+VGE9XqKr+3ONOEN20ZvTyyMFw5PYePyPhACvOX8zfiHGx/suObqU/Q3OaujpEbXULxp+wC++buxju+uOc08defyLcbe7jec0Z0m9vBLma7v3nSJeerUZWdtQTAgYjxXw0AiiFjID0KAS9f3QvQJeDHTWrAHJuewrDeBxsLm+eLBpyHNT0LRFFd59HAekwUJ8Y7nAC9mKngxU0ZZknH+6lRXO4xo8e/3dnqKrjndfFHqRXn7epJ4/sUD2LR2JQghePebXgNR9GM8M41Gs9m1KCnecNbqru++dad2Xx7w5stf1fH5B7fe1/7/qmveovtsqd7tZXzTha209xWDPXj2xSIm77kekZENqI7vB0Dw6JE89mQqXe199NA8JvJ1xEJii+Yb0pCaCm58pns+bL7kjZgZ6/a+7XjxOCbmSoiHgwABLt/e2t+39/gs9k/MY/OKNHrjYdSkloNk94GjiISCiEdbe2mufNUZEP0+HB6fwp6DR3FschrXXHountq9H+FgEPV6A+pQ1Zvf+jZdulCoo2vf+25nGuobzjFO6waA8zaO4LyN3fNg9+FJBIMiEtEQCAiuOGMj/H4fdh/JYNeRSUznSnj12Zvx0AsHMVdYFFRivBelozsRXbahZVxpCnFtvuSNAIC+ld1e1tXnv0G3jePP3g8ASMcjHfznnZduh9/vw9GpHHriEazoT0HWFCV543kth0ksHMTs/CQm77keYryljL44VcbBmWorkggg/9KjqBzbg0ZxFiBKe06BEByereL6xybbEadgLIX5wzt1nSpPP/ogshPjiMXiIITg7PM708auOaMV0UlEOg3mh57ehfHsDOKxiOE6Cyd7kT24E32jrYyArVddB6K05tnE4ZeQTA8iHEuAEILtF1wBn1/EsX27cHDn04gle7D57Ivw/I57Op656eI36r4LQEdq9ZvfYj4Pz7/gQpx/wYVd32eOtNoVirboseW8VrvmM8dxdM8z7eseeOABHD9+vF10hK7hQ7PdkWwAWHeh/nwR/K29rx28dV0PRJ+ATEHCffvnEQ/64fMJuGhNCo8eLXRl8VCBrcZ8pVtJ0sqMU9auwD//ZHHfkpWsO2eVcQr01dvMC3qoI4rTxU6jVK/9aly1sB2pVO8u8HLN9m5+8O37DwLIdXx32evfovvs5x5/uPX3eAG5arMlJwFcuqElJ3dNlPDSVAXHczW8dksfnj1e7HCBXXNqtyF2y3OdGTtW+gCN8t78TKcT4sqru9v83BOPAGgVaHz22WexZcsWEEIwMDAANBeNt5bsqKn60wfRL2DPZAmHZiooSzLOHE1ix8F5rOnvVLAPTeXRlAni4QAIAS4/ZQVEn4AXxmZxIJPDUCqKVDSIsZkiClUJUPlX0skYXjh4HBtHh0BA8M6rzsXvnt2HqeMtpw3F0ed3oDgz0apJQQjWnH0FfH4/sod2QxB8mDm6r+3Eqs5OoDo3iWC806p/5MAMJnNVxMOtfaaxcCeP2rFnDBNzRcQjQRAQXH7qGvj9AvYem8HusSxOWzsMWVbg9/swPrvo4O9NRLDz6Aw2LusFQHDdRZvh9/mQmS8hW6hi3XAPdo3N4GAm1zU+yd4+7Nv9PFav3wxCCFat34SXxp5v84d6U8HY2BiWL1+ORCKhyzup3In1DmA2ewTXPzbZFVi5ZltLh9w5XoSwc64tDyIjG6DUK0huehUEn4j6/AT8oRjUVSHecI5x1BAALtm20qj+F/r6+jrm3fvf/36IoohDhw4hnU4vFJxanE/F7DGEEj0IROIgIFh+xuUQfCJ2/fwbODI+iWQihkQsCkIIrrrwHIiiH/+/b/+ofX+8J42xl54HIGCy0O3MGlPPIwAQBDw30e14HDlXPwJ9/OFfoDDXilLT8XjNa14DURTxwgsvtAsFppJJPPfCTmzetBGEAO9713X47X33dz1Pjx+oce7abl7XGxWxc7LUdiwX9j2O2tShjrHUmyfpeBgvHMm2dYzrLtkGv1/AnrFplGsNNGUFl2xbhaf3T+Kp/RNIxULYsEyf1+arTVz/2CQ2DETQlFtjqDfOzz77LNauXdsqcKqZI+sv0pdxFMtOOa/ru0PHJiCKfiQW9IiLzu5Ov3/bm41lPgBceXlrm9rPft6Z1nzkuR0oTE+0Zfm6cxZ4zOEXMTO2DwOrFwJUwqL8rkoypAXdy2gtSfksKuN7TdvEA7aN3rM2LO/a06vGo4dz2J0pY8NAFBVJxvlrWp6YPQsGnNV1L06VoSjA1uFYB0N65MAM9oznsWE4gUq9ifPX90P0CTg+X0Wl3sRsWcL56/rw5OE55KsNbFu+aCg+sm8Ku4/PY8NICpV6ExdsGITo92G+UkevKrPj4edews6Dx7Bp1QgqVQkXnr4Rot+P3QePoSkrWLNsAI/vPoimLGN5TwwfOb9b6I72tgyV9SPp9p5eAKjPHgMhgNKUQFSz+vw1KZy/ptuoXZkOYyihX0XukQPTLVoMJVq0W6DFnokCSrVGO735kf1Z7B7PYeNQEmVpod8+AZO5KqaLNazuj+PQdBGDyQg2Di8qXhefcxouPqd7kaSScYwM9OlWwXvkpUnsPjaHDSM9qEgNXLBxBKK/VeBFjYee2Y2d+49g8+oVKFfruOjMrZBluZ3e/OQjD2Lf7hewZuNmVMtlnH3BJS1G+cwTi+O08yB2HZrAptFBlGsSpIYMuVGDP5pC+fiLaJTmUKpKmMhLkBUCLV87f20vzl/bKejDge7Uo6PP70D24C4Ewt17kS7csgIXbul2KIwOJDG8kC503sZlmJxvCYpT1q/S3dM70JvCqRvXAAsOrsvPbdG9ryeJY0en8e1/+xY2bd6CSrmMiy65FKIoYs/uXZAkCYV8HuvWb4AkSRgYHMR0NovJyQkUCvm2LN6xdxy7x1qKRqXexAWbl8Hv82HPsVk0FQUCgFNXD+CJfZPt9lOcsmZEd0/v6uE0htOL173+vK0Ym1pUvHo3n4/eza199Pl9T6B2+JmO+yldY+luJ1Vm1yOYO7wbqdENaNYqGN52AXw+EbViK0XpwlNW4cJTulPg+lNRDPcmsKI/2VG/eMfuo9h1tCXAyjUJSrMOfzSFymQrW2E8V8fK3jAm8q1CJ/XZcShyE3K1AMEvtucUCIGsAD0REU+OtbIC+jeeifjQKuy/6/td7Tnr/Etw1vmL+9ynpybb/z+yb6q1LoeTKGhSRi8+axsuPqu1t2hyWr+a6uipF2L01E7DsrmQhrlszSbdPb2DK9agZ2AxBXv5usXMibHndyB7aBf6Vm5Eo1bBylMvhOD3Y/rQHkjVMsrz00DvMB5+8AHsfOEFbNq8GWXVfNy9ayeCwSCGhobx+GOPIBqNYc3aTkfL8OpNunt6o6lerNi0WLPh0ksvxaWXXordu3fjuUcW13BGRzEb37kDs4d2o3e01e5l2y+Az+/H7OE9IIqMgXgQH35Vt/GWCPvxtlM7M4Gu3NCDu/d20vvRw3nsmSpjQ38UlYaMV61OdcgwCq3cGFCtjUcP57EnU8aGgQgqkoJXrUm1nZpNhaDSkFGuy7hyYxrPHC9CkhVsXIj0Hpmt4ns7jmHDYKzF59e2jPY9kyXICkFZkpGOBrBpKIZHD+e60o9b7a9gQ3+k3X7RJ2CyUEdDJjg2X8dFa1N47ninDH/k4Cz2TBSwYSi+8N4+iD4BR2crXbkZzz76IPa/uBOr129CtVLBGa+6GH5RxKGX9gAATl+R1N3Tu6YvgqFkCOehJfsuXtfb4XR45MBMZxvW9UFWRaqMZODeyQKaCkFQ9GHTcBKPHJjGgalFZf3pRx/Evt07sWZDq71nnd9q7/jYEQDAueee27Gn9+tf/SeodyPpyQ4AWJVu9YfiNVsHMKVJB107lNLd07t2KIXhnhaNRvtbUdubnzgI9d0XnboeF53amU4pin7UZQWx4KLsWnXahVh1WrfTqWdkNcLxJJZvOQvF2ZZzN9K3DOtf/xFUZjojshes78cF6xcdNd+8p3P7wYVbV+LCrd1BhNGBFIZ7W0bSeZtbsvHAxOKaunDzcly4uVtnKtdD2LCs5YBZ3pfA7rHuaOgZr7oYZ7xq0XH4zCMPYLa8yB8kmWDlypX4xCc+AQD4zne+g9mJznlN5U4lPwdJJuiJiNiX7cyie+TQHPZMlnBguoxmvdaWB+WxXQj1j6Jw8Gko9QoapflW1JDK2RePY/fYNDYuS6NSb+CCLSvg9/kwPltArlzHKaP9eGzfBGYK3Vl7wCLf02JwcBAjIyMYHR3F5OSiDEkMjuKUN+rUohF8WL18BH/yvu494Grn7KazLsKmsy7C3f/v65CVbkfeytMuxMqFebT3dzdj9vATyBa7r5vZ8wgKY3uQWLYBzXoFfVvOh88vop6fxkgy2R4PNdauXYvjx1tz7uwzT+/a06s+/YGixQ9U631diydN5GtoygpqDRnRoIjNI4u8l67Vm59vpRVLOmMpV7q3zBjN71WDPe35DQCXbl8FQgim8/pjCgC1poKeiIi9UxUohGDdunW6NNmwYQNGRkYwNNStEx1/YQdmDu1G78qNaNYqWL4g54rZcRAQNGsVKHIT4WQa6YWMr7Wjy/DH7110UE/qRHofeGgHXti5C5s3bUS5UsGlF10IUfTjhV270WzKOOO07di5ew+y04tbywBg9ekXYvXpOjxmeCUSfS0dIzmwDEerjfb6rDcVKE1pUZ9SZChyA75QFNLcJPzRBEizgcpE91Yn3hCIUThBg9/97ne4/PLLcfG2VYgsVKnsiUcgyzJ+9eheXL21D2eMLqbZTOTrKNaaUAjQHw+gISu4bdcs0tEA3n7GkO41Qb8P8xWpfazGHbtn0J8I4x3nLE7AiVwVxWoDCiHoT4QgNRUE/L52BUdBELCiN4KyJOPxgzN44tAc/uYtp7funS+j0L43jN88dwwSRPzx269qP388O4dCuQqFEAz0JBEMiJgrlNptEgTgV/c9gVSQYNtISyArpKUMB/wCpKaCm3fO4LQ1Q1gzmEImV8JjL0100DIR8uMdZ3R68KdLEiqSAoWQhWe1KkLWm63huWPPLC7ZOIhLVOkbE/OVBfoR9MdDkGQF9+zOQCHAhy5Z376mUFvoczyMkOjDXLkOv+p4j55YK43pi7e8gGBAxBuvvAjlSosGvckEAgERUqOJ+oJ3TpEV/Pq+Hfj+97+PXC6HP/uzP8P/ufZsCBAwMVdapHEygh8/tA+b163siO4en5pp0VhRMNCbwq8feAJ1IYTrPtBi4pmJ4ygXC1AUBen+AQSCIczPzuDmn/0AV561CZeohP/4dA4P7zyIPUe7o7QUok/AaG8Yl29c9Ma16C0v0DuATKGORw/ncMG7P7Xo3QRQmJ5AITuOA4/eicu3r8T64UWFZzpfQbne6mtPLIyg3wdJllFXzcVkJIgfP7inXb05O5tDuVpboG0cAXGBtgtl7QUAIwNp3PPYs5jKlfHnf7lYrGL8+HEUCgVUKiWMjq5CMBSCVK+3jrZpNhEIBjE4OIibbrwBE4f34ePXLBbaGZ8toliVFsYlikZTRsDvazuWBLQUrnK9gXy5juvv2YmLtq/F1tUjyOaKqCzc25OIIuj3Q2o2UV9I8xcEAfFICD+55ymkNr0K8RWbIBVmINcrqEweQm36KC77yN920LReLqBRr2LfQ7dh9JzXYnDzokOgPDOBRqXYqlic6oc/EMTxZ+7D/JE9eMv5W1CpS23+ExR9kJpKuy1AK/UOAD746jOweqgX4zMFFKp1/G7nEUzNLQo5verNRtCr3jx4yoXwB0OY3vsEAoKCN7zjfR2/z81kUa2UQRSCYCiEB+6+DdecPoozV/e11mVVwn0vTiESi+GNl3V6a7OzOew7Mo6d+49g++vfB5/qWIpKbhqNhWM2woke+PwByI069j14S7t6c2F2GvVqGQpREEv2QBSDaDZbxxUQWcH0xFEc2fMsLvnQ/wfqWi5OT6BeKYIoCqI9/ZCbEvxiEAcevRNhUscfffxPW3Pp+HEUC6312T8wgEazgYAYWDgSqolgMIhwJIzvX/89XHH55e3qzatOOQvFuVa7CCGIJnrgDwRQnJvB3sfuwdVXX41169ZhamoKzz77LPbv1wpAAcu2n4/RMxdT/EozE5AW2hxZmCu14jzGn/otoo05XLO1D9OlhopP+7t4qyC09l7ds28eRSWMRq2MT17SUs4n8nUU6y0+0R8LQFGA7z0+iasvPB2v2tYy7LUyo1ip4ge3P4y3nTaALUOLXtXWs5pQFCAS9KE3EkC9qaDWXDyqaSQVQkNW8G8PHsdpK5J4zZZ+TORrKNZoG4JoyApEPz3FoNX+0d4I8tUG/u2BMbxuSxpnrUjotj/o92G+2mjXiRAEYDAexNfuP4YrNw/g/HWLPHIiV+2QL08fncdTR3P4o7/6wuI8nRxv8+revgEEQkE06hKOHzmAR+67s129eZHfLsrKhkzaWRMCgHv3zWH78hReu2248/1KS9b/+vkJhAMi3n3+6sU26sjADn0ArYqvNz9zHB/6xGcQjcUxNTGOcmmxzcFgEIf278VDv70Dl112GaLRVoSst7cX9917D5RKDm/Y3qmMThfri/2JBlr9aSqoy6T9XrUR/P1Hj2PraBrrhlIo1xsgCkFPLITAAv+SqINfEDDcE8UtTx7CKWeci9PPOAPf+ta/4KNvvBjZ+SLKtVZV+554FM8fOIZ9qurNWy59M6I9/SjPT6NRa62xcLwHfjEAudlYOCJOhs8v4tDT98MXiqFn7eloVPKY2/0wBhKhjojadLGGcl3G00fnEY2EcM05nbUmpvNllGsq+Sf6ITXlDrkgNWTc9cwBvP2CTeiNhQxkpqKSmUAoIOKmR17Cr3/9a9x999349re/jTe95yOYp/yUEMxlMzjw4s52W2j15rPOOgulUglPP/00inUZ5759sUAglTvje55EbuJIR18+cuFKDCdDmMjVUKw3cWyuiseO5GAFAcCFW0dxxamrNDI2gpDox1ypplprAkpVCTc9shfveMc72im+QOsYolKp1J53wWAQkiS1j6oSBAHLlrXG5v99/wfwJfqRXr0VzVorky0UT8EnBnDssduxeqQfV1xwNrIzcy1dQyHoTSVw6707kBoaxZZzLkFhgQ8f3vkEysWWE3flaRehb9XiGLfmUQVzxw8iP7lIr+UXvg2JFYuOoersBJrVlrwOJfvhE4PIPHUn5Nw43vSmN+n2a3JyEvfffz/e8PrXIhKJoFwut9Zjbw+mpqZx3wMP4o8vX490rBX4afGCBhQF6E8EERRbFZ3nyhKiwVZF+J5oAIlwAA/um8aD+6bxxu0DqEgy5ioNPHus27hV44x1wzh7g2ruG87txXmqNoAB4P/99jn80f/+Y/zrv7YK/X3mM5/Rrd58yimnGI71nj17sHfvXlzwwf/T8ezizASkcovGUZWcE0MRKIoMvxiAGAwjGE3gyZ9+DRtXjmDzulVtPT4cDOLWex/GW9/8Rpx39mJm0rHj4ygsyPLBgQGEQkHMzM0v2geCgCeffgbP734RZ1z93o42lean0ViQ5ZFED3xiAMoCn5k5th9TB1RZngvVm1ngdfVmZqNX75xeWZHx0t6X4PP7oQ2nhUKh9rlbhWIBIIAYCOqe0wu0zgNTCEEykWh7pPTO6fWrUiUrlQoazSbi8XjH9xRm5/SWikU0ZBmiwZlbrbO6BNTrtda5fqoUP71zegEBY2NjGBoaRK0udZ3TWyi0zk5L96Ytz+kdnxhHo9HAurXrDM/pBVrn3NJzeoulEhRFQSgU0j2nt/X01tmf8Xgcfp29HD7Bj/6BgY5zyqampjA3N4fRlaOIqypfspzTWy6X0Wg2W+do6rRHXDhPslwqwycaJB0szCsxEOg6pxdo0Zae01upVFoKezRq+5zeQ4cPQRHEhTM/tU1YUBaElpmkd74mAaAoMgTBh4H+fqZzesvlCsbGjqK3t7dDAALW5/TW63VUq1VEo9Guc+XoOb2UPtpzequVKqSGhHgs3j6vUttfo3N6Dx86jFqtho0bN3bcS8/p7U33d5z7VioVcWxsrHXOns5Z2URRFs7PRNd5vfQaAAgFA13n9NLqnsFgEGvXrGE6p7daq6FRlxAKt853NTqnN51Oo1Qq2Tint4BmswlB8EEUxa5zeufn5yHVaq1olt45vRAoEbrO6YXQuiekc35gU5ZbDo9AEH6/oHtOr0IIpHodiUQCK1e2HIh65/SqeaRCCAr5PALBIPw+QfecXkpTQRBUPGwRgUAAX/7yl3XP6ZVlGXv37kU4HMaaNWsMz+k9fvw4Go0GVq1a1XVOLz1TkZ7TW6vX0Ww2kUgk0DQ4p1cQgGZTxtDQINLpzpQ0vXN61ajVaqjV6+3jRbqfLSAcjqBcpue96otWAUKbbgmdPfiA+Tm9hWIRot+v+5v2nF41mnLrCJRgINgRTek8p7dbzgKA1JBQqVTh8y+eI68HetxKLBo1PKdXURSAAJs2d9ZpGB+fQLlcQiQa7SreWCwVIcsEfp/eE1vnXPoEAVKjgXgs1jGXzc7prVQqkCQJiUQC1Uqla6tCo9GA6BMQCKjp2XlO7/79+6AoCjZt6q47QZGZmkIw0HlOLyEEe/fuRSAQwPr1nVFcq3N6pXodBw4eRDgSwUD/AKamp6GuU0TP6T169CgIIVi/bl3XOb2lUhnL6Tm901OYm84ChHTJC4UAAghkuQmfzw9R9EM7Ceh6SafTzOf0vvRSyzm5aVN3NpHZOb0KUbBn9x4EgwGsWNHaJqJ3Tu/s3BwIQdf544IgQAyIqFaqCAaDrew7nXN6W39b90cj+pWn44kEKpVyl4yWZRmlUgmBQKAjLZnlnN5CoYDx8XEMDQ3pKv565/QWigUcGxtDLBYDkZtd5/TO5+YhywqCoXDXOb0gQLVaRTAc7pr/9JxehSjIZqc69GA9KJSHRCJd5/QqhIAoBJFIBCtXjuqe01upVHDkyBH4BB3+CqF9nm6hWIAg+JCId1djNzqn9+DBA/D7W+fVq5HLFxAOhwzP6W3KMo6NjSEUDmPVypVcz+k9dqwlg9euXWt6Tq8a+Xzr/Omenh7d3yvlMgQQDKnO6d23bx+astw1T9Xn9FarVTQajQV7Z7GPLOf0Hjx4ELVaDVs2b4Zv4cjFk/WcXhAXmJqaIgDIW97yFtPrIpEICQaDptf8wR/8AQFAjh8/zvz+173udQQA2bFjB/M9FGvWrCEAyMzMjOE1f//3f08AkIceesjyeXfddRcBQL761a/q/t7b20uGhoaY2rZlyxYSCASYrqVYsWIFAUAKhYLhNZ/97GcJAPLEE08wP/eP//iPCQBy00032WoPIYRceOGFBAB54YUXDK+58cYbCQDy3e9+V/f3eDxORkdHmd63du1aEg6Hbbez2WwSAKSvr8/0ussvv5wAILVareu3F154gQAgf/qnf8r83ltuuYUAIB/+8Idtt/mrX/0qAUD+9V//1fa91113HQFA7rrrLtv3btu2jQAghw8fZr7nvPPOIy2+p3T99vjjjxMA5LOf/azuvcPDwySVSun+9s///M8EALntttuY2/L5z3+eACDf+973mO9hQSaTIQDI2972Nt3fTz/9dOLz+XR/+93vfkcAkC996Uu6v/f19ZH+/n7d3774xS8SAOSBBx4wbNtDDz1EAJBrrrnGoheLGBsbIwDIu9/9btPrAoEAicVizM+lOH78OAFAtmzZYnrd5s2bmXnh1VdfTQCQ+fl5w2u+853vEADky1/+sp3mEkII+aM/+iMCgPziF78wvGbv3r0EAPnoRz9qeI2y4JHr7e213YZ9+/YRAOTMM8+0fe9tt91GAJD3v//9tu/9xje+QQCQb37zm4bXVCoVAoBceeWVps9Kp9OG/MAIK1asIPF43PQaJ3ztQx/6EAFA9u/f3/Xb/Pw8AUBe//rXmz4jkUgQv9/P/E6KfD5PADDLNzWefPJJAoBcccUVptcNDg4yz7MzzjjDkEc9+OCDBAD5whe+oPt7f3+/pfzUIhwOO5LXlNdu2LDB9Lpt27YRURR1f7PS1wghZHx8nAAgmzZtst3G+++/nwAgb33rW23f+5//+Z+m8kAPv/rVrwgA8u///u+6vycSCbJ8+XLd3/7yL/+SACBPP/204fMpvd71rneZtsNMX/uzP/szAoA899xzhvffcccdBAB573vfa/qeaDRKVq1aZXqNGo1GgwAwlKNm2LNnDwFAzjvvPNv3WoGFr2mRSqWIIAi2+OeyZctIMpk0vebtb387AUDuueceW+0hhJCtW7cSAOTYsWO2711qGJduYwD1vmlLoWshSRIajYbpdfS3uk7BIrPnAkCppF/Z0+29tE16Xn8tms1WBFJvvyt9lhWdnFxLwdIf2jYnNNaL5PJs04miG9CKSAPW42w2R+l3Rv3QA6ULy/zSu9fn83k293neS+lG14gaVjzEbEyt5o4eyuVyK83MQd/N4KYflKZuaGA2h5zMM5b5LMsyGgvZNHZB+QnLmrOz/gFz/lYqtaKwZZ0KoVagzzWbOywysVptZWE4Xfcn6l4rfsOqD9DrtJlLZmCZB254kxlPZ3mvLMu26boUY+lEfhKdLAY3PEoPhBDU63VIkmRYsM8IPPpupa/ZeQ/ve4vFom0e5UaPYtELefDrpXqPHlh1PD24GUsrONX16frh+R43eiFtixM7Yanhyui1YoT0GlmWW6mFVf0KnOpnOFHM3AwSL6OXpjAYMXCvjTeW/tC22aFxZSHlywmNaUoWC415CFMjgW0F2j4rJmI2H1jWgtF7talrrPc6NXq9XjdauKGb2fibGdNGKJVK8Pv93I1eln4A+koJDxqwGL1OnF1m85kaLY1Gw9YY2GmTnTXNSgun41+tVi15IQvdnIwHz3u94jesPNApD/HquYBznq4oSvu9dh0pbscDYFs/dp1GemuZt9Fbq9VACOmgHytY6WZmxFvpa+r3nIh1apdHUbniRP9k0Qvt0tzoN9b38JzXdp5rdq+TdWoFp84idbt4vYdFXzeCG51yqeG50asmgpkXwInRS5UuJ94FlnvttImnUKCM2k4Ei3d/KIrFIkRRdKwkWrWJClhezgI7NKNQe/LMlHcWBcmO0U1p62T+urm3XG7tQfJq3WjhldHrxIlTKpUc080MrEbviaAB7audyBrLfFbT0C5/oNdbtclMcdW7FrCmhdPxZ5k7LDKR3t/ae2ZPCXMylup7nRr8LHRjdYJTHmuXh1jJASd8zS1PV4+D3TlFrzcLBljdy7p+WOAVj9IDq16oB1a6uTHi1e9xutac3utERlEj3kmkl9UYZYk+8zCuWZz5ducbpWV9oe6DHbhZp1Zw4iyi13vBPwVBcKUXvmL0gl0xcmr0Ool2kYXCHTzbRK8xYjqyLNsWPpSRWaHRaLSvZUkltmskBINBzxYCbYsRI7JDN3qt3Wgv6xw1o5/V+OuBFrpwwijouDi91+l7nTA3N8qU2fg7mc/FYtFx381gNf5uaWDGV4yeS0EjB3YiUSzzWU1Du/RkVQrp+1l4Iavy5nT8WeaOXUewV84Co3u95Dde9p1FaXPSP5Z16dUaUDtbWWW99l6W9bNURq8d2cfLYWYm693Ka/oeJ8aOWz5jV7Z7vUWGtU1u5TWP9+hB/TynGRlOeK4V3DiL7GYCWK3PcrnseM6yBLhOFnAxenkIBTcGmd1BUjMxXm1iMXpZhYJdWrDS2IljwY1xVS6XLSMLtC1GQt8O3ZykuwJ86Oc0vdmpQ8Gt0evkXkJIW2A4Sb1yonyYKVNOeUYoFFry9Ga3NHDrpeetRNHn6v3PAnXKmNn6tsOzWB0ATsef5d6lMpSc7El223dWo9eLvrPIASfznJdhpP2fBW4VcZa+2jFG3dDCjRHilG7NZtN0rfNyaNTrdUdOiaWUzyzBAycOWbtt4uGgtXqPk0zIE8VzrWBHv1W3Rfu/FVidhk7mrCzLbZvqf0ykl1UomCn3ToosFYtFhMNhx+kxVm2iDISlTSxMh9UYc2P08uqP+nnhcNiRgVQsFhEKhUzbVK/XW+f56fSVttcrulHYpR+vSK9T2tJ7rWhr9V6791JPp90UQrfKlNFvVBFxYvR6ld5s1FazteeGBmZzksLJeFvxM/pcvf9ZwCq8WfqnvdaqUIrT8WeZOyx8wA3daLRZkiTbfM4tz2Dh5YA3c4bWBbGiq915bqZ3LMVYurmXZSx5OdvdGFV6YJW5euCZmcU6V51ksnjJZ7Sg81dvHlODx6ivLDyWpU1WxcHsOCXN3mOVyq0HHmuNniXMEyx8TdsWvf9Z3kPfZfZsJ3ohdQZ4USDUC3Cp3syDcdhRboCWUVUqlRCJRBx7bqyikHbaRI03M6bDOrHtGqdeKJDq50UiEdsLge49sBofSZIM6WbXkHRi1AP256hZpU87HmGn8/dE3Uuvt3svC93MBDIhxLDys9HcMUKxWHRMNzNYjb+ZwKf3Gq3LZrNpSB/6PquKxbTPrKn/LLzdjfecClire+2saValyun4s8wdr+lG2+/mXqc8IxqNnrBIL8s8cNI/M5m4FGPp5t5IJIJarWbavmazyRyFdSPfKI9i5S9u05vpWcIsxpFRf6xkBzXAnLbRDZ+xWmtaUD1Kbx5bGYmszkLW9W9lXFu9hweP1cLtWqNn5vKO9nql6xu9xwvZSK93YjCfCHCJ9PIQCnYNMmpU2WUO6nawLGIjRmLnWsp0WBepXVrQiWYVNXRq9J4oGrPMLzWc9E/dVu3/WnixpzcajTr2BjsZF+os8nJMtWCJkJspU2b3sq5PCqd9twJrpNduP6h31shpJkkSfD6fpTCLRqOW6YB2+kOfq/c/C9SKhNM1pwWrYHc6/nYMPy8NJRa6md3rlaPMy75bja1TvuY2e8ftWLI4fozutVLE1c5CFmesUx6lLjbHKv9ONO9gkR081lq1WrVdXNOJ8WEmB1iNUVaDyMixwes9PJxres/V+5/1XqeORivY1Vm94p+KoqBcLi+pXniicNKkNzs19GKxmOP0GKt7WRRKlmvpd6xCwelCiMfj3PoDLKYoO5nMdmhsZfTajfQ6MXqpcHOb3mzH+0hpW6lUbAvGYrHoaO5Xq1UoiuLputHCim5Gc1K9D8XuvUYolUqO+m4FNwKfhXcA+oori/JG5wr9nwVLkd7M0iY7a5q1UIqT8adGFQuPBazpRiNITtag3bHU3utkj2KxWOTWd8B+VMBqHjjla255On2Xk2r4bscyHo+b3quWKW6dRmY8Sj2XeG/J0oOabk6d/Cyyg4XGLPc6MSLszmM3elSj0WByAMRiMciybHh0jxvHr/o98XjcdPuGG12L/m8HbuaBFZzaPYFAgLktaueX0Xuo48ytXvg/xui1Egp+v9/Sc+XG0HPqmUgkEpYeJZ5Gr/Z/I3hFC7tGQr1ehyzLSCQSjvfsuaGxen6xpE05NXpZBZQXUcdEIgHAfmVAeq9Xc5/nvV4pU06M3mKx6KjvVlgKo9cpDdTzjLXfrFG7aDTqaC8PHQerNtlZ0yx7vJ2uG2pUsfBYwJpubhRiu2PJ617WvrM4we2MgZXzy+lzAfdGr1t+6nY8zO7lqXfw1G+ARcePk8I5arq5cVKz8E0369TpvU5kFMv4uMkWYuHXVvqaXUcDy3tY4fVacwIWvqbXFsAev2FxfvHSC//HpDebeY3phLESmE5z25PJpGfKe71eh8/nYy5kxSIUWJ7l1PvDsz/A0tHY7/fr9lXdTitasHizzNoaj8ctj7+iz+UZdUwmkwDseRBp1On3xeg1M0a8Nvi010uSdEKMXrP9ZSez0cvyXKeOR5Y22SlWxrq/OZFI2C5KwtNRSvmNk/PPT6TRy8LLAes54/f7bc0ZlkiiG95kVVPCyuiNRCKO1wDl/16M5cls9LLqhUb3uuUdXvFNnvfayQAz0+3U39mVP9o20f+N2kBhlJVkpOvZeY+VEe/0uV7cawanGRLBYNDWumFZnydCLzxRWJI9vYlEwtILwKJkqUGflUqlHIfjre49UZFeu1VpS6XWgd48+wN00smJt5Le67RNduimnoNOjN5kMmmZvmelFFgxdC2KxSJSqVS7DaygB6zTcXFySHsymfRs3WjhZZTTDs1pCo8TnmEFKweglQJm1A8eRm+xWLTtXJGkVuaCmUOTev+dZoLQuW90LyHEkdFrdC3drpFKpTrOamdtL8BHZtDxcEK3YrGInp6e9v9277WiuR4ajQbq9Tp6enpQrVYN5T2LE9zJnGGRA075Gsva82oN0HngNDXaah7w1Du8MnrdrgGnWSKs69TNWnN6r5o3shZOcitDWIxRK97By0HLe17TZ7HoeEb3Oh1LMzjtB3UWecE/3dpTL3uj16xMOoV6kKw85HYUWPqsnp4eR56JcDjM5LVnbRONWFp52qyepa60aCci6zWNnaY3W40PbZOZp137vx6svJlmYJ2jVtUg7Rq9agZvZw6raQvYS42m9/b29jr26Nllbix0c+Khtpu5QOdwT0+PZdVTu7CqBsqiUDqlgRH9KEqlEnp7e9v/s4DSliVi6SRaQw0ws9Ro9fiwjLGV0Uu3azhZc+q5w5K5YjUebqJcThxl9Ho3/MZKEWcxEp30XT2eRnR1ytfM5jlr5NptxNKreWBXJpoFHnjpNxTUWeAmQm62r1HtMHPDN6lTYqnWKd1vb5dfu3FKsMhRFkeD1TploTlLIMCJrneieK4ZnPaDOtnsyHKr97i1pwBvgglewHWkl8VDdDIavbzb5MbT5vRaiqVwLDhNB7RSQk4k3dRtZaWf0fPNjHez9zrxIKppq/5s916nziK76e5myqPXHmo1tHTjefyAWVvUaVhmCqWXXnonShQv3m50byKRMC1+4SRSZbavnse6ofLGrIKp13RLpVKWx+0Z3evG6LWim1dGL4tR5ZSvsfAfL8fSzb2s46H9Xw/q7UFGDmgWHrVURojVvSz1IFhTbb0aH6P7ANhep0sR6XU735bqPUbP9XKtOcFS9YPlPW71wlgs9j8nvZmVcbCkN9tRYOmz+vr6HIXjebfpRBpvS0FjwF5EkRaqYEkHPBmMXrcp+HZpSz26/f397TawQjsuduY/vTadTpsq70b32k3ls9pr7VZYi6Jo2+h1QjcrmPXDjQLGgwbFYtF2n1mf6ya92epeu2vaag26WTd07vT395umRrPwAR4psXbvbTabqNVqbX7jhGdY0Y3FSPQ6vZkqbax8zWyeL8VYurm3t7cXgiBwWT8sPMqMTqzvoaDKuxu6mSn+PAww9XuctNENn+HJr93KEHqcDev6N3uPGc1lWUa1WnX9Hj3w4Lm8T31Yqn7Y4Z/UnnKqF/6PMHpZFCPWKJooirY8hdSochKFZGlTvV5nbhMr07F6ltOFwLs/gDsjwS6N9fpqJ23KjdFrd46eaANMe68TT3I6nXa0r9Gul9FLZcouzbXKO2+vLcs8NoqiBAIBT7z0siyjUqmgp6cHgUDAlnfYile48Z6zrDm7a9qKv7lZN6xzh2VOnojoIA+eYXUvi3zxOlLR19dni6+ZzfOTdSzpvVQR57F+3PAZL3UWPajp5sYA82psJalVMJE6JbzgM3rvNJrHLPLHjBaVSgWEEKb1r36m3few8hk3TpalXqdmWKp+2OGf6XQasizbzli0u8/4RMJzo5eVIE4UWPpcQgiq1Spzu1knjp028fKEul0IPGlMaTMwMNDx2W6brNIBT5SzwKiteqB7rc0Evxuj14kS6iRKTJ1FNF3HbsTHKcM122/kxuh1kt7sJNplBa+Md7fKG1X+nYwbL4emHljWnN01zapUOV036nvNlO2lopsTR1k6nba9R9Fu35vNpqET2g0P0f6vfa4TvubWkXkilGlqVPFcP17yKD24TR2mUWI3kV7WdWo3gkWvdRIddKpzmQUP3NKCtqGnp8f0iCle7+nt7TXdvrGURi8tfuiFUXeyGb3RaNRRNXk38uxEYEmMXpbQtxOjgT4XsK+8s6az/r4YvV7QuFgsIhgMOtrPoKaxVTrgiaIbhZ1US7OInJOoYyqVsn2oN713aGio4zPrvVTZAOwr/up5xpICQ+lhNsZuopxG9xq1H1ik21JFeul3RvtN3Rq9ZjSgc8NJSpQd3n6i05tp4RqzNrtZN1pnkdtIrxO6NZtNVKtVR6lk9D1OKphq6WbVd8B4X6+TvrMqbVTxMmujUZvN1mWj0TDkdScivZn2jef68dI5qQe14Xqi0ptZ16lTB5OTdUqvHRwcBHBypDfzmm+s77HavuFkvjlda5IkodlsepK+u1T9YHUaOrWnWO2PkwWuqzcHAgE0Gg3Xnl36LCceD/qZFXaikKxtou13W93QSUU3O+m5bmjsNL2ZfjZqk1l6md7/evC6erPaeDMaYyeRXjdRGyfGG691oygKU3aF2llgRjenlYvtpOsXi0X4fD5P0pvV/EvLT1gMf69ooJ1nPCIH6md7Gamys6apkWXG37QKpVNvttm9ZnJA3Q4ndKOF19ykN7u5l8XoDQQC7f+NnuUmUmE2z53wNavtNV70x+29rGNpZ/3Q343WDy/9hsJpdIhu17CSm7RNZlXxzdYpPabLTaTXSf9of+xGet0YvVYyhLbJTmaBE1nF+p6lrN7sZiytsFT9YK3ezEMvpOvmZAaXSC9g7tm1YlCyLEOWZcfpzfQ9rNAq77VaTfc6O0Yi74ilXQOK9sfsKBYn0UjK9Ol7WGHH6HUa6XN6rVlbrRi6WVutlF3tOwHnSmggEHBcHVI9pk7Tm1nfS+lxskR6nXozrWDGC63mjpnDzy0NnM4z9XPNolxunDZW99I+saSwW9FY/d5UKoVIJOKKn52I9GYejjKn7/X5fEin05aFk+gaMIsouFHaeEcqrPiPV0av2qhyGnn3Ir3ZzAHNwqPsHr3ixvHDkt7sNDOLh+HqZp3SDDBe81jvf5Z71W1yO9/svodnpNfpOnUzllZYqn6wvMeN0evGFjsRcG30sggFq9A3i5fe7LmA8/Rms3vtRJ8lSUIwGHQtFOi1Rs/Sg5YWVlEIu891uhBYaWzUVyeFrKzOFtWCKh9WKSNWnnC7Bpg27dQJbf1+P6LR6AlJb1b3wQyszoKlMnrj8Tii0ajtAiNWMOOFVtFuL2ngJr05GAwCYEtVdWK8Wd3LYshSqJ0rZpGEYDCIYDDoKKWUhcdajQeNVDlJtXPLM9T3OuEZPp/PMgJD14BZRIG2oVKptI/yMoNXShshxNRZyaLfaNMNWauesq4Blnt5pjd7waf1oHa+Ok0d5uGktjLATkR6syiKbR5l10lplTFnV/7QNgHW842lkJWd9/Bw5tBrJEnispWAt86g978Z1PymVLK3xczsPbzSm+nnkxmujd5QKNT+XwvtJvBqtaor5Oi9oVDIUZiffmaFnShkMBhkrt7MYvTyiFhoweppoeNll8axWKz9HlbwivQKggDAG2eBul2sXkyzMbbrqFC/1wlt6f1ezH1e97LQzY3BZ4fmdJ0IgsA9VcmMF9K562TuuKWB20iv0Xu1kSovUsbUcoGVb5pd62bd0LlDeaGVzKDZS1o4LSymfueJuJeFblb6gPpZ9HksZ2XTZ1mdwWyXN8myDEKI5bpk7Y+dqqdLMZZO9A4veJQWiqJ00M3O6Rt2o4FmssWKV9D3LHV6sxMZ5SZ4wEuGqPU1J++xk8FglVHipP2877UCC1/Taw9tC2uVeq+chjzuPRHwNNJbq9WgKIolQbw09PTAwyCzcy1P4aMHbX/MBIETGtOIopeOBadKh/pawHuj12yMzZRdvfdSj65XSqjZvVZzRQ9O1hyLMmWkfNDvzIqrOMlcAOBJqpJVpPf3zeg1W3va59rZy8OaMmZHLrBcy2PdiKKIcDhs2mazCLmeYmc3OujUUebz+RCJRFzzGyv5Qv/XQusEV/fJDCwODW0Gi50sFCuHnFF/6LmiTvQQN2PpZXrzUkR6qaJOx8vO6RvqvrNEA81kC0uGjFPDVX2vk6gZvd9uZo5RX82MRFZjNBaLWc43I5lBCw2yyKpoNGrJZ1j1QvVzl3osrWBXZ6XnJTvlnyyy0Yk9peXpPGnkBVwbvSyKkVXo26mhZ1fIUbCG8q2YgRpWnjZWz5SaFixKJFUkrGjMwnS00DJguwvBDo2N0m5YmZtVNM0I2jlqpLyzGi6AcTqoGpQ+giA4Tjek7XZyL1Xe7Sq/TtObWQw+rfLPGiG1m7kAwJNUJaO5yqpcO/HSm/EdoFNhsTNX6HON3svK2/VgN42NZU2zXOtm3ah5oVWb7dCNtSAcbb/6XqcRJLf8xmnfqROcNw8Bup0SLLRh2bJidw2w0lVvLJ2mRls5jVjqeLAYiWZyGmCPWGmjqAA73dR9ZzH4nWZmad9jl1f4/X6Ew2FHUWInMspp8IAexWhlEEUiEYiiaDnf6Hu084TqRCxr2OfzWfIZq20UamjXmiRJtnRg9b1eRHpZdRh6XrJdfsOiG1MeT7f/vJLebACzSQ50e1jU36nhxGBxIuSA7up/Rm2yaySyGG8sQsEuLer1OmRZtuwPC9PRgkdkhDUd0InSob0WYGcg6nYC1nPU6vlWRoLee93S9kTdyzvSa+QssLq3Xq8zpb5q2w/Y77sVzHghCw3otgO9ys9UEGmfS/ckWikSsVjMcj+mWX/MFH4eUS4WxZXH9oalWDeszgIv6eam/W7u9WrOsMwDJ/1jNfQAd/qNUXvV9zabTVt8zO/3IxQKWc5Fn8/HxWlEaaF3fBPdy82qW/BeA3rOArcOU61hbtcpQR1MS7VOnepR6jXgdm2ZvYdFr7XDY622UWifS5+5lDzXCnaDfTz4p5ey0UmU+ETA9ZFFZpNP62FRf6eGlfDRg9r7bGeQtHuqAHMjh7VNVHHVEwr0N17KmxqsXlP6Xrs0Vnsdnew7tXJKWEXIvU5vVs9RFseMUwVJixNtuAL2xlRdgMcOc1PTza6zgHp0rZxJTniG3flsBTNeyOowIYR0pcarjV7tc2mVdt7GwP+fva+Ok+s48v8Oz86ydoUrtliy2JItySBTzBTHiUNOHHToF3R8cS5wvksucIELXcBO4sTMIJlkJlm2xczSkpZhdnZ46vfHbL9986bfe/1oZtZRfT7+WDv9uruququ6qrq6W94vw08JPLkxusvFdLBa5N2IztKbZ4A1uRGdO2b4ZsQAc7lcCIVCpi5OclpnyGXATtqN7FTo4SgHEbnUsm/sNKYZDSIgzxIScUJE7A4RPc14wQtOivbD8AfMyYAyvVktU0LPmWP0qL3BrMTRSFDCjkwswFx6s96mi7JcVLasBvxEAleitBvZDAGsyWk4HIbP50MgEHDEZgAK4/Sy4Jfda6P8ItiT6c2wbxeNB2aNd1FjTSQCpvxea1FgTq+o8xYMBoUEQXQBMctjM4EFdlGFqJGoRivjm8hbrGYCJ4B40EBkV8BI9NGuhdHqoio6pvKnItgiYFd6s5azqCY3LC2rFHd61aLcZuaOFg9E5rzZucLkkocTwJcbIwa/PP1Pra6RQJbIt1bTm0V3O0QdJTMpsfIdJK3n9nh1ndYZRuwBo+nNejuJTu302hHU5wGvrhH5EbF9tAJmvG8B83patB+GP2AtvZmdL5X/ZpQereNIAwPZM/DBYNCwMW9ngEm0rpYTz8rMriFGbLlAIMBNlRbtR4R21o/oSx1W5FQ5lvF4XOj4mggwvSZqw5ilQ8T/MLs+yGWZ2erv6Z3eRCKBsrIy6d9KMOr0lpWVCQ2+/EA3a99MhJVNOC2cRJ1PLSORKVi7biFVo6esrAxut9sWHrO2zfBYvpuuV5cJJO8CKFYmyjev12vJ6RWZo1oOupaTwOu32Du9ZuXGSF0RvpkxpozKJ6PBSadXTRdamTtausOoIaGVDsjDycldLrnzplbXyBiL6LdCyI2RYIFZvrH6Vuo6Rbsd9gCvXb3104rTa1anWx1LpVNldiyTyaSmbjVid5jVUaL9MPwZ7mZolx/XUKsrEtDQm6tMR1kJShRqfZaPj9qmi9YaoqVjjQb8zK7XdvSj1i5r0w6dK3LjvAhYCRaZ0Z9OpDfLcXLiVQwnwNEni5xKb2aTzkwaiKjxbhQnuyKhiUT22nczCwibdHamkJvZTRflMTuTqKWsjfDNiAJhEA6Hc241leOvbB/QXkSNOL2iKUM8MKuglMEisxkSRvoVMaa0nEUrDh+PBqfSm/XkXwtXJx1/5VwRvSnViG43uhOinPtqdROJbFpWqTxZZCRzRY6Tsh1Af6dKD3+rOxaiwQ9ev3o7PezfSpDPmVAoJLWtB3pGLtNrZtObze702h34MZrezPpW69fo+gnYH5xUwx8wn94sIgN6QTCRuSrCYzUc5XMxkRC/OMlKerOVNUQvW0iuO9SemLK6VvFo5+koM86i/Aw8+00ElGPJfrMDrDjvenflKPvRChqmUinEYjFTayPPLnzPpzeLRELLy8tRVlYGl8tly66q0qkykgaiHCS1BdIoTvF4XJUX7KyDUefN6PkYQN+JF6VHaUhYEQQ1HrMziWrnwIwoNyM8lgMvomtmPugtorx+5fwxkjZj1nnjBYvM7vQaNSzN8E1rTOXt8i6AUqPByZ1erZ0QhqvRgIkWD5i8iBoSRm981NPtbKfKzE6IEienjXbAvNwYySwScZTYTpWZlFi7DPFUKmXoiSnR9GZRJ5Ht1InqEK15ID96oYejHPTkRzSAYebWU55c2h38MCM/IkFdK+s0wx/IDfwYCd6IOvzsSUAzY2tngEkNR726onYty5LTyxayEjiVz1W192G1bFejQUl2Xpt3fMOMjczOwBdyLPXAiq3v9XpRVlYmvJZrySejx2p6M6v7L7PTq3a7IWO22+1GeXm5LednzaZayuuySInIzqgeTplMBul0WtN507qQx+y3TtEDANFoFESUw2Mz525EcQIKyzc5rqK7TgxXtcsitGTBbL9qdfV4q1YP0B8XrbpG54MVvmmNqXLu6AUMiCiP507t9PJwZQaYEzxgjj8PlHMFMHYOiIcTa5cFi/x+P7xeryVDQk3mjMg/oH+RlZm5zzuuIbLbqcU3eXtm5b5Yda3QLu/fiA7RmgfF0E3yflmmilF9amU8nJAfthtmp45Sw7+srAwejwcej0fYeGd1rdKeyWSQSqUclVO76orUY2uf1XVU9JIjNXrsWKvsntesXadlzQw4Zesb7acYdmExwfLtzVrnIuTRTEA9CsAGQvS8qZUtddGdUTlO7NIcNWA4a6VpU5AWpQAAv4BJREFUiqYxyC8dENn540VpnOCxld10ER4D+Y6LEV4YTRWR48rwZMa7Gf7pyQKvX6UyFTkrwpw3OW9Fz5iIzhU1fOV1RfuNx+OaZ621+KY1pnpzh9dPKpUyRbsIaNGhdZFIKpVCJpMxxQO53mGBNyXwdkZExi2R0D7zJpcbFkG3kjKmJnNG9Cagrd+UO5axWEzKNtHDV46rFq1G1kQmF3bvkKvRYGYeyN+BZ/1q0c7SltVoZxfdMDxEd2S15oHZtUouP2Z0OtPhbrfbED1AYcbSqPyofcucRJF1WnTtk9uFRrPIrOoOPXtN2Y8ReTGCo0jdRCIhZPsA6vRo8cKM3gT05xtvjgDGs5L0xlbERpa3GwwG4Xa7CzKWesDoYBeQ6YE8WASI22B6trHSLjRiU1rxE4oFjqc3MyEB7Eu9tbKlroxqqNWV4yT/mwd2Or0s5cHIjW7sQi5AjMe8S6OUYMduup4giPBNNP3DrNMrn6NaxrtI+pcRp5dn9IgEbuQPlLO60WjUlPFeqPRmtdQaNg+tOny8unr4Fzq9WSS9TK2uyOUgvLqA+fTmRCKh6cCI6nYeiKaMafGN9y2gvobwzn0CYoaskbmjpweUfDMbLDCTNmk2zT2dTuf0q3VxkhF7wIhzKpKeZ1S29ZxeEXpEgvo8UAZbfT5f0dOb9XSUyDotuvaZlQF5Xa1zjVZ0rrKfQqXE8rKRROoqA8Bm159EIsE9JmR0vmndwWHkokH2m5F+1NpVBmhLLb3ZTLDIiA1mNGhoZaf3Pe/06kV2jTi9oVDIlNNr1OBiZ6pEcZL/zQPRRUH0Qhajh9uN8hjQ3xmzkrYgOj56PGa8EOWbEUUox1WUf4FAgGtUswu5ROYKr18jypTHW8B+412tLqPRiGGpNi5sDmqNv94iKspzNnfltKsZ72ZAa/y15jH7mxlwdvPA7Dwz6ryZdXoDgQA8Ho+mzBm5yEptDeEd12C4iOArr6Pn9BY7WGBnXTV9ozZewWCQ+2SJEgfWllUdooajEadXbc4Uaiyt1NUbDyPyoxdcs2OdBsTtQh7Iadd6Ok9E54qOrZWghBFZi0ajyGQyhutaGR/5+sN7J94IPaJziGU3OdEPD4qlc/WgUHQ4pT9ZXXa3h9G6xQLHnywSiUyIRIHkYDW9WTlxtHCy0+m1GnHlAS9qqsdjPXoAfvTHaDqg6JlehpOVCzKM8k2OqzLVymjUnPFElLdmI7oMX3kd9n+R+W92t5a1byaVT2QhtBKhNrrTa2a3SwS0dKEVOqzygDfPRKPDRo+umLnERyvyblT+tdLorcgNTxcODg7mGYgs+GWEb0aDiSIGvxJYirId+sbKzqJZ2vWMQ7M7FXqpnaxfNSde1Jbggei6zQPRHX8z66feLp38bzP9MFzNyoDokTmretPuFGwj67PRuk6vIbz5ZlT+lf3wNl1E+WZ0vlkJsshxYk+C2mkzWKXDarYdYM3pZfxxuVwA7H8Vwwmw5SIrq5Fdo06vctfJaHqMqNJkOMn/5gFbPNUcZKdvbxZRzkaceMD6jmIoFJLOHtiR3qyHr9Xbmxk4tYjKgUV07VwYjRiw8gUsGo3qprqz9s0YaSJ8MyM3egETHv6A2I6VGUgksrtcHo/HVqND5PZmowaLCM165xkLsctlZ9DLityI6kIW/DKyO2g2JZbhIRp4Up5nZ+3pgZJvVpwss7SbMdpE9Jpc9nhn4kX6tSO9meFsRn6YzilkerMdtzeblQE7dIeILWR2vbMS0Da7Rjnp9KbTaUSj0byglx7P1S6y0sIxkUgI7/QasZFFN9/U6jJc7H6H1g46RNdyvWAka0/ertEXMYB/kZ1erUEzkt7MItfJZFKX2UqnyorxLuKIy//mQTGdNyfoYe2y9uT/FzWUjOCkl97q5E6vmUVUTaEzOpx0wOyoK09RBsQDGVZSa3h8UzptRowpvUCTEtR2+uxS0HoOuqgBpsUDo/MumUwiHo9LtHq9XgSDQV2a5U9g8Jx4wNpiZ2RdEDUKzDhG8t+1QLSuSCCmEMECs/hbrWvU6RXFXy5borePAvp6zcj6UypjqXSqtAxxI7aEFo/tDOoD9qU3s7o8m0SEHieCeuwMPKurdXxDCWbXKCt2lN4aopR/q+eo1frhPTtmph8eFENORcApW18JInrM5XLl3EKv9iyVCE7v2Z3eTCaDZDJpOBKqp6AA/fOmvCgp608PRFMEjBjVVgxXXltWo6ZW6QHU09rM8piXDljMHXI5riKpViI7bmZ5y9JmrCyMosEI5Q68aF2zOxMiu7VmjE6RaL0czKaOiQBzErVwNUuHlR0LpSHB/q1HM9O/egFNK9Fzo+uCFaOd4QtYS2+WX37Iq2t0553h4XRKrJJ2v1/9lnq9ulpyIzIGZtOb9XYqzOi1RCKRcx6N5xzp9WvW4DM7lrFYLOdiMdavk0EjO4PTQOmkN2sFqc2ud8pdMyMXJ5ldo6zYn3q2ixInrSemrNhISr5pHd8oVJBF+VIGw8/u9GYrZ+HtSm+uqKiQUpSN+lNms12KBaadXvnbYFYju4nE8JkdQGynTLlgsN/1QDRFgNHDDB0tnNi3DCeeknXqQiaj6c0i9ABZPimvR2e/6wGPx0B+5F2Ub6KLtpHLNOS4iqRayXExahTw+mR9AcPR+kKkN5sNFvH4FIlENJ/yAqwbU3o8V7sAioc/4MxOr9xJ5M0/tkirlQHO8EBpSLB/i+4caMmTXTtVWnW1aFf7NhAIcG+ntyI3vMwiXl2GYzAYFOabkRTfRCJhyhDn6RuzhrjeDoyROWNnerNyPqnhqIYv+5uB/C1XI0F9I9kOVsZSxGE2YkuI6Gm9y/aMpGmamQe8uiIOv1F6eDrKqLwUMiOD8VyNHq31R48XavPNqPzrrfVG+GbU1jPruCovFtPCyQxYDRYZ0Z96dyLw7HUrWZ0iqdHFAtNOL2OellI1msbGW3x4YHaRU6vLM971HDLetyKLgqjxZnfKgxkngcdjs4LAfufhZOb2XiUYVSBauOrN0UQi92p/ESdB2SfrS69ftbrKVD6zjqvZukZSCPUWXK2gh9nFWgnhcFh6oF3epx0LmHz81YwsPcfVCR6YnWdy3W53qirbqTIjc3o4a2ULKXkRCoXgcrkszX01feYE3+w0pq3UVaOdOYlO0K43D9SCrCLzXD5n5G3rBbKs0GMk8MPrk32vV9dM0Mis01uI25uVxzVYXTWHX88B09K5qVSq4LKmzKpgb8qK6mu98VEbW3lqq1rg1I5Ag9frVe3H6LwuRFqwlbEUAadsfV4/RvUY+90MTplMBtFoVLduscAWp9dqerPW4sMDtR0rM2maeruQRtKb7XJ6rUZ/2OKgbJed6dOjB1Dnk9mUB/a7EidAfffZSb4Bw7eaGp2jyqv9RWRBDryFRDRqFw6HUVZWBq/XC2DYeLcSjLAiN6K7KVrGVDAYhNfrNSQ3ZoI4ZqOZeqA3/lbosFJXbdHWo5nJoV5qp5nouXLnUKuuWflnfyvxBYZ5YSS7wqg+c5JvZnafrOobOV8DgQC8Xm9ev8qUeDtp1zMOeU4U+10LlMeq5G07OZY8p8roWFpN8VX71swunVWbxWyWE/u33Tu9PB4bdVztkHHRjAyra4jWhpNZfa1ly/H6McI3I/NNeXM9a9fpsRQBo3JjRd84kSmjhpNo3WKBbU6vlYsejDq9TuxY8aL2ok6inWdT9c5FKUFtwefRY4XHVqM/ajgB9gQLzNzebCSiq+SffGyMOr28hcTIwi/H18iNgnamN4salnK+Kd/nUzpXRs7UKVO6jB6J8PvFzzXqgZ6TKGKAsXPdWjzglbndbtWLk6ymN6vhXMidKlFdqKffBgZyj2sYxdnMTq/exWJGcLBiiBdC34gGwZW0JxIJQwENUTuD/S7arpwGHj2i/Yoc+bBjLEUCWWbtDjVdy+TH6NlnHg1mnBAjusPKxVxWAkxWsyrYayhG6trh9PLsGqP0FKMfvXUhFovlvJTB2nV6LEXAqK3P0zciF/gavWvBanoz+71UwbGd3kwmI7zIlapDJoqT3HA1+mQJry0rC4hTTq8dO4pqhpJWmpFTfJPjYzUwI2Igme2XV1dez0pdJ4JFSrCym6K3iGqlZSlBGRyy8/kBI3Qob6e3ygP5XQgixpsRI0qrX7Vgkd5ZHrvS5bS+ldPAwE65YcayUcdP7WIxp1PtCqFvzDq9gP4RCT2nSi2Lw06nV5QeItJN7SvUWJqVH2VwUs4LtZ1g0X5SqVTOEzgMfxHj3YjDLxpo5NlrxZI15RolWtdOp1dZbmd6s55+tqMfJRRrLEWA0WHkbLIZ/anHLyf8Kbt2w50A006v3u4Gu+5aZDGKx+OaxpsSrEQmROtqGetKUC4Kdt7eLPJ8kyg9VnhsZUdRCydAe4fcyJkkNf5r4SnHj/2bZ7xrzQfWnyiu4XBYSulV9iuCsxxfVtdMMILx3en0ZjucXjWZMnIPgFm+6YER+VfiatXpNWNIiKbLqdGjJjciZ3l4u45q42Bmp4rNBx7OZsdfWdftdnP5qKcH1PgmsjtoZfcpHA7D6/VK84TVtVPfyO0B3pxhQXAz67ae0aZ0FkT1mtbuk0j2RiKRMEWP1bGU98X+7WSmhBUdpQRmoJvJODJLu/JiOzP6zWhGhtldYjM6SunEa62VWrv08rbkOLlcLkmmtHDSyxbQsj/D4TA8Ho+UWanXjxFbC+Af7RAN0JZCejMLFjmhP5V2odazVEr4l0xv1lvgjexCqhksShCNvIvU1cJJfrOjyO3NehfZGL29GchOdjVQSzNUo8cKj1nbTuz0al04IRoJk+96iUTN5PgoceUZ71q7anqRcF6/dvGW1TWjoNxuN8rLyx2N6Fk1prRkyojTazaKLgJ6dLBFmoernqMkwgMtQ0Ke/gwYv72Z16+a3MjL1MBoRJ/hkMlkNHeCtOST9WvXTq9aXT09oMU3vWi91ZTYyspK6UkKVtdOfaM3Z1gQ3MycMWq0ieo15RrP001OyIDWWIoEuYFhw5TV1drtNHMRnBmnVyTgrOaEyGlTA7M7vUDuxXZ69FgJSgwMDOT0y9opxE6vmh2l5SSK6M3y8nK43cOugp6+1ssGUOunoqIiT0dpBTSMXBqqlLV0Oo1YLCZU1+mdXiPBIrP608jtzezCsZPpzQqwssCrOWSiu5BmFzm1M1UA/1ISMzu9ViOhekpIDoODgyCigvCYtW1GeatF3hOJBDweDzwej+ZuntFINe/JEh5ozVG1+aBlIImOsZ28NVKX16+R81RWDVb2t7wMMJc2Z0ROePgzGgrh9NrBA6cNCTno7XLZYfDzDAmlwW8ksCESAHA60GTGmBYNHhUjbdJIXSdp1zNy1XbIROa5WbnUCuqbHUvR1GhRp8pIINip4CQPf4azHH/APN8GBwfz1nvRILWRuSoalHA6uKYEpq9ZNofRdVRLxxrRHVr2muhapdcPERmyp41svimhlJxeK2uu0aAha1uvXa1Nt/dkerNScagdTBe99dKIQ2Y2VU0LJytOIiszo3SUYCStuhg8NrKzwIClA6rxGEAeb0SewNCiT/lkCQ/U0lcYDVrtW7nIyk7esrpWjHe9uixYJO9XNAVGJFjAjBOttCxe9Nrv98Pj8cDtdgstGk6nN5vZkdXToyKGhNbNm2bGW28+a8mN2dROXuRdS+Z4OOsZVWZlTnS9scI3EQPM4/FIYy3HXyQ12kqwq9i0y8c2mUzm0Ws2oGFFLo3YEkpQkwFGixYYWTuMHA8QcRLV9JuRftR23uRlaqA1h1gmgRInrXWHPWEnMldFgxJWjx+ZTW/2+/1wuVx59Og5iXo6VhQnPXtNxLkW6SedToOILDmLonKqdgwtHA7b8g6tXOaUd33wcJHjLv+3HUFDs8GWVCplSpaLCY5dZGUmvdnpXRueAGhdSuL3+6Wb9LRwYgpWTekYXXxEDb1i8FhPwFKpFGKxmPDugJrTK/IEhhyMBAsY2JWNoGcg8fp1eteJB2adbR6fPB4PQqGQkMKVG1NGz83JjV3lBVBqc4cHTqY3G6GD/S0vc7lcUraDEYOS8dbj8cDlcgmfYxVNlzO6EyIvU4NwOPcJHK26RgOPduwk8MDsTq/oDaXyMjVgY6nctQfyDX4e/sp5UEq73CLGlVyH8N5gNjvPRXW63TLAcDRaV2vtUMuUMLJ+8o4/yXcS9e4sMLPzZiRY4Ha7c859imbqKelRs9dYP/I33eU4igT1Cp3FpbUW6jmJenpTFCc9e03EubZDxypBK8hidixTqZSQfakHWoEZHi6sfzku8jK9fvx+vxSckIPVTUQ5Tj6fD4FA4F9jp9fKomDEuDHiVCmBp3DVjHd59Mzn8wkZXIBxpaPWlggveDz2+/lPsRhx4lnbdgUW2N9qPGZ4GzE6lGDUqVfDVXQRtYKrEwujkw6z1pjakUKoliGhrKs8lyWfO2YDDXY4vXrjrzd3tAJmyWQyp125YStivPFo5qUDGqHHygKshhOvrp1O73shvVmUb0p4r6Q32x3QsKLTraY3K50qq/KTyWQ0MyVEzsSb1VFawUke/nJ65f8WlQFe4MdokForYGpF1rTmolOp0VbsKLOyZTTTwy4ZNmprMTyVZ+BZn1pgZR6IgJH1zYq+cUp/WrELiwmOXWSllf7DExi1CyWUwGuX/W0mvZn9zRMuho/egXm50lF+KxfSQCCguyiYcXrl9Kg9aM7oUTOQlWB1V9Aoj9WUtZnbm+X1tSAcDkuRKTmecjqUuOoZSCKXK2jx1uht3fK6WqAVLBJJqWP9GO3XLmNKrS4gttNrNnVMBPTGX0u/acmAMnoO5F5sZ8V407o4SY8eq+nNvHHg1dWSOR7OWmuIWblheBlJ8VW7zEXtYjGGnxbwxtLK7pNVfWOGdjnOABAMBuHxeCzpECt6TWvNMGPfWDGmraY3K/uVp5taPROvpWfkQX3Wj9bRIit8E6XdCD1qc5WXGWEFR9GLk6ykNwPq9qfWBVMsW4h3TEgNp1gslrcWsX7UnF75G8QiPOcd3zBqFw4M5J+BN5LeLLpWmQGrtj57RtSqDZZMJi1tIppdV4sFjj1ZxIuwMOFSMsTMOVanIxMMJ0ajiMHFvuWd9zRivIkuVLzojx30pNPpvLf0WLtmUh5EcFKmTSmfwBBxetXSaLVwFY3k6T1ZJL+QS0QRq6XNOLVjqTYuZtOb2d9Wz83pGVNqY6pnuCjByfRmZfRZ7xIPNTr0Aj/y3/TqAuo0A9oLvvJGaV4qmnKnSvSMtxGcjKwLym/Nps8pwUhmEetT7aygkZ0qJVgxxHmGa0VF9oyiSGq0EdrVZICnQ0SewdMLfhkJsipBmTZt5OgFjx6Px4OysjLHx1JNfuS6mBcwM3smXkRHGdmxkr+vDogb76K0G6VHRFdYTW9mZVpgJb1Zz/5kvFCeidezC7X0tTxwynuyTC0riZc5qcU3uY4yaheq6T5Gm15dp3Z69fQaDxd5/4DYBb4s+KVmQ6j5EGbTm9nf/7LpzezdMAZskTNy/kIJRhw9tbqikWstxaj1rZVFwWr0BxBLJdaih3c9OvvbSR5r8Y13FoHXlgjf5Lg6sYiacXqtRB+NBCPM1NVSjHbs9ALG5cYIzzOZDCKRiGPKWU8X6gVMnOKBkV1VI/Tw5IZlTNiZMmZEpvW+tfPcEvubpyO0gl88vrFggRUDTER+ndY3InMGyA2CMzy08FceD5L3JW/XSkCOnYnXkj0ePeyMqxF6APsdI95Y2ml3GNXTWrbFwED+EzjMeLeTb1bWa7PBQr26Vs4Da2VkaK0hyuANoH1MyIgzKqdHOQ+IKO9tZDt4znPi9S6AKsZY6oGeXuPhonwvmeGjhQsv+CUSNDRi6//LpTfLIzty4C2WgHqaq98vdt7UjvRmkUEyYlTb6fTqPeLNo4dnSFihx4jjqoaTVR4b4Rt7osio08tzCrxeL4LBoCquvIs+jDq9ZiP9ajvwVndrReuaUYxafGNzHcjf6VfqF/lvyrp6PGdPezmVhiPy1q6IASbCA2W5Gv8A88Y161ftrDVPbgBx/WAkvVmNdh7OWvKvxotkMml6vdHTZyI3oYo+t2clUGZ2HqgFi3ip0SJB8FAolBMEZ3iIzEW1eWBFr7Hx4h2v0LNveLv2ov1aCWBo7VzJ+1XqJDlNPNCyO5R6mudUifajZheKGtmiukP5NrrauiOq36xkVVhNp9XLALMreKw2z0XocbIfLeca0E+nV8oaq+vkWOqBXG5Ej3Xy9I2eDeOk/rSSZVNMsOz06qVyKUHL+XG73fB6vUJGiNlBUt7+p4cTUDinV3lxjda3AP9KdTvosUMQCun06kWztHA1OkdFIsdmU5QBbaNHawdez3i3sltrJY1Fy5iya7G2Op+tPj+g5yTauYtSiB0LLWeA1RWVGyVo7XbK6yqfwGB46eHM+1bruIayXyXYGSi1yje705tZu2oQjUbz3oFndZUXJ4k4vWZo13OqrBheRmTP6bFUC7YqwezOm/w3HpgN6hrtR41vouuQsq7e6xtm9KbVoIQZPZNOpzE4OGhJXwPFW0Os9iPKNzPzTS3IUsz0ZrvkxkjQkNfPyfRmA5BIJODz+eB2uw0vCmoXlgDiu5BmHDK22PCiJVZwUp5N5UVC1Xas5GD0HI4RgTZCjxWn12h6s+hFVvLflGCEx0pc1RZgI5fqGOEtYH7XRou38nK1Pnl1RRQUu4BHGSxyMr2Zl5ZlNtCgNZ8zmYzu24t6IHcSlfIvP7ujdmGOWR7onccysqvKowdQv+jFrMEvGnlnutDoRVa8bCEtx4jRowZG0mflesAI38ymxIqmRptNb1bTN1pOltZFVmZoN2u0ieg1rXmu5/RqZbKZGUuGs5mgkd7Om90XWWmdGdXrx4hdKFKXvb4hpz2dTiOTyQjRIzpXRYMSZlNi2blVq06v3kWq8t/Yv/V2vdXmm5r8m7GRjDrXove3aOkdp8ZSBHhyo0eHGX2jZ0NYyeILh8N5d3uI1i0mWHJ69SJERtObAf1LabQMGDsXGyM42RUJdTJqaoQeLecqmUzqOhjKiyoAsZ0RI+mtynbYtyJ8k+MqmmolahTo8ZalDJrZtdFy3qzUFd0pMpPKZ9bptRo5loNesMCOqK0aLrwLuUSNgUJFz5VgxpkGxHSw6OJtVKblgQclznbIDW/uJBIJw+NhNrVT1OBXAhGZngdqfNNysrQyv8zQrjcPrOg1vfP0Pp/PkWwHrXXbTHozL1PCiPwYcRK1dJTo5Zt2pjcDxnWH03JqZp2xEtC2snlgxo4X3YEVzRZgOspserPZIIuZsWSB1ffKTq8ddqESRPRYMcHS7c1GDS6Az0wjNwsbcaqUoLVDwTsTIoqTUuno3d6s5jSaWUCc4jFrR9muvFwLJ56DpMVjrR1y0WCBHbc36+HKu9rfCG+1UpQB87tOjB6jdXnGuxLMRuftMKbsuL3ZynwWAaM7IYW4vZmIhFOJefSo6TNW126DX1nXiPyz79XGQE9uRDIk1OoqbzA1uyaaDRbo8VztPLvd+iYej+c4iUbmjJWdXiNBCV7bavPczK22IvSwunYGPxhv9JwDEbvD7uCkCP6AvZsWRukRnat6OKqdgRfRuVbWKCvrj17gR+05GyVOetl2epdtpdNpW/pRgpasOZmRoQeFdnrN3N48ODio+ba3k/xxEmzb6bWyyOm1JQctp0rEeDez+6yHk12LglFDTysiaYXHVndGzPLYLN+MKhAGoqkv8rPWrB+zF1kZ2T1Rq2s2vVnt9j+9fs2mCMnHhaWdai24RtLm7AziWI1KGr09U4sOow6zVrAtlUqpXpwkmt5s1OC3y+k1YrTr4awnN2aCRby5o6djraTamXUandjlFqE9kUjknJW3Q4fw5gE7esELguvRp7f+6Nk3ouucEswai5lMRji7y4gtYURHiQSn9WyLYgTM7ApoiASYRIISPNpYH8o+5eU80JrHVo4JqeHEnpiysrsuEpS0msHA6prVuVYCW3pgl/Nu5niIcox5t9Dzgro8nP5lnV7RB74B6zcLay02rFyrruggGcHJbufNyO3NogJthJ5wmH89uqhzpcZjZVDCKN/MRqq1cBWJuMvPWgP8czNGgjZAviHJHEOnosFsXHjn2UXqmtmZkCt23vt8WjpEZBE1eg9AMdKbeY6/GR4YPQ+sNlfYb2aNKNZ2IdObjZxJ5OFsVW60dKHSIDPDN73xUEtRZniY0RkiZxSNBOiUtCufLLFDh/DmgRW9Jur0MrmUO/FOOG968sPOfYrw0YgtoRecFNFvxbq9GVDXHWZTes3OVbUgEftNJLhmJqBt17N3yvVHDSfe+9pGnV6RoCQ7vlGM9GZ2sZjZwJYeFIoOvX7U9KfVDa73ZHqzXmTXqINp5JIltXZZuRoYidyYdXqNGu/KdkS/1aPHKo+Vb+mxdlm5GZyUde1aTI0ayAxEd0/k7avhavWSMF6/SrCa3mxWbrT4FIvFVN9PVvKNJxsi51mNOnw8/IH8p71EaBcBOR1a8s+7nd5KwEzEYLHq9PICmlZ2qnjpf7y6RnShPI2eh7PV9GZRo0BPD5jdrY3FYkin06YMcTXDVaRfI/pGOWfYbwzM0i5qtPHaVeLIa1vE6eU58cVIbzaydpgNtqsFJ83eO8CjwYzDrxX40dIdaoFGNX2tF2Ays1vLw1G0rh3zmP3uZODUSJBayXMz/dgRZDFzsRgPJzNglA47nF7e+Gtl4LByMzjppUYXEyw5vXJFyIvsiihn+e2mgNglS1qLnN4gqUUm4vF43qPdWjdxykE0vdHIhUzs7KjZ25sHBvLfURTlsRVDwshOvHIOmb3IymhaOAPRlDu5gmL9iDofvD4BvjIV2bWxsgOvNlf06uopRjWcjfBNS25EIsd6cqL2tBejzwoocWHvRstx1nKK1fhj5fZmvV0HszsHgLX0P/adXl053zweD1wul5DRzsNZjReBQABer9dSsEgtxdfoDcZ2OTtG6prtV412Of/ZbwyspjdrnUkzaw9ope3q0aO1zpndtRcNYBhZs4zaHYCxTCajAWcrxnsqlTLsgKm9waym39RSlEVw1As0mpFT5rjr8UYv6GrmIkU93aG3uy6aLWAkQMtzrs2k04vuvJsNbOmBUTrMpjeL3N6sZRdaWRvZel9qYNtOL/uNQW9vb94TJwBQVlaG/v5+6W92uylrw+Vy5ZQroaurK+/8DjDM6L6+PtW6J06c4P7OjOHu7m7pNzl9gPbgd3V1SW8WKgW6q6sLQDZVw8iOJRHB6/Wio6OD+y0Roa2tjfvGaHl5OTKZTM6kU9KjJSidnZ15jhUwbDTK+aSEpqYm7u+s7/b2di5OsVgMvb29Ej28aK3a0zK9vb3Sv9lY6jm9mUwG4XCYSycAdHR0cHFh/1dbRBktatDT0wOA74x4vV4cP35ctW5jYyOCwWDerpPP54PH41HlPavr8Xjyfmd4yHmohO7ubq4ss3FRm6NM4bIxMWJ8MD6xJ9HY97y68Xhcc052dHTk7fICwzpDq64I8HQhC6CxuaDGA7leUZYxvHi6g11UJV/U5HXb2toAgDtubrdbc650dHRIu/dKJx4A+vv7uTo4GAxqziOm13ljEQwG8/Qv61/tBl3et+z/8m8ZrUpeuFwuBINBNDY2quKspwvZPGV4qOHAxktN33R2dqq+F93Z2ZlDnxyUfFNCa2srAHDHy+PxaOqbpqYmKUNBDuyGZra2AebtAbfbjXA4nBNwlgPT+fKnMeTtdnZ2cmnT02vpdBrxeDxn7mjpJnm/mUwmh3Y5uFwu9PX1qe5y9PX1gYi4ujgYDObMJ15dgG+Iu1yuHJk2sgOrlB+v16sazInH4wiHw9y1kX2jdQ6wr6+PO15AVpYymQy3zKzuYP8XXXcY3bx+gGF54gGba7y1vaysTJJjHrAyXr/l5eWadeX8VltfRIPHSplVo8fj8eToTTnPmb6Qy57ZfkKhUI59oVwXlP3IIZFIIBKJ5OkvBnIbTwlsvvFkTU/nioCcDmYbqI0xEaGzszPP7gOy+rO/v19V3+jZUWp2IdPVWvNdzS5kc1jLjysqkEk4/fTTaezYsURE9NOf/pQA0N69e4mI6NChQwSA5s6dm1dv6dKlBIB2795NRERHjx4lAPQf//EfRNkZSFpoqZX/5S9/IQD0qU99ilsvmUwSAAoEAnllH/3oRwkA/eMf/yAiomg0Sn6/nz72sY8ZxukDH/gABYNBisfjRER07rnnEgB65ZVXaP/+/QSAfvrTn3LbueeeewgAPfPMM9TU1EQAaNq0adxvo9EoAaCKioq8suuuu44A0IMPPkhERJFIhLxer8QbPXrcbje3fOPGjQSAzjzzTCFeyOG//uu/CADdcsstRESUyWSotraWzj33XCIiqqioIAAUjUaJiOhrX/saAaC+vj666667CIA0Hkq46aabCAD9/ve/p4GBAXK5XHTTTTep4khE9PLLLxMAOv/88/PKxo0bRwCos7Mzh+6//OUvlMlkqKqqis477zzp+xkzZtCsWbOIiOjUU08lALR//35uvxdeeCEBoBdffDGvTG9cxo8fn4MXA725otX2448/TgDo6quv5tbLZDKqdf/f//t/BIB++ctfcuv+6le/IgD01a9+lVKpFJWXl9MVV1whlU+ePJkWLlxIRESf+tSnyOv1UiQSISKia6+9VprD7e3tBIBuvfVWIiJKJBJUVlYm4azHt+rqagIgtc3g8OHDBIDmzZunWlcEVqxYQePGjSMiov/+7/8mAHTgwAEiIvrP//xPAkDf/e53KZFIUDAYpA9+8INSXTnu119/Pfn9fkkGLr74YkkfHDlyJEdPdnR0EAAaP348EREtX75c+jdRlp9szirBiD77wQ9+QACosbGRiIh27dpFAGjZsmV59ebMmUMA6PDhw9x2f/vb3xIA+uIXv5hX5vF4CABlMhkiIrr33nsJAD333HMUjUbJ6/XSDTfcwG13x44dBIB+/etfExFRfX09rVq1SiqfNWsWAaCjR4/m1Ovt7SUANHr0aFVeuFwuLq/eeOMNAkDnnHNODv3Tp08nIqKbb76ZAFB3dzcREb355psEgM4+++y8thoaGggAtbW1cXH48Y9/TADo29/+dl6Z3lheeumlBIDWr19vuO7EiRO5eLW1tREAmjhxovTbeeedRzU1NURE9Mc//pEA0FtvvZXzfUNDQ14fZ511FgGg119/nYsDW5v/+c9/SuP1ta99TZcGPb22fft2AkArVqwgIqJp06bR/PnzpfIzzzyT6urqiIjo17/+NQGgbdu2ERFRc3MzAaCpU6fmtbty5UoCQFu2bOH2+9BDDxEAuuaaa/LKqqqqCAANDg5y6375y18mAPTb3/42r0zJB6aH9u3bJ+H7/e9/n9vuunXrCAA98sgj1NXVRQAk246IaMKECbR8+XIiGp6r7e3tRDSs3w4fPkwvvPACAaD3ve993H6Y/XPqqafmlc2fPz9Hbyrh9ttvJwD0mc98Jq/M7/cTAEqlUkRE9MADDxAAWrduHcXjcfL7/fSRj3xE+n7MmDF0xhlnEFG+vfaHP/yBAHDtB6WOUsKHP/xhAkD33ntvXpmerKnpqHA4TACotraWW4+tz263m4iIrrzySiovL6dkMklERKtWrSIAtHnzZmnO/+pXvyIiooGBAfJ4PPS5z32OiIjmzZtHU6ZMkdq++uqrCQA9/vjjuvR84xvfkOy1O++8M8deC4fD5Ha76Qtf+AIREc2dO5dOOeUUqe7ll19OAOipp57S7YfJQDgcpjvuuIMA0I033sjlzYsvvkgAcmw1BmPGjMnRz0r4/ve/n7PeauFkBn73u99JekKpi5Rw4sQJAkCTJk3KK1u9ejUBoE2bNnHrXn/99QSA7rnnHuru7s5bR9Roue+++whAjq0iB+W8k8NXvvIVAkD/+7//y61bbDA9cqFQSGLWJz/5SQJAL7zwAhERpdNpWrp0KT3wwAN59R577DFatGiRJJTMoWDM/chHPkLf/OY3Vfu98cYb6fOf/3ze711dXTRnzhx6++23Vet++tOfpn/+8595vx85coTOPfdcySju7OwkAJJBfsstt9D111+v2u7XvvY1+sMf/kBEWYFmwk9E9M4779Cll15K6XSaNm3aRADouuuu47bzve99jwDQ3/72NyIi+tCHPsQ1Vhh84hOf4PJ406ZNNGfOHOrp6SGiYaFhQvX1r39d1YFk9F511VV5v8fjcVq8eDE99thjqnW//e1vc52g3t5eOvfcc6mlpYWIiFKpVI7Bee+99+YELJgx1NjYSD09PTR37lxVwT569Cidd955NDAwIBlYbJFWg0gkQvPnz+c6n+vWraMPfehD0t/MAL/55pspnU4TAKqvr5fK5cL/8MMP0/LlyymdTnP7ffrpp+nUU0+lWCyWV/bNb35TMtx58OCDD9LHP/5xbtkHP/hBzXH5yU9+IgUc5DAwMEDz58+nl156SbXuFVdcwTWYWltbae3atdI8U0JTUxPNnj2b9u7dS7FYLM/wBUB+v5+Iso4jADpx4gQREe3evZvOO+88isfjdPDgQQJAF1xwARER9ff3EwCaOXMmEWUNlS996UuatF944YV5v6fTaVq5ciXdeeedqnVFoKysTNKFN9xwAwGQ+Hn06FGaM2cOHTlyhAYGBgiA5BgRZWX83/7t34hoOGDS1dVFRERbt26liy66iJLJJG3bto0A0JVXXinVlY95eXl5zuJ18OBBWrt2LdeA/uEPf6hqABMR/fznP6ebb76ZiIYDaEz2EokELVq0iJ544om8evfeey8tXrxYde43NTXRzJkzadeuXXll//Ef/0EXXXSR9Pett95KAOjOO++UFusFCxZw233qqacIgGS8AaDKykqpfP369aqL9yc/+Umukcrglltuofe///15v8fj8Tw+yB3kiy66iADQnj17iIgoFovR/PnzacOGDVz81dYEoux6tHbtWuro6Mgru/XWW1UdO6LcOaSEm2++WTVgRZTVZbx1IpPJ0FlnnUW///3vpd9GjRolOQTf+ta3CADdf//90vdnnHEG/fWvf81ra9u2bar4EWXXsnnz5lFvby81NjYSADrrrLOk8i9/+ctcHPX0WiaTocsuu0ya1wDI5XJJ5cwBJSL64he/SADoySeflMrf//73c8fynXfeoUsuuURVBmKxGJ1//vl08ODBvLJf/vKXObQpYfv27TRnzhxucOQnP/mJFBQkyjpzTG737NlDAOjiiy/mtvs///M/kjOUyWRo7dq1OWMLgEKhEBHlr43MMdqyZQvFYjFatGgRly9E2TV/8eLF9Mgjj+SVvfrqq3TllVeqOpQnTpygmTNnSoEHJe1yR/u2224jAPTnP/+Z+vr6CADNnj2biIaN9aqqKiLKt9daW1tp9uzZXB31t7/9jWt7MnjjjTdo7ty51Nvbm1f2qU99StJPPPjrX/9KZ5xxBpf+c889V3WjhCjrNP7gBz8gomzwBgANDAwQEdETTzxBS5cupWQyKQX6WfCwpaWFAEgBAJ/Pl7OGvPDCCzR37lypLTnccsst9JOf/ET6+8wzzyQAdPz4cRocHKRzzz1XCmCwoDzbLGHBAwYbNmygBQsWcNeqD33oQ/SVr3xF+ps58c3NzTQ4OEjnnXceHTlyhMuXRCJB73vf+2jHjh15ZU888QR9+MMf5tYjIjpw4ADNmjWLjh07llf27W9/m6699lrVuiLAgtLPPvssZTIZuvLKK+m1115T/f79738/Nyjw7rvv0oUXXqiqb/bt20cXXHABxWIxKXC+du1aqfxHP/oRfec738mrF4/H6cILL5TWLx5ceumldNttt+X9vnv3bpoxY4YUKC81MO30bt++XXIY4vG45KiZgTvvvFPa3SgVuP/++yUD3Ai0trZylTqDv/3tb1wlQpRdFO644w5VxW8FHnjgAcmYLhVYt24dd/EnIuru7paMJqPAdgftgkwmQ3/+85+lSPJzzz2Xs5P7xhtv0ObNm23r770KTz75ZM4u4EsvvUTbt28nomzQihfAYXDXXXflONePPfaYFEApNmzdulUyrvV04WOPPcZdSImyO2IPPfSQat277rqLwuEwt2zXrl2qxqYViEajloMCZiCVStGf//xnSRc++uij1Nraqvr9X/7yF0okEkSUjfDzjFanYdOmTZIT1d/fXxS+FQv27t1LzzzzDBE5u47df//9qrszVmDjxo20ceNG6e+dO3dK8pRIJLgOeylDJBLJCfD/85//lBw7JaTTafrTn/6kOl4bNmzgOg5E2V083kZCMSGdTtPtt98u0fPII4/kGODPPvusZMzr2WsjDY4fP65Jz5133pkTcL/nnnsku3D79u306quvmuq3s7OT7rnnHtXye++9V1q/N2/ebKkfLTthpEAsFqM77rij4P3efffdjujPkQQuIpWk9pNwEk7CSTgJJ+EknISTcBJOwkk4CSdhhIPpi6xOwkk4CSfhJJyEk3ASTsJJOAkn4SSchFIHr/4n2VvF2E1tRITGxkYMDAxg9+7duO/ee5BKDt8G5vP5pFvGwgMRhMP9YHeOJVMpUIbg9ebfFgYAPq8PY8aOQX94AOH+frhdABQ3lhEREskkPG5PTjvJZAoZysAFV863DBeXywWX241UKgV5ixkiuAC4sp1lv1Pg5XK74fF4hm6YzG0/k0nnfu9ySf3SUNv+QAButxsulxsuV7ZeMplCKjV8Y2UoFJJwJSJEo9Ghm+VI6pO1m8lkb3bO/uyC2+WS+ETZlPXh7wF4vW7p72QqDbd7mG9er1e63S6ZSsENgkfltjuJ/4kECBjqV8bLTGYI3SGeQ1HmdsPtcufdmJfOZOD2eJElI7/vdDoFNwC3m7WYy2PWnssF+P0BeDzD9MbjcbiI4Pa4MWnSJAQCQfT19aOt/QQoM4yHvD24XAj4/XC7PUNjnJFoSKZSYGgEy8pQW1MjtREeGEAsFhum2+XKu3EvnckglczejOty584lOVtcCgYSEQj57bEyOQ3KGZzJpOF2ZW9cdCnqpTMZuN3uHLlVtp0YuiFYWS6XrwwILpdXoomNSzBYhvHjxiGVSkk3AldUViDg9+PAwYNDtGbnkSSrcEk8d7lciMdjSGcyUMoBALhdgBskMS1feod4MHQbutpNji6XC2PHjs25Xff0M1bhj3/8Y853Sl14/PhxRCIR/P3vf8f+fftyeNPT24NUMiHhJOdfOp1GKpMZpl1BGxsbl8udR1cmk4HLnf0l+70beWQPzZc8PmTSOTLmkumrTCYDz9A4qPGJ4ZjOUPZdT3d+H8lkEi4AvqHbIpkcen35NwGz8mAggLq6Ook3arf51lRX44tf/IJ006fL5cK3vvH1vNvoiQgutxuZdDqrr4gkHsnnD5M7t8sNj4c/d8rLy+H1BRCJhCWOEgG1o0YhGAxK+jyTSaOnpwcelwu1tbVSf6l0Bp0dHSDiz2E21wnElTFQVve5XC64FfoxmR5ef9xud0676XRGWm9445TVG648XZMhgluma9xud57eIACh8nKMrq9HIplEJp1BPJFAuL8PgEyvwoVMOi1bxRTy63ajLBQCiDA4OCgt93J9mMkQXC6SbosHsuNeW1sLfyCI9rY2EGVyeJdMZd9ulv+Wo+PhQiAYgNvlQoYIJLs1OJVKIT2kq3w+H7xer1TX7XYjQ4RYLDa0vrry5xOTPM5Yul0uuD0eZODKK8+k03AD8Pt93HXQ6/UgOvSkTk69TEZqy+/zwe3x5NADZGXxkzd+ChdeeCH6+/vR09OD3/72t9n1Uc63ZBIDAwPo6+mWxozRl0qnpefDgHyVA2TH0+vzIZ1KydZrIJ5I5ugjt8uVM99dcMEfCCAWT3D1FuOPx0VD/BnmNwDU19XB5/cjnc7k2FWpVAqnLlyEs846K+dd+UgkgkcfeRiDEXZ7fvZ94shgBN1d3SD5hB36ZyAQhNeXNZkjg1G4huZ5JkOyNdYr2R8MyssrMHbsGAnf441N0vxKp9NIpHPtVO/QPHcBqKmtRd2ouiFakmhqbERGtt5TJoMMEdKpJLxer3QTr8vlQmVlpSQzSluJiOB2u3HVVVchmUziuQ0bZDrXhY7OTsTjcWnOKudqMBBAPB4fWpeHgfXBPvd5vPD5fchkMkglE3AP2US1tbUIBIPwD+EXi8XQ3d2T0086nc6unzydqPi/2+WCckbmyiLyyrJrHuD1uIfqD4Pb48H48ePR3tGRJ0sVlZUYM3o0eFA7qg7/+Oc/MWnSJOm3O+64AzfffLNk/8j7JyJEBqMgRTtynQIAlMlk1wC4ctcxysVNro8k+j1ekLIDDI+Vx0VSXQbpTAYej3u4Tw5U19QiMjiIDKdtBjW1tdK6zmDKpEl46KEHua8RFAJ005sjkQjqR49GTOW5GLcL+MSK8Wjtj8PtciGWzGB8lR/98TTeOd6PwRRh2dR6JNMZvH6gHV63C6tOqUNNyI9oIg2vJ7vosMXH63bjzUOdiCRSOHNGHcr8Hgz5IUikMmgPx/HOsT68f8U01JYH0NozCLcb2HigHfFkCufNqUO5P+tAedwuxJMZEAiVQS8e2HwClWUBrD11EnweNxo7w9jV2IXm7gguOm02kqk0aitCGIwn4PV4cvB6atNezJ06AafNnw6/14OjrZ14dcteRONJzB5fhXkN1agIeOFyueBxu9AfTeChd5ryFiglXH/WPAzGU6guDyDg9aIs4MXxjj48unE/VkyrQ0Nt2VC7WXpiyQweeKcRkyZPwaxZszBq1CgMDg5KC3NTUxM2bdqU08faBRPhdrkwEEvgrQNtmDFnPsaMHY/qmlpEo8N1t727CdG+TqyYMRa15X4MJlLwygwpIkIsmcbzO5uxeuZYnDKuEj6PG8e7Iqgu8yOTyeDhd45hzfwpOGVcLXxeN4539CGdyeD5rUckfK48exlGVZXD7/Xg2IkuPP3mdoyZOBVjJ01HeVUtErFBeDxeif87Nz6P2Q2jcNqcKUilMwj6fYgnk0inCfe/8A6iiZSSrTkwqSaAeePKEfRlF6NtzQNoG0jiQyunIJUmBH1uxFMZEICNBztxoG3YgPa4gLRiCNcsmIqAz4vaijIMxpPwerKG0MvbD6O8LIj50yagtjKEKGceNbf3YPP+47jhA1fA5/XC5/PhWFML+vrDeP2drfjON7+K1hNt8LKy442oqa5GdVUl7rjrXowePxGLVqyB1+fHiaZjqKyuQXllFdpbm/DGhvWYMm8pJs8+FR6vD12txxGqrMGxPVvQ23wEHz17rkTDkfY+tHZHsLupC+csngWP143aynJEYwmJHrfLha7+CF7bfhDnzq5DQ3UwKzc9UVSX+VAZ9KI9HMek2jI8s7sdrVEPZixaib6udjTu36E5Jm6PB5NnzMG8xSvgDwSRTGQXWK/Xh3X3/RVpmeHi9nhRM2Y85p9+LnyBIFKJOEDZYNTLD92BGWOrMGlU+ZBOSeXgnyGC1+PGxoPtSJAbH7zgdLR09MDtdiMWT2D86Fr0DwwiFAwgEo2jLOhDLJ7C0dYObN57NOctz4GBAYweM0ZVFzaMHY0l82eiLBhELJ7AE8+/htkNdWioq0BteXBInlwgAt491IrWngiuv+piZDIZVJaXZ2Xc40H/QAT3Pfb00MLjxflXXw+Pxwuv14e25mPYu+0d9PV04f3XfwyDgxFUV9fCHwggWFaG/qHnG9pOtODFZ5/ConOvRFllNTxeH7pbG9F8YAcS0SimLl8LX1lF1pD3eJBKxHBsy6sItzfh4jVLkUylUFtVgcFYHF6PJ0cHDMYS2LBxGxaesTZbN5VEeWU1XC43/MEy7HrrZSCdxGVXX4tjRw6js6MdO7dtQcO80+APVaCssgbJWBRujxdEGZw4sAP97cPPX7hd0FxI5eBC1sW6YM4oVPg9KPd7cnT/jtYB7GyN4JqF9Qj53PC4XXC5kHXavW5kCGgLx7Fudw/OnVkLgJBME6qDWZ1b5vMg6HPjwW0dGF9bjqmjKzEYT2LjgfY8Q4XBxJoA5o8NSfrmYGcUu04M4oaV45HOEIJeN+JpAogQ9Hlw9zsnMLbSj/njy1Fd5oXf60bI50ZvNIW+aApP7OzEObNH45TRw89nHO4YQHnAizcPdcHnAc6fNQoed9a4ZbS9dKAHzX1xnD+rBtXB3HYB4ER/AhsO9OLKRWNRGfDC53GhsSeGw50RNPbEsHbeBCTTGdSEAkNy5UIqQ9iwqxWpFP+JDAC4ceWwPfDGkT74vW6sOiU7Pmx9jCWz9SuDXrT2xTEQT+HF/V24ePFkJFIZHO8M48CJPqnNyqAX1y2bgKNdg0imM6gK+uB2AeF4Ci/u68JlS6dgXHUZDrf3ozzgw7ZjXegciOOS02ahosw/1K8bsUQSL24/iubO4baHIgN5dFy/bBw8Hld2vFJZ4zLo8+BYdxTP7unCVatPxfj6arR29aGmogxBvw99kSjueX4zlk4ZhQWTRg2tjwOoDvlRVeZDe18MO5p60NyfwozlZ8MXLAMzcI7t2IT0QBc+esmZw+Pc3I5UKoWqihDe2X0I/f1hXLVkInxeNxq7IqgO+bHxUCeaeuQ6iUmFPixZsgSTJ0+WnpJcv349AMDnceETq6fCBaC1LwaAsH5HGybUV2PWxNF5a5/cfnv09Z2YUBPEqROrUebzgAC8vL8blTW1WL1iKSrKy7POnceD2JBjVVVZgb0HDuPZl15D+bjpqJxwCjyBYd5kkgn07H8bnkQ/zl4wFWUBH4iAzYdacLStV0a6GyD+s0c8uGbRGPRGU0hmCNVBD3a1RtDcl8B1Zy2A1+OGz+PB8Y5eVJcHURUKor13ABPrq/D7Jzdh2qQJmDZxPLr7+rF19wFcMH8cUmlCTbkva9u6XcjQsD7zelzojSTwyv4OLJg2HvXV5Whq78XBlk5MOe0CZFJJBCpqkIpH4fJ4s3QM0eP2+BDuaEL7/s2Yt2wVvD4/ujtOoOnQXomWuXPnYtasWSgrK0MsFsNjjz2ma3/KYeHq85FKJhEoK8eWl9ejdvoilI+ZBH95Ndy+ALyBMiQGetH8zrOI93XA7fGhYnQDGhadCbfXh3BbI+IDvWjb+7ZqH6ctmIkxo6pRFvRL+zmJRAr7jjZh39EWfPKzN+HokcNIJZN4d9NGDA4O4vIzlyDo96EiFByaN240tXVj/RvbcO6i6agKBVBTEYTf60Uo4EVvJDY0hz3489PvYNGECpzaUCHpt+oyLyoDXnQMJPDO8TA8Hi8uXjwRrb2DQz5MGuNryrCzqQdbjnbjkxetRFNnH5KpNKrLg3C5XQgF/Aj6vWjq6EXA50UylcaYmkrc+ewm3H333bj++uslmidNmoye7g5cdt6ZqCzPbm55PB7EYnG0d/dg/QuvY/SCNQhU1cMbLAfggsvjRSYRA4HgK6vE8RfvwriGiTj1tDWSHRDu68XuLW/h6lXz4HG7cvRcJBrHA6/vkRzt6QuWYsqQXdjZchzlVTUoq6jClpefQrSnHdeungOfx4PGzn5UhwJ4evMhVIYCmDtpNGorgsOynt27QiYDNHX2YevhE1h2xY3obT2GdCqJYEUVXC43fMEyeP1B9He0wOsPIpWIoWbcZPS0HMGht1/A1q1bsWjRIuG5aSfo7vT29PQgFo1i8vu/g0w6gfD+Tejb/Qqe+fxCfOfJw+iLpXHbpdO5dW/45254AmW483NZJT7uS/dh6bRRuOdzp2v2+cH/24iqoAd/+ujivLLndrfj43/bjB9+YDnGVA2/93bDH15EMjaI331ogWq7rx7swZkLpuJHH1kj/faBnz8Jcnlwz60f1cRp7LU/wCcuPwufvfpcANnoas25n4XbBXzqrBn4+JpTcr4/1B7Gg283YuqHfohULIx0dACVM5bD5fXjxIY7kDn4KuBy4zefuyivr4OtPXh0437822VzccYp9XnlD73bhG984xv44he/mFf2i1/8Aps2bcIzn1+Ieza34W+b2nDzFUux/JSxaOwMY+m378Utt/0Mq885P6/uFz56NQIntuPOL+aXMTjc1ofndz6Mmy9fiDNmjs0p29/ah4ffOYbvXHcmVs6ZKP3+xFv78PzWI5h41bfQ9OjP8POvfBhj66ql8qpzPo0rPvV1nHftJ7l9fuX82bjgtHm49eMX5/w+EI3j709vxFfOasCl8+qwYX8PBuJpLJ9UCb/Hhb5oCl96+CB+cPE0XDRvONp0y+OHsLU1ih9/YEl+X/98B02ZWsy46U/o2b4BbU/9BtfMrcKnTx+PT9+7F429Cdz+jeswpib//baFn/sFPnTB6fjuJy5X5d+dT72Bzb+4C3/86fdzfn/gyWfx+jtb8a2vfBGVlfltA8D9jz6Bi97/UXzsSzfnlQ0OhHHR/DF438e+jBXve39O2R3f/zyS/gh+/NEzc35/4u1DuPF3z+Dv//5J1FTw3w99d+8xnPv/foHvXjwLc8fnv6PHoKUvhlDZXHz1d4/g1UfvxN//40s49d/XAy43TrzwN3S8di9mfOa3iHUcRc+25xE7vh3vu+YjuO4zX81pp6u9FY/f9SdMuubboEwa4QNvY2Df6zh19YX42Hd+mUtzuBcvP3QHbrnsVFy+dLIqbgDw0T+8DF/1GPzsKx/W/I7B3c+8gc//+I6c37q7u7O68NpbkUnF0b//LfTvfhVPf+5UXPTHHfjul27ADddk52hnTx+eeP413HrdalyyfEZe+9f86AG09UXx11/8R17ZkcZm3P3IepwxtQrHM6Nw809zd5tvfN9SRAcH8D9/uCOvLoOnn3gULz77FD7w7V+ivHqU9Pufv34dEi4vLr/1L3l17r/5GlS7orj/Z9/S5M3eI03YsHEbPvjl72L24pV55T/45CWYMXkCfvyL3wAAXn/lRXzg0gtw5b/9H2obpuV9f9e3rkGmYjSmffRH6N76LJof/wU+v2o8rl44Ok+m73jrBN7oDGDWV/6Onu0bcGL9b5BKxPGTK2ZibGV+5PiXLx5Hx0ACv3n/TFV6drZGsG53D7513mQsnMCXvWf39eDq06bj5iuWYHdTN875j8fwk8unozOSxKuHerHx+ADmfesB7P7ptfje+6bi0vnD+ub/XmtGY28TfnzFLG7bj23vwPsXj8HX1k7JK9vfHsETOzvxjQtn47Rpo/LKL/ifl7GkoQw/vjx/jn314f0YFfLi/66bze133e4ubDjQi/++ag6qy4Z3UW95ZA+2tgziHzedk1enbzCBWd98ABMv/xrg8WDg0Bb07ngej35qPn7yfCOOdsdy7IHL/7Qds8dV4RcfmM/FgcHbR3vx4v4u3HrNcsyeUIsfP/ou/vjsDjx843x86aEDaKgN4T+vnJtX741D3XhxXxe+e/VSTB9TJf3+hTteRWs4hT/9v6vy6px5818xMG4JJl9zCzrffgytT/0Bk676FgiE8MF30LfzJQDAbZfPRMifn5X21pFePLunC9/56IWYOTF3x6dvIOv0fuGCeao66aO/fwmhOYtww3/fnfP7PT/4NKq69+Bn/+8j3Hqf+P7v0dVyDD/74OKc38/57+dxwexafHPtJDyyvQP/90arZK/J7Q5kMmh6/BegTApj1lyPo/f8O5588klMmDABAPD8889j/fr1qF10AapbNuK2q0+V+nhpbzvW72jDZy49A1++5iwufkA2u+DR12/Fty6ag+tXDs/ns376Mi6+9EL87Ae3qNbdc+AQnj37Miy/6Veom7Mir/z1267F6upu/OWrV0u/Xfeje1DjTeInl5+CDft78LMXGjH+gk+j/oxr0fLcn9D15sOY/eW/ItK4C92bn0aoez/u+ugc/PGNFjy8vRPfv+QUjK4Y1hvfX3cQrx6P4X9vukwVz0yG8PsnN+Hbn/sIPn71Rbj9/ifxlf/4Jf7x2dWqdRjsP9GPs378HH72+Stx+ryp+Pfb1+Ged5px6Q/v0a175M31eOq2j+Pbv7kb1aNG4/ff+zI6evox6f3/hoN//jLuuusuLFmStWl27tyJRx99FD++bBq6B1N49VAfNh4P49R/fwo92zeg85W7sLBiALddMg3/+ewxbOkEbv7DIwCA2OAAPn36eMy54iZMWXN1Hh6PfmYR6k+/BuF9b2DG2Vfj9Btulco23/9rdO5/B+s/eyo27O/BP97tRGTsIlTPOxNNj/4MT/3+ewgG8vX0j/7yAO544jX85Je/kX6bMa4GAPCbb92AUVW5evndvUew/o1t+OHHzsX8Kbl2KINYIoU/P/0OPrOqAdcsHsP95uI/bMWiaWPxo+uW5ZXdt/Ewthx9Cz/9/FXwqWSnyiEaT+LOZzflBRoigxEsmjsbf//FD/PqvL1tN9a/8DoW3nAbqifn6zcGzW8+iguu/gg+8sVh2++5R+7G7i1v4fdfuhwBX64r19EXwT0v70DDJV9G8/rf4IpPfg0rL7wqr93fRQaQOvg6fvGpC3J+n//FP+KG85fgW9eemVeHwR3PvIsdxzfgkq/9XPUbJbTs24JDb79gKBhjNwilNwNAOj6ImvlnIdnbjv7dr+B4Twzjqvzoj2cjjA9ubUdfLIVzZtQi6HUjTYRwPI2aQLb+A5uO5qQ4yeGBdxrRN5jE2jljEPC5EUulUYXhSfbAu83oiyaxdvZodA7kPrB+/8ZD6BtMIBJPwcfh44ObW9EbTWHtrDqkFFt297+xH01dA/mVhuDeF7eiLxLFeUtm5sVN73luo2q9BzYdw8G27MPM6dgAqmevQirSi0wyhkRXM1yebEQqksiPSN7/6m4cbFV/+PqBt49L6S1K+Mc//oFXX30VlUEfjvfEsKihAkCbVP7ku0dV233s/n+i6dhRnBLIL7v/zYPoG0zg3AUNaOsdzC9/6zD6IglMH5PvFN33yk68tvs4ACAV6c0rv+fZN1VxevWJexDp70U6nb+Te++Gt9HWk92RnTMmhOM9MZwxtQq90RRiqQyaepNoqMlVrg9ubUdfNIX+GH9n+IFNx3CgrR/+6umIdzaievYqtD/zB0yvC+J4TwxVQS+ABLfuvS9txWBMpey5t9A7MIjzT5uH7nAkp+yuh9eht69fSnFUwj/vfQA9fX1433lr87555uG7Ee7rwcqzL8zZGWXw5pP3IBLuRXSgH17FlLn/9X14bW8zt08gy9/egUGMG1WVV/bA5pasPM6qH9otI/RFU6CybJ+733oRABDvbIKvqh7BMVMBAKlID6pnr8Jg4x7EG/N3gp975G6caMrOlUx8EDUL1iLZ34mBfa9zaevpUH84/YG3jqB3MIFz541HwOdBNJEGM+vvefZN9IYjOH/FAgT9PqQzGYQjMXT1DcDjduHMJXNU2wWAdCwypAvbMLDnNRzvieWU3/34c2g+0a5a//5Xd6O5K8wtu+uR9Th0NLvrmRhKT5XDc4/cjf7eHtW2H773n+jr7YGb8+D820/di67W46ickB+k3PXcfejvaEI5p817nno1y6/TFyHo96G5PVc/vfz4PRjo68GSMy+Azx9EMp7Lj5ef36CK745n70N/ezMC4+YMydwZaAYwS0WmvR4XAlV1kny2PfMHAPG8dh/c2oa+aAo9g0luateD2zrQF03hnBk1aA8nFHXz17L00Nbz/W8exL6WXgBAXzSJM6ZW4UhXFL4OIN7VzGknjU41HLa0oTeaRJpT+OCWNvTGUpg6KsjlG1szE+n8HVem58KxNHe/j9HOgwc3t2LPiQEQ5afXPvDWYbQO6f90IopRiy9EOtKP3h3Po7k3joZqP44NyQLjIdshzWtLoUPa+ofnzP1vHsDmwx2oCXlxvCeGupA3x2544N2hurPr0RHOHXtmDwzEEiDKtzbue3kHusNRBKdMQryzEVWnnIZW/AHp+CBqF56HVLhbcnpz+LLlxJAdMQrtA/l6/t4XNqNvIIoVc/MdXZ4uksPmp+9FNNyH+GC+LXLPM29kZW/lqRiMJfLG84G3j6MvmsTqKeU43hPD0kmVAFole01ud4QmzYWvqh5wuZDs78jr67nnngMApBOxvHTWV/bnf6+k/bxls+BV6J0H3m5EXzSBZFplfXvwMfT29uPCtWvQytGZx195AIlIH8YuWot0Mlev3PfyDjS292F6VUDSFQBQNmE24p2NKG+Yhy48jER/B6pnr8LA4S2ojR3F8Z4Y5owZDvIyOVw7axTC8XSerN738g70RmI4b/F0BH1eJGVz+u7Hn8PLb21R5c0Dbx/L2rZzxyLg9aCld3hH/t4XNmPboWauA7Dv+fsRH+jF5GXnwuMPgjJp9Lcdl8pffOxuHN+/C/6qeiR62/LqP/HEEwCAvmgKZ0ytwtHuGN5tz0h6s/ftx9FQncTxnhgm1wawtTM7p1974h70dua3x+DIyw8gnYgiOHY6+ve8modz6+5NqAz6pfF4ZGcPUnUNSIVz14x71r+CnnAEF5yxCEG/H73hSA7f77/7n6pHXO559k3sOHicWyYfK56vwfTq2pm1CHjdSMjmpVJOOxW65d4X3kXvQBTnL5uNgM+LdIYQHoyhuz+CgN+HRac0qPKNh8xdjz6F7bsPqFaRz31l9sJzj9yNd159XpUHTUOZLOlEflYas6sXrT4f8WgEcom9/9Xd6I3EpPWO1zbjb89Abtvbn70PsXAvTllxHrz+IDKZNOKRMCLdbYhF+jF/bX4ApRgg7PRWzTwNVbNWItp6AHABl8yrw8Zj/TjYGcX63V2YVBNAZdSDna0D6BhIYq4svWvd1iZMGsUzp4B121sxaVQIlcEkdjT3oSMcl1Kf1u04gboKPyqDXvg9brywrwOD8eEF48nNxzC5rgI9wTj6BxOoU9gH63e2Y1JtEBWBFHa2hBGRpcE++c5hTKqvRNDnwWAyd0I98eYu1FWVoyoUgN/nwYbNuRPz8VfexZSxuXnqcgj5PZg1LquAq2adjqpZubshg637gaOuPIMWAEJBH2Y15Le9blvLEC98+ZUAPPzww5g6dSpqa2tBIFwyrw5727IGyut7W5BMZ1AR5A/3s08+goZJUxEoKwMy/fk4BbyYXF+B/a29ON45bKw/ueU46iuCqAz64Pe48ebB3EXribf2YfLoatRXZnfkK6ctxglZ+eOvvIsp4/h83LThMYyeMBll5ZV5Tu/jr23H5HGj4PMNi+sl8/Lb6Y4MK831u4bmaMCD5/Z156VPrtvWjEl15Qj5s+cf6pZdAgBwe3xS+3e8xXeynnhzNyaPqeGehX781a2YPK4OleEgth1swvYDw2mcjz79AqZMnICqinK89OY7OfUeeWId6uvqUFVVCb/fj6c3vJDj9L781KMYN3EyQhWV2L9rK040Hcup/+7zj6NuwhQE+6sQ6etBlWxFefKdQ5hUXymNSw6+r21DfXUFKkNB+LwebNp9JKd83c42TKotQ2XAi50tYbSH45g3vhJlQzsi/rJy1I3LnmcZteySnHMpNfPPQtm4Gejd8QLyZxkQLAth6qx5AIDKGUP6pu0wOjnf+svKMXEmP6tj3dZGTKorR0XQhx1NPWjvjyGaTKEKw3OuKhTE9gPH0dbdjwWnTMSpMyZh6oTReGvnQTyzcTu3XQZVM1egatZKDLbsk3QhMKwjQmVBzJ+Vv6MJAE++fQCTRlflRWaBofnQMB7RWNa4G18VQLvMDn716UcxtmEKvN58HfD0449gVP1oVFRWwef349UXnpPKtr/4OMpr6xEsr4TXlx9l3//qE6geNxlefxBQ2BmPvbQJk8ePRmV5GbbvP4q2rl5UlQ/Pm43PDcvpkT3b0NvZJp0BX//YI6irr8+e2eTA3leG+00jK3Mkk3WeTB/sjMIVy5dPOazf1YlJNUFUBlLYdKxfMqbW7+5CXbkPvdEUfJ5smvmJcAJlQ+vU64d7EU2kURnwwOdx4cUDPZg7NoT54yvARDsU8GLm+GyWyqpp1VgysRLvHA/DfTCOUYsvwCEM9zWpJojKaApbmsI5zsr6XR2oK/ehYqgfuUOwfldntizogc/rwqajuZKybnsL6ioCqAx64fO4EVEE8LK0Z/VcbzTX2Wb0M/pePtA7XLazXcIp6PMgqnBS1m05jkl1FZI8V05fiqpZKxHvbgEAvG/OKOzviMLtcuXYA9FkroO3bmcb6sr9qAywNb0T88ZXojyQlYeXdzfj1Mn1qAr5QZSdA49s70Q0Dazb0SazB1x4YV9njk6U2wM9kQTcvtwI7hNv7cXkMdXwed2IIzuHkv1Z7VI5YzmqZq1ErP0olLB+Zwcm1TA7YgBvH+vLbfeNnZg8tha9oQB2HT2RU7Zui0wXNfagvT+aw5OdLz+B2vGTESjvRTTcC3iH6Xn85XcwZVx9VlftP4aWjh7UyCzUddtaMGlUCN6hs7OXzKtDS19W9pi9poTW524HZVKonHlazu8PP/wwxo0bBwAI1k8EurM6cN32FtSVB7g73rm0B7H9cCtOdA3P13Xbs/hVDnq5wY9H1j+LqZMa0F1Rga0792D77r055c1vrUNo9CR4yyrRd3QHEv3dQH3WyGNjGQx4ASTzdEXdskvQs+MFAEDtqeciUDseXe88CVf727hkXh2e25cNHG7Y14XpdWWoCHiws2UAx7qjkJvFrJ/KAT+2H2lDe+8A5k7O7u5v2bUf1158Dmpr8gPDwJBNMaoclcEEdjT1oqM/hsqhjIrXdx7GGfOnoTIUBHXlOybeYAiVYyehp3E/Uok4BnvakYxmF4N3Xnoa4yZPR7C8AtQziOq5w5mLDz/8MEaPHo3y8qy9vWpaNZZNqsTmxjBc+2OS3vRW1ALoxiXz6nCoMwaXK4G3NzyG+gmT4fHxbczGjetQPnoSXEN3wrh9wwb3odefROXYSQhUVEn2JwDUlHnRC6Bi2nAq62MvviWtKdv2ZdeUvv4IXC7gycceQX19PSqrqrh3jLD1u6O7L68MyNrPk8dUY39zJ8KDucGp9bs6s/5ANIWdrRF0hBNIDm2E5ctpDN0DWVl68s2dGFtbhcpQEH6vB8+9sw/zp43DwukTUFcVQiSWQEtnLwYG84OvavDoMy9hSsN4tHXyN7iUcz8j29RgdkBVbX7mD+PBvKE5WjE9N5tRblcf3bsdXSeaMEa2OoWCPkwaXZV3VhvIl4UdR4eDI3teeQI14yYjGqrEiQPbMdDdjrGnzMfYGaeidsIUtB/ahX2vP4VYuFeYR06BsNMbadqD6IlDiHUcBwh482gfdrVGkCGgtsyLnScimFkfAgG4dvEYeN1AJJ7GYDqOlt5BVAwtasr4QW3Ih51NfZg5thJEhA8sn4hndp1A50ACrX0xVASyTsjZs+rhdbvw943ZCM/bhzrQ2juIiqAPBKC+MghK5UYCL1mQm9Lw6xePSv++bHl2t6O+qgzdg7mW3qjKEHYcacWsiaNBRPjQ2sX4/t+fkcqvOGuZ6s4cAFy6eCIOtWedw8jxXYg07kLZ+JnIxAdRNft0UCoFF4gb/b/stJk42Jq/k3PpognSv5WH7gGgrq4OW7ZskS4uePNoH14cMmoqy/zYcbwLteWcbVwANbV12LNjKzxuD6Ag6419J9DaM8RnAlbOGE4luWxJblR7XkMt/veZXdLfl6/MptV19med78GW3ODBFWflp5QwqKiuw9G92zFhWn5q3hVrFgLIpjcDwP6OQdy+sRUzR5dhMJHB6VOr4HW7cEi2mNSGvNjZGsHM0SF4XC64XbnMv3RRNkrXUBvCtuYwWjfcnh2zdDYaevvGVuksnBxe33kELV39qCjLdSZe23YAOw83Ydbkcejuj2D1wpnwetw42DisKK666Fzp37FEAr/723CK09WXX5rX14/+53+lf5998VU5ZYMDYfzxv/9d+nvZeVdI/97y4hPoat+LPz23HbPG18LtcmHuxFFo6szdbXxt+0G0dPaioiwAAuHcZXMwuqYSv3vk5WE+LeCnEt25sRGD/b3oaW+Wdp37972JwaY9oKHdqIEjW9G782XEOhu5bZx50VXoas8GFgab9iLWfhTxzibut8vOuwKDHAX6xoF2tPRk9Q0BOGfueHjdLjy1rQldfQNo7uhBRSgIIuDc0+bD6/GgtaMHuw41YdqE0agoC2AgGseJrvy2GWR14cGsgTykCxm8+vY2tLR1YNxofjCntiKIHUfb4eFcLMTmQ8P4rN7qiiRzgjNnXnQVACBUUYG+7tydl4uuyI2i+nx+3P/PvwEAFq4dngsbH/17Xq7CrDOz6fih6nqkI7lGe11VBbbvP4rZUyeAiHD9xWficFP2myN7tiGdSqGsvBIgwqJV58Hj9eK1dQ+gs6MdLS1NKK+s4J6XPLbtdYQ7W+APVQAgJPs70brhdgTHZvXywc4oV6Y7BhIgAvr2vYnBxt05TjKDS+YPHwnZfSKCt49nx4fnRAPZ9GYge26Ut4419yWQSBEauwZQWx5AYMhJ3tEaweamARzpjiJDQP+B7Fm2fe2DqC7zosLvAYFwSn0Znt8/rNMvmZ+bEvv9dYdkZbnHWeaOjeC3rzZiR3MftjX2YubYCvREEjjjlDp43W788tl9Od/L6z+1pwvHZDpQSb/X7cJ9W7PzSL5WvrS/C30twxk9b+xvy67hQZ+0gA+27ENiwwkkerOBzreO9WNr8wCIKMceUK5Vavrj7aO9AICqobXKN3QZ0JtH+3C0Owa/zztkD2TPlzN7YP3OrD7dfKQTPZG4ZA+MrS5DVzR33l2+MpvBUVkWQLi3Da0bboevOkv3YPNexDsbJSc+h6cLcsdrXKUfd7w5vKt/+arh4FvfQBRf/t+HhuldMglKeGXvCTDuhqpGoWX/DoyZOgsulxu9A1H84cHnMHvKBLjdbsyd3gCvx41dh5owqroCmfDweDKboDzgRWt/ArdvbMWo0NBFS0P2mtzucLm9SMcGkElE0b1l2J55+eWX0dTUhEQiqxkSfe0IDdk3ly7M9hFL5mcUvL7jMFo6+7LrBRHOXZI9QnDr7esAALUhP3Y292Lm2ErurtvVl1yY8/ep82bjp7/5MwCgY/cbiHa3wluW1Q9jFp6DI8/9HUBWlkdVlGH7kTa4XW50RZKSrgCA6IlDaN1wO9KxrFyHD72L7t42xLuaQZTBm0f78Ny+rLNRU+bFjpYBzByTlfmZo0PY1DKsIdmckUNmSCmXh8qwbc9B+DkBzDcOdqC1NzpkvxLOmTMWXrcLbx7KyltlKIgdh1rg9eQHypt3vI5IZwv8ZRUgAiYtzd6dsOOJ2wEAFdU1OLJ7Gzze7B0yA0ezAYp3330Xg4ODqKyslHaPd7ZGsLV5AIe7shevMb2ZivShM5Hl25HuKIiAipo6HNu7HfUT+Gn5k07P2iRurx/xzkak48M64pTV2XTwE7s3of2tx/Hm0T7sPjGI/lgKyb4O9O7M2hCvb92D5vZuVIbKQADOW7kQXo8H3zveCiJg1KhR2LFtK2bO5mdbMZsx4Oc75vLxiiVSuOm3j0t/K3UrADy0rQMn+qJD+i3ra5wzL2sz/OmFrG6trQxh++FmzJ40JrsGnrcUHrcbLV19CA/GMXfKWESicQRVcAKQ5/hc9b5zhujgX+bUsDLX/tv+t+9K/2Z2QFtz7kYHg8tXzkFHX3buR1v255StOP/KnL83v/w0UgeHtxUuOy0rw35OOjeTuVkNdSACls9swLp3DuLY1tcR7mhBIFQBAmH6aefC7fGg48gedB3fj4q68dk2gyH0tfFtv0KCsNOLTAaeUDUSPa0gAC19WeODCDhjWjXOmFadV6XM70YoFMBnzsmeZeIpvlUz6rFqRu5k9LjcqK3w4NNrpuZ9P2bo3NZpp4zGmKph4bzvzUNIyuyfNw/3YFdrVpkNJjI4Y1pNTlrw63tbsKuxC90DuY4yAKxeMA2rF/B3agDgta37sE0lveKNAx3Y1dwr21UleEI1iDTtATJpZNJJJPrakYmn8m5ofH1PI3Yd68hzoN442IndzX2YOa4Sg3F+WtrZZ5+Ns88+G7/4xS8wEEuhpS8hKeeFU+qlM708WLH6LKxYfRbefOV54ETuor9q9jismj1O+vtwW3bR2dnYjZ2NPZg5vhqD8RRWzRyDQdlO+uu7j2PnsXbMaqjDuwezbSbDw8L12tZ92HGoEbOnjOfiNO+0NZh3WjaC6fcH0djWjf979BXMnjwWkVgCa049BbFE1rnKUHbx2ts2iHSGkMoQQj43DnQMK2X5HF2/uwtdrcPGwxsHOrC7JRt4ae6JIJ0geELVQ2OWQSqTbT/KSUeXz5WAf1ic1iyaiTWL8s8RhoLZwMMrG9/Fjj37MXvGNAxGo4gMDu3Kb3wLBw4fwZxZMzE4OIizVp8Br8eL403N0qUEWze+ioN7tmPKjDmIDUaw+PQzEY/lzuN9776Gxv07MH7abHS3NqGqLIDPXrAw55ugP1f81yycgTULc88GlgcVc/FwN3a3hjFzdAUGk2mcMa0WXo8LXZEEQvU1OP/6m/Dqo3cCADzBcnhC1Qgf3gwAiHU2we0vQ7KvIy+la9tbr+LQnh2oqcsamERpeELViPfkX4rBaKsdm59OtGrmGKyamX9+x+txoaa6Aje9P/+8eqSiDLOG5mHDmGz09EDjibzvJKDMEG4nkCFCS9+wkXTmaYtw5mmL0NnDj0SvnjsJq+dOwtObD+X8/spb72LHngOYfco0HG3MGtQD8RQgW0cZj6KR4RT5ja+9gj07t2HG7LkYjERw+pqz4PF4cWDvbgDAke1vobvlGMZOnY1ELJLNmvBmx71x2+toP7wTdZNnIRkbRCadn062Zuk8rFk6L+e38rJshH/a3EXcM70erxf1o8fg0zd9GUD2hnglTFm0GlMWZc/AvXnfbzDY0z8kc9ndnkyGuDLdG00h3t+FeFczMunsjclyePNIL3afyAa3BhNpxFLD6YrMEFM60iw9feGECu6Z3pqyDAJeNybVVeAz583D7qaswdzcF0ddyIe2/iSS0QHJYZo9JpRzpvdo17BsvnmkV7EuVYNkFtGbR3qxS4b/6IrsBDi1oZp7pld+Q+6bR/qGaM/Sl1Dsrinpj8iyprLrZRgzx5TjeE/ubaKrZo3FqllZZ7WP7Z4M2QPxw9nUzpb+BDIce6BKkV2kpj8ahy5iWjJttHSm9+ktKcnOqAn58Ok1+Wee2Q7k0mn1OWd6n9x8DEDuWvn6rmPYeawdA7EEMuUJeELVw4FYRs/B3IybLG96sevEQHZMkmn4FLd8v77jMHYeacWsSWPQ0ZvdjdvX2ocTL+7DrHFViMRTWDUr6/TsaOxBTyQB1GTrTl+yGtOXZOXgnXV3oaq7Dzddm3u+DgCmjh+NUVXl6BrIrqFymyASTyGZ8aKmzItDndEceuR2hzsQQmqgB3AB7sBw5h2zHZ5/PpsumY6Gh/to6cfMsRV4+2j+jtTqU6dj9am5RyXSsgwBuW3HdvLl8Mqbm7B91z7MmTkdkcEoxo0ZtgNHz1uF0fNW5Xwvf3Vi9fwpWD1/Cp7fehCd7f2SrsjSnhqmHUC8qwmAC8mBLvREEjm20fLJ1bh43vAat/FIb06fbM7MaqjDYDyJ1fMmSzuQs6ZNks70KmHVjNFYNSP/ht+KQFaeF06fgNPnTUVTRy/cx3OPjDWcuhoNp+afDw6Nyq5rc5acjpXnXY7jB/cgsWMHkn3ZwNOyZcukM73jx2fXs6a+OEaX+9AWTiAZiwzrzfgg4u4Masq86BhIgkCYu3wN5i5fgxgnzb591xvoPboLVRNnIZNKgNLJnJ3Y5h2vo+vwLvQ2H0Z4MMvjdIYwmMggk0rAHcgGJFYvnovzVuZfYFQW9MPlAladeTZWnXk2AP66wexG3saPcqyWzxzeKFLq1TOmVcPrdmEwkca46jJ8Zm3+5krFUFbl6gXTcc7ifFuuOpbA7ElZvXjestmIxvnp2Dx45a0t2LH3QN4xAiAb8Ok7thuVDTORjg+ifu4ZOYFjZgd0nsg/nsZ4MLZmSL4Vm3O7334Nx/fvwIRpsxGPRpBKDu9OM/9jVkMdEpyLCpnMMbjjmXcBAFMWr8aUxfnztXrcZFTWZX2HmqHsP3+5+r0whQLbbm/uGEhkJzhljRWfx41XDvUiliacNXscIokUXtpzAgGvG9evyI0kdYTjiCRS2cWtzIc3DnUhkU7j6sXjh8rSQwufFx3hBF492C3d3tzRH0UknsK2Y11wIYPPrBluu6U3hnA8hUwGqK/w4ZFtbairKsd1q2ahuXsA4WgCr+9tQXN3BJ+9NPdyrfbeAQzGEll6KsrwyGs7sWrhTFywcgGa27vRNzCIx1/ZjGg8idWzxmDt3OEIdkvPIDoH4nh8C/+8hhy+96E1kIcDmrvCaOnux1PvHsbVSydifsNwMKGlN4pwNImHtzRjwYJTcdZZwxdKtLW1YWBgAC0tLdi6dWtOH2sXTERVmR9d4She29uK5WeciZlzhi8W6epoR3Qwgl3bNyMz2IdrT8+9lIvxmCj7nNGz2xtxzfKpmD+pFi09EfRHk8gQweN24f6NR3DtmvmYP5Re0dzVj6NtPdggu735Kx98H+prKtDc3o3+SBT3PLsRU+YsxKxFwwZ0X1cH4tEIiDI4uPVNzGoYhavPWjzMp45e9IajeOy1rYhzotByOG1yJU6dUCHN0T1tEfRE0/jGRcMXB7T0DCIcS2FHUy/2tg6naPFub/7AWQtRK0sNZnPljd3HMHZUDc4/bbjd9p5+RKLZJ1NqKkM4fqILb+0+gttu/hLcLjeaWtvQHx7AkcZmvDF0e3NlRdbwbmxuQX9/GJlMBqFQGe558BFMnjkXZ16Y3blrb23G4ED2PHB5VTUe+8efsGDV+Zi1dDW625oRi4RBmQyO79uOnqZDObc3d/QN4kh7H7Yf68RHLliBilBQhnMYkVj2Vs1MhvD8u3vxkRUNmFYXkskUob7CD//Qzabrd7ajM+HF/DPOQ2fLcRzbo37OCcje3jxn0XKcce4lwzi1NqO/rxuvPP1YTjqP2+PFmEnTsOqy4UuoutuaMdDbhXeeewTLp9Vj0eRhh6CjPzakTwg1IT98Hjde3nsCsYwLH7zgdLR390v01VSG4PN6kUymEGdPSbmAxrZuw7c3L5k/C6cvno/2rh709PXjhTc34/TZDTh1yrDx09E3iEg8ga2H29HRP4j/vPlLOcZDU2sburp78ND6DUhnCB6PF5/42r9L/IkM9OPtV55Df08XvvXvt+Usmq3NTRgIZ+dDV0c7Xn/5Baz9yFcQqqpBb3t2Phx45xVkCFhy5adzcA93tODgxmcw0NGMz3/gfTll7d19iERjyBChtjJ7o/OTr7yDhavORaiiCrFoBJTJoKK6Bh6vH9vfeB4eEC67+lp0drSjufE4tr77NmavuQwVdcN6MtLTgWQsgrbDuzHQOXx0wMztzZ9b3YD68qyR0tIXl/T+8Z4Y3mkM49YLZOtCXxzheBoZAurLvTjRn8Dju7px7sxalPvdeetYMp3Bs/t6MK62HAsmjUJPJI5X97Sq3o+7fFIlFk4oR8dAEoOJNI52x3CoK4bvvG+apOlb+uIIx1LIEPDs3i7MHB3K2Ylg5b3RFDbs6865vVm+Xm5r7MGokBfXLRmbR/vO1gGcCCfw5TMbctsdor0/lsKG/b34ytqpqAx6Jdl+91gfmnpj+PiZuRdvdfRHEY4l8eq+dqQ4Z4kZ3Lhy2B7Y3BRGbbkfHz5NhgNHh+xrG8Czezpx8eLJ8Hs92NfSg71DZ6eB4dublfZAz2Ay5/ZmtlbtbOxGLE346lXDjlNzZz/6o3G8svMYWmVpuGq3N3/93CnSsY2WvhjCsTQyREimCE/s7MCNF5+OyWNr0dzZi/5IHBnKoCoUxO3rN+KCBRNw+oysk9LSM4j+aDYoEPJ78Nr+NrRGPVh8wbUY6OlAIhoBEaHj2AEk+9tzbm/Oyl5WV+052oxoZAA3rZ05xMesPfDq/g6c6JcHPcVvb77++utRX1+PtrY2nDhxAq+88gqA7O3N3754jtRPU08Uz+9px6xJY3CmzNGV7KQMoaayDF6PG/e+sAWLJtVg+dTa7HjFU3j7WB8mT5mCD18zfMljU8sJ9IfDSGcIY+pHYSAyiNvvegCjF5yJygmnINbXiXQ8AsoQ/BXV6NrzJioyA7h61Ty090YwGE9g59F2tHTLgvkmbm9OZgiDiaxMHO+OorE3ge98KOt4sTmTyRBGV4fg93kRSyTxf+vextL5szFt0njsPXQMuw4cwY1nnpLjw3SEY4jE07J1yIWuSBwbdrVh+axJGFUVwr7j7TjW3oMFl96Yg9dgbwdSsUEQZRCoqBm6Hfk4WndtxJI158PlcqPl2EGcOH5YqnPppZdi+vTpaGtrQ1dXF154wdiFQed/8DPo6+rA4EAfdm18EeMXn4vR84bt4sGuFiQHw2jd9hIS/V1we3wYNWUOTjnzSgx0tiAxGEZf6xG0780PHDH4xJXnIRjwDa8pGUJtVTn2HmnC9v3H8MnP3oSO9nYMDkaw8dWXMBiN4esfvhg1ldkjMsxm7OgNY8OmXfjYeYtxyvjhtV8+XrUVQfzpqXewdmYtVk2vztG59RXZI3n3bW6Dz+vDxYsnZu2GITu3ptyPpu4INh3qxCcvWomeSBSD0SF/oDIEv8eDREpuM7hQU16mentzJNyLb372Y9JvTa1t6B+IoKOrB8+++hamrL0eFWOHN9qiXS1IRsPZ8a+qx/GX7sYps+Zi9QWXS3ZAy7HD2LN1E2657qycDYzmzn70RKJ49M290i37i8+8ELOXnoGuE82IDtmFVaPqsePNFzFw4gj+3+XZi+Oau8IIR+NY985BTKirwtqFwzgxmctksj7RsbYevH2gBcuuuBEulwuRng4kYlldVjY0ZzOp5NDTWmm4PV7EBnqLfnuzrtML5L5NCQDHjx/XfKe3s7MTAwMRjKqrQyQykPdOL1Em+y6iYgvd5/UhlU4hFksgEPDnvdObyWSyKTguN7ye/Hd600MLMfctSBBSqezbU/LYSmboKQ7WjcvlztuRJmQjmNn312RvZxH/nV55OVtMy0Ih1Xd6XS4XysrK8t/pZVEa5Xt+7J1eZNFxu9x57/SytxE9bnfeO71sh9nlcuW/00uEVJq9g5wfaYsn4tn3bV3sfeBcvOTvi8mxJqLs0wZuN5R7/ul0Gp6hc4rsveTc8tTQW6yuoZ0N5RhkAGTbFn2nt7W1RXqrTg5EBHIBmXQGfp8PPp/f0Du9g4OD2fcEPR64ZW8aMojFspeEuOAy9E5vlg8ZuNxu7lkX+bu2+e/0ZuB2Edzu3Hc+pXd62RuPgfz091QqhVQyOSQj6v3C7cp7pzeTyYAImDJ5stQWAFRWVsCveKdXzgsXXFk+UgblofK8d3rl4HYBLspIY5mPIyGdziADDL29rHjndOgN12AwiDEm3ullb5arvdMbj8VAlMnKmYz36XQa6SH+SDIsx5oI6UwaLpdH851exrG8dwgzGe67zrx3euXtsnd6ARU9SpmsnMOV904vEZBIxEGUfftQ+U5v9n1tIBAMKNrMPnUyMDiI+ro6VFRUqL/TW1ONL35B/53eoUJk0umhvsFPNaLht4557/RmMhn4fD5UVFbnvdObSqeQTmcwZcoUzXd60+kM2trahuYoR78x2eXgqPtObyotLQ/K8UpnMtJborwdBabHlf2KvNObpuyb7FOnTc3SrvFObzqVNSRdnDcfXW43UqmU9IZ4zju9yPI/k8kGVJXv9FZWVqKzoxMenw9eT67sJ1NpVXuAtU3pTPatXsW7tqlUKpsRQcPv9DJwu93Zt16HLplT0qP1Tu/QB0gTZc/Wc97pdYGGbJv8VMlYLJZ9voZHz9B/Xr8fPq/X0ju9jY2NQCadXWtkbWTf6WW2Q76dBAAZyuo0v8/HeaeXQb7t4IIruz643NnnepTtZtKgTAZetyvvnd5MhpBIxDGqdhQqKitNv9Pr9/lwrLFxaL10K/ADvD4f4rE4gmXBrNxx3ukFkPf+aHl5BdxuFzo7OzF16lS0d3TmvdPLgL1zzPqsqa1FZGAA4XAYM2fNQktTU847vVmbOA4XsnNV+U5vd3c30uk0GhoapDnC6uq90xuNRuEawkk5V10uF5KJeHb3XWnzDv3fBWSfZdR5p/fo0WNwubJHcpTv9CYTCQCUNxfltDBeKZVnhtT1arYRDD1p6MnbOWbzOFhWli9LPj8GBsJoaGhAVVXuee5RdfW48x//yHmn969//Su+9a1v5bzTK6cjMhiVxpRnY4GGfCa3W+idXnnbmaFnr1zu/HRlYOjta3d+3exzidm/PZy6RIR0Og1foAwujp3A9MqYsWNL7p1ekAPwoQ99iADQ8ePH88pOnDhBAOiaa67h1l28eDG53W5u2csvv0wA6D//8z+55XV1dVRfX88tu+222wgAvfzyy9xyt9tNS5Ys4ZZdffXVBIBOnDiRV3b8+HECQB/+8Ie5defPn09er5dbpgfV1dU0duxYbtl3vvMdAkAbN27klgOgFStWcMsuueQSAkA9PT15ZQcPHiQA9MlPfpJbd+bMmRQIBLhlDzzwAAGg3//+99zyiooKmjhxIrfs61//OgGgzZs355WlUikCQGeeeSa37vnnn08AKBKJcMt5cO655xIAGhwczCvbuXMnAaAvfvGLwu0x+Nvf/kYA6B//+Ae3vKysjKZNm8Yt+9znPkcAaPfu3XllAwMDBIDOP/98bt01a9YQAEqlUnllmzdvJgD0jW98g1u3oaGBKisruWW/+93vCAA99NBD3HK/30+zZs3iln3iE58gAHTw4EFuuRasWLGCRNXTRz/6UQJAR44cySvr6OggAHTFFVdw6y5btoxcLpdh/EThuuuuIwDU1NSUV9bS0kIA6Nprr+XWXbhwIXk8Hm7Z888/TwDoRz/6Ebd81KhRqrrwhz/8IQGgV199lVvucrlo6dKl3LIrr7ySAFB7e3te2dGjRwkAfeQjH+HWnTt3Lvl8Pm7Zk08+SQDol7/8JbfcLGSyeYx0+umnc8svuugiAkC9vb15Zfv37ycA9KlPfYpbd8aMGaq6UAkXXHABAaBwOJxXtmfPHgJAn/vc57h1p0+fTsFgkFt21113EQC64447uOWhUIimTJnCLfvSl75EAGjHjh15ZdFolADQ2rVruXXPPvtsAkDxeJxbLoeRqNe0QEuvdXd3EwC69NJLuXW19NrGjRsJAH33u9/llo8dO5Zqamq4ZT//+c8JAD311FOCVKjD6NGjadSoUdyyH//4xwSANmzYwC33eDy0cOFCbtkHPvABAkDNzc15Zc3NzQSArrvuOm5dLV343HPPEQD6yU9+wi03Alr22vr16wkA/c///A+3fKTZa3rglL2mhPLycpo8eTK37Ctf+QoBoG3btuWVxeNxAkDnnHMOt+7atWsJAMVisbyy7du3EwD68pe/zK07efJkCoVC3LLbb7+dANBdd92lRpJhCAQCNGPGDG7Zpz71KQJA+/btyyvr6+sjAHTRRRdx655xxhkEgDKZTF7Z22+/TQDolltu4dYdP348VVdXc8t+/etfEwB6/PHHueU+n4/mzp3LLSs25LvoNgDb/ZEi7DJgv6ldBJWN7PLL2EULZuqyqC9rQw40FDHTaleOuxzYb2mVdC+tdvXALE4somSFHjM8lu+Imq1rFie1umpgZUy1gNUpNA9Yv06NqZn5rYWTHuj1y/vWLO2kiBrbCU7pDhEZ1xtTNV3I9KFWXbvnmR49ZoHtXhRbtzvVjxV9Y0VnGJHtkajXtMAqTmr9WpkHVugx0w9v10qvrtX5pqc7nKbdqbW9WPaaHjhlqxjpxw5ZM6tz1WwCvXlgBpzyP7T8HjvWHa26dsijE+Co08tjtIjjCvCZacXp1cJJRJmp1RXByaxBrVXXDh6brevkomA3PWpgpT+RdgvNAzZP7B5Tp+jRAyN17Zg7aum0VkEENy0Zp6E0IrW6ZvSOFk6iTmKhdYdZsEMXavHRqNNr9xpSivqmUP04qde0oBTXXjv1mNk5w+apU2OpFpy0sl6r9cMDEd04kuw1PXBKdxjpx+qcsVLXCd2hBlZ5rTbvnNafZoIGxYaSdXrtHiSnhceM4aoHxXASrfCYRSzNGIml6PSaEVo9ZZBOp4u2MFoZF54xpZchYcQwVuu3UE6vGRxFwCmH3KkAoNO6w6wTbxZKxaC0Kp96kfxSWhONfFuKek0PimlLFEKPme3HyYAZ44mWLrTDyLaio0pV545kp7cUdQerY+dO5kjlgZngV7GhaE6vVoRAr64aM9PptKltfjtwMtOvHmgZO6VsuJpJeRAZH61xV6urBlbmgxYwx1/LSXRq7uvVtZLGwmtXz+C2MveN1LUyd0rB6XVKxktRdwDmnHizYAc9etFsIyn4ZtcQ1pcSGC/V0k210kILpXNHml7TA6f4JjoPeGCnHjPbjxVbyEm+GQGra0kp6lwrmy5OjCWvrULrKCu2KtO1dtkMemPktMzZba+zNelfKr25mBPVCcVRLKPaKSfe6bpq0XOnFlMzPLbSnxawulpOYimOqRkF73TAR7RusYJSIlBMA7kU55leXTXnzSwUwhAX2S20Yw3h8UZL3+gZU06NZaH6cUqv6YHTAXQzQX07DXGnnJ1iOcxGwCqOI0nn6oFT9poc7NgIcErW1AKNWjrXDOhlSJRikE3ELvyX2um1wmjGTLOHtgttvDOc1Iw1q4urE4pQhMdaOwd6/ao5fGYNMFEeG7kwyanIMbuqnYdLqToUqVRKNWCUSCTgcrmKsuACYmPqlCzYAcUaUxFdWIpz1O6z1aViUFodS7W6WvpGL+JeSrSXkl7TAzvoMbv2FsLpzT7ZZL8dJVJXTwa0dJYdukMER62g/kiy17TASXtNDnqXkDlle4vKqVpWklndwYNirVF6/hTTA1oZRnbbz4UAR5xeESHVUhyAcaeK9asmAKw/M4pDxEg0o6y1QE/pOO24mu1Xz+EzMz5OOFdW5oMWaClEK/PMjrpWFKPdOOmBllJV+7aQRoEoOD2mPLyJSFMXahkDxZyjarrDCthBj9paZWR+O8W3UtQ3herHKb2mB1boETEWzTjxdspPOp1GauhtZR6Oav04OZZ6OssuJ0QvKKFG+0i017TASXtNDqLyYqYfp3S73WtVsdYoEd+F2RK8fs3qgWKDo06vE9FANeXGBkgtVSKRSMDtdptebJygRwtElI7ZHTgrEVe9uk7y2M7ddKd2ep3aGXV6R0Srrt6YOrnT6/Qumt3nc4y0b2WHT2tcWD0ndu+d1B12Rs/twgmwR7cXY00sxM5bqe/0atVVkx89cGrXXmQnUauuHfIjd9zU0un15psV2s3WtUt3WJW1kWSvaYGT9pqRb52WNbt1rhlwkg4r+sYpW7/YUDSn1ykDHDCeklBqDpn8ey0nvtTosYqTE/SogQgPzKRLlfK42G1MOelQloJDYQcUU9YAdV1YasEpK06IFjhJjxHHr1R1rh5OhXL4S0mv6UExZECeZuik/Mh5abexOxICZlbtz5Fkr2mBk/aakW+tZkY4VdfOtarYcqN26apTdmGx4T3p9I4UZa0F7zXDVWRRcIIeNbBiTGlBIpGAx+MxRYeTCl7LmNK78KGQ42KmbjHkUxSs4KY3H95LunAkOr1GUvCtBNn06lrRN3rzwAxOvH608NfCsRh6TQ9Gmn1jBET6KbUgi526w8lNl1LTuVrgpL2m9q3a2VGn+KY2j+UpvYVYq0rRLpS3Z7cNUWwoOadX73xeqRl6WmfrAGOGEQ8ntboi9KgZLHo81oqaFmNR0Du3oEWPGph1KPSAzVG9MxRq56X0DFg9HmjRo4UTw12trlmczEbgjYypyKJg59wxAqVoIIvMUbMOmPwbo3VL0ek1qwuN9qNGu54BJjKWThiuRta1kabX9EAkVdWKfaNHT7GdXifmDPtNDX/2uxpv1OaXUShmoLHQ9poWOGmvqfXDmzdW+tGaU1rtynVlqTi9VueO0bVD/ttJp1cARBYFs4uc3uKpVdeJicMMIzN1taCY9Ki1KzeeRsr4qIHZ3RM9EF0YzUaD7R5TkXER2UlSc+Kd2E1RglOLgh2gt/Caxc1pWTNruGoZYGbpsQJO8VhvJ9GufuyIuFupa4fcjDS9pgdW6LG6a69Vt1BOr1MBDCt17XJCStnptdte0wIn6SlUP6Uua8o+Ch2ctMoDs3qg2OCI06sXQdC6+cxsZFf+m1q51+s1fBMq+13rVmIRpWN0J8lJeuwQBLV+PR6P6fFRq+uE48K+NRpxF2lXjX9WeCAa1dRq14xyEx1To3X1QMtZNIOjGVmwA9h8MDPPRMbUjKyJzFE1fmjdequFk9xJtFvmtEBEt5vBSU8X2tWPHWOp1a9ZudGix0w/paTX9MAOvhk1pq2MpRGwa85oBUGNZvERke6OlR2069lrVu2bUrPXtMBJe61Q/ejtkDthq5qBYulpq7a+3pqVyWRKcrfXEadXj5lqZU7vJIrsWKnddmqGHr1LIbTAyUiL3k68kzx2gh4jDpJIHS1cRNp1kgdOLoyFrKsHRsZUD0ctY8rM3DECZnWHyMU1Ts8ztTNWZuhxcq5ogYjucEIXqn0/UuRT1KC0Qz612imGXtMDvX61sh2KMQ+MgB1zRu3pHiu60CxORkDkEq9iyVohdJSRulboKVQ/pS5rdvRXivrTyrwrBDjm9Hq9XsPMKrbSUeIgWleLVi2ctMAOeux24ottgGkJttGzo1rGidaYirTrFA9KzZhyanEwmpZlVj71jCk7YKTKGqB+xkpL35nVhXYbEsq+EglzTrxdul0vBd8Jvjmpc/XKjfRTanpND8zKdLGC+kagmPPtX5l2oPD2mhY4qTsK1U8p6g4tPM3iqlamF9S3ygMn/J5CQFGcXrUykW1+n89XFONAC2e9tBW1drXALnp4TrwezmplTgqCHo/ZuWneoqCFsxqYNXb1wEn+qZUxY0rPiTebPunEmGqBfM6Kpo46oW/sALO4OSlrTs5RKzpWTbdbAXl7ak58IZxep+ZBMcaSpZuKnmsbaXpND8zSo6fXmH1jdiztkB+n13gt+02NdifHUq0fJ2gvNXtNC5y01+zsh6X9qqXTF3rtNQNO2YV6QX0rvouda2OhoaScXqcVrlN1i7XTq9Wvy+UyXbdYuw56OAH5iwIzwIwoIXbWwAwP9KAQ80yp4BlPRpLMaQH7XnT3vhjyKQondaF4u07t9BZDF8qBRdxH2jzwer1Ip9N5qaos9V5UtkeaXrOLHjWcCn20yAg4Pd+c2um1wwkppqwVW0cZrSuCE6Cf4my1H4/Hw02nZ3dIOBHQtGu+2dGfCB2F5oGVeVcIKEmn10zaqcggaUUZR6LS0aKHKR1luZ6T6CSP9eqKKFFluZ5hxANWR49/ThhEvH/LfxMZU+WOFfu+FI1qM7sPevQYxdHsomAHOKU7nKzrdrtN17Ui/07t9Pp8Pm6/LPhlRg8Y0e16TmKpzgPGN6XhakY+R5Je0wMRehKJfCdehJ5iy0+x1gOnbAcjUEzai2GvaYFVXqjRY3c/arqd/e2EbrdrvhnpT48OXnCyWPrTyrwrBDh2e7PWtjkbQDOLgsh2vNHUIYYvry6L0mulHYk48U7cnqeX8sKra8Xhs8pjs3W1lKiecuMB60OPf2ZSXrUUlNUxZQpeWS5Cj1mDQjQFxk4+yukRGVMR2TazKNgBerixMqUuZN/r0WU2HVBrjqrpDnmGhN04WZE5LdCiRz7+dtPD+7YYY6lV1+yaqEePWlsjRa/pgSg9ymCBnl6zuvbaIT9W54zH4zGFIyvTGku14KRdtOvZa1btm1Kz17TAKXutUP04qdu1cDIDds0dJQ/09Keo4+rk2lgMsN3pZZEpkaiWWgS50NFArYiRSIqVnhNvZbdLix49PvHq2sFjp3birUT0jDguVngg0raTkXBeXaejmlYyJKzMfdG6TvHNKjBHW8/I5aVniQQAndgVskt3GNWFVmROC5zWhbx21b4txrpmpa5dcjPS9JoeFHPt5bWrV9cIOKU7WLqpXl2t4KTTuqNY4+P0nDF6yacSDzt1h5l+3quyZkd/pciDRCIhBb/sXs/tANudXpHIlNogiUTES03piER2S8npNRI9t9NwtUKPyG6Akcibk4uoXmSS92+Rfu1QbnbvJGnhpBf80gI5PXpjKmpM8XA0M3eMgBVd6KSs6c1RqzhpOfEj1ek1mpVkth+1ulrvt5aavilUP07pNS0QCeqL0GNmV4v3b6v02NmPHWPJq6unp+2iXc9ec9JJKIa9pgVO2WuF6qdYY2kGEgltJ9EpmRPNXLATp1IA251eRqTf71dlSCAQyPnWSF2tMt6/Rev6/X5LOJmpqwVWlageToFAQLeu2k68U+MjgpNRenggsgAzOni3Auq1bWbu22FM6fXrhNyo4aTn8GmBEbkRHUsejlbkUwSMyNp7RRdaMXqdGAcRevRw0nLiRfSOaD+8J0uszgOtNEOzsm1EbkaiXtMCkUBWqcm0EbBqd1gZSyf4ZgScHp9Ss9e0QIQeM+sa71s9h6/Qc4b9ZibLygxo0SES1C81fWNk/IsBRXF6rSrGQg6SHcraqUibFWO6GEKk1q783HQheCy6kPCMXZG2rTiJTjlIetFgs2OqF8AyEowQxckM/lo4Ou30luKC5RROZueD3YaEvF07DEoresfIHLU70KhnTFkZSxHaR6Je0wLReWyVHrV+ee3q1TUCIv04MWes8s1Op9ep3cFSs9e0QKtdK/aakW9FLhq0GmTVSqd3er4p29Oio1iBc62bn086vUPgpJBaVTojbadXT+mUGj1WDDAiKhiPRecZrz+Rtp0IkNhRV2vHyu4x1cNJC4yMabHkUwSKKWt6Z62d3K21mx4rIEKP03OnmPOgVGgfSXrNaXpEcCqUE89rB7Df2LVjvjmdJeLUWliq9poWaLVrxV4z8i0LmDnNNzsDjWbAjrmvVVePDicyjP6lnF6WCx4IBFRzxRlDlOUijGbt8m479fv98Pv9ee0SkVRuFCf2t1pd0Uln5vY8NZxSqZSkdJzgsRo9erwoNo9FBUyEDhaxNjpuWspAhAdacqOGkxGZM8o/q2OqhpMWyMdHb0yd1DdWQVReeLhZlbVAIMA9B8bSTbXG2455ZoYeM3NFD0TocWJ8CtWPnr4pFdpHkl6zSo8I37TsG54Tb0UfGIF4PHsDsxk5tUP+AfWxVNvtsot2PXvN7FpYqvaaFjhlrxWqH9GxNNOv3WuVVbvQDv5pOf52ykIpQEmd6RVV7GqRXeb0Kttl7/9ppQhYVbhy/JX0mE3xDAQCXHr0cBJRhE4GJcxGpKzyWFTArCwkeqClDETmmVNRTbPGr15Ezyw9WmAkWFQso0AEROTUSjqw3+9HJpMxpAvl7VoxJJyKOtsdfLBLboyOj5FvreCop2/M6lwrdY3gX4p6zSo9IjrRzNqrJtNsJ9GMncHDX60flgpqZSxF5pvZseTtWBkBPXtNzmPeTvxIs9e0wCl7ze5+RAJmTs1Vu9Yqp9covbWD/VtZxoJfRnmghVMpgGNOr1OTTWuA9Qw9pxdeK8aBGk5m6bHiXFkxxK0sCoVyrqzMM5G2izH39epq9WvWmLJCjxYYqesk36xCMeVUxOl1Sv6t1OU58VbASbkBjKX4Osk3Lfx5T5YUSueORL1WTHrMyLReUN8IaPUjcj67mLpDjqMZEO3H6KZLMdcBLXq0gLVrNz1q3/LS6Yspa26329Tmjhlweo2yW9+w4JcT9nMhwDGnNxgMqjKkrKws51sjdYPBoGrdQCDAHQiRwddq1wpOWnW1QESJWqGnrKzMEV5YWRQKxWMr/NMCZkzp0cE7n2GHgjcrc2pyw4wpvfHWwsmKYSkypk7KtlUQkTUri50VXeiErDlFjxUQoccsj10uV0HmqNfr1a2bTCa5gcZgMGh6HuiNpdq85n07kvSaVXqcsiXMyrQREOnHqbF0gm9GwCqOI81e0wIReuwYDzZnCm0Xmh1LdjzIbqc3GAxyn6UrRX3DAktm1o5SgKLs9BY6Euqk4rBCjxaILD5W6DErRD6fTzMC5pQhbnYx5YEI/8wIrdyYMpt2akXBOyU3Vpx4JwxLMzjKvzXTjxkoprFTrJ1eLSdEy0l0aqEUocduHvPaAczrN72IO8ORdy7LimzrBaeLLZ9O6TWr9BTLvnF6p9fJOWOVb3Y6vWZxHGn2mhaI0GOHLmfzzakgi91BY7nDZzWdXt5fsexCJ4M4am/LFxuKstNb6OiM0wuVU0rHSXqcMMAymUzRIqFGFnynFlF5u2q4FmO32w7lpna1fzEMSyPfWpEFq2B1XFwuV9ECGWrt6tU1g5M8Q4JX1woUwyjgtQPYL5/ydFOjdUVot0NuRqJeG6n02LXTa9Xu0NqxMku72+12PJ0ykbAW1B9J9poeWNUdRnZ6R9JaJW8XsJZOb7S/UuRBIsE/ymh23hUCiuL0ajHaSaWjpzTN7FjZZRjx2i2Gk2iHYrdS127B5oGV/kTbVcN1pCo3wN6dJC0wUtdJY8oqOCVrek6iHQaY1hkru3UhewLDKae32AalU3wrtr4p1E5vKRmuTtNjdSyNOvE8HJwwdp2inaWb2rXTO9KC+mb5pgdOjWWh+imWzjUDI50HLMNRpG4pQFGeLGLM4t0Yxpxe3rXvmUxGWuSM1GV/qy0KonXNPLmg1q4eWMXJ7/dznywRqWtmfOTjbrauWR5r1eWBlf5E21XD1Uke2C1zTtKjBfF4HF6vV0huiiWfIuAUbuwJDKtymkqlbNeFTugOK8B47PF4CkYPrx29fqzqTSt1ndS5I1GvOUmPml5jzypamQd27HYa6UcZLBCta6cMKA1wK7qjmPZNoe01PXBKd5jpx+ycsVK3kGuVk3qaZYsVcr22Mu8KAY7t9GqdX9C7fEIrulDMumr0hEIhw+3qgShOamdHrdBTijwOBoPwer2G6/JAJAKmRodIu8WYZz6fz/RZy2KMqRYYkZtiyacIlLqsAfzde726ZuTGCj1WoBi6kNcOoM03M3PUaX2j1a7b7TaUiTGS9JpVeszgxLIdii0/Iv1YnaulMpY8HJyWtVKx1/TAKk5q9poT/WjdTu+UzlWrawaKMf6ZTAapVMrSfC6WXWUVHHN6y8vLTU82rUPt5eXlputa6TcUCtlKjx6MNHrsGh+tRUGtrtfrNZze7Pf7NRWiGh167TI6eHWtjouW46/WLkvLsoqT3fRogRG5KZZ8ioAIbsXUZ2brFlq3WwGRfq0ETETnqMfjsb0fO+XT6M3Pdspnqek1q/SUmn1jBIppd/wr0G6lbiHXN1GcjNprZvsxczt9IBDg2njseFChdYcaWB3/srIyVcdfrV0W7C70fC4FKLmdXr08cit1tQZJpF876dEDJ3mh9wRGscbHbF2jPNaqw4wpp3Z6RXjAuxXQLA+KOS6srp1zn/etVj9sYTSKvx3wXtWFZnd6zdJjBUTkRksXmuGTERzYmcRiyqeZJ+bMyOdI0Wui9GjpG7Uz8cWQaSNQrPWgFHSH03qzlOw1PXCKHiv9GL1TRK2MnUEt9nwz2l8iwQ9Oau3IlppdWApQtNubi7EovNeUjlkFrOXwpdPpoih2J+hRA6cNIjv4Z5eCL+Zizeoavdrf6KLJ+rFzUbADlLjxyoNB9ff5SlEX6qWbOjHPrIAVXagV/LLLsGNyXqwAhtM6dyTqNVF63gtOPI8+p3DUe7LMyqU6I8HhLyV7TQ+coqdQ/YwEWTPan53ByWLZEKUAjlxkxdJNeYsCO7RvdZHjXWjA6qodvFarq4WTVpn8nUQ9J97MRQKi9BjB2S4DTO1CCREeq9FTqJ1evfGW02HWINKjw27+6dFjx2JtRubMLA5a9PC+ZcYUb1EwKwt2QCKR6yRq3XZqRl7Myj9gfo6qlTFdz5x4M3PUzpQxEZyd4rESSnUs5XXt0jdKGIl6TQv0+jVrSxgx8I2uHUbA6TWKpwvll3hZNd5LlXZ53VKw1/TAKXtNqx+7ZbwYY2kGiuG7OKlvtPhXCuDITi8jmP3NgDmJI9XQUzrxrB07jAMlWFH0Vg095sTbabhaMUJEDSNRAXPKgLCqoICRpeD1ZI4Fv3h1tcDIYs2+DQTybxJkZ3fsnDtGQN4+kLvLxXSJGWPHjmCE1UVUecZKqQuLZbQrwaxByf5Wc+LNzFEndDlgTd9Y3UXRo30k6jUt0NNrZoNGTq4dRqAQc4aIcp45Yf92wi40Ak4HWUrJXtMDp+w1rX6cCLIU2lY1A3prFAvq6+E6EtaOUgDHnF5mhMqJZkYfK+cxy+pFD1oTVauunrLm0cP+rYWzlYsE9ARPjx49nJTPN4nSI6IMzCgSsxdZGOWx6ALFSzvVaxcAKioqNOkw4ySKzlE1evRwMitzIkYOr64WaNGj9i2vH7kxZbd8ioB8vJW4sX9bccjMyj9gfo7K6ZE78U7SYwX06LHqxBudo2q0B4NB1XfinRpLl8tlyRkVpX2k6TU9etT0jTyor9avU2Nplh4efU6t8U7YUU7QbnZ8RpK9pgdW6TFykZWTdqFTtmohb29WkxtlUL9U9KcWTqUAjji9eoaelTQWJw09PeFRo8eMoacHViedCI8Bc4arEzxmt5uq1RXhMe8NZh7IcVEzds0sFnYtbsq6jC4rCl7NiXd60eHRowdGFmutfqzoGztAa8ESNViKFQDUM9oLSY8VMCJzPF1oh0Ep70d526nIHHVyLHnOKDOm7KZd2U+p6jWz9LD5Y2Us9QxxM2uvERhpdpQTtDuxForULaS9pgd69Ji114z2Y5fDp2bjmV2r7Jhvariq4aLsjwX1i+X42xH0KAYUNL3ZDuVmdtcJsJ6WYyc9eqCHkx1Oop30WB0fNZzYe2KidZUXpfDAykKi1y5g/zyTZ0jo1bWSdlqoMdUDo4tmMeRTBEpV1oDS0oV69FiBUtDtTvPN7rFUpptq1eU9WSLaT6nqNS1weiwL7cRr0Veo9cBJGTACTtJeavaaHpjFSc9es6sf9q61SF3lXR+ltlYVU24CgYBmhpHdslAK4MhFVmqDxHLB7VgUjOavy5WO2XNsSnqMTDqjuf+i5xWUOGUyGSSTSceFSO38BRMEs+cvlDgZMYyUddXAyhzVAvatSAqU1vyV48HDSY9/cifeDplTG1M9mVOjRw+0zo5qfSvH2SrtdoDWmCplrVTOWhdijvLwBex3eo3cIaFHjxEeK8GpfowYH07qGy36R6Je0wK7xtKJM/Fm6FGCSD9Wz1jK25K3U+ixVEIx7Jti2Wt64JS9ptWPU7Y3a0utrpm11ymn16k1Si3DyAl9Y+RMdzGgZHd67Y7saikdIzuJdkVa9MAsPVacRKs8BsyfebFLuYnw2Up/eu0CxY2EW6lbqDHVA2Vdrd17u2jX27EyA3aOi5EUfLPjonQSCz3P7L69uVi6UAkjTT7t1LkjUa9pgZ302Hkm3u12F+TJIr/fWrqpU2OptmNlJ+2A+Z34UrPXrPLCLvvpvWYTmYGRyoOTO71DoFSMahGWQCDAjRCo5a+zb9UMPVbXqtJRi4jz6JHjpEeP3o6VEowIghUem6FHjf+AtUXBKo+VddXACv+0gH1bWVnJxUWPf1YVlJbMifCPV6aVlqW3CyVqGCtBix61b+2WBTtAPt5yfOR9ifJPftupHl1y/hmhWT5X9HSskh4ji2g8Htc8Y2XXOOitGUaMAiM8VoJoP2bGEjCvb6yOpYjcjES9pgV2jaWSHqtrr9pYGgWza5RouqnVsWSbFPIyVteqka1lrxnRJSPBXtMDp+w1rX6ckhfWFq+uVYfPjrXKrO9iZI1S4mrErlbTA2aCX6UAJbvTa6VuKUZLALHzpiOFnkLtxFuhRw2s9KfXrsfjgd/vh8vlKgkeODUuVjIk9MBI3ULPHSMw0sa0kLpQzYm3c6EsJI+1AppOjiWr6/V6S2IeOEW7lbqF0k0jkR4t+kpVd9i1XmvRDti7E19svjm56WJlPEqdb7wyr9fLdfjMQKEyJKzUNdKuXvCrFOCk01skZa0HI4Ee5aLgcrkkp68UxkcNnFpEWbsulyuvbqHS6K3UVSvzer157Tpx1tpM3WLJp1U6ij2mxdYddsmcFhSSHrkTz8PDjn54T5ao6ZtiGVNO0W6lrhG9pgelTI8deuxfWXe813VuKWy6FKofp8fS5XJZTqcHjF3IZYUOK3VLYS23E0r2ySK1un6/uTfw1NKm5Tg5edW+sq4eyHE2S49TgqDWbyAQgMvlysPZyBMYZnEywmMr/NNrl+GhrGvkjWotnJzkXyKRf3aUKXhlv6I4mYmIatGj9q3dsmAH6MkLw83sfNAaU6d1rN30eDwe1YCZWRChxwmZ4+FhZY7K+1EGGtX0jdyYcmos7aS9VPSaHtg5lmbXXrUyr9fLzTAyAnr9iNh2hVzj2b99Pp/hsVSjXa0fFtTX0yVm9Uwh7TUtcNJek4ORJ8vspN3IusC7AIq1aXW+GcVFjY5C6E9emdvtzssw0sOpFKBkb29W1pUrHb9f+zZKtdvEPB4PXC6X6RvQeDgZoUc0/18Zpde70c1OHpulR2mAycv0zk3byWMRIbPCPy3QMkKVdGjNXzkePJycnA/KtFO1MdWjR4mT0bPRomPqlCzYAXryIsfNCP/YmUQ1J1HkrLXP58vBQwQnJ+eomtxYAas8ltc1si4owal+SlHfKGGk6TU9cHIsRenhnYn3+4d3/K2cM9SyO5TGbrHGUsk3r9cLt9ttK+1yvORlPB6PRHtNC5y015T4aX3rlO1tdV2wc60q1hplhH+pVAqZTCavjNU3ogdKAUZUerNc6cjLeKlcWouCnTiZrasFoqmjzIkvBXqMGGDF5rGV/kTaZfVLgQelOKZ6YKRuMeTTDjqcGhfRNHpeelYpzjMrUCp6Z6TJ50ih3Upds/PNSZxEjwcB2k68FfmR96OWTs/rZySOpRbtRvoZifaaHh+cwqlQ/YyE+VZsOoBshkQh151SAMdvb1ZjiJmtfPa7kplsAZBv5YsuCqITx+6UPi3g4WTGiS90uoRVHvPSs5zgsagiMZv6xvBVo8Mp5aY2piwyb6fMObXg6tGj9q2ZsTQrn0bocCqlj/2upEuZRm8kPUtkjhaaHitQLJnj4WFljmrJdjHH0k7aS0Wv6YHTY6l3PEitX7P0yEGebsr6EU2ntzqWgPmjEXbQbqUfHu2lbq/p8UFJj7LcrL1mph8tWStGOr0TTm8x7EKfzwe3211Qu7AUwPGd3kKkFSi31OV9yXHi1dXDSYseO9PAlH0q6SlE2qlTKYpGFwUrOImkU+jNUa00ei1Q8sBMKopI2qmeYhRNO1dmSCjrGpE5I8paD7RwMvKtFVmwA5xMaxOVfyVddsxROwwJ0TlqBexMHTSyLihBpB8WcTe6/lgdS4/Hk/fEnJWxVMJI02t64NSc0RpL5U6isl+7Ui55usPKGi9Ku1N2oVGwy74BSt9e0wIn7TWtfgqZTq91PMjs2msGirVGaekbFvxyQg+UAoy49GZWX0/pmK1rZdLZZfgXmx6v1+v4+Ni9E2+ExyJ08KKyou1aocOJtFM1nPSMKTvo4Rm7emBkTIshn3bQcVIXiuFkBaziZCTd1MoclZ9JdGoe8J6YK4TOHWl6TQ+09FopyrQR+FfXHSNV55qx1/T4oKTHLntNq59CptOrtas8HmSkrhkQpcOO4GQpzOdSAEcusgoEAtxFgUUTzG7ls98DgYBqtIxtuyujGvI0MF7ESC1NgtW1Q+mIRoWUOOnRYzeP9c5N83BKJBLCPNaix0kDTNkfL3VDCxc9EFUGLO1UuZCI8o8X1VSbo0Yj1EZlTo6T3KhmOJm5XEWLHrVvWeTWLlmwA7Tkn8c/Hl1G5UVJs5IuI3NULXKshpM83VSPHrtkTgv06BHhsZl0UyWYHUteuqnZsdSqa6e+UcJI02t6oKXX9PSNni1hZCzVdr2N0iMHkX6cGkvA+vlCK7Tz+hHl8Ui017TASXtNrx95Or0ddqFReVGuy1q066Vvi4BS5pLJZM6lUU76Lkb0p1lZsLoT7gQ4ttOrFdktxE6iXZEJVlctsiuidIwa1YWgx2i7yvfErOBUKHrUwCwPRNsVocNIv06NqZ04EZFwlFYPjIypCI5mjCk7gLWvdrW/2+22JcWqlHQhr10iQjKZdETmtMApudHbSeThUeyxtFLXityMNL2mB+81epT4me1HlHa1HSu70k3N0q5nr5WirGm1q2evaYGT9BSqn1KXNa3+7D5HX8z5rLz5uRTAMacX4F+u4ffz38dTvg3GvpfX1Yv62BHVUJs4apcQqEV9mNJRo0cL7Jp0WgfU1QxXNXrs5LFWXa1+tegxwmNRZWA0klco/qnNUT250eOtVt1iGJYiY6rHN2ZM2TV3jIAe/9TwNuIkqo2p1fmgNs8CgYCqE69Gj5F0Uzui50bo8fuNO/F6PObhUeyx1Kprp75Ro93ufpzSa3ogQo/W5VqFHksjYOcapfXMCY8+NdpZRpQTYykHPXvNqbVQKeNqOtdue00LjNBj1F4rVD+MN1Z1nxZOdjq9VmROL6hfbLtQ7sSXAjjq9Box9EplJ5F326kZevRw0gI76VETBDUnvhA8doIer9eb164asDpGjV3RdkXoMNKv3JjS4kExx8VIXS0wmiFhVj71zu7YAWZxs/OstZW6Rs9YFXqu6IGo7jDqxBvV7awttSdLSk0+RY0pO+QTKC29pgciMmAm86sU5Mfu+WZkx8oJXVhM2u22b+y21wrFCz3d4FQ/pS5rdvSXSDiTIeGkLJQCOO70quWCK8uUt5jJf2P/VmM0r66VQTKCsxF6nFI6aueb/X5/3tlRPZzN0mPXGSu1fuW3myrPjsoXBZEzBEpjV3S89cBJ/okYU8yJL3WZ0wJe8EtrDMzqGz25twP0+OeEvOjRZXSOKs9Y6c1RUXrskjktUNJjxYm3MneMGK5OjqWR+SdiTDEnXov2kabX9MDsnNHTa06NpREo1hpfrLEsFdrldQtlr2mBk/aaXj9G5oX8eBDvDDnTUcp0eqfG0gxY9V3UcOEF9UvB1i8FcOQiKzWGjBRDz6gzIkqPqIDY4YwwpaOkx4gQ2RkcMEtPIpF9T4wZRlbPjhKR6TmqB8UIrqRSKcmY4u1YlaLMaYF8rojc/OyUvrEDimHoWV1Etfo1O0cLZbQrgbXDdhL1+rWLx0pwqp9CjWUiMfxkidyYErnhfqTpNT2wYyytpNMbHUsjUKw1vhSckGLSDhTeXtMCJ+01vX7M2t7ydHr58SBWXmpBFjkuRvozMg7sdzsyjOziXymAIzu9WvneIrngeouCE2efROpaVTqiAsK+E8mp59HDHp12SokW+oyAHCd53XQ6jUwmY0gJsSiqFq5Onvcyyz95mTwFX85btX7tMCisjKmRc5rydnnGLu97M2OptyjYAXr8c/I8ppUzQuxMolZds/Q4eS5PCQxfdoeEvF/5HRJW6NHT7fIbmPX6cWIstfSN6FgCwzv+evpGCSNNr+mBVX1j5ky8lbE0AqWyxhdqLNVoL+RamEgUx14T4YXd9prT/TAdJU+JZ+0X265RA6sypyxjwUk5HU4eZTTKv1KAolxkpVbGfne73dybn50yDuSRKa26ThlGSjAy6bQms3LSMSfRCUPPSSFSGmCsXGkYiSghOS5quDplELHfrS5u8rpKegrljFiZo1qgRw/veyNjqbYo2LGA8XCzaujxnmIS0aNWFlGeLlQ6iWbpMRrQtAJKfOX9suCX0wal0gAzom+sjiX73UzgxKy+UcJI02t6YETfyNPp7aLH6FgaAatrlDzdVKuuWdrZe9bFot2JtVDJF3ldJ+01EV7Yba8Vqh857az9Yts1amBV5pT6k61rxdKfevwrBSjqRVZai4JTkQkjC6/eTqIoTrznm7TAKXrs4rEd6VmFoIcHVnigB6XIAydxAsylZWmB0TG1a1GwYwGTg/xMoghu8vSsUtWFLN3UCk56Tryd41AsXajEwY5+zMpnsXXuSNNremCUHuUOeanRo6TNbD9aY8lLN9VrVxmcdGK9VqNd7bnNUpM1u3SUFi/spKdQ/YwEWbOjv1LkQSKhHfwqBbDV6TXqJALFXxTsnDhGnHgtKBV61Hhs922nhTLArPJAD0R4YMfZHXndYsqNaIaE2bmvV9eoMSVv34p8ioBRJxF4b+lCu5x4K1AIueE58Uoc7OiHdzt9Kc4DHv0jSa/pwXuNHiVtZvvRot1ItgP7v2hw0gnajfZTKjpXDSeRY0JqvLCTnkL1MxJkTd6eaIbESOCBkfEvFtjq9PIYrXUAGhg+5Cw/AM2r6+SFH2o46dGjxEleh0ePU0rHKR7LnXg9ekQO1Ys6fHo8FqWHB0bnqJ2XnGg5iUYubZDXtUIP73IVs5ePyHExc9Zajq8WPXLgGVN2yYJVMCovDF/5/0Xng10XjFnRZzxeaznxTlzEowQ7eZxMJjWdeDWczYwlb5eLdzu93lhqGVNO6RsljDS9pgVmgvpmbYliXARn58VC8rrFsgvN0s5ry6nLtoplr2mBU/aaWj/yiwaNyLgRvpkZS5ELoKyuVVprlJmgfrH1zUhwekE2wuuvv04A6IYbbiDKrtzk8Xikcr/fT6zLm266iQDQ888/T0REP/3pTwkA/elPf6JIJEIAaNq0aVJdAFRVVUVERMuWLSMA1N7eTkREV199NQGgnTt30o4dOwgAXXXVVURE1NHRQQBo+fLlRERUVVVFcrKnTZtGACgSidCf/vQnAkA/+9nPiIhow4YNBIBuuukmCQe/3y/V9Xg8Uls33HADAaA33niDiIh++MMfEgD65z//SX19fQSA5syZI8THiy66iADQoUOHaNOmTQSArr/+eiIiamlpIQC0Zs0aIiIKhUI59DQ0NBAAisfj9Ktf/YoA0G9/+1siInr88ccJAH3961+X6CkvL8/hMWvruuuuIwC0detWIiK65ZZbCAA99NBD1N3dTQBo4cKFRESUSqUIAI0bN46IiGbOnEkAqL+/n4iIzj77bAJATU1N9PLLLxMAuvHGG4mI6NixYwSAzjvvPCLKnSNERKNHjyYAlE6n6cc//jEBoDvuuIOIiO677z4CQLfeequEf3V1tSZv7777bgJA3/ve96Q6tbW1OTxwu91ERHTZZZcRADpw4IBmm0RE0WiUANDUqVOJiGjy5MkEgGKxGBERrVixggBQW1sbrVu3jgDQV77yFSIi2rdvHwGgK664goiI3G53Dg+qq6ulv2+99VYCQPfddx8REd1+++0EgH784x9TOp0mADRmzJgceticPe+88wgAHT9+nIiIbrzxRgJAr7zyCjU1NREAOuecc4iIKBwOEwCaNWsWERGNGzeOAFAymSQiokWLFhEA6u7upgcffJAA0Le//W0iItqyZQsBoOuuu07CQVTV/OY3vyEA9Ktf/Yri8TgBoIaGBu63TDY+8pGPSP24XC6pPBgMSv1+6UtfIgD09NNPExHRL3/5SwJAv//976Wxmzx5shCOIvDaa68RAPrkJz8p4eb1eqVy+Tz/7Gc/SwDohRdeICKS5vlf/vIXGhgYIAB0yimnEBFRJpPJmedLly4lANTZ2UlERFdeeSUBoN27d9O2bdsIAL3//e8nIqK2tjYCQCtWrCAiosrKypxxmTp1KgGgwcFB+sMf/kAA6Oc//zkRET377LMEgL7whS9I9AQCAamufM5+7GMfIwD01ltvERHR9773PQJAd999N/X29hIAmjdvHhGRNGfr6+uJiGj+/PkEgHp7ey2PwYQJEwgAJRIJ+sUvfiGNNxHRo48+SgDom9/8pkRPRUWFVFc+Z6+99loCQDt27CAiom9+85sEgB555BHq7OwkALRkyRIuDkw2/u3f/k1ql61j7G82Z9nY7dmzh4iIvvrVrxIAevLJJ6m9vZ0A0GmnnUZEJMnGpEmTiGh4HRscHCQiolWrVhEAam1tpWeeeSZn7A4fPkwA6OKLLyai3HWMiKi2tpYAUCaToR/84AcEgO666y4iIvr73/9OAOi2226T5mJdXR2X9pGo17RAT6/J1+Kvfe1rBICeeOIJItLXawAoFAoREdHq1asJALW0tBAR0Yc//GECQG+//TYdOnSIANBFF11EREQ9PT0EgBYsWEBERHV1ddLYGYUPfOADBIC2bNlCe/fuJQB02WWXERFRV1cXAaDFixcTUe4cISKaMWMGAaBwOEx33HEHAaD/+q//IiKil156iQDQpz/9aYlWuS70er0S3z796U9LY0dE9F//9V8EgP76179KYzdjxgwiGtaFNTU1RES0ePHiHF1oBLTsNeU8X7BggbT2EY08e00PnLLXlLBmzRppnj///PMEgD7/+c8T0bCOet/73kdEuXOEKHee33bbbQSA/vGPfxAR0V133UUA6Ac/+IE0dqNGjcrhG/NLLr74YmnsiIb9kmeffZZaW1sJAK1atYqIKM8vmThxojR2ZoH5Mh0dHdKaxMZ7586dBICuueYaCW85DyoqKqS/v/3tb0trEhHR//3f/xGQ9WWSySQBw/Y5aysYDBJR7ngTEX384x8nIOvLsPE+//zziYgk2Zg7dy4R5Y430fD63dPTQ/fccw8BoO9+97um+eME2LrTO2HCBPh8PqxcuRIAMG/ePCxevFgqX7ZsGWbOnAkAOO200+Dz+TBp0iTpW6/Xi3nz5iEQCGDUqFFSOwDQ0NCA008/HQCwZs0alJeXo6KiAgCwfPlyBAIBjBs3DuPHj0cgEMBpp50GAKioqEB5eTlWr14NADj99NPR0NAgtbty5UqMGjUKgUAA8+fPl3AAgMmTJ8Pn80ltzZw5E8uWLZPqLl68GHPnzpXa8fl8GD9+PADg1FNPhdfrxZw5c1BWVoaampocerRgxYoVCAaDqK+vx8SJE+H3+7F8+XIAQFVVFcrKyrBq1Srp2ylTpuTQM3r0aHi9XixatAher1fCcdq0afB6vVJbU6dOzaFn4cKFWLhwIQBg1apV8Pv9GD16tFTm9Xoxc+ZMlJeXo6qqShoPl8uF0aNHSzitWbMG1dXVKCsrk3AqKytDdXU1pkyZAp/Ph6VLlwIAampqEAwGpfFZvnw5ZsyYkUPPuHHj4HK5sHjxYni9XsyaNQsAcMopp8Dr9UptTZo0SRorNZgxYwa8Xq80LydOnJhTZ86cORJPVq1aJc1FPfD5fBg1apTEg9WrV2PUqFFSWuLKlStRUVGByspKzJgxAz6fT8KBzT9Wd+nSpdKYAVlZmThxolTm9XpxyimnAABmzZoljbXL5cK4ceOwYsWKHHrZeK9evRrBYBDV1dVSWz6fD1OmTEF1dTVCoZBUl33HxmXVqlUYPXo03G63RE9VVRVCoVAODgAwduxY+P1+aX4sWrRImld6wPQAk5/Ro0erys348ePh8/mkfhYsWJCnb6ZPnw4gKyc+nw+TJ0/O6Wf+/Pnw+Xyor68Xlk8RUOrCOXPmYMmSJVL5kiVLpHnMdAcb4wULFuTpQvmYTpgwQaJ59erVKC8vR3l5OYBhXTh27FhMmDABgUBAGv/KysocXbhy5UqpT/Z3XV0d/H5/Dg7AsC5keMyYMSNPF86fPx9AVsf6fD6MHTsWwLAunD17NkKhEKqrqyW+uFwujB07FmeccYZET2VlpaQ7rMDKlSsxZswYeDyeHBwAvi5k/2Y4s7l0xhlnwO/3o76+XqKV6UIm02pzZ/r06Tk6avLkyTn6Zt68edK8WL16Nfx+P+rq6qR+fD4fTjnlFFRWVqKiokLiv9frRV1dXY6+qa2tlaLrK1eulPT09OnTc/RNdXV1jr5ZtmyZxBcgKysTJkwAkJ2navoGyM5F+dyUw0jUa1qgp9eWL1+OqVOnSrR5vV7pbz29NmXKFAnHNWvWoKysDFVVVQCy4+P3+9HQ0ID6+noEg0FpDoVCIVRWVmLNmjUAsnN13LhxurTwgOmOCRMmYMyYMTm6g9lbcjuK2Trs79raWgSDQYnWBQsWAMiusXLdMXv2bEkegOx4sfnHdCGbf0wPzZ07F8FgELW1tRL/gez8Y7pjzZo1qKiokOxCI6Bnr40bNy6nH6ZLgZFnr+mBU/aaElasWIFQKISqqipMnTo1R0fV1tbm6I7ly5fntHPaaadJc4T1w/BgdiFrq6GhIUfnzp49O8/Gq6mpAZDVdz6fD9OmTUNVVRXKy8uleRAIBFBbWyvRvnr1atTV1Uk2nhlgdmFFRQVmzpyZw4P6+nr4/X5p3i1ZskRaYxkPmD2zbNkyeL1eTJs2DUDW3vB6vVi4cCHcbjfGjh2bM5+nTZsm8USpP5m+mTx5Mmpra1FWViZ9y/SSnAdjxoyBy+UCkNUDTOfKcSglcBGpvBxtEohIYgBrmv3NKzdTVqy6vDI5fUbq6kGx6Ck2j+2kRw2s4CLarhU6rNQtxXHh/a0FRsa00HPHCOi1P5LH1E5daGWu6EExeGwWh0LiWCi5GYl6TQvea/Ro0VfIOeMU30qNdit1ndRRheJFofoZCbJWSFxLZT6XAtju9J6Ek3ASTsJJOAkn4SSchJNwEk7CSTgJpQK2P1l0Ek7CSTgJJ+EknISTcBJOwkk4CSfhJJQKmE9Gl8ETTzyB559/HkB2O3vz5s0YGBjAjBkzUF1djW3btgHInjMIh8M4cOAAysvLsWzZMuzevRudnZ1oaGjApEmTsGXLFiSTSeks2e7du+Hz+bBkyRI0NTWhqakJdXV1mDdvHjZv3oxIJIIZM2agqqoK27dvB5A9a9PX14eDBw9K/ezatQtdXV2YOHEiJk6cmNMPEWHPnj3S2YXGxkY0NTWhvr4ec+fOlfqZOXMmKisruf1UVFRg6dKl2LlzJ7q7uzFp0iQ0NDTk9MPOao0aNQpf//rXc86epFIp/PznP8eJEycAAP39/dixYwdcLhcWLVqEnp4eHDp0KK+fyZMnY/z48diyZQvS6TTmzZuHdDqNvXv3wu/3Y+nSpTh69ChaWlowevRozJ49G5s3b0Y0GpXOe2zfvh1utxuLFi1Cd3c3Dh8+jMrKSixZsgTbt29Hb28vpkyZgnHjxkn9zJ8/H6lUKqefI0eOoLW1FWPGjMGsWbPw7rvvIhaLYdasWSgrK8OOHTvgdruxePFidHZ24siRI9x+xo4di61bt0r9JJNJ7N27F8FgEEuXLsXhw/+/vTsNaurcwwD+JCEkIMgOkV5RwZ2iqNWOVay1ivsOLhRRh7ovdaZfO51WK65YNyxq3TfUWrdRrHWbOi60CuJWNypI3cAF3AggOfeD95ybE0MWiIqZ5/dJTML/vG9ynpwXeP/5B3fv3kVQUBAaNmyIzMxM6PV6NGnSRNpH6OHhgalTpyIwMBAAkJaWhtOnT0tzbfwYjUaDixcvQqVSoWXLligsLERubi5q166NyMhI6c8zevXqhejoaNlr/8yZM9iyZYvUNfHKlSu4f/8+dDodwsLCpDpNmzaFq6urVCcyMhIFBQXIzc2Fl5cXWrZsiXPnzuHJkydo0KAB/P39kZ2djYqKCkRERKCkpATXrl2DVqtFmzZtcP36dalOaGgosrKypDpqtRqXLl2CSqVCq1atcO/ePeTl5cHb2xstWrRAVlYWnj59itDQUPj6+iI7OxsGg0FWx83NDa1bt8a1a9dQUFCAOnXqoEGDBsjMzERZWZm0X8O4zt27d3Hr1i34+PggIiJCVkfcu6/VajF+/Hhpr5to3bp1yMrKAvCq219WVpZUR9yn5OXlhWnTpuHEiRM4dOjQa3kTFhYGHx8fZGdnQxAEKW9u3LgBNzc3tGnTBn///beUNyEhIVKdZs2aSXs2vb29MW3aNGmfjz327NmDI0eOvHZs5rLwyZMnNmcU8P8srGpGmdYxl1GmWXjr1i3cvn1bVufFixdo2LAhPDw8pIxq0aIFioqKzGaUWCczM9OmjBLHq1QqERsbK+1pssWjR4+waNEiFBcXAwAKCwvN1hEzSszCxo0bw93d3eYsNM0oHx8fAICfnx++/vpr7N27F6dOnQLwquuvLVko5k1ldT788EOUlZXJsjAnJwf37t0zm4XWci07OxvFxcWoX78+AgICZHmj1+tx9epVqc6NGzcqzTUxYz09PfHVV1/h7NmzSE9Pl86Bmp5r4l5BFxcXxMfHy/oCAMD+/ftx8OBBaTyV1WnRogWeP3+O69evS3lz5coVFBYWIjg4GPXq1ZPlmkqlwuXLl6X9h3fu3EF+fr6Un1XNNXFvo4uLCxISEizuqTMYDEhOTsbt27cBAM+ePXuvr9fEPY8KhQIxMTHS3sPKrFixApcvXwbwqiutcR2DwSDLjry8PFkWnj17FiUlJa9lYU29XjPNKHd3d2keysrKMH/+fBQUFAAAiouLHXa9Ju55bdu2LWJiYpCcnGy1jrmMCgwMlGVhaWmpLKPELDTNKNMsdOS1l7gXXaVSIS4uTrbnujIvXrzAggUL8ODBAwDA48ePa9z1miNzTavVAni1z3j8+PFW5+eNExwgODhYUKlUgk6nk7qqubm5Cf7+/lKHMT8/PyEgIEDq9iZ+Dbzqwujn5yd4e3tL3fgCAgIENzc36b6BgYGCi4uLoFKpBD8/P6mOu7u73XXErpGV1VGpVDbVCQwMtKmOj4+PEBAQIOh0OsHf31/WZU2UkZEhAK86e+p0OrN1FAqFxTq+vr5CQECA1LVWfKxSqRRcXFwEPz8/wdfXV+oC6O/vL9SqVctqHY1GY7VOUFCQ2ToeHh5W64hzItYRO2yLdTQajayOQqGotI5Op5M6cqakpEjzq9FoBFdXV0Gn00mdJys7NrVaLSiVSqmeTqcTlEql2e7bYsdVnU732rGJdTw9PQV/f3+pc6O5OuIcaLVaq3MQGBgoKBQKQa1Wy+rUrl3b5jri+Sl28BWfb9M6ABxSx/h5Me3mp9frBaVSKWg0GkGn00k54OXlJT02KChI6tBYt25dKW+qMh7TvPHy8pLOT/E+mzdvrlIW1qlTR3BxcZFlYWUZZXxs9mahrRkl1rGWHWJGmWaHuTpidjgyo4zrGL9WxC6hthK7C4vfw5YsdERG6XQ66fulp6cL7u7uglqtlv3/m85Ce3KtKnlTWa4ZP18rVqwQGjduLCiVStn5WZNzzfj4xc7MxurXr1+tvBHrmOaapeub6uSa8Xji4+Mtni/ip114eHi8dt3xPl6viWNXKBRCp06dLI5d7Grs5uYm6HQ6u7LQ9DrqfbheM35P2rdvn2wujh8/Lr02dTqdQzNKp9MJrq6uglqtlro0e3t7V1qnKhn1rq69jM+1gQMH2vQedeDAAen763S6Gnm95shcM34fLiwstGmO3iSH/KZXr9ejc+fOiIqKwu3bt7Fy5UqMHDkSOp0Ox44dw5kzZzBlyhQAwMqVKxEYGIj+/fujpKQEc+bMwYABA9C8eXOcP38ev/76KyZNmgS1Wo0dO3bg6dOnGDVqFABg9uzZ6NixIzp27Ih///0XP//8M0aOHImgoCAcPXoUWVlZUp0VK1agTp066Nu3L54/f4558+Zh0KBBaNq0Kc6dO4ddu3Zh8uTJcHFxwS+//ILnz59j5MiRAIBZs2bh008/xSeffIJbt25h9erVGD16NAICAnD48GFcuHBBqpOamor//Oc/6NOnD549e4b58+dj8ODBaNKkCbKysrB7925MmTJF6g5ZWlqKWbNmQa/XvzaHAJCQkAB/f38cOnQIly5dkur89NNPqFevHnr16oUnT55gwYIFiI2NRaNGjXD27Fns3bsXU6dOBQBs3boV5eXliI+PBwD88MMP6NatGz7++GPcvHkT69atQ2JiInx9fXHw4EFcvXpVqpOSkoLQ0FD07NkTxcXF+PHHHxEbG4uGDRvizJkz2Ldvn1Rny5YtEAQBcXFxAIDp06eje/fuaNu2LXJycrBhwwYkJibCx8cHv/32G65fv47JkycDAJYuXYpGjRqhe/fuePz4MRYtWoShQ4ciNDQUf/75Jw4cOCDV2bRpE5RKJYYPHw4A+P7779GjRw989NFHuHHjBjZu3IgxY8ZI3ecAYM6cObI5Li0tRd++faWf1G3atAljx45F7dq1sX//fuTm5mLixIkAgMWLF6NZs2bo1q2b9PhDhw4hPz//tdd+SUkJmjdvjiFDhsBgMGD69Ono1auX9FO3zZs3Y+zYsfD09MS+ffuQn58v/bRr4cKFiIiIwOeff47CwkKkpKQgLi4OISEhOHnyJI4dOybNwfr16+Hm5obY2FhUVFRgxowZ6N27NyIjI3HlyhWkpaVh3LhxqFWrFvbu3Ys7d+5g3LhxAIAFCxYgMjISXbp0QUFBAZYtW4a4uDjUrVsXJ06cwPHjx6Xnf+3atfD09MTgwYNRXl6OmTNnok+fPmjZsiUuX76Mbdu2Yfz48XB3d8eePXtw//59jBkzBgCQnJyMNm3aoHPnzrh37x5SU1MRHx8v65a+bNmy1177L1++hMFgQJ8+fRAREYFLly5h+/btmDBhgvRTQgD47rvvoNfrodfr0alTJ3z66ae4e/culi9fjhEjRiA4OBh//PEHMjIypPGsWrUKfn5+GDBgAPR6PWbPno3+/fsjPDwcFy5cwI4dOzBx4kRoNBoAkJ5D02O0lZiFxhmVkJAAnU6Ho0ePIjMzU5aFQUFB6NevH168eIG5c+di4MCBaNasGbKzs7Fz505ZRj179kyWhVFRUejQoQPy8/OxatUqjBo1CoGBgThy5Aiys7OlOsuXL8cHH3wgyyhzWahSqbB9+3aUlJQgISEBAJCUlITPPvsM7du3R15eHtasWYPRo0dLGXXx4kVZFtatWxe9e/fG06dPkZycjJiYGOk3qnv27MGUKVOgUCiwdetWlJWVYcSIEQBeZVTXrl1lHUZ37tyJkpISu+a/tLQUCoVCOsfS0tJQUVGBL774AgAwY8YMREdHo127dvjnn3+wfv16WUZdu3ZNloVhYWHo0aMHioqKsHDhQgwZMgRhYWH466+/kJ6eLp2fAKTnUK/Xo7S0FD169JBl4Zdffglvb28cOHAAOTk5mDRpEgBgyZIlaNKkCaKjo/Ho0SMsXrxYysKMjAwcPHhQloUqlQrDhg0D8Oqc6Nmzp9259vDhQyxZsgTDhg1D/fr1cfr0aRw+fFiqs2HDBmg0GptyTZSUlAS9Xo+SkhJ06NDhvck10ebNm82e93q9HlFRUWZz7fjx4zh58qRUZ82aNfDy8sKgQYNQVlaGpKQk9OvXz2yu7dq1Cw8fPkRiYiIAYN68eWjXrl21c020ceNGqzkm3h4fH+8U12ui3bt3W80O8fNDBwwYYPZ6bdu2bSgtLZUyaubMmejSpQvat2+P3NxcrF27VpaFNf16DZBnlLnXwahRoxx+vQZAeg7F52T06NHw8vJCeno6bt68Kcuopk2bIjo6WsqooUOHokGDBsjIyMDvv/8u1dm4cSPUajWGDh0K4FUWmmbUmDFjpCzMy8vDhAkTAACLFi1CeHg4unbtigcPHmDp0qUYPnw46tWrh1OnTuHo0aOyjNJqta9lofGnMaSlpdn8XiV+Dm5iYmKNvV5zZK4BkN6bqvu5xo7g0D29RUVFePnypexrg8Eg+1r4X9+soqIilJeXy24T/0S0svsaf21ap6KiQna7tfuaO0Zb6hgMhkrrWBtPeXk5ioqKrE2j1XmzdzzGt1kbj6X72lOnsvtWZTyW5tj0seXl5Xj8+DEqY++xWft+lo7FnnPBkeeN6WMtHZOlubb1+bflsfbMo7nzxtxjHT0eW89PWzj6OX1XWWjLfR0xHuPbbH2tWOPI8djy2hH/pNr0GN73zLWWa/acnzUx16qT8dUdjyAINp/Tjh6PufG9jxlVlfdrc2O3J6Mcea69reu1yjLK3Fw48nqtsuejuuN5U1lozzlQ3fcqc/WM//2urtccmWuOeC93JIcuerVarewzq7Rarezz77RarbQ/UqvVQq1Wy25TqVQW72v8tWkdlUolu93afc0doy11lEplpXWsjUetVst+c2VpHi3Nm73jMb7N2ngs3deeOpXdtyrjsTTHpo9Vq9UWP+PT3mOz9v0sHYs954IjzxvTx1o6Jktzbevzb8tj7ZlHc+eNucc6ejy2np+2cJYstOW+jhiP8W22vlaseZsZVdlrxxky11qu2XN+1sRcq07GV3c8CoXC5nPa0eMxN773MaOq8n5tbuz2ZJQjz7W3db32tq4/bX0+amoW2nMOVPe96k3m2tuaA2u55oj3codyxN9Im9vTW5W9GzVxj4ilOu96T68te225p/cV7unlnl7u6eWeXu7p5Z5e7un9P3FPr6enJ/f0vuE9ve/6eo17ermn903UsWVPr/h/TrOnNzU11WL35vPnz7/WddDd3V3WDdBax1JL3QDt6Vha1e7NYsdSsY7YsdTW7s3h4eHw9fUF8Kp7c9euXWVz2Lp1a8yaNeuddG82rlOd7s2WOqNWtXuzuY6ltnRv9vT0RExMjDS/a9eutal7s7nOfsbdm0198803CAsLe2vdm8UufWIHQbFL37vs3ix26bO1e7PxXg8A0Gg0WL16tU3dm3v37g1vb+833r25Z8+e9kSgJDU11abuzWJG5eTkSFlYk7o3u7q6olWrVg7p3hwSEoLg4GBkZWXh5cuXdndvtkffvn3x7bffvrPuzf7+/ujUqRPWrFmDkydPAqgZ3ZvN5c2b6N48cOBAhISE2N29+V3mmmn3ZlMpKSnvbfdmcd9rZZo3b465c+fKuje/z9dr4p5mpVKJwYMHWxy7j48Pli9fbrZ7c3h4OAwGg5SFNal7c1Wv14y7N3fu3Fk2F+3atUNSUhLu378PoOrdm81llHH35g4dOmDmzJmvdW8WO8zXxO7NxlloqXuz2DfCmqioKMyYMeOddW+25XrtTXVvFq+x3iWFIPzvj7WJiIiIiIiInIxD9/QSERERERER1SRc9BIREREREZHT4qKXiIiIiIiInBYXvUREREREROS0uOglIiIiIiIip8VFLxERERERETktLnqJiIiIiIjIaXHRS0RERERERE6Li14iIiIiIiJyWlz0EhERERERkdPiopeIiIiIiIicFhe9RERERERE5LS46CUiIiIiIiKnxUUvEREREREROS0ueomIiIiIiMhpcdFLRERERERETouLXiIiIiIiInJaXPQSERERERGR0+Kil4iIiIiIiJwWF71ERERERETktLjoJSIiIiIiIqfFRS8RERERERE5LS56iYiIiIiIyGlx0UtEREREREROi4teIiIiIiIiclpc9BIREREREZHT4qKXiIiIiIiInBYXvUREREREROS0uOglIiIiIiIip8VFLxERERERETktLnqJiIiIiIjIaXHRS0RERERERE6Li14iIiIiIiJyWlz0EhERERERkdPiopeIiIiIiIicFhe9RERERERE5LS46CUiIiIiIiKnxUUvEREREREROS0ueomIiIiIiMhpcdFLRERERERETouLXiIiIiIiInJaXPQSERERERGR0+Kil4iIiIiIiJwWF71ERERERETktP4LYHc8BGnlD7EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7sAAAOwCAYAAAD/XWM1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd0VPXaxfHvpHdCGqRQQu8dBEE6iChiRVFpooiIICgqIiJgAxVERRRFFKSjCIJ0SOi9914CCamktynvH0CuvKJSEk7K/qzlujA5c2bPXJLJnnN+zzHZbDYbIiIiIiIiIoWIndEBRERERERERHKbyq6IiIiIiIgUOiq7IiIiIiIiUuio7IqIiIiIiEiho7IrIiIiIiIihY7KroiIiIiIiBQ6KrsiIiIiIiJS6KjsioiIiIiISKGjsisiIiIiIiKFjsquiIiIiIiIFDoquyIiIiIiIlLoqOyKiIiIiIhIoaOyKyIiIiIiIoWOyq6IiIiIiIgUOiq7IiIiIiIiUuio7IqIiIiIiEiho7IrIiIiIiIihY7KroiIiIiIiBQ6KrsiIiIiIiJS6KjsioiIiIiISKGjsisiIiIiIiKFjsquiIiIiIiIFDoquyIiIiIiIlLoqOyKiIiIiIhIoaOyKyIiIiIiIoWOyq6IiIiIiIgUOiq7IiIiIiIiUuio7IqIiIiIiEiho7IrIiIiIiIihY7KroiIiIiIiBQ6KrsiIiIiIiJS6KjsioiIiIiISKGjsisiIiIiIiKFjsquiIiIiIiIFDoquyIiIiIiIlLoqOyKiIiIiIhIoaOyKyIiIiIiIoWOyq6IiIiIiIgUOiq7IiIiIiIiUuio7IqIiIiIiEiho7IrIiIiIiIihY7KroiIiIiIiBQ6KrsiIiIiIiJS6KjsioiIiIiISKGjsisiIiIiIiKFjsquiIiIiIiIFDoquyIiIiIiIlLoqOyKiIiIiIhIoaOyKyIiIiIiIoWOyq6IiIiIiIgUOiq7IiIiIiIiUuio7IqIiIiIiEiho7IrIiIiIiIihY7KroiIiIiIiBQ6KrsiIiIiIiJS6KjsioiIiIiISKGjsisiIiIiIiKFjsquiIiIiIiIFDoquyIiIiIiIlLoqOyKiIiIiIhIoaOyKyIiIiIiIoWOg9EBRERE5O7JyMjgwoULWK1Wo6PcMpPJRFBQEG5ubkZHERGRAkBlV0REpIg4e/YsLVs058zZc0ZHuW0lAvwJC19HlSpVjI4iIiL5nMquiIhIEfHTTz8RfSmK2W93wd3Fyeg4tywj28xLX/3BpEmTmDBhgtFxREQkn1PZFRERKSLS0tIo6eNF+/oV/3Gbaat3071N3Zy/7z0VSYC3B+4uTni5Of/n/SLjk/91W6vVhp2d6brbLBYrU1bsxNHejl7t6wPwzk8rea5VbaqVCbhu29CSxUlLS7vp5ywiIkWXyq6IiEgR9tmvG2hSpRSr95wiwNsdNxdHNh06R/j+07SsFcrS7cdpWDkYPy839p+5hJODPQkp6fh6uVG/QhBzwg/w/P31OH4hjgm/b6J+xWCCfDyZvHQ7Lk4O9O/UmPTMbP7cfgw3Z0eqlQ4gMS2D6MupuDg50Kx6GWKSUilX0oeohOScXCF+XsQmqdSKiMjt0zRmERGRIizA2516FYLwcHWiUogfAHHJaVQtHcDpqAT8irlhs4HNBnamK0dkfb3caFkzlIjYJGqUDWDz4fNUDPbFv5g7ZsvfB1+5ODlQLrA4ABar9br/APy93DkZGU+22cLpqASS0jIpE+DNwXPRd/W1EBGRwkVHdkVERIqwa6csD36s6X9ue2+10tf9vXSA9w23Oxd9mQYVg2lZKxSuTlGuWz4Iyt94v/b2drzUseF1tz3YqPLNPgUREZEbUtkVERGRm3bsQiyVgq8cAf6n9bmlA7wp5u7Cj8t34ubiyNMtahF9OYUdxy+QnmWmXMni/LbxEC890JAQ/2IGPRMRESnsVHZFRETkX/20chdWq41ygT6ci7nM9NV78PNyy1mf6+XmzNajESSnZeLt4UKDisEcjYilWY0ybDsaAUCAtwcOdnY42NlRt3wQ249dUNEVEZE8pbIrIiIiN+Xqkl0qBvviYGd33fpca846XBsAlYJ9+W3jIVydHTlw5hLeHq5kW6xkmy1EX06hhLeHUU9DRESKCJVdERER+VfNqpdh5e6TlC/pQ4uaoTfcpknV69fzenu48vz99a+7LcTPK+fPnZtUzaO0IiIiV6jsioiIyL+qEORLhSBfo2OIiIjcEpVdERERuSUbDp4lyMeTcoE+N7X9obPR/LnjGIMfbcrnv23Av5g7VUr5cykhBTcXR05cjMfBzkTXlrX5adUumlQpRf2KwXn+PEREpHBT2RURERG++3M75QKLYzZb2Xz4PL3a1+ObxVvxdHWmZmgJgn29WLz1KD6erlQt7U9kfDIz1+6lfJAvSWmZlAssTru6FUhOz2TrkStDqaqW9ifY14tqZQLYceICAOmZZjKzLZy4GMdzrevwy5o9VAnxY9eJi+w9FQlAtvnv1+oVERG5VXZGBxARERHj1SgTwKaD50jJyKKUvxcX4pKoGVqCsiW9eaBBJc5cSrhue3s7O3yLuVO2hHfOfQFsNq4OqrJiuzKrioiYRA6djeZCXBJebs7YbDYqBPqyaMsRSnh74O7ihJOjA5VDrlzS6FRU/N1/AUREpNAx2WzX3opERESkMHvrrbeY/8uP7Jjw0m3df9rq3XRvUzfXc92KdsN+pm7zDnz//feG5hARkfxPR3ZFRETkphhddEVERG6F1uyKiIjILR+1nbl2L02qlubMpQTOxybSoX5Fdhy/QHqWmcSUDIL9vGhSpRQ/rdqNj6cr91Uvy4ZDZ3G0t6NL85o5+/lh2Q4qBPlSO7QkI35ZzTOtahMRk4i7ixOXLqdgZ2eifb0KTFm+k2FPt8yjZy8iIoWRjuyKiIgUMdNX72HN3lOcj0lk1Iy1zArbB1cL77X//WTuOsb9tpFsswWzxcqq3SdZtfskJyP/t562lH8xWtUuB0CAtwcOdnY42NkR7OdFRpYZs9VKaMniHDhziTIlvLFabXS6p0rO/S8lpODq7AjAmr2nqF8xmNL+xfB0c2bv6Sgqh/hhwsTBs9GU8i92l18lEREp6FR2RUREipiKQb7sOHaB1IwsKoX4cjb6MgC+nm4s23EMACcHe6qU8sPRwR7439Apq/X6UR/7Tkdx6Gw0EbFJZFusZJstlPD2ICYxlaj4FBzt7ahSyh+AjKxsXJ0dWbz1CABHImKwM5k4H5NIcnomRyNisVptZGZbqFOuJB4uTqRkZFG3fOBdfoVERKQw0GnMIiIiRUzjqqVoXLUUQE4R/TcO9nbcX7/idbeVK+nDhdgkaoWWpFZoSQBC/Lxyvl7nakGtViYg57YXH2gIwENXj+62qBl6w8cL+ctR3JpX9+3soF9ZRETk1ujIroiISBE2c+1ezJZbv67tsYuxlCnhnSeZjl2I/dttT7WoecNtRURE/ok+JhURESmCpq/eQ0kfD6w2G0cjYvh982Hqlg/k0LkYmlUvw95TUZQLLE67uhVITs9k65EIAKqW9ifY939HcJfvPE5qRjauTg5cTs1g29EIGlUOwdPVicPnY7i/fkWmrtjFW13uo5ibC5/O30CAtztlArzZfPg8vdrX48uFmykdUIzygb7YmSA+JZ0l247i6+VG/QpBrNp9kqiEFD7u1d7AV0xERAoaHdkVEREpokyYAIhJTKNu+UBORiZQs2wJNhw8S40yAWw6eA4Am+1/a3ZtV5fsZmaZWb7zOPHJ6djZXdnP0YhYWtUuR1pmFhlZZmqFlsTLzZm6FQKJuZxKXHI6Hq5OVArxIyUji1L+XlyIS6JuhUBKeHvQsWEl4lPSAfD1cqNlzVDORSfmZBAREbkVOrIrIiJSBHVrU+cfv3ZtfW7T6mUA8HJz/tua3Wvrb//qgYaVbri/siWK5/x58GNN//b1Zlcfhxtcy7d0gDfuLk7Y20f9y7MRERH5O5VdERGRIsLNzY2o+CRW7DyOu4uT0XFumr2dibrlAlm1+ySnoxJo6uZmdCQRESkAVHZFRESKiGbNmvGZvQNPfzLX6Ci3zcXZmRYtWhgdQ0RECgCTzaZVMCIiIoXZxYsXef/995kyZQqlSpVi0KBBdOjQATu7gjO6w2azsWbNGsaPH8+xY8d49tln+eCDDyhbtqzR0UREJJ9S2RURESmkkpKSGDt2LOPGjcPNzY3hw4fTt29fnJ2djY5228xmMz/++CMjRowgPj6e/v37M2zYMHx8fIyOJiIi+YzKroiISCGTlZXF5MmTGTlyJCkpKQwaNIi33nqLYsWKGR0t16SmpjJu3DjGjh2Lg4MDQ4cO5dVXX8XV1dXoaCIikk+o7IqIiBQSNpuN+fPnM3ToUE6fPk3Pnj0ZOXIkISEhRkfLM9HR0YwaNYrvvvuOwMBARo8ezXPPPYe9vb3R0URExGAFZ7GOiIiI/KPw8HAaN25Mly5dqFKlCnv37mXKlCmFuugCBAQE8PXXX3Po0CHuueceevbsSb169Vi2bBn6PF9EpGhT2RURESnADh48SKdOnWjZsiVWq5W1a9eyePFiatSoYXS0u6pixYrMmzePzZs3U6xYMR544AHatWvHrl27jI4mIiIGUdkVEREpgC5cuMALL7xArVq1OHToELNnz2br1q20bNnS6GiGaty4MeHh4SxcuJCLFy9Sv359nn32WU6fPm10NBERuctUdkVERAqQxMREhg0bRsWKFVm4cCHjx4/n8OHDPPXUUwXqUkJ5yWQy8fDDD7Nv3z4mT57M2rVrqVKlCoMHDyYuLs7oeCIicpdoQJWIiEgBkJWVxbfffsvo0aNJTU1l0KBBvPnmm4VqwnJeSU1NZfz48YwdOxY7OzuGDh3KgAEDNLlZRKSQU9kVERHJx2w2G/PmzWPo0KGcOXOGXr16MXLkSIKDg42OVuBER0czevRovv32W0qWLMno0aPp1q2bJjeLiBRSOt9JREQknwoLC+Oee+7hqaeeolq1auzbt48ffvhBRfc2BQQE8NVXX3H48GGaNGlCr169qFu3LkuXLtXkZhGRQkhlV0REJJ85cOAADz30EK1atYKrpfePP/6gevXqRkcrFCpUqMDcuXPZsmULxYsXp2PHjrRt25adO3caHU1ERHKRyq6IiEg+ERERQe/evalduzZHjhxhzpw5bN26lRYtWhgdrVC65557CAsLY9GiRURFRdGgQQOeeeYZTW4WESkkVHZFREQMlpiYyDvvvEPFihVZtGgRX3zxBYcOHaJLly6YTCaj4xVqJpOJTp06sXfvXn744QfCw8OpXLkygwYNIjY21uh4IiJyBzSgSkRExCBZWVlMmjSJ0aNHk5aWxuDBg3nzzTfx8vIyOlqRlZaWxhdffMEnn3yCyWRi6NChDBw4UJObRUQKIJVdERGRu8xqtTJ37lyGDRvGmTNneP755xk5ciRBQUFGR5OrYmJi+OCDD/jmm28oUaIEo0ePpnv37prcLCJSgOg0ZhERkbto7dq13HPPPXTt2pXq1auzf/9+vv/+exXdfMbf358JEyZw+PBhmjZtyvPPP0+dOnX4888/NblZRKSAUNkVERG5C/bv38+DDz5I69atsbOzIzw8nEWLFlGtWjWjo8m/qFChQs6gMF9f35z/D7dv3250NBER+Q8quyIiInkoIiKC559/ntq1a3Ps2DHmzZvHli1baN68udHR5BY0atSItWvXsnjxYmJiYmjUqBFPP/00J0+eNDqaiIj8A5VdERGRPHD58mWGDh1KxYoVWbx4MV9++SUHDx7kiSee0ITlAspkMvHggw+yd+9epkyZwvr166latSoDBw7U5GYRkXxIA6pERERyUWZmZs6E5YyMDAYPHsyQIUM0YbkQSktLY8KECXzyyScAvPXWW7z22mu4ubkZHU1ERFR2RUREcofVamXOnDkMGzaMs2fP8sILL/D+++8TGBhodDTJY7GxsTmTm/39/Rk1ahQ9e/bU5GYREYPpNGYREZE7tGbNGho1asQzzzxDrVq1OHDgAN99952KbhHh5+fHF198wZEjR2jevDkvvPACtWvXZsmSJZrcLCJiIJVdERGR27R//346duxImzZtcHBwYN26dfz+++9UrVrV6GhigHLlyjFr1iy2bduGv78/Dz30EK1atWLbtm1GRxMRKZJUdkVERG7R+fPn6dWrF7Vr1+bEiRPMnz+fzZs3c9999xkdTfKBhg0bsmbNGpYsWUJcXBz33HMPTz31lCY3i4jcZSq7IiIiN+ny5cu8/fbbVKpUiSVLlvD1119z8OBBHn/8cU1YluuYTCY6duzInj17+PHHH9m4cSNVqlRhwIABxMTEGB1PRKRI0IAqERGR/5CZmcnEiRP58MMPycjI4I033uCNN97A09PT6GhSQKSlpfHll1/y8ccfY7PZeOuttxg0aJAmN4uI5CGVXRERkX9gtVqZPXs2w4YN4/z587zwwguMGDFCg6fktsXGxvLhhx8yceJE/P39GTlyJD179sTBwcHoaCIihY5OYxYREbmB1atX07BhQ5599lnq1KnDgQMH+Pbbb1V05Y74+fkxfvx4jhw5QosWLXjxxRepXbs2f/zxhyY3i4jkMpVdERGRv9i7dy8dOnSgbdu2ODs7s2HDBhYsWECVKlWMjiaFSLly5Zg5cyY7duygRIkSPPzww7Rs2ZKtW7caHU1EpNBQ2RUREQHOnTtHjx49qFu3LqdPn+bXX39l48aNNG3a1OhoUojVr1+f1atX8+eff5KQkEDjxo3p0qULJ06cMDqaiEiBp7IrIiJFWkJCAm+99RaVKlVi2bJlTJw4kQMHDvDYY49pwrLcFSaTiQceeIDdu3czdepUNm/eTNWqVXn11VeJjo42Op6ISIGlAVUiIlIkZWRk5ExYzsrK4o033uD111/XhGUxXHp6es7kZovFkjO52d3d3ehoIiIFisquiIgUKVarlZkzZ/Luu+8SERHBiy++yIgRIyhZsqTR0USuExcXlzO52dfXl5EjR9KrVy9NbhYRuUk6jVlERIqMVatW0aBBA7p160a9evU4ePAgkyZNUtGVfMnX15dx48Zx5MgRWrVqRZ8+fahVqxaLFi3S5GYRkZugsisiIoXenj17uP/++2nXrh2urq5s2LCB3377jcqVKxsdTeQ/hYaGMmPGDHbs2EFQUBCdO3emefPmbNmyxehoIiL5msquiIgUWmfPnqV79+7Uq1ePM2fOsGDBAjZs2KAJy1Ig1a9fn5UrV7Js2TKSkpJo0qQJTzzxBMeOHTM6mohIvqSyKyIihU5CQgJDhgyhcuXKrFixgm+++YYDBw7wyCOPaMKyFGgmk4n777+fXbt28dNPP7Ft2zaqV6/OK6+8wqVLl4yOJyKSr2hAlYiIFBoZGRl8/fXXfPTRR2RlZTFkyBBef/11PDw8jI4mkifS09P5+uuv+fDDD7FYLAwZMoTBgwfr37yIiMquiIgUBlarlRkzZvDuu+9y4cIF+vTpw4gRIyhRooTR0UTuivj4eD766CO++uorfHx8eP/99+ndu7cmN4tIkabTmEVEpEBbsWIF9evXp3v37jRo0ICDBw/yzTffqOhKkeLj48Nnn33G0aNHadOmDX379qVmzZosXLhQk5tFpMhS2RURkQJp9+7dtG/fnvvvvx93d3c2btzIr7/+qgnLUqSVLVuWX375hZ07dxISEsIjjzzCfffdx+bNm42OJiJy16nsiohIgXL27Nmc6+SeO3eO33//nfXr13PvvfcaHU0k36hXrx4rV65k+fLlpKSkcO+99/L4449rcrOIFCkquyIiUiDEx8fzxhtvUKlSJVatWsV3333HgQMH6Ny5syYsi/yD9u3bs2vXLqZNm8b27dupVq0a/fr10+RmESkSNKBKRETytYyMDL766is++ugjzGazps2K3KZr08o//PBDsrOzNa1cRAo9lV0REcmXLBYLM2bMYPjw4Vy8eJGXXnqJ4cOHa/CUyB2Kj4/n448/5ssvv6R48eI5k5sdHR2NjiYikqt0GrOIiOQrNpuN5cuXU79+fXr06EHDhg05ePAgX3/9tYquSC7w8fHh008/5dixY7Rv355+/fpRs2ZNFixYoMnNIlKoqOyKiEi+cW3CcocOHfD09GTTpk3Mnz+fSpUqGR1NpNApU6YM06ZNY+fOnZQuXZrHHnuMZs2asWnTJqOjiYjkCpVdEREx3JkzZ3juueeoV68eERERLFy4kHXr1tGkSROjo4kUenXr1mXFihWsWLGCtLQ0mjZtymOPPcbRo0eNjiYickdUdkVExDBxcXG8/vrrVK5cmdWrVzN58mT279/Pww8/rAnLIndZu3bt2LlzJ9OnT2fnzp1Ur16dl19+maioKKOjiYjcFpVdERG5I2azmcWLFzNgwABOnTp1U/dJT09n7NixlC9fnsmTJ/Puu+9y4sQJXnzxRRwcHPI8s4jcmJ2dHc899xxHjx5lzJgxzJkzhwoVKvD++++TkpLyt+3PnDnDhx9+yP79+3Nu++GHH+5yahGRG9M0ZhERyRVBQUGsWLGCLVu2ABAaGsrmzZtp1qwZLVu2hKsTln/55RfeffddoqKi6Nu3L8OHDycgIMDg9CJyIwkJCTmTm729vRkxYgQvvPBCzuTmM2fOMHv2bFq3bs2CBQuoUqUK2dnZODo64uzsjL+//99+DoiI3C06sisiIrli1KhR1KhRg/j4eI4ePUpmZiZVq1bF398fm83GsmXLqFu3Lj179qRJkyYcOnSIr776SkVXJB8rXrw4Y8eO5dixY9x///288sor1KhRg99++y1ncnODBg3w8PCgatWqnD59GoAaNWqwZcsWUlNTc34OiIjcbTqyKyIieWrnzp28+eabrFmzhvvuu4+xY8fSuHFjo2OJyG3Yu3cvb731FsuXL6dJkyZ8+umnNG3a1OhYIiI3pCO7IiKSJ06fPs2zzz5LgwYNiIyMZNGiRYSHh6voihRgtWvXZtmyZaxcuZKMjAyaNWvGo48+ypEjR4yOJiLyNyq7IiKSq+Li4hg8eDBVqlRh7dq1fP/99+zbt49OnTppwrJIIdG2bVt27NjBL7/8wu7du6lRowZ9+/YlMjLS6GgiIjl0GrOIiOSK9PR0JkyYwCeffILVauWtt97itddew93d3ehoIpKHMjMzmThxIh988AGZmZm88cYbvPHGG3h6ehodTUSKOJVdERG5IxaLhenTpzN8+HCioqJ4+eWXGT58uAbSiBQxCQkJfPLJJ0yYMIFixYoxYsQIXnzxxZzJzSIid5tOYxYRkdtis9lYunQpdevWpVevXtx7770cPnyYL7/8UkVXpAgqXrw4Y8aM4dixYzzwwAP079+f6tWr8+uvv6JjKyJiBJVdERG5ZTt27KBNmzZ07NiR4sWLs3XrVubMmUOFChWMjiYiBitdujQ//fQTe/bsoXz58jzxxBPce++9bNiwwehoIlLEqOyKiMhNO3XqFF27dqVhw4ZcunSJP/74g7CwMBo1amR0NBHJZ2rVqsXSpUtZtWoVWVlZ3HfffTzyyCMcPnzY6GgiUkSo7IqIyH+KjY1l0KBBVKlShXXr1vHDDz+wd+9eHnroIU1YFpF/1aZNG7Zv386MGTPYu3cvNWrU4KWXXtLkZhHJcxpQJSIi/ygtLS1nwrLNZuPtt9/mtddew83NzehoIlIAZWZm8s033/DBBx+QkZHB66+/zpAhQzS5WUTyhMquiIj8jcViYdq0aQwfPpzo6Ghefvll3n33XQ2eEpFccfny5ZzJzZ6enowYMYI+ffpocrOI5CqdxiwiIjlsNht//vknderU4fnnn6dZs2YcPnyYCRMmqOiKSK7x9vbmk08+4dixYzz44IO8+uqrVKtWjfnz52tys4jkGpVdEREBYPv27bRu3ZoHH3wQX19ftm3bxuzZsylfvrzR0USkkCpVqhRTp05lz549VKxYkSeffJImTZqwfv16o6OJSCGgsisiUsSdPHmSp59+mkaNGhETE8PixYtZu3YtDRs2NDqaiBQRtWrV4s8//2T16tWYzWaaN29O586dNblZRO6Iyq6ISBEVGxvLwIEDqVq1Khs2bGDKlCns3buXBx98UBOWRcQQrVu3Ztu2bcycOZP9+/dTo0YN+vTpw8WLF42OJiIFkAZUiYgUMWlpaXzxxReMGTMGgLfffpuBAwdqwrKI5CuZmZlMmjSJ0aNHk56enjO52cvLy+hoIlJAqOyKiBQRFouFn376iffee4+YmBj69evHu+++i5+fn9HRRET+0eXLlxkzZgxffPEFnp6evPfee/Tp0wcnJyejo4lIPqfTmEVECjmbzcaSJUuoXbs2L7zwAs2bN+fIkSN88cUXKroiku95e3vz8ccfc/z4cR566CEGDBhAtWrVmDdvniY3i8i/UtkVESnEtm3bRqtWrXjooYcICAhg+/btzJo1i3LlyhkdTUTkloSEhPDjjz+yd+9eKleuTJcuXWjcuDHr1q0zOpqI5FMquyIihdDJkyd56qmnuOeee4iLi8uZctqgQQOjo4mI3JGaNWuyZMkS1qxZg9VqpUWLFjz88MMcOnTI6Ggiks+o7IqIFCIxMTEMGDCAKlWqsHHjRn788Uf27NnDAw88oAnLIlKotGrViq1btzJ79mwOHDhAzZo1efHFFzW5WURyaECViEghkJaWxvjx4xkzZgwmk4mhQ4cycOBAXF1djY4mIpLnsrKy+Pbbbxk1ahRpaWkMHjyYN998U5ObRYo4lV0RkQLMbDbz008/MWLECGJiYnjllVcYNmyYBk+JSJGUmJjI2LFjGTduHB4eHrz33nu89NJLmtwsUkTpNGYRkQLIZrPxxx9/ULt2bV588UVatGjBkSNHGD9+vIquiBRZxYoV48MPP+T48eM8/PDDvPbaa1SrVo25c+dqcrNIEaSyKyJSwGzdupWWLVvy8MMPU7JkSXbs2MHMmTM1YVlE5KqQkBCmTJnC3r17qVKlSs7AvvDwcKOjichdpLIrIlJAnDhxIudSGwkJCSxdupRVq1ZRv359o6OJiORLNWrUYPHixaxduxaAli1b0qlTJw4ePGh0NBG5C1R2RUTyuejoaF599VWqVq3K5s2bmTp1Krt376ZDhw6asCwichNatmzJ1q1bmTNnDocOHaJWrVr07t2bCxcuGB1NRPKQBlSJiORTqampjB8/nrFjx2JnZ8fQoUMZMGCAJiyLiNyBrKwsvvvuO0aNGkVqaiqDBg3izTffpFixYkZHE5FcprIrIpLPmM1mpk6dyogRI4iLi8uZsOzr62t0NBGRQiMpKSlncrObmxvvvfceffv21eRmkUJEpzGLiOQTNpuNRYsWUatWLfr06UOrVq04cuQI48aNU9EVEcllXl5efPDBBxw/fpxHHnmEQYMGUbVqVebMmYPVajU6nojkApVdEZF8YOvWrbRo0YLOnTsTFBTEjh07mDFjBqGhoUZHExEp1IKDg/nhhx/Yt28f1atX5+mnn+aee+7JGWolIgWXyq6IiIGOHz/Ok08+SePGjUlMTGTZsmWsXLlSE5ZFRO6y6tWrs2jRIsLCwjCZTLRu3ZoHH3yQAwcOGB1NRG6Tyq6IiAGio6Pp378/1apVY+vWrfz000/s2rWL+++/XxOWRUQM1KJFC7Zu3crcuXM5evQotWvX5vnnnyciIsLoaCJyizSgSkTkLkpNTWXcuHGMHTsWe3t7hg0bRv/+/TVhWUQkH8rKymLy5MmMHDmSlJQUXnvtNd5++21NbhYpIFR2RUTuArPZzI8//siIESOIj4/n1Vdf5Z133sHHx8foaCIi8h+SkpL49NNP+fzzz3Fzc2P48OH07dsXZ2dno6OJyL/QacwiInnIZrOxcOFCatasyUsvvUSbNm04evQon332mYquiEgB4eXlxejRozlx4gSPPfYYgwcPpmrVqsyePVuTm0XyMZVdEZE8smXLFpo3b84jjzxCSEgIO3fu5JdffqFs2bJGRxMRkdsQFBTE5MmT2b9/PzVr1qRr1640atSINWvWGB1NRG5AZVdEJJcdO3aMJ554giZNmpCcnMzy5ctZuXIl9erVMzqaiIjkgmrVqrFw4ULWrVuHg4MDbdq0oWPHjuzfv9/oaCLyFyq7IiK55NKlS7zyyitUq1aNbdu2MW3aNHbt2kX79u2NjiYiInngvvvuY/PmzcybN4/jx49Tu3ZtevXqxfnz542OJiIaUCUicudSUlIYN24cn376KQ4ODjkTll1cXIyOJiIid0l2dnbO5Obk5GQGDhzI22+/jbe3t9HRRIoslV0RkdtkNpuZMmUKI0aMICEhgQEDBjB06FANnhIRKcKSkpL47LPP+Pzzz3FxceHdd9+lX79+mtwsYgCdxiwicotsNhu///47NWrU4OWXX6Z9+/YcO3aMTz/9VEVXRKSI8/LyYtSoUZw4cYInnniCN954gypVqjBz5kxNbha5y1R2RURuwaZNm2jWrBmPPvoopUuXZufOnUybNo0yZcoYHU1ERPKRwMBAvvvuOw4cOEDt2rV59tlnadiwIatXrzY6mkiRobIrInITjh49yuOPP07Tpk1JS0tjxYoVrFixgrp16xodTURE8rGqVavy+++/s379epycnGjbti0PPPAA+/btMzqaSKGnsisi8i+ioqJ4+eWXqV69Ojt27GD69Ons3LmTdu3aGR1NREQKkGbNmrFp0ybmz5/PyZMnqVOnDj179tTkZpE8pAFVIiI3kJKSwueff86nn36Kk5MTw4YN45VXXtGEZRERuWPZ2dl8//33jBw5ksTERAYOHMjQoUM1uVkkl6nsioj8RXZ2NlOmTOH999/n8uXLOROWixcvbnQ0EREpZJKTk/nss8/47LPPcHFxyflgVZObRXKHyq6IyF8mLL/99tscP36cbt26MXr0aEqXLm10NBERKeQiIyMZOXIkP/zwA6VKleKDDz6ga9eu2NlpxaHIndB3kIgUWYmJiSQnJ7Nx40aaNWvGY489RmhoKLt37+bnn39W0RURkbsiMDCQb7/9lgMHDlCnTh2ee+45GjRowKpVq0hPTycuLs7oiCIFko7sikiRlJycTPXq1XF2dubEiRPUrVuXsWPH0rZtW6OjiYhIEbdx40aGDBnC5s2bqVixIgkJCRw+fBg/Pz+jo4kUKCq7IlIktWzZkvDwcBwcHBgxYgTvvPOOThcTEZF8w2az8dVXX/Hmm2+SmZlJnTp12L17t9GxRAoUB6MDiIgYoWrVqiQlJVG7dm2tixIRkXzHZDLx+OOPc+DAAXbv3k3lypWNjiRS4OjIroj8J7PZTEREBNnZ2UZHuWOenp6ULFnS6BgiIiK3xWazERkZSWpqqtFRbpudnR3BwcG6nJ/kOR3ZFZF/lZKSwgMPPMCGDRuMjpJrRowYwfvvv290DBERkVv2xhtvMG7cOKNj3LEypUsRFr6OsmXLGh1FCjEd2RWRf7Vw4UIeeeQRvhs/hgqhZYyOc8d+nj2fX+b+RkZGBo6OjkbHERERuWmJiYl4e3vTs1koD9cJNjrObUvNNNN32k5ef2soI0eONDqOFGI6sisi/yotLQ2Apx7thLu723VfmzJ9Nr27Pf2P972cmEh8QiJZ2VlUqVghV3NZrda/rbNNT89g4NARfPPZh2zfvZdtO/fw1KOdKFkigPHffE/VShVo1+o+ps2eT1ZWlsquiIgUKNfek9tULcG9Ff55MnNUYjpmqw2LxUYZP/ec22dsPsOzTW58JPX4pWQqlvD8x31arTbs7EzX3RaTnMH20/Gcjk2llI8b6VkWGoX6cDw6hY3HYni+eTn2nb+Mu7MDrauWYPbWs/h4OHNPqA8li7vnPB+RvKKyKyI37aeZc7kQGcV9jRux79ARYmLjcgrvlOmziYuPp+V993LsxCl27N7HEw93ZPvuvXh4uHPy9FlSU9NwdXVh/eZt+Pv6MGTAywC8+uZwKpYPpZiXJ88++Sg/z5rPuYgLeLi7USokCJPJxFOPPkxcfAKrwtfj5upKo3p1OHnmHMnJyXh7F+Oe+nVxdXWh6T0NAGjSsD7bd+3Fy/PKG3ep4CCSklPIzjYb+hqKiIjkhplbzlDCyxU3Z3vWH4uheSV/lh+IwsfdicqBXvh7OrPlZCzl/D3YcjKOHk1Dc+47fdMZLFYbof7urD8WQwkvF9yc7Nl5Jh4PFwfsTCY61grifHwau84m4OxgR7OKfuw+d5lsi5WSxVyoFlQMf08X7EwmHqkbTPjRGB6tF8LyA5E0rehPepaFMr7ubDwei5+nMwDBxd1IyzJzOb3gzwCRgkHjR0XkpmVlZ1OvVk3KlikFVydF+vkWZ/HyVTl/B8jIzMS7mBfu7m78daXEtSOxlSuUJ8Dfj5jYOC5GXaJOzeq4u7lRrkxp/li2iuTUFEqHBFOvdk0aN6hHSsqVT369i3kRHBgIgMVqxWqxYLZYsFiscPVo776Dh9m5dz8Tvp2Ck5MjWdlZ7D1wiJIlAjhz7jxp6el3+VUTERHJGyYTxKdkUSXQizOxfx9YZbNBSoaZEB83LiRceS89eCEx5+vJGdmULOZCVGJGzm0dagSSkJoFQICXM77uTphMYLHaMFusmK02rNb/vbdfuJxOcHE33J0dWLTnArVKebPyYCTtq5fkxKVkPFwcSE7P5uCFREp4uZCSYeZUdEoevzIiV2jNroj8q1mzZvHMM89w+cyhv53GXBDN/m0h3V4aSEpKCu7u7jdxDxERkfwhMjKSoKAgpr/YmHbV/35lgX87TfmvTkansPpQFB1rBxFS3Jj39qafhPHocy/w6aefGvL4UjToyK6I3FVHjp/I+fPFqEskJSffcLvLiYl8O3U60+f8CsCZc+cZ88VETp4+e9eyioiIFCQ3U3QBrDYbfVpWIKS4G1GJ6SRn3Pi04sS0LH7acJq5284BEJuSydD5ewGYHHaCKetPkZFtycVnIJK7tGZXRPLc99NmYrFYqFgulDPnIvjxlzn4+/rQqH4dggMD8fL0ZNO2ndetvz187AQtmzVh87ZdALi6uBDg7090bCzlC8FUaBERkbvp2jrdcv7unI9PY8aWs/i6O1GvTHGCvF3xdHFk++k4kjPMeLs6Uq+sD8cvpdC0oh/bT8cD4OfhTI3gYgBUDvRi99kEIuLTqPAvg61EjKQjuyJy11xb03ttza7Z/L9Pg///+tsqFSsQtmEz9vZ27D1wCDs7O4p7e3HwyDHD8ouIiBR0196LKwZ44O/pjOUv628tVtuVKc5XVzlWKOHBxuOx2NuZOHghkdRMM4cuJnE0Kgl3JwecHOyum/Yskt/oyK6I5LkWTRuzdOVaKpQrS+vmTW+4TbMmja77e3HvYvTt1e262x55sEOe5hQRESms7q3gx+pDUYT6u3NfJf8bbtO4/PWXM/J2c6Jns9Drbvvw8Vo5f24Q6pNHaUVyh8quiOS5SuXLUal8OaNjiIiIFFnlAzwoH5C717wXye90GrOIGCJ842ZOnDpz09sfOnqcT7+cxIYt2zl+8jRDR33M6bPn+XXRnyxfHUZ8wmX6vPZWnmYWEREpTDYej+F0zM1fBujwxUTGrziKxWrjh3Un+Xnjafaev8zsrWc5G5vKzC1nWbz3AolpWSzbH8nMLRoqKcbSkV0RyTVfTZ5KxXJlyTab2bBlO316PMsXk37Ay9ODOjWrExIcyO9LluNb3JvqVStzMTKKn2fNo2L5UBKTkqlYriwd2rYiOSWFTVt3AFC9amVCggKpVrkia9dvolnjhsz6dSEVQkMJLVOKsA2bCfDzZcXacBrVr2P0SyAiImKoH8JPEurvgdlqZcvJOHo0DeXbsBN4OjtQI8SbYG9Xluy7iI+7E5UDvYhMzGD2tnOU8/cgOT2bUH8P2lQrQUpGNtuuDqaqEuhFkLcrVYOKsetsArHJmZTz9yAqMYOtJ2MJ9fcgPdvCgQuXaVE5ABcneyqX9GRfROJ/5hXJSzqyKyK5pnb1qqzbtJXklFRKhwQTcfEidWpWp1zZMnTq0JZTZ85dt72dvT1+vj6UK1M6574ANpsN89WBVdcuBZ6VlYWzsxMpKamkpaVz6Ogxjp44iaeHO4nJySQlp3D46PF/vJSRiIhIUVAtuBibT8aSkmEmxMeNCwlp1AwuRlk/d+6vUZIzcanXbW9vZ8LX3Ykyvm459wWwAearA6uuvRdHJKRx6GISdnZwKjqFbIuVGiHepGaaORObSsUSnsQkZ5KUns0XK49RyseYa/iKXGOyXfvXKyJyA7NmzeKZZ57h8plDuLvf+ZvWlOmz6d3t6VzJdjtm/7aQbi8NJCUlBXd3TZAUEZGCIzIykqCgIKa/2Jh21Uve9n5mbD5z09fkzStNPwnj0ede4NNPPzU0hxRuOrIrIneVkUVXREREMLzoitwtKrsikiumTJ99S9v/PGseJ0+fzRksdfzkaabP+ZX5C5ewffdexn/zPZeiYxg3cTLrNm657r7LV4fx2Vffcik6hkVLVzBnwSK+nzaTKdNncyEyig8//5Lvp83kUnQME3/4OZefqYiISP42Y/PND4AEmL31LGdiU5kcdoIp60+RkW3hvQX7OXwxkbWHL/H7rghikjP4ZfMZ1h2Nvu6+1247G5fKB38cBODnjaf5IfwkMckZDJ2/F4A5287d0jAskdygsisit+zHX+awcu06zp6PYNjoMUybPR/+UninTJ/NqLHj+WT8RLKzszGbzSxfHcby1WEcP3k6Zz9lSgXnDJbauXcfT3Z+kOSUVCpXKEdScjI2m41LMbFkm83XPX6lCuVJz8igRIA/DvYOONg7ULViBUwmEwcPHyUtLZ2MjExKBPjj4ux8l18dERGRu2fmljOEHYnmfHwaH/5xkDnbrszHuFZ4Z2w+w6dLDzNh5VGyLVbMFitrDl9izeFLnPpL+Qwp7krlQC+S07OJiE8juLgrcSlZ7DqbgJerI2lZFprf4Pq8124r4+tOqN+V5UGO9naE+ntgs0GN4GI5+xe521R2ReSWVapQjq07d5Oalk6VShU4c+48AH6+xVm8fBUATo5OVKtSEUdHR4CcgVNWm/W6fV0bLFW1UkXmL/oTD3c3Dhw+hnexYmRmZeHjXYzjp04TvnEzCZevTHU8eOQoDvYOnL9wkWxzNlnZ2Xh4uJOckkLliuUp5uWJxhGIiEhRUD7Ak51n4knLMlOxhCfnrg6g8nF3YsWBSACcHOyoXNILR/srv/pfGzxltV7/Xunu5ICTgx0BXi6U9nHj0MVEKpX0JNti5WxsKgcuJLL3/GU2Ho/hcloWQM5tsSmZHLqYxNm4VLLMVk7HpODu7MChi0kcjUq62y+LCGhAlYj8l9weUHXNhi3bCQ4sSWiZUrm2z//vUnQM+w4epl2r5jm3aUCViIgUVLk1oOr/23oqjpLFXCjjm3fvi2sPX6JGiDf+nlfOuNKAKrkbdGRXRG7bz7PmYf5/pxjfjCnTZ9OsccM8KbpHjp/I+XOJAP/riq6IiEhhNHvrWcwW601seb1rpzrfU84314vu8UvXXwqwVdUSOUVX5G5xMDqAiBQ8P/4yh6CSAVitNg4dPc6vi/6kfp2aHDh0lBbNmrBr734qlitLh7atSE5JYdPWHQBUr1qZkKDAnP0sWbGa1NQ0XF1dSLicyObtO2nSsD5enh4cPHKMju1aM/nnGbw3ZBDexbz44LMJlAjwJ7RMKTZs2U6fHs/y2dffUrZUCBXLl8POzkRc/GUWLlmOn68vDevVZvnqMCIvRTPuwxEGvmIiIiK5b+aWM5TwcsVqg2OXkvljzwVqlyrO4cgkmlbwY9/5y4T6e9CmWglSMrLZdjoegCqBXgR5/28N7YqDUaRlmnF1sudyWjY7TsfTINQHTxcHjkQm0a56SaZtPMMbHarg5erIuOVHrpzq7OvGlpNx9GgaysTVxynl40a5AHfsTCYSUrNYui8SXw8n6pYpzupDl4hOymD0Y7UMfMWkqNGRXRG5LSaTCYCY2Djq16nJiVNnqF2zGuEbNlO7elXWbdoKgM1my1mve23VREZmJktWrCYuPgE7uys/hg4fO067ls1JTUsnPSOTOjWrU8zLiwZ1anMpJobY+Hg8PTyoWqkCySmplA4JJuLiRRrUqU3JEgE8/EA74uIvA+Dn60ubFk05ez4iJ4OIiEhhdPXtmNjkTGqXKs6pmBSqBxdj44lYqgUXY/PJWABsf1mrm/N+bLay4mAUCalZ2Nld2dGxqGRaVPEnLctMRraFGiHeeLk4Uqe0NzHJGcSnZuLh4kDFEp6kZJgJ8XHjQkIadUp7E+DlTIcagSSkXlnP6+vhxH2V/Dkfn5aTQeRu0ppdEflXebVm925Zu34Te/YfZFC/F0FrdkVEpADLqzW7d8OGYzHsv3CZl1tVBK3ZlbtEpzGLyL9yc7tScOcs+IMKoWWMjnPL7O3sqF+7Zs61eleuXY+dnR1OTk5GRxMREbkl196TVx++hLtzwfo13s7ORO1Sxdl0IpbUTDNRCak5z0ckr+jIroj8q9TUVB544AHWr19vdJRcM2LECN5//32jY4iIiNyy119/nXHjxhkd446VKV2KsPB1lC1b1ugoUoip7IrIfzKbzURERJCdnf2f28bExPDcc8+RlpbGjBkzKF26dJ7lWrJkCYMHD+aRRx7h448/zln/+288PT0pWbJgnfolIiJyjc1mIyoqipSUlFu63+LFixk8eDAjR46ka9eud5wjPj6ezp07ExQUxC+//IKjo+NN39fOzo7g4GBcXFzuOIfIv1HZFZFcEx0dTcuWLUlMTCQ8PJwKFSrk+WPOnDmTbt260atXLyZPnnxThVdERKQoOXr0KA0aNKBTp07MmDEjZ8jkndq0aRMtWrRg0KBBjB07Nlf2KZKbVHZFJFfExMTQqlUr4uLiCA8Pp1KlSnftsadPn06PHj148cUXmTRpkgqviIjIVenp6TRu3JjMzEy2b9+Op6dnru7/888/54033uCPP/7goYceytV9i9ypgrWyXUTypdjYWNq0aUNsbCxhYWF3tegCdOvWDYvFwvPPP4+9vT0TJ07MtU+tRURECrIBAwZw/Phxtm7dmutFF2Dw4MGsW7eO7t27s3v3bsqUKXjDLKXwUtkVkTsSHx9Pu3btiIqKIiwsjCpVqhiSo2fPnpjNZl588UUcHByYMGGCCq+IiBRp06dP54cffmDKlCnUrFkzTx7DZDLx008/UbduXbp06cL69et1xQPJN3Sun4jctoSEBNq1a0dERARr1qyhWrVqhuZ54YUX+Pbbb/nqq68YPHgwWqUhIiJF1aFDh+jbty/du3enV69eefpYxYsXZ+7cuezevZu33norTx9L5FZoza6I3JbLly/Trl07Tp06xZo1a6hdu7bRkXJ88803vPLKK7zxxhuMHTtWR3hFRKRISU1NpVGjRgBs27YNd3f3u/K4X375JQMHDuS3337j0UcfvSuPKfJvdBqziNyypKQkOnTowMmTJ1m9enW+KroA/fr1w2w2M3DgQOzt7fn4449VeEVEpMh45ZVXOHPmDNu3b79rRRfg1VdfZd26dfTq1YvatWtTrly5u/bYIjeisisityQ5OZkHHniAI0eOsHr1aurWrWt0pBsaMGAAFouFwYMH4+DgwOjRo1V4RUSk0Js6dSo///wz06ZNu+vLi0wmE1OmTKFevXp06dKFjRs34uzsfFcziPyV1uyKyE1LSUmhY8eOHDhwgBUrVlC/fn2jI/2rQYMG8emnn/Lhhx8yatQoo+OIiIjkqf3799OvXz969+5Nt27dDMlQrFgx5s2bx/79+3n99dcNySByjdbsishNSU1NpWPHjuzevZsVK1bQuHFjoyPdtE8++YShQ4cyevRo3n33XaPjiIiI5Lrk5GQaNmyIs7MzW7ZswdXV1dA8kyZNol+/fsyZM4cuXboYmkWKLp3GLCL/KS0tjU6dOrFr1y6WL19eoIouwNtvv43ZbGb48OHY29szdOhQoyOJiIjkGpvNRt++fblw4QI7d+40vOgC9O3bl/DwcF544QXq1q1LxYoVjY4kRZDKroj8q/T0dDp37szWrVtZtmwZ9957r9GRbsu7776L2WzmnXfewcHBgSFDhhgdSUREJFd8//33zJw5k1mzZlGpUiWj48DV9buTJ0+mQYMGPPnkk2zevDlflHApWrRmV0T+UUZGBo8++igbN25kyZIl3HfffUZHuiMjRozg3Xff5c0332T8+PFGxxEREblju3fvZsCAAfTt25enn37a6DjX8fLyYt68eRw9epTXXnvN6DhSBGnNrojcUGZmJo899hhr1qxhyZIltG7d2uhIucJms/HOO+/wySefMGHCBAYMGGB0JBERkduSlJRE/fr18fT0ZNOmTbi4uBgd6YZ++OEHXnzxRWbMmMEzzzxjdBwpQnQas4j8TVZWFk8++SSrV6/mjz/+KDRFl6unVX300UfXXYf3lVdeMTqWiIjILbHZbLzwwgtER0ezbNmyfFt0AXr37k14eDh9+vShXr16VKlSxehIUkSo7IrIdbKzs+nSpQvLly9n4cKFtGvXzuhIuc5kMjF27FgsFgv9+/fHwcGBl156yehYIiIiN+2bb75h3rx5zJ8/n/Llyxsd51+ZTCYmTZrEjh07ePLJJ9m6dStubm5Gx5IiQGt2RSRHdnY2Xbt25c8//2TBggV06NDB6Eh5xmQy8fnnn/Pqq6/St29ffvjhB6MjiYiI3JQdO3YwaNAgXn31VR5//HGj49wUDw8P5s2bx8mTJ+nfv7/RcaSI0JpdEQHAbDbzzDPP8Pvvv/Prr7/SqVMnoyPdFTabjf79+zNp0iSmTJlCr169jI4kIiLyjy5fvky9evXw8/Nj/fr1ODs7Gx3plvz888/07NmTqVOn0rNnT6PjSCGn05hFBLPZTLdu3ViwYAFz584tMkWXq0d4v/rqKywWC71798bBwYFu3boZHUtERORvbDYbzz//PAkJCaxZs6bAFV2AHj16EB4eTr9+/WjQoAE1atQwOpIUYjqyK1LEWSwWevbsyaxZs5gzZ06BOR0qt1mtVvr06cPUqVOZPn26pkWKiEi+88UXXzBo0CB+//13OnfubHSc25aWlsY999yD2Wxm+/bteHh4GB1JCimt2RUpwqxWK71792bmzJnMnDmzyBZdADs7OyZPnkz37t3p1q0bc+bMMTqSiIhIji1btjBkyBAGDx5coIsugJubG/PmzeP8+fO8/PLL6Nib5BUd2RUpoqxWKy+++CI//fSTjmT+hcVioVevXsycOZPZs2fzxBNPGB1JRESKuPj4eOrWrUtwcDDh4eE4OjoaHSlXzJw5k2effZbvv/+eF154weg4Ughpza5IEWS1Wunbty9Tp05l2rRpKrp/YW9vz9SpU7FYLHTt2hV7e3seffRRo2OJiEgRZbVa6dGjBykpKcyZM6fQFF2AZ555hvDwcPr370/Dhg2pXbu20ZGkkNGRXZEixmaz8corr/Dtt98ydepUevToYXSkfMlsNvPcc8/x66+/8uuvv/Lwww8bHUlERIqgTz/9lDfffJMlS5bQsWNHo+PkuvT0dJo0aUJaWho7duzAy8vL6EhSiGjNrkgRYrPZGDBgAJMmTeL7779X0f0XDg4O/PLLLzzyyCM88cQTLF682OhIIiJSxGzcuJGhQ4fy1ltvFcqiC+Dq6sq8efOIioqiT58+Wr8ruUpHdkWKCJvNxqBBg5gwYQLfffcdffr0MTpSgZCdnc1TTz3FkiVLWLhwIR06dDA6koiIFAExMTHUrVuXcuXKsWbNGhwcCvfqw7lz5/LUU0/xzTff8PLLLxsdRwoJlV2RIsBmszFkyBA+//xzvYnchqysLJ588kmWL1/OokWLaN++vdGRRESkELNarXTs2JFdu3axe/dugoODjY50V/Tv35/vv/+eTZs2Ub9+faPjSCGgsitSyNlsNoYOHcqYMWP48ssvefXVV42OVCBlZmby+OOPs3r1ahYvXkybNm2MjiQiIoXURx99xLvvvsuyZcuK1AesmZmZNG3alISEBHbt2kWxYsWMjiQFnNbsihRiNpuNd999lzFjxjBu3DgV3Tvg7OzM/PnzadmyJZ06dSIsLMzoSCIiUgiFh4czfPhwhg0bVqSKLlffa+fOnUtcXBzPP/+81u/KHdORXZFC7P3332fkyJF8+umnvPHGG0bHKRTS09Pp3LkzGzduZNmyZdx3331GRxIRkULi0qVL1KlTh6pVq7Jy5Urs7e2NjmSIBQsW8NhjjzFhwgQGDBhgdBwpwFR2RQqp0aNH89577/HJJ5/w1ltvGR2nUElLS6NTp05s3bqV5cuX07RpU6MjiYhIAWexWLj//vs5cOAAe/bsoWTJkkZHMtSgQYOYOHEiGzZsoFGjRkbHkQJKZVekEPr444955513+OCDDxg2bJjRcQqltLQ0HnzwQXbs2MGKFSto0qSJ0ZFERKQAGzlyJKNGjWLlypW0bt3a6DiGy8rK4r777uPSpUvs2rULHx8foyNJAaQ1uyKFzNixY3nnnXd4//33VXTzkJubG3/88Qd169alQ4cObNu2zehIIiJSQK1evZqRI0cyYsQIFd2rnJycmDt3LklJSfTq1Uvrd+W26MiuSCEybtw4Xn/9dYYPH86oUaOMjlMkJCcn88ADD3DgwAFWrVpFgwYNjI4kIiIFSGRkJHXq1KF27dosXbq0yK7T/SeLFy+mU6dOfPbZZ7z++utGx5ECRmVXpJCYMGECr732GkOHDuXDDz/EZDIZHanISEpK4v777+fIkSOsXr2aevXqGR1JREQKALPZTNu2bTl+/Di7d+8mICDA6Ej50ptvvsm4ceNYt24d9957r9FxpABR2RUpBCZOnEj//v0ZMmQIY8aMUdE1QGJiIu3atePkyZOsWbOG2rVrGx1JRETyuXfffZePP/6YtWvX0rx5c6Pj5FvZ2dm0bNmSc+fOsXv3bvz8/IyOJAWE1uyKFHDffvst/fv3Z/DgwSq6BipWrBgrVqwgNDSUNm3asH//fqMjiYhIPrZs2TI+/PBDPvjgAxXd/+Do6MicOXNIT0+ne/fuWK1WoyNJAaEjuyIF2Pfff0+fPn0YMGAAX3zxhYpuPhAfH0/btm2JiIhg7dq1VK9e3ehIIiKSz0RERFCnTh0aNWrE4sWLsbPT8aebsXTpUjp27MjHH3/M22+/bXQcKQBUdkUKqB9//JHevXvTr18/vv76axXdfCQuLo7WrVsTFRVFWFgYVatWNTqSiIjkE9nZ2bRq1YqzZ8/qlNzbMGzYMD755BOd+i03RWVXpACaNm0aPXv2pE+fPnzzzTf6RDgfiomJoXXr1sTGxhIWFkblypWNjiQiIvnAW2+9xbhx4wgPD9ewpdtwbajXsWPH2LNnj4Z6yb/Sb8giBcyMGTPo2bMnvXv3VtHNx/z9/Vm9ejU+Pj60bt2aEydOGB1JREQMtnjxYsaOHcvHH3+sonubHBwcmDlzJmazmeeeew6LxWJ0JMnHdGRXpACZPXs2zz77LN27d2fKlCkqugXApUuXaNmyJSkpKYSFhVG+fHmjI4mIiAHOnj1L3bp1adasGQsXLtTyozu0atUq2rdvz8iRIxk+fLjRcSSfUtkVKSDmzZtH165deeaZZ5g6daouOl+AREZG0rJlS9LT0wkPDyc0NNToSCIichdlZWXRvHlzoqKi2LVrFz4+PkZHKhTef/99Ro0axapVq2jdurXRcSQfUtkVKQB+++03unTpwlNPPcW0adNUdAugCxcu0LJlS8xmM2FhYZQpU8boSCIicpcMHjyYr7/+mg0bNtCoUSOj4xQaFouF+++/nwMHDrBnzx5KlixpdCTJZ3QOpEg+t3DhQp566imeeOIJfv75ZxXdAio4OJi1a9diZ2dHq1atOH/+vNGRRETkLvj9998ZP348n376qYpuLrO3t2fGjBmYTCa6du2K2Ww2OpLkMzqyK5KPLV68mMcee4zOnTsza9YsHBwcjI4kd+jcuXO0aNECe3t7wsPDCQ4ONjqSiIjkkVOnTlGvXj3atGnD/PnztU43j4SFhdGmTRveeecdRo8ebXQcyUdUdkXyqaVLl/LII4/w4IMPMmfOHBwdHY2OJLnkzJkztGjRAmdnZ8LDwwkMDDQ6koiI5LLMzEyaNm1KQkICO3fuxNvb2+hIhdqHH37I8OHDWbZsGe3btzc6juQTKrsi+dCKFSt4+OGHuf/++5k3bx5OTk5GR5JcdurUKVq0aIG7uzthYWFaZyQiUsi8+uqrTJ48mc2bN1OvXj2j4xR6VquVjh07snPnTvbs2aMzpwS0Zlck/1m1ahWdO3embdu2zJ07V0W3kCpXrhxr164lOTmZ1q1bEx0dbXQkERHJJfPmzePrr79m/PjxKrp3iZ2dHdOnT8fZ2VnrdyWHjuyK5CNr167lwQcfpEWLFixYsAAXFxejI0keO3bsGC1btsTX15c1a9bg7+9vdCQREbkDJ06coF69enTs2JFZs2Zpne5dtmHDBlq2bMmQIUP4+OOPjY4jBlPZFckn1q1bxwMPPEDTpk1ZtGiRim4RcuTIEVq2bEmJEiVYs2YNvr6+RkcSEZHbkJGRQZMmTUhNTWXHjh14eXkZHalIGjt2LG+99RaLFy/mwQcfNDqOGEhlVyQf2LBhAx06dOCee+5h8eLFuLq6Gh1J7rJDhw7RsmVLgoODWb16NT4+PkZHEhGRW9S3b19+/vlntmzZQu3atY2OU2RZrVYefvhhNm/ezO7duyldurTRkcQgKrsiBtu8eTPt27enQYMGLFmyBDc3N6MjiUEOHDhAq1atKF26NKtWraJ48eJGRxIRkZs0a9YsnnnmGSZPnsyLL75odJwiLy4ujrp16xISEkJ4eLiualFEqeyKGGjr1q20a9eOOnXqsHTpUtzd3Y2OJAbbu3cvrVu3pnz58qxcuZJixYoZHUlERP7DkSNHaNCgAY888gjTp0/XOt18YsuWLdx3330MHDiQzz77zOg4YgCVXRGD7Nixg7Zt21KjRg2WLl2Kp6en0ZEkn9i9ezdt2rShcuXKLF++XGu+RETysbS0NO655x7MZjPbt2/Hw8PD6EjyF+PHj2fw4MH8/vvvdO7c2eg4cpep7IoYYNeuXbRp04YqVaqozMgN7dy5kzZt2lC9enWWLVumD0NERPKp3r17M2vWLLZt20aNGjWMjiP/j81m47HHHiMsLIxdu3YRGhpqdCS5i1R2Re6yPXv20Lp1aypWrMiKFSt0mqr8o+3bt9O2bVtq1arF0qVLdbRARCSfmTZtGj169GDq1Kn07NnT6DjyDxISEqhXrx7+/v5s2LABJycnoyPJXaKyK3IX7d+/n1atWlG2bFlWrVqFt7e30ZEkn9uyZQvt27enXr16LFmyROu6RUTyiYMHD9KoUSO6dOnC1KlTjY4j/2H79u00bdqUl19+mQkTJhgdR+4SlV2Ru+TgwYO0atWKkJAQVq1apUvLyE3btGkT999/P40aNeKPP/7QxG4REYOlpKTQqFEj7O3t2bp1q34uFxBff/01r776KvPmzeOJJ54wOo7cBSq7InfB4cOHadmyJYGBgaxevRpfX1+jI0kBs379ejp06MC9997LokWLdC1mERGD2Gw2evTowW+//caOHTuoUqWK0ZHkJtlsNp566imWL1/Orl27KF++vNGRJI+p7IrksaNHj9KyZUv8/f1Zs2YNfn5+RkeSAiosLIyOHTvSokULFixYgIuLi9GRRESKnClTpvDCCy/wyy+/8OyzzxodR25RYmIi9evXx8vLi02bNum9tJCzMzqASGF2/PhxWrVqhY+PD6tWrVLRlTvSsmVLFi9eTFhYGI8//jiZmZlGRxIRKVL27dtH//79efHFF1V0C6hixYoxb948Dh06xODBg42OI3lMR3ZF8sjJkydp0aIFnp6ehIWFUaJECaMjSSGxcuVKOnXqRPv27Zk/f76mSoqI3AXJyck0aNAAV1dXNm/erOUkBdx3331H3759mTlzJl27djU6juQRlV2RPHD69GlatGiBq6srYWFhBAYGGh1JCplly5bRuXNnOnbsyNy5c3F0dDQ6kohIoWWz2XjmmWdYsmQJO3fupGLFikZHkjtks9l49tln+eOPP9ixYweVK1c2OpLkAZVdkVx29uxZWrRogaOjI2FhYQQHBxsdSQqpP//8k0ceeYSHH36YWbNmqfCKiOSRb7/9lpdffpk5c+bQpUsXo+NILrl2tN7FxYUtW7boaH0hpDW7Irno/PnztGrVCnt7e9auXauiK3mqY8eO/PrrryxatIjnnnsOs9lsdCQRkUJn165dDBw4kH79+qnoFjKenp7MmzePY8eOMWDAAKPjSB7QkV2RXBIREUHLli2xWCyEh4dTunRpoyNJEbFgwQK6dOnCk08+yfTp07G3tzc6kohIoZCYmEi9evUoXrw4GzduxNnZ2ehIkgd+/PFHevfuzbRp0+jWrZvRcSQXqeyK5IKLFy/SsmVLMjMzCQ8Pp2zZskZHkiLm119/5amnnuKZZ55h6tSpKrwiInfIZrPx5JNPsmrVKnbt2kW5cuWMjiR5xGaz0bNnT+bPn8/27dupVq2a0ZEkl6jsityhqKgoWrZsSWpqKuHh4XozFMPMnTuXrl270r17d6ZMmYKdnVaqiIjcrq+++ooBAwbw22+/8eijjxodR/JYamoqjRo1AmDbtm24u7sbHUlygX4TErkDly5donXr1qSkpLB27VoVXTFUly5dmD59OtOmTaNPnz5YrVajI4mIFEjbt2/n9ddfZ+DAgSq6RYS7uzvz5s3jzJkz9OvXDx0PLBx0ZFfkNsXExNCqVSvi4+MJCwujUqVKRkcSAeCXX36he/fuvPjii0yaNElHeEVEbkFCQgJ169alRIkSrF+/XtcyL2KmT5+ec4bU888/b3QcuUMORgcQKYhiY2Np06YNsbGxKrqS7zz33HNYLBZ69eqFvb09EydOxGQyGR1LRCTfs9ls9OrVi6SkJMLDw1V0i6Bu3boRHh7OK6+8QsOGDalZs6bRkeQOqOyK3KL4+HjatWvHpUuXWLt2LVWqVDE6ksjf9OjRA7PZzAsvvICDgwMTJkxQ4RUR+Q/jx49n4cKFLFq0iDJlyhgdRwzy1VdfsW3bNp588km2b9+Op6en0ZHkNuncNpFbkJCQQLt27YiIiGD16tWa1if5Wu/evfnuu+/46quvGDx4sNYfiYj8i82bN/PWW2/xxhtv0KlTJ6PjiIFcXV2ZN28eFy5coG/fvnr/LMC0ZlfkJl2+fJl27dpx6tQp1q5dS61atYyOJHJTvvnmG1555RXeeOMNxo4dqyO8IiL/T1xcHHXr1qVUqVKEhYXh6OhodCTJB2bNmsUzzzzDt99+y0svvWR0HLkNOo1Z5CYkJSXRoUMHTp48yerVq1V0pUDp168fFouFAQMGYG9vz8cff6zCKyJyldVqpXv37qSlpTFnzhwVXcnRtWtX1q1bx8CBA2nUqBF169Y1OpLcIpVdkf+QnJzMAw88wNGjR1m1apV+0EmB9Oqrr2I2mxk8eDAODg6MHj1ahVdEBPj000/5888/+fPPPwkJCTE6juQz48ePZ+vWrXTp0oWdO3fi5eVldCS5BSq7Iv8iJSWFjh07cuDAAVatWkX9+vWNjiRy2wYNGoTFYmHIkCE4OjoyYsQIoyOJiBhq/fr1DBs2jKFDh/LAAw8YHUfyIRcXF+bOnUu9evV44YUXmDNnjj4sLkBUdkX+QWpqKg8++CB79+5lxYoVNGzY0OhIInfsjTfewGw2M3ToUOzt7Xn33XeNjiQiYojo6GiefvppmjZtyqhRo4yOI/lYhQoV+PHHH3nyySdp3rw5/fv3NzqS3CSVXZEbSEtLo1OnTuzatYvly5fTuHFjoyOJ5Jq3334bi8XCu+++i729PUOHDjU6kojIXWW1WunWrRvZ2dnMmjULBwf9Siz/7oknnuDVV19l8ODBNG7cmAYNGhgdSW6CvrNF/p/09HQ6d+7Mtm3bWLZsGffee6/RkURy3bBhwzCbzbzzzjs4ODgwZMgQoyOJiNw1H330EStXrmTFihUEBQUZHUcKiE8//ZQtW7bQpUsXdu3ahbe3t9GR5D+o7Ir8RUZGBo8++igbN25k6dKlNGvWzOhIInnmvffew2w28+abb+Lg4MCgQYOMjiQikufWrl3LiBEjGD58OG3btjU6jhQgzs7OzJkzh3r16tGrVy9+++03rd/N53SdXZGrMjMzeeyxx1izZg1LliyhdevWRkcSyXM2m41hw4bx8ccfM2HCBAYMGGB0JBGRPBMVFUWdOnWoXr06K1aswN7e3uhIUgAtXLiQRx55hHHjxumD4nxOR3ZFgKysLJ588knWrFnDH3/8oaIrRYbJZOLDDz/EbDYzcOBA7O3teeWVV4yOJSKS6ywWC8888wwmk4mZM2eq6Mpt69y5M4MHD+bNN9+kSZMmmu2Sj6nsSpGXnZ1Nly5dWL58OYsWLdIpTVLkmEwmxowZg9lspn///jg4OPDSSy8ZHUtEJFeNGjWK8PBwVq9eTYkSJYyOIwXcJ598wqZNm3jqqafYvXs3Pj4+RkeSG7AzOoCIkbKzs+natSt//vknCxYs4P777zc6koghTCYTn3/+OQMGDKBv37788MMPRkcSEck1K1euZPTo0YwcOZKWLVsaHUcKAUdHR+bMmUNKSgo9evTAarUaHUluQGt2pcgym808++yzLFiwgF9//ZVOnToZHUnEcDabjf79+zNp0iSmTJlCr169jI4kInJHLl68SJ06dahXrx5//vkndnY61iO5Z8mSJTz00EOMGTOGN9980+g48v/oNGYpksxmM927d+e3335j3rx5KroiV5lMJr766issFgu9e/fGwcGBbt26GR1LROS2mM1mnn76aZycnJg+fbqKruS6Bx98kLfeeot33nmHe++9V1fyyGdUdqXIsVgs9OrVi7lz5zJnzhweeeQRoyOJ5Ct2dnZ88803WCwWevbsib29Pc8884zRsUREbtl7773Hpk2bCAsLw9/f3+g4Ukh98MEHbNy4kaeffprdu3fr31o+oo+3pEixWq307t2bWbNmMXPmTB5//HGjI4nkS3Z2dnz33Xd0796dbt26MWfOHKMjiYjckqVLl/Lxxx/z4Ycf6mib5CkHBwdmz55NZmYm3bp10/rdfERrdqXIsFqt9OnTh6lTp/LLL7/QtWtXoyOJ5HvXzoSYOXMms2fP5oknnjA6kojIfzp//jx16tShSZMmLFq0SKcvy12xYsUKOnTowOjRoxk2bJjRcURlV4oKq9XKyy+/zPfff8+0adN47rnnjI4kUmBYLBa6d+/O3LlzmTt3Lo8++qjRkURE/lF2djYtWrQgIiKC3bt34+vra3QkKUKGDx/ORx99xOrVqzX5Ox9Q2ZVCz2az8corr/Dtt98ydepUevToYXQkkQLHbDbz3HPP8euvvzJ//nw6d+5sdCQRkRsaMmQIX3zxBevXr6dx48ZGx5EixmKx0LZtW44cOcKePXt0TWeD6ZwOKdRsNhsDBw5k0qRJ/PDDDyq6IrfJwcGBX375hUceeYQnn3ySxYsXGx1JRORvFi1axGeffcaYMWNUdMUQ9vb2zJw5E5vNxrPPPovFYjE6UpGmI7tSaNlsNgYPHswXX3zBd999R58+fYyOJFLgZWdn89RTT7FkyRIWLlxIhw4djI4kIgLAmTNnqFu3Li1atGDBggWYTCajI0kRtmbNGtq2bct7773H+++/b3ScIktlVwolm83GkCFD+Pzzz/nmm294+eWXjY4kUmhkZWXx5JNPsnz5chYtWkT79u2NjiQiRVxWVhb33Xcf0dHR7Nq1i+LFixsdSYRRo0bx/vvvs2LFCtq2bWt0nCJJZVcKHZvNxtChQxkzZgxfffUV/fv3NzqSSKGTmZnJ448/zurVq1m8eDFt2rQxOpKIFGGvvfYa33zzDRs3bqRhw4ZGxxGBq+t3O3TowL59+9izZw+BgYFGRypytGZXChWbzcbw4cMZM2YM48ePV9EVySPOzs7Mnz+fli1b0qlTJ8LCwoyOJCJF1G+//caECRP4/PPPVXQlX7G3t2fGjBnY29vTtWtXzGaz0ZGKHB3ZlULl/fffZ+TIkXz22We8/vrrRscRKfTS09Pp3LkzGzduZOnSpTRv3tzoSCJShJw8eZJ69erRvn175s6dq3W6ki+Fh4fTunVr3n77bT788EOj4xQpKrtS4NlsNubNm8fevXv56KOP+OSTT3jrrbeMjiVSZKSlpdGpUye2bt3KpEmTqFChAk2aNDE6logUco8//jh79uzBZDKxc+dOihUrZnQkkX/08ccf884771CtWjWmT59OvXr1jI5UJKjsSoG3a9cu6tevD1cv5D1q1CijI4kUOWlpabRu3ZqdO3fi4+NDZGQkdnZaKSMieSM5ORkvLy8AunTpwpw5c4yOJPKvtm7dSrt27UhOTuaNN97g008/NTpSkaDfRKTAGz16dM6fq1SpYmgWkaLKzc2N4OBgzGYz0dHRLF261OhIIlKI7dmzB4ASJUrQu3dvo+OI/Kdq1arxwAMPALBixQqj4xQZOrIrBd7nn3/OqlWrGDlyJA0bNtR6HRGDZGRksGDBAsaNG8fUqVOpUaOG0ZFEpJCy2WwsWbKEDh064ODgYHQckZu2d+9ePDw8KF++vNFRigSVXRERERERESl09FGY/KOsrCwiIiKwWCxGR8k13t7e+Pv7Gx1DpMDKzs4mIiKiQF8+wdnZmeDgYOzt7Y2OIlKgZGZmEhERgdVqNTrKLQsKCsLd3d3oGFJIxcXFER8fb3SM22IymQgKCsLNzc3oKHlCZVduKDY2ltatWrH/wAGjo+S6iRMn0q9fP6NjiBQ4iYmJtG3Xnh3btxkd5Y499FAnfv11Pk5OTkZHESkQIiMjadn8Po6dOGl0lNviU9ybNWvDqF27ttFRpJD55Zdf6N69OwX5ZFlfP3/Cw9ZSvXp1o6PkOp3GLDf0/fff06dPH6aPegVfbw+j4+QKmw2+mbeCbUfOEx0TY3QckQJn9uzZdO3alceHfUuxgBCj49y2iEM7WPHd+2zevJnGjRsbHUekQPj88895+603+aF7PTxdCtaxkmyLldfmHuDBx7vyww8/GB1HCpnyFSqR4FKS0g8NhAI4N8aancnxHwbw/LNdmDhxotFxcl3B+mkld01aWhruri50btngP7eNjE3AbLFitlgIDQrIuf3nxeH0eKjFDe9z7GwklcoE/uM+rVbr3y5bcjYylvmrt/Boq0bsPXaWtIxM6lQqw6ptB/DxcqdsUABnLkbT9p6aBPoVZ8bSDfgU86BJzUp4e145NWP/iXOE7T56C6+EiFyTlpYGQK22T/7rZYWSYiOxWsxYLRZ8gsrm3L5j8TQaPNT9hveJOXsM/zKV/nGfN/qZkBB5jn2r51Oz1aNcPLaX7Mx0AivW4sS21bh6+eATVJb4i2eoeE8bvPwC2bV0Ju7FfCjfsDV8937O8xGR/5aWloavpyv3Vy/xj9vM2HqOZ+8pnfP3fRGJBHg64+5sj6eL43/eLyox41+3tVpt2Nn9vUzsOJPAttPx9GtVnvPxaSzYfZGHawdS1u9/py1X8HfX97zkidS0NLxqNsK76r25vm+b1YrpBu+3KecOknJ2Px6la5B0chdWSxbBbXoBcHH1T5jsHQlqfeP32xtxLRFaaL8/VHblpkxbvI6Sft64uzgTtusQrepX58+Nu/Hx8qBquWACinuxae8xyoeUYNO+YzzfuVXOfacuCsNitVIuuAThOw9RwrcY7q7ObD90Eg9XF+zsTHRqXp9zUbHsOHQKZ0cHmtevys7Dp8k2Wwj086ZG+VK4OjsSUNyLmIQkUtLSeaJtYxaF7yQ0yJ/1e45St0oosZddib2cTKBfcYIDfEhLz+RycmpO2RWR3LFzyXQ8fUvi5OrGyZ3rKF+/BUc2LcXNy4cSoVVxLx7A2X2b8Akpx9l9m2n08PM5992+6CdsVgs+weU4tSscT9+SOLq4cf7QDpzdPDCZ7KjW/CEuR53j/KGdODg5U67efUQc3oXVnI2nX0lKlq+Bo7MLHsUDSEmIITMthVptH+fQuj8oHhzKmd0bCK5SB+fLHqRejsXLL5BiAcFkZaSSmZpk6GsnUliMX3Wce0J9WHs0hgBPZ9yc7Nl8Mo4NJ+K4r6IfKw5eon5Zb3zdnTl4MRFHezsup2Xj6+FE3VLezN95gR73luFEdApfrzlJvdLeBHq78MOGM7g62NO3ZTnSsy0sOxCFm5MDVUt6kpiRTUxyJi4O9txbwRebzUZEQjrF3K4UZBdHe/w9nYlNybqu7IrkF5c2zif59B5COvQlbs8KMhOi8CpXl9SII/jUaYtnmZokndhJVmI0JkdnilVsRNLx7QC4h1TG2ScIj9LVSTl3EEcvP0wOjrj6hZCdFIcNG64lypF5Ocrop5lv6Dq7ctNMJhNxiclUCw3h9MXov33dZrORnJZBqRK+XIi+skh//4lzOV9PTk0n0L84UbGXc257sFld4pNSACjhUwzfYh6YTCYsFhtmiwWzxYLVeuVMezs7E96e7hw+fQF3Vxd+W7ON+lVDcXRwoFpoMF7urtiZTBw5c5H9J84R6OtNcloGJyL0DS+SF0wmE6mJ8ZQIrUr8xTN/+7rNZiMrLQXvEqVIjL4AQOSJ/Tlfz0xLxssviKTYyJzbqjTtSFrSlZ8fHj4lcPf2BRNYLdarR4vN2K7+TDDZ2eHq6U306cM4ubpzYO3vhFStj729AwGhVXFx98JkZ0fMmaNEntiPp29JstJSSIg8exdeHZHCL8DTmbqlvfFwdqBiwJUlT/FpWVQp6cnZuFT8PJyw2a78LLAzmTCZTPh6ONG8oh8XLqdTLciTrafiqRDggb+nE2br31fWuTjYEXq1tFpsNizWq/9dXYUXkZCODRsnolM4eDEJkwmKuTpyJCr5Lr8aIjfHmp2JvZsXGXERV26w2bBkpeNRpgYOrl4AuJYsh8nBCaxWwIbNar7y39V/99HbFpF1+dKVu5uzSL906sop1DYraZdOYjNnG/cE8xkd2ZWb0v2h5n+77f+fply/arnrvn5f3SoAuDg7sWLzPupVDaVUCd+/7efaPpydHGlRv1rO7W0b1bxuOz9vLzo1r/+3+1coVTLnz6VL+l33tcplg27q+YnIran/YLe/3fb/T1MOqVrvuq+H1m0GgKOzK8e2rCS4Sl28S5T6236u7ePKEd3//eyp2KjNddu5e/tRrflDf7u/b8j/rl3oXbL0dV8LKFv5hsVcRG7dtVOWB7ap8J/bNil//ft/KZ8bn3F1Pj6N+qWL07zSlfdzk8lEnVLe/7jfUj5ulPJx49G6wTm3daxZ8h+3FzFaYMtnc/5sTkvCZOdAiSaPXbeNo0dxfGv/7z3Pt067674e0OjhnD8Hte5x3ddC2r2QB6kLLpVduW3/tB73/6tYqiQ2qy2n6EbGJuDu6oKXu+vftr2cnMb81Vtwc3HmmQ5NAZj822oqli7JgRPnqVw2iPaNa+XyMxGR3PBP63H/P79SFbBZrTlFNyk2EidXd1zcvf62bXpyIvtXz8fRxZ26HZ4GYOuC7/ErVZHyDVrm8jMQkbx0PDol5wjwP63PLeXjhperIz9vOourkz1dGoQQm5LJuBXH+eixGnwbdoqKJTxoUzXgHx5FpODwq9segLSLx3ELqghAZkIU9i7uOLh6/m17c2oi0Vt/x87ZjZJNnyQt6hRJJ3di7+hyZQOTHT41W2LvolP4r1HZlTxzba1u+ZASnIuK5efF4fh5e9KgWnmC/Ivj5e7K1v3HSUrLwNvTjYbVynP07EWa163K1gPHAbgUl4iby5VLg4SU8CU5NZ3MrGycnf550IWI5E/X1ur6hpQnIeocO5dMx83bl1JVG+DlH4SLuxfnDmwlMzUZF09vSlVrQMzZo4TWvY9zB65c7ig57hKOzlqDL1JQTN9yDqvVRqifO+cT0pi59Ry+7s4563M9XRzZfiae5Awz3q6O1CtTnOOXUri3gi87ziQA4OfhTPXgKx+GBRd3JSXTTKbZgrODrpUtBdfFsF/AasG1RCgZseeJXDcTR09fvMrVw9knEAdXTxKPb8eSnoKDezG8ytcjNfI43lXuJfHEDgBSzuwloGEnLm1ZQHrUSYpVaozVnIk9KrvXaM2u5DnT1THslcoEEuBTDLPFkvM1i/XK2lyrxZqzzbrdh7Gzs2P/iXMcPnMBk8nE+ag4SvoW42xkLEmp6YY9FxHJBVd/JviVrohH8QCsFnPOl6wWy9V1uVd+TviXqcTp3euxs7cn8sR+os8cwWRnx+VL5w2LLyK37toVWW60Ptdi5bp1uBUCPNh0Ig57k4mDF5NIyzRzODKZo1HJBHg5cy4+jeR08z89lEjBcvWbwy2wAk5e/tis//u3bbNar67XteRsc/nIJkx29qScO4hHmZrEbF+MvYs7bkGVsGSkkJmgWTV/pSO7kmea1a3Cis37KB9SgpZ/WYv7V/fWvv5SI8U93Xnhkdb/uM8mtf750iQikr+F1m3GsS0r8Q0pR/n6N14GUbb29ZducPX0ptEjve9SQhHJbfeW92H14RhC/dy5r6LfDbdpXM7nur97uznS494y1932wSPVc/58T+j124sURN5VmhC/dw2uJUIpXu2+G29T+Z7r/u7o7v23Nbpugf+9Zr4oU9mVPFOxVEkqltKQCBG5wq9UBfxK6U1ZpCgp7+9BeX8Po2OI5DtuJcvjVrL8TWwpd0JlV+6q9buPEORfnPIh/3xR+r+asXQDPsU8aFKzEpv3H+PY2UgebFaXbQdP4ursRFJqGnYmE83rVaNM4I0/MRaR/Ov07g14+QfhG1LuJra+cumiyGP7CKxYi6SYC8ScPUattk9w4dgesjPSsbOzx2RnR4WGrXF20y/YIvnNphNxBHq75FxO6L8cjkxi2cFLDGhdgZ82ncHBzo4e95Zh1B+H6dakNCeiUzh+KYUuDUNyhliJFHSXD2/C2ScQ1xKhN7V9yrmDpJzdj0fpGtg5uxG1biaBrboTuXY65boMy/O8+ZnKrtyxSfNXUj6kBGazhU37jvF851Z8PWc5Xu4u1KpYhuAAH/5YtxMfLw+qlgsmMjaBGUs3UD6kBEmp6ZQPKUH7xrVITktny/4TAFQLDSY4wIfgAB/S0jO5nJxKy/rVOBURze6jZ3isVSPmrdqM1Woj+nJSzhArETHe5vnf4RtSDoslm7P7NtPo4efZOHcizu6eBFaoRbGAYA6t/wM3Lx9KhFYlKTaSXUtn4FeqAhkpSfiGlKNS43ZkpiVzbv9WAAJCq1IsIJjACjWJOnEA9+J++JWuQNyF03j5X7lWb2ZqMid2rKVs7XuxZGcZ/TKIFBk/rD9NqJ87ZquNrafi6d6kNN+tO42HiwM1g7wI8nblz/1RFHd3pEpJTyITM5i9/Tzl/TxIysgm1M+dNlUDSMkws+3MletsVynpSZC3K1UDvdh17jKxKZmE+rlzKSmTw5FJhBS/ckWHZhX9OB2bdt0QK5H8KGLlD7iWKIfNkk3i0a0Ete5OxLLvsHf1xKNMDZx9gojd8SeOHsVxD6lCZkIUUevn4FqyHOb0JFxLlMO3VmvM6SkkHd8OgHtIZZx9gvAoXZ2Ucwdx9PLj8pFNuJYIxdW/NK4lyhr9tA2nAVVyx2pWKMXGPUdJTsugVAlfLkTHU7tSaUKDA+jYtC6nL0Zft729nR2+xTwJDQrIuS9XrqmN2WLBbLHkXDQ70Neb5LQMTkRE8daXMykT6EedSmVYELYdd1cXLFYrpUr6EhV32ZDnLiJ/V7JCDc7s3UhWWgreJUqRGH2BwIq18AkKpUrTB4i/ePq67e3s7HD39qN4YJmc+wLYbDasFvPVAVZXfibsX7OApNhIAP78cijeJUsTc+44u5fOxL24PwFlq5CZlkJS7EUDnrlI0VQtyIstp+JJyTQTUtyVi5czqBHsRVlfN9pXL8GZuNTrtre3M+Hr7kxpX7ec+wLYsF0ZVGW1cW18VURCOocjk7EzmTgVk0qW2UpEQjrp2RYiEtIZ/vtBSvm4XjfESiQ/8ihVncQjm7Gkp+LiF0Jm3EU8ytTANaAMfnXakxF99rrtTXZ2OHr64uJfJue+V9iuDq0y5/y+HL1tEVmXL2GzmrFmpZN64RhZSXGknj9Mesw5A55t/mGyXXuVRP5iwoQJDBv6NpHLJ+XK/n5eHH7T1+XNS9/MW8HoHxeSkpJ6E1uLyF/9+OOP9O7dm5Fr47Czu7PPSncsnnbT1+XNbfEXzzC+a11Wr15N69b/PBBPRP5n9OjRTBw3hj3v3t71rWdsPcez95TO9Vw368nvtlGqQVtmzpxpWAYpnEoGheByz9OUfeT1O95XZPgMAls8myu5bsW+jzrT+d7qTJ069a4/dl7TkV25K/JD0RWR/MOooisixjCy6IoUFEYU3cJOZVduy8+Lw29p+xlLN3DqQjQb9xxlzM+LsFisLNu8l58Xh7Pz8Cm+mr2MmIQk/li3k8m/rQbgcnIaP/y+hpnLNl63r1Hf/8rJiEscOXOB8TOWsHnfMVZt289rn/1MxKU4Jv+2mkOnIgDYsv84v4dtZ8WWfcxYuoHYyzq9SeRu2LF42i1tv2vpTOIvnGbnkl84GL6I9OREtv0+hd3LZgMwe0QvLOb/XXsw6uRBwqZ9hs1mY8Psrzi9ZyNxESc5GL6IY1tWcnJnOOG/jMOclUnYtM9y/fmJyN/N2Hprp0vO2X6eM7GpTF53mh83nCEj28J7Cw9xODKJOdvPs/LQJRLTszkVk8oHiw9fd9+v15zk+/WnuXA5nakbz3AkMpk95y8z8o9DRCSkM2bZ0Vx+diK5KzJ8xi1tH7V+DunRZ7h8dCvHfn4bS2ZaztcST+wgYvn3ZF6+ROzOpVxY9SMAJ2ePIv3Sac78/jk2S9G8NrXKrvynaYvXsXrbAc5FxfL+d/OYsXQD/KXw/rw4nI9+/J3Ppi8m22zGbLawcut+Vm7dz4nz/7uwdekSvlQsXZKMzCwysrIxm69cILti6UCS0tJxdHDg3lqVcHK8Mjft6NmLNK9bFYvFcl2eVg2uXGuvStlg3FycaVKrEs3rVqV2pTJsOXCCYh5uZGRlA3D8XCSPtGzIpbjLlC6pac0ieWHnkumc2L6Gy1HnWDF5JLuXzYK/FN4di6exZuonhE//HIs5G4vZzPGtqzi+dRVxESdz9lOsRCkij+/DzsGBqJMHCK17H1aLmVO71hFUqdZ1j1myfHU8fAJIiY8mJSEaqzkb35DyODq74OlXktC692FnZ4+9oxMePgF3+RURKfxmbj1H2NEYzsen8eGfR5i7/cqHzNcK74yt5/hs+TEmrD5BtsWK2WJlzZFo1hyJ5lTM/5YShRR3pXLJK4OqIhLSCS7uQlxKFkHerlhtkJiWzZ7zlwn1v356c6bZQka2he2nE/BydSTDbKFOKW9Cirvm/CeSX0SGzyT+QBgZsRGcmvcRURvmXr19Rs7/nlnwGWf/+BKrORubxUz8vrXE71tLWtSpnP24+IbgXfke3IMrYe/slnN7sQoNwGTCwdUTl4CyWLOzSDl/GBe/kJz7FVUqu/KfKpYuyfZDJ0nLyKRSmSDORsYC4FvMk6Ub9wDg5OhA1bJBODpcKar/f9DUNYdOX8Dd1YXdR09jZzJxLiqOw6ci8PZwJyk1jaETZ1MuOIBTF6IJ9i/Out2HsbOzY8n6XVitVgD2Hj/LnqNnyMo24+zkCMCKLfto37gWtSuWJjU9g9MXotl/4hwVSpVkYdgOAnyK3eVXTaTo8CtVgfMHd5CVkYZ/6cokRF4ZsuFWzJcjG5cCYO/gSEBoVewdrnzPXhs8de37+hr/MpVIjY/Bv3RFTu9ej529PWmJ8aRejiPx0nkOb/gTgMuXznPp5EFMJhOunsWJizjJmb2bOL1nI86uHqz6fhRe/oGayiySR8oHeLDr7GXSsixUDPDgXPyVo0w+7k6sOHgJAEcHOyqX8MDR/sqvm9eGT1n/3+8G7k4OODvYEeDpTGkfNw5FJlPCy5mUTDOHIpNIz7ZwNCqF8GMxXE678mG2vZ0Je5OJGsFepGaaORuXRkxyJiU8Xe72SyHyn9wCy5N0cheWzDTcgiqScXVolKOHD7G7VwBgcnDCPbgSdlffJ68NocJ2/ftk8pl9eJSthTktiYTDV85+jFj+PXYOjpjTk8mIPYfJzo7MuAgsWelkxEXc9eebn2hAldxQbg+o2rzvGIF+xSkb5J8r+7sdq7btZ9fh04yfvVwDqkRuQ24OqPr/zu7bjJd/EMUDy+Tqfs1ZmRze8Cc1Wz+ac5sGVIncujsdUHUjW0/HE+jlQmlft5vY+tbM2xnBk/X/dzRLA6okr+TmgKp/k3hsK07FA3H1v/X175c2/UZA40cw/cN7twZUifw/M5ZuyDkN+WY0qVWJskH+t7zW91YcOxv5r19v26gmHm76xFckN+1aOvO6tbQ366+nOMecPUaZWk1yiu6trve9kZhzx7HZbDg4OV9XdEUkd8zZfh6zxXoTW17vr+t67wn1ydWiezw6JefPfy26IndT1Po5t7U+9q+nNKddPP63rxWrdM9tFV2AEvc+RvqlU38747IocDA6gBQs0xavo6SfN1arlSNnL7Jg7XbqVS7LwVMRNK9Xld1Hz1A+pATtG9ciOS2dLftPAFAtNJjgAJ+c/SzdtIe09ExcnZ1ISE5l24ETNKpRAS93Vw6dvkCHJrX5ceFahvZ6hGKeboz5aSEBPsUoG+jPpn3HeL5zKybM/JPSgX5UCCmJnZ2J+KQU/li/Ez9vT+pXLcfKLfuIiktkzIBnDHzFRAqnnUum4+lbEpvVSszZIxwIW0hw5bpcOnWI0LrNuHh0L74h5ajUuB2Zacmc278VgIDQqhQLCMaSncnxratIio3k7P4txF84hcVsJv7iaTJSk9g452uqt3iY7X/8jF+pCiRGX6BCw1aEVK3Prj9nkBhzkQoNW3F4wxL8S1fK+fruZbPwK1UBZ3cvkqIvEHfhFE6u7mRnpGOzWvANKU/xoLJGv3wiBdbMreco4eWC1QbHLqXwx75IaocU43BUMk3L+7IvIpFQP3faVA0gJcPMtjNXrqFbpaQnQd7/W0e78tAl0rIsuDjak5iWzfazCTQsUxwPFweORCXTrloA0zaf4432FfFydWTcyuM5pzlvPRVP9yalmRh2ilLFXSnn746dyURCWhZL90fh6+FE3VLerDkSw6XkDEZ3rm7gKyZFRWT4TJyKl8Rms5J68Rgx2xbjGVqL1IgjeFe9l+Qz+3AtUQ7fWq0xp6eQdHw7AO4hlXH2CcKanUX8vrVkJkSReHwb6dFnsFnMpEefwZyWzPml3+Lf8CEiw37BtWQ5MuMvUrxGC7zK1SVq/Wwy4yMpXqMFsbuW4RZYIefrlzbMxbVkeRxcPcmMv0j6pTPYu7hjyUoHqwXXEqFGv3R5Skd25ZaZTCYAYhKSqFe5LCcjLlGzYmnW7TpMzQql2LjnygREm+3va3czMrNZumkP8YkpOadBHj1zkdYNa5CWkUV6Zha1KpbGy8OVelVDiU5IIu5yMh5urlQuE0RyWgalSvhyITqeelVDKenrzYPN6hKfdOXTXD9vT1rWr865q+uKi+InWCJ3y7WfBakJsQRXrktcxEkCK9Tg9O4NlKxQgzN7r6wlstlsOWt04cr3pL2jMxXvaYuXXyAA1r+sSfIuUYqgSnVIjL6Au7cfxQPL4OETQPHAMpw/uB2LOYvgyrWxWS05a4Q9fAIIqVqfwIq1cHT535Gi8vVbYs7K/Gvou/XyiBRa176NYlOyqB1SjNOxqdQI8mLjyTiqBXmx5dSVgmvDlrNO99q7cWa2lZWHLpGQmo3d1R0du5RMi0p+pGWZyci2UDPYCy8XR+qUKkZMcibxqVl4ODtQMcCDlEwzIcVduXg5gzqlilHCy5kO1UuQkHZlfb6vhxPNK/pxPiH9Sgb9GiB3kYkr/6azk2LxDK1F+qXTeJSuzuXDm/AoVZ3EI5uvbmnLWZN77XdVO0cnfGq1wrl4yStb/OV90cUvGM+ytciMv4Cjpy8u/mVwKuaPi19pkk7sxGrOxqNsLWxWS86aYKdi/niVq4tHmRrYO//vg6bi1e/Dmp3xl9CF+31Ra3blhnJ7za4RwnceYt/xc7z6dIec276Zt4LRPy7Uml2R25CXa3ZTL8dxZu9G7BwcqNq0Y67uGyD2/AmObVlJteYPYbVYtGZX5BblxZrdvLbheCwHLiTRt2U5rdmVPJNXa3azk+O4fGQLJgcH/Oren6v7BkiLOkn83jX4NXiAY9+9UmjX7Oo0ZrkhNzc3UtMzWBi2A19vD6Pj3BZ7ezvqVinLhj1H4Oqnu+t3H8HNNfcHYYgUBW5uV7539q2aR7GA3F8P51bMF4DTezb+57a3I7BiLRIizxFxaMeVx3PTzwKRm+Xm5kZccjrLD17C06Vg/PpoZ2eiVqlihB+L4URMKpX1PS95wN3NjYRjW7l8eFOuHyV19LyyBPByzhHh3OVRpgZpF0+Qfuk0bm4N8+QxjKYju3JDcXFxtG7Vin379xsdJddNnDiRfv36GR1DpMBJTEykbbv27Ni+zegod+yhhzrx66/zcXJyMjqKSIEQGRlJy+b3cezEyZvYOv/xKe7NmrVh1K5d2+goUsj88ssvdO/evUAvnfP18yc8bC3Vqxe+9e0qu/KPsrKyiIiIwGK5+anL/6ZHjx4kJyfz66+/5qz1+zfr16+nd+/e/PLLLzRq1ChXMnh7e+Pvb9zlj0QKuuzsbCIiIjDfxgTmv0pLS6NZs2Z07dqVIUOG/Of2AwcO5PDhwyxbtuyOT6F2dnYmJCQk10/FFinsMjMzuXDhwi39XpCdnc2TTz5JVlYWv//++21/wGSz2XjppZc4cOAAS5YsoXjx4jd9X5PJRGBgIO7u7rf12CL/JT4+nri4uFzf7+TJk5k8eTJTp07l8ccf5/fff6datWq5+hgmk4mgoKBCe7ZTwTgPRQzh5OREuXLlcmVfO3fuZPPmzcydO5dKlSrd1H0qVKjAhAkTmDFjBs8++2yu5BCRO+Po6Eho6J1Pbpw8eTJpaWm88847lC3739ORhw4dSvPmzTl37hzt2rW748cXkVvn7Ox8y78XjB49mqNHj7Jly5Y7Pmo0Y8YMatSokfO7gUh+4ePjg4+Pz01seWusViuBgYE0aNAAABcXFypWrJjrj1OY6WNtuSvGjh1LuXLleOyxx276PiaTiTfffJOlS5eyb9++PM0nInePzWbj66+/5qGHHrqpogvQrFkzatasyddff53n+UQkd+zdu5dRo0bx9ttv5/yyfieCgoL48ssvmTlzJgsWLMiVjCL5WUxMDP7+/jlnJcbExBgdqcBR2ZU8d/LkSebPn88bb7yBvb39Ld23S5culC5dms8++yzP8onI3bVhwwb2799P//79b/o+JpOJ/v37s3jxYs6ePZun+UTkzmVlZdGzZ0+qVq3K8OHDc22/zz77LJ07d6Zv377Exsbm2n5F8qPo6GgCAgJwdXXFw8OD6OhooyMVOCq7kufGjRuHr68vPXv2vOX7Ojo6MnjwYGbNmsW5c+fyJJ+I3F0TJ06kUqVKtGnT5pbu9+yzz+Lp6cm3336bZ9lEJHd89NFHHDhwgJ9++glnZ+dc26/JZOLbb7/FbDbf0gdmIgXRtSO7AP7+/jqyextUdiVPxcTE8OOPP/Lqq6/i6up6E/f4u969e+Pp6ckXX3yR6/lE5O6KjIzk119/pV+/frc8IMrd3Z2ePXvy/fffk5GRkWcZReTO7Nq1iw8//JBhw4ZRr169XN9/yZIlmThxInPmzGHevHm5vn+R/OLakV2AgIAAHdm9DSq7kqe+/vpr7Ozs7uhSPx4eHrzyyitMnjyZhISEXM0nInfX5MmTcXZ2pkePHrd1/379+hEXF8fcuXNzPZuI3LnMzEx69uxJ9erVeeedd/LscZ566ikee+wx+vXrpwIghZLNZtOR3Vygsit5JjU1la+//poXXngBX1/fO9rXq6++itlsZtKkSbmWT0TuruzsbL777juee+45vL29b2sflSpVon379kycODHX84nInRs9ejSHDx/m559/ztPrWJtMppzfCfr161egr3EqciPJyclkZmbqyO4dUtmVPPPjjz+SmJjIoEGD7nhfAQEB9OrViwkTJuj0RZECasGCBURGRvLKK6/c0X5eeeUVtm3bxvbt23Mtm4jcuR07dvDJJ5/w3nvvUbt27Tx/vICAAL755ht+/fVXne0hhc61o7g6sntnVHYlT5jNZj7//HOeeuqpm760yH95/fXXiY2NZdq0abmyPxG5uyZOnEjz5s2pWbPmHe3nwQcfpEyZMjq6K5KPZGZm0qNHD2rXrs3bb7991x73ySefpEuXLvTr14+oqKi79rgiee3aUdxrR3b9/f11ZPc2qOxKnpg3bx5nz57lzTffzLV9VqhQgccff5zPPvsMi8WSa/sVkby3f/9+1q1bd8dHdQHs7e15+eWXmT17ti49IpJPvP/++xw/fpyff/4ZR0fHu/rYEydOxMHBgb59++p0Zik0/v+R3YCAAFJSUkhPTzc4WcGisiu5zmazMWbMGO6///5cP41pyJAhHD9+nN9//z1X9ysieWvixIkEBgby6KOP5sr+evfuDcCUKVNyZX8icvu2bt3K2LFjef/996lRo8Zdf3w/Pz8mTZrEwoULmTlz5l1/fJG8EB0djclkypl7c6306lTmW6OyK7lu5cqV7N27N1eP6l7TsGFDWrVqxZgxY/TprUgBcfnyZaZPn85LL72Ua0d8/Pz8ePrpp5k0aZLO9BAxUEZGBj179qRevXp58r5/sx577DG6du3Kq6++SmRkpGE5RHJLTEwMPj4+ODg4wF9OZ1bZvTUqu5Lrxo4dS/369WnVqlWe7P/NN99k+/btrFu3Lk/2LyK56+eff+b/2Lvv8Cir9G/g35lMkkmZ1EmvhBR6k94FQZBeMsuu7gKiIEVUUNzm+v52XVcBCwoICAIiCk/ondAEQg091NASSJ1Jr9Pn/SOZkEACk2RmzpT7c11cYpjyTTJPOee+n/MolUpMnz7dqK87e/ZspKenY+/evUZ9XUKI4f71r3/hwYMHWL9+fc1JOSvff/89nJycMGPGDJoQJ1ZPKpXWVHNRq7JL1+02Dg12iVFdvHgRR44cwYIFC8Dj8UzyHq+++irat2+PhQsXmuT1CSHGo9VqsXz5cowfPx5BQUFGfe1u3bqhW7dutFAVIYycPn0aixcvxn/+8x+0adOGdRz4+vpi5cqV2L17NzZs2MA6DiHNIpPJaqq5oDbmJqPBLjGqRYsWISoqCuPHjzfZe/B4PCxYsAD79u1DSkqKyd6HENJ8R44cQWpqKubMmWOS158zZw4SExORmppqktcnhNSvsrISU6dORffu3TF//nzWcWqMGTMGb7zxBubOnYvMzEzWcQhpMplMVqeyKxQKIRKJqLLbSDTYJUbz4MEDJCQkYP78+SZvZfrDH/6AsLAwLF682KTvQwhpnqVLl6J9+/bo27evSV5fIpFALBZj+fLlJnl9Qkj9/vnPfyI9PR3r1q2Dg4MD6zh1LFmyBK6urpg+fTq1MxOrJZVK61R2UX3dLlV2G4cGu8Rovv76a/j4+GDKlCkmfy9HR0fMmzcPv/76Kx4/fmzy9yOENF56ejr27NmDOXPmmOyyBqFQiLfeegvr1q1DeXm5Sd6DEFJXUlISvvnmG/z3v/9Fq1atWMd5ho+PD1atWoV9+/Zh3bp1rOMQ0iRPV3ZB99ptEhrsEqOQyWT46aef8O6778LV1dUs7/nWW29BJBLh22+/Ncv7EUIaZ8WKFRCJRHj99ddN+j7vvPMOSktLsXHjRpO+DyEEKC8vx9SpU9GrVy+8//77rOM0aOTIkZgyZQref/99mhQnVken01Fl10hosEuMYtmyZeDxeJg9e7bZ3tPd3R2zZs3CqlWrUFhYaLb3JYS8mFwux48//ogpU6bAzc3NpO8VERGBkSNHYunSpdSySIiJ/f3vf0dGRgbWrl1rce3LT/vmm28gEonw1ltv0b6BWJWSkhKoVCqq7BoBDXZJs5WXl2Pp0qV46623am58bS5z586FSqXCihUrzPq+hJDn4zgO+fn5mDVrllneb86cOUhJSUFSUpJZ3o8Qe3T8+HF89913+N///ofY2FjWcV7Iy8sLP/74IxITE7F69WrWcQgxmH5AS5Xd5qPBLmm2tWvXoqioCB988IHZ39vf3x9Tp07FkiVLIJfLzf7+hJD6LVu2DEOHDjXbCfHgwYMRGxtLtyEixETKysrw5ptvol+/fpg7dy7rOAYbPnw4pk2bhvnz5yM9PZ11HEIMoh/QUmW3+WiwS5pFrVbjq6++wh/+8AdERkYyyTB//nxIpVL8/PPPTN6fEFJXcnIyzp8/b9bLGvh8PmbNmoWtW7ciOzvbbO9LiL3461//ipycHPz000/g863r9PGrr76Cl5cXpk2bRu3MxCo8r7JbUVFBCzI2gnXtrYjFSUhIQFpaGj766CNmGaKjozFhwgQsXrwYGo2GWQ5CSJVly5YhIiICI0aMMOv7Tp48Gc7Ozli1apVZ35cQW3f06FEsW7YMX3zxBaKjo1nHaTRPT0+sXr0aR44cwcqVK1nHIeSFZDIZeDwefHx86nxdX+mlVmbD0WCXNJlOp8PChQsxdOhQdOrUiWmWBQsW4O7du9i5cyfTHITYu7y8PGzatAkzZ840++I1Xl5eeOONN7By5UqoVCqzvjchtqq0tBRvvvkmBgwYYNZuDWMbOnQopk+fjg8//BAPHz5kHYeQ55JKpRCLxc8cR2mw23g02CVNdvjwYVy5cgULFixgHQXdunXDwIED8eWXX1KLEiEMrVmzBgAwbdo0Ju8/e/ZsZGdnY/v27UzenxBbs2DBAuTl5Vll+/LTFi9eDLFYjGnTpkGr1bKOQ0iD6rvHLmq1NdN1u4az7r0WYWrhwoXo0qULBg0axDoKUH1APn/+PE6ePMk6CiF2SaPR4IcffsCkSZMgFouZZGjfvj369+9PC1URYgSHDh3CihUrsGjRIkRFRbGO02wikQhr1qzBsWPH8MMPP7COQ0iD6rvHLoCaYytVdg1Hg13SJJcuXcLhw4exYMEC8Hg81nEAAMOGDUO7du2wcOFC1lEIsUt79+5Feno681bH2bNn48SJE0hJSWGagxBrVlJSgmnTpmHQoEGYMWMG6zhGM3jwYMycORMLFizA/fv3WcchpF4NVXadnZ3h6elJld1GoMEuaZJFixahRYsWmDBhAusoNXg8HhYsWIC9e/fi+vXrrOMQYneWLVuGbt26oVu3bkxzjBs3DkFBQVTdJaQZ5s+fj8LCQqxZs8bq25eftnDhwppbF1I7M7FEDVV2UX3dLlV2DWdbey9iFg8fPgTHcZg/fz4EAgHrOHVMmjQJYWFhWLx4MesohNiV1NRUJCYmYs6cOayjwNHRETNmzMCGDRtQVFTEOg4hVufAgQNYvXo1vvrqK2a3FTQld3d3rF27FidPnsT333/POg4hz2iosovq63apsms4GuySRvv666/h4+ODqVOnso7yDEdHR8ybNw8bN25ERkYG6ziE2I3ly5dDLBZDIpGwjgIAmD59OpRKJdavX886CiFWpaioCG+99RaGDBmCt99+m3Uckxk4cCDeffdd/O1vf8Pdu3dZxyGkhk6ne+5glyq7jUODXdIoeXl5WLNmDd599124urqyjlOvt956CyKRCN9++y3rKITYhfLycqxbtw5vvfUWhEIh6zgAgKCgIEyYMAHLly+nNkVCGmHevHkoLS3FmjVrLGZNDlP53//+h+DgYEydOhUajYZ1HEKA6gkntVrdYBuzv78/DXYbgQa7pFGWLl0KHo/HfAGa53F3d8esWbOwcuVKFBYWso5DiM3buHEjSktL8c4777COUsfs2bORmpqKI0eOsI5CiFXYu3cv1q5di6+//hphYWGs45icm5sb1q5di9OnT2PJkiWs4xAC1Fpp+XmVXWpjNhwNdonBysvLsXTpUkybNg2+vr6s4zzXu+++C5VKhRUrVrCOQohN0+l0WLp0KUaOHImIiAjWcero27cv2rdvj6VLl7KOQojFKywsxNtvv41hw4bhzTffZB3HbPr164f33nsP//jHP3Dnzh3WcQipGci+qLKr0+nMnMw60WCXGGzt2rUoKirCvHnzWEd5oYCAAEyZMgVLliyBXC5nHYcQm5WUlISUlBSLWJjqaTweD3PmzMGePXuQnp7OOg4hFu39999HRUUFfvzxR5tvX37af//7X4SFhWHKlCnUzkyYM6SyW1lZifLycjMns0402CUGUavV+OqrryCRSKxmZcb58+dDKpViw4YNrKMQYrOWLVuG2NhYDB48mHWUer3++usQiUTU5UHIc+zatQs///wzlixZgtDQUNZxzM7V1RXr1q3DuXPn8PXXX7OOQ+ycVCoFn8+Hj49Pvf+ur/jSdbuGocEuMciWLVuQlpaGjz76iHUUg8XExGD8+PFYvHgxzdQSYgLZ2dnYunUrZs2aZbH34XRzc8OUKVPw448/UpcHIfXIz8/HjBkzMGLECPzlL39hHYeZ3r17Y968efjkk09w8+ZN1nGIHZPJZBCLxQ0eV/UVX7pu1zCWeXZCLIpOp8PChQsxZMgQdO7cmXWcRvnoo4+QmpqKXbt2sY5CiM1ZtWoVnJ2dMXnyZNZRnmvWrFnIz88Hx3GsoxBicebOnQu5XI5Vq1bZXfvy0/7zn/8gMjISU6ZMgVqtZh2H2CmpVNrg9bqgym6j0WCXvNCRI0dw+fJlLFiwgHWURuvRowcGDBiAL7/8ki7kJ8SIVCoVVq5ciTfeeANeXl6s4zxXbGwshg4dSgtVEfKU7du349dff8X333+P4OBg1nGYc3Fxwbp163Dx4kUsWrSIdRxip553j10AEIvFAFV2DUaDXfJCCxcuROfOnS32mrwXWbBgAc6dO4ekpCTWUQixGdu3b0d2drZF34asttmzZyM5ORnJycmsoxBiEfLy8vDOO+9gzJgxeP3111nHsRg9e/bERx99hP/3//4frl+/zjoOsUMvquw6OjrCy8uLKrsGosEuea7Lly/j0KFD+Pjjj622vWn48OFo164dFi5cyDoKITZj2bJl6N+/P9q3b886ikFGjBiBiIgILFu2jHUUQizCnDlzoFarsWLFCqs9vpvK//t//w/R0dGYMmUKVCoV6zjEzryosovqVmaq7BqGBrvkuRYtWoQWLVpgwoQJrKM0GY/Hw4IFC7Bnzx7cuHGDdRxCrF5KSgpOnDhhNVVdAHBwcMDMmTOxadMm5OXlsY5DCFMJCQnYvHkzli5disDAQNZxLI5QKMS6detw5coVfPnll6zjEDvzosouqheposquYWiwSxr08OFDbN68GfPnz4dAIGAdp1kmTZqEsLAwugaHECNYtmwZgoKCMG7cONZRGmXatGkAgDVr1rCOQggzUqkUs2bNwvjx4zFp0iTWcSxWt27d8PHHH+Pf//43rl27xjoOsRNarRZ5eXlU2TUiGuySBn399dfw9vbG1KlTWUdpNkdHR3zwwQfYuHEjMjIyWMchxGoVFRVhw4YNmDFjBhwdHVnHaRSxWIxJkybhhx9+oNuREbuk0+kwa9YsAMAPP/xA7csv8K9//QtxcXGYPHkytTMTsygsLIRGo6HKrhHRYJfUKy8vD2vWrMG7774LV1dX1nGM4q233oK7uzu+/fZb1lEIsVrr16+HUqnE9OnTWUdpktmzZyM9PR179+5lHYUQs+M4Dlu3bsWyZcteeDJNAGdnZ6xbtw4pKSn4/PPPWcchdkA/gKXKrvHQYJfUS7+IizVdk/ciIpEIs2bNwsqVK1FUVMQ6DiFWR6vVYvny5ZgwYQKCgoJYx2mSbt26oXv37rRQFbE7ubm5mD17NuLj4yGRSFjHsRovvfQS/v73v+Ozzz7D5cuXWcchNk4/gDW0sku31XwxGuySZ1RUVOD777/HtGnTau7lZSvmzp0LlUqFFStWsI5CiNU5cuQIUlNTrX4SbPbs2UhMTERqairrKISYhU6nwzvvvAM+n08TPU3wz3/+E23atMGUKVOgVCpZxyE2rDGVXYVCgdLSUjMls1402CXPWLt2LQoLCzFv3jzWUYwuICAAkydPxpIlSyCXy1nHIcSqLF26FO3bt0ffvn1ZR2kWiUQCsViM5cuXs45CiFn89ttv2LFjB3744YcXnkSTZzk5OWH9+vW4efMmPvvsM9ZxiA2TyWRwcHCAl5fXcx+n347put0Xo8EuqUOtVuOrr76CRCJBixYtWMcxifnz5yM3Nxe//PIL6yiEWI309HTs2bMHc+bMsfpFbYRCId566y2sW7cO5eXlrOMQYlLZ2dmYM2cO/vjHP1r1bQRZ69SpEz755BN8/vnnuHjxIus4xEZJpVL4+fmBz3/+EE3f5kzX7b4YDXZJHVu3bsXDhw/x0UcfsY5iMrGxsRg3bhwWLVoErVbLOg4hVmHFihUQiUR4/fXXWUcxinfeeQelpaXYuHEj6yiEmIxOp8OMGTPg5OSE77//nnUcq/e3v/0NHTp0wOTJk6FQKFjHITZIJpMZ1H1BlV3D0WCX1NDpdFi4cCFeeeUVdOnShXUck1qwYAFSU1Oxa9cu1lEIsXhyuRw//vgjpkyZAjc3N9ZxjCIiIgIjR47E0qVLaYEPYrM2bNiA3bt3Y+XKlfD19WUdx+o5Ojpi3bp1SE1Nxf/93/+xjkNskFQqNWildP2aOlTZfTEa7JIaR48exaVLl/Dxxx+zjmJyPXr0QP/+/fHll1/SiS4hL8BxHPLz82vuz2kr5syZg5SUFCQlJbGOQojRZWZmYu7cuXjjjTcwZswY1nFsRocOHfDpp5/iyy+/xPnz51nHITbG0MquQCCAj48PVXYNQINdUmPhwoXo3LkzBg8ezDqKWXz88cc4e/YsTp06xToKIRZt6dKlGDp0KGJjY1lHMarBgwcjNjYWS5cuZR2FEKPS6XSYPn06XF1dsWTJEtZxbM7HH3+Mzp07Y8qUKbTYJTEqQyu7qL5ulwa7L0aDXQIAuHz5MhITE7FgwQKrX3zGUMOHD0e7du3w5Zdfso5CiMVKTk5GcnKy1d9uqD58Ph+zZs3Ctm3bkJ2dzToOIUazbt067Nu3D6tWrYKPjw/rODZHIBBg/fr1uH//Pj799FPWcYgNMbSyi+rrdqmN+cVosEsAAIsWLUJkZCQmTpzIOorZ8Hg8fPTRR9izZw9u3LjBOg4hFmnZsmWIiIjAiBEjWEcxicmTJ8PZ2RmrVq1iHYUQo3j8+DHef/99TJ48GSNHjmQdx2a1bdsW//d//4fFixfjzJkzrOMQG6DVapGXl0eVXSOjwS7Bw4cPwXEc5s+fD4FAwDqOWU2aNAmhoaFYvHgx6yiEWJy8vDxs2rQJM2fOhIODA+s4JuHl5YU33ngDK1euhEqlYh2HkGbR6XR4++234e7ujm+//ZZ1HJv34YcfomvXrpgyZQoqKytZxyFWrqCgAFqtliq7RkaDXYJvvvkGXl5emDp1KusoZufk5IQPPvgAGzduREZGBus4hFiUNWvWAACmTZvGOopJzZ49G9nZ2di+fTvrKIQ0y5o1a3Dw4EGsXr0aXl5erOPYPIFAgHXr1iE9PR2ffPIJ6zjEyukHroZWdv38/KiyawAa7Nq5vLw8rF69GnPmzLGZW4o01ttvv02LeBDyFI1Ggx9++AGTJk2qucWBrWrfvj369++PZcuWsY5CSJOlp6dj3rx5mDZtGoYPH846jt1o3bo1PvvsM3z99de04CVpFv3A1dDKrr+/P6RSKd1V5AVosGvnli9fDlRXNuyVSCTCrFmzsHLlShQVFbGOQ4hF2Lt3L9LT0+1m3zB79mycOHECKSkprKMQ0mg6nQ7Tpk2Dp6cnvvrqK9Zx7M4HH3yAnj17YsqUKaioqGAdh1ipplR2VSoVSkpKTJzMutFg145VVFTg+++/x5tvvmnwLJKtmjt3LhQKBVauXMk6CiEWYdmyZejevTu6devGOopZjBs3DkFBQVTdJVZp5cqVOHLkCNasWQNPT0/WceyOg4MD1q5di4yMDPz9739nHYdYKZlMBkdHR4O3Yf2gmK7bfT4a7NqxdevWoaCgAPPmzWMdhbnAwEBMnjwZ3377LRQKBes4hDCVmpqKxMREu6nqAoCjoyNmzJiBDRs2UIcHsSoPHz7Ehx9+iOnTp2Po0KGs49ituLg4fP7551iyZAlOnDjBOg6xQlKpFH5+fgbfAlRfqKLrdp+PBrt2Sq1W46uvvoJEIkFUVBTrOBZh/vz5yM3NxS+//MI6CiFMLV++HGKxGBKJhHUUs5o+fTqUSiXWr1/POgohBtFqtZg2bRrEYjHdVcACzJ07F3379sXUqVNRXl7OOg6xMo25xy6osmswGuzaqW3btuHBgwf46KOPWEexGHFxcRg7diwWLVoErVbLOg4hTJSVlWHdunV46623IBQKWccxq6CgIEyYMAHLly+nfQCxCj/88AOOHTuGNWvWQCQSsY5j9/TtzNnZ2fjrX//KOg6xMo0d7Pr6+oLH41Fl9wVosGuHdDodvvzyS7zyyivo0qUL6zgWZcGCBbhz5w527drFOgohTGzcuBGlpaV45513WEdhYvbs2UhNTcXhw4dZRyHkue7fv48FCxZg5syZGDx4MOs4pFp0dDS++OILLF26FMeOHWMdh1gRqVRq8OJUqJ5c8fX1pcruC/B0tF613Tly5AheeeUVJCYmYsiQIazjWJwBAwZAqVTi9OnTBl83QYgt0Ol06NixI1q0aIGdO3eyjsME/QyINdBqtXj55Zfx6NEjpKSkwN3dnXUkUgv9fkhTtG3bFkOGDMG3335r8HPatGmDoUOHNuo59oYqu3Zo4cKF6NSpE1555RXWUSzSggULcPbsWbpfHrE7SUlJSElJwZw5c1hHYYbH42HOnDnYs2cP0tLSWMchpF5Lly7FiRMnsHbtWhpIWSA+n4+1a9dCJpNhwYIFrOMQK9HYyi6qr9ulNubno8Gunbly5QoSExOxYMECqlo2YPjw4Wjbti0WLlzIOgohZrV06VLExsbafUvk66+/DpFIhBUrVrCOQsgz7t69i7/+9a949913MXDgQNZxSAOioqKwcOFC/PDDD3RZBHkhjUaD/Pz8Rt8K1M/Pj9qYX4AGu3Zm0aJFiIiIQHx8POsoFovP5+Ojjz7C7t27cfPmTdZxCDGL7OxsbNu2DbNmzQKfb9+HBjc3N0yZMgWrV6+GXC5nHYeQGhqNBlOnTkVwcDD+97//sY5DXuCdd97Byy+/jGnTpqGkpIR1HGLB8vPzodPpqLJrAvZ9RmNn0tLSsHnzZsyfPx8CgYB1HIv2xz/+ESEhIXQrB2I3Vq1aBWdnZ0yePJl1FIswa9Ys5Ofng+M41lEIqbFkyRKcPn0aa9euhZubG+s45AX4fD5++uknFBQU4MMPP2Qdh1gw/YCVKrvGR4NdO/LNN9/A09MTb775JusoFs/JyQkffPABfvnlF2RmZrKOQ4hJqVQqrFy5Em+88Qa8vLxYx7EIsbGxGDp0KJYuXco6CiEAgDt37uAf//gH3nvvPfTr1491HGKgyMhILF68GD/++CMOHjzIOg6xUPoBa1Mru7TecMNosGsn8vPzsXr1asyZM4dmgw309ttvw9XVFUuWLGEdhRCT2r59O7KzszF79mzWUSzKnDlzkJycjOTkZNZRiJ3TaDSYMmUKwsLC8N///pd1HNJI06dPxyuvvIK33noLxcXFrOMQC9Scyq5arUZRUZGJklk/GuzaieXLl0On09n1KquN5eHhgZkzZ2LFihV0cCI2bdmyZejfvz/at2/POopFee211xAREYFly5axjkLs3Ndff41z585h3bp1cHV1ZR2HNBKPx8OaNWtQXFyMefPmsY5DLJBUKoWTkxM8PDwa9Tx9JZiu220YDXbtQGVlJb777ju8+eabjZ4xsndz586FQqHAypUrWUchxCRSUlJw4sQJqurWw8HBATNnzsSmTZuQl5fHOg6xUzdv3sQnn3yCefPmoXfv3qzjkCYKDw/H119/jZ9++gn79u1jHYdYGJlMBj8/v0bfKUV/Xk/X7TaMBrt2YO3atSgoKKDZxCYICgrCX/7yF3z77bdQKBSs4xBidMuWLUNQUBDGjRvHOopFmjZtGgBgzZo1rKMQO6RWqzFlyhRERkbiP//5D+s4pJmmTZuGV199FW+//TYKCwtZxyEWpCn32AVVdg1Cg10bp1ar8dVXXyE+Ph5RUVGs41ilDz/8EDk5Ofjll19YRyHEqIqKirBhwwbMmDEDjo6OrONYJLFYjEmTJuGHH36ARqNhHYfYmcWLF+PixYtYt24dXFxcWMchzcTj8bB69WqUl5fjgw8+YB2HWBB9ZbexfHx8wOfzqbL7HDTYtXHbtm3DgwcP8NFHH7GOYrXi4uIwZswYLFq0CFqtlnUcQoxm/fr1UCqVmD59OusoFm327NlIT0/H3r17WUchduT69ev49NNP8dFHH6Fnz56s4xAjCQ0Nxbfffov169dj9+7drOMQC9HUwS6fz4dYLKbK7nPwdLRWtc3S6XTo1q0bvLy8cPjwYdZxrNqZM2fQu3dv7NixA2PGjGEdh5Bm02q1aN26NTp37oxNmzaxjmPxevToAS8vL7p1CDELlUqFXr16obKyEhcvXoRQKGQdiRiRTqfDqFGjcPHiRdy4cQM+Pj6sIxHGWrdujeHDh+Prr79u9HPbtWuHwYMH091DGkCVXRt27NgxXLx4EQsWLGAdxer16tUL/fr1w8KFC1lHIcQoDh8+jNTUVFqYykCzZ89GYmIiUlNTWUchduDLL7/ElStXsG7dOhro2iAej4dVq1ZBLpdj7ty5rOMQC9DUyi6qF6miNuaG0WDXhi1cuBAdO3bEkCFDWEexCQsWLMDp06dx6tQp1lEIabZly5ahffv26Nu3L+soVkEikUAsFmP58uWsoxAbd+3aNfz73//Gxx9/jG7durGOQ0wkODgY3333HTZu3IgdO3awjkMYUqvVyM/Pb9ICVahepIramBtGg10bdfXqVRw8eBALFixo9DLmpH6vvfYa2rRpQ9VdYvXS0tKwZ88ezJkzh/YPBhIKhXjrrbewbt06lJWVsY5DbJRKpcLkyZMRFxeHf/3rX6zjEBN74403MHr0aMyYMYNub2bH8vPzgVq3EWosquw+Hw12bdSiRYsQERGB+Ph41lFsBp/Px0cffYRdu3bh1q1brOMQ0mQrVqyASCTC66+/zjqKVXnnnXdQWlqKjRs3so5CbNTnn3+OlJQUrF+/Hs7OzqzjEBPj8XhYuXIl1Go13n33XdZxCCP6gSpVdk2DBrs2KD09HZs2bcK8efPodiJG9qc//QnBwcFYvHgx6yiENIlcLsfq1asxZcoUuLm5sY5jVSIiIjBy5EgsW7YMtLYjMbbLly/js88+w9///nd06dKFdRxiJoGBgfj++++xadMmbNmyhXUcwoB+oNqcyq5MJqM7hjSABrs26JtvvoGnpyemTZvGOorNcXJywgcffIANGzYgKyuLdRxCGo3jOOTn52PWrFmso1ilOXPmICUlBUlJSayjEBuiVCoxZcoUtGnTBv/85z9ZxyFm9sc//hHjxo3DrFmzqEJnh4xR2dVoNCgqKjJyMttAg10bk5+fjx9//BFz5syhqo2JTJ8+HS4uLvj2229ZRyGk0ZYuXYqhQ4ciNjaWdRSrNHjwYMTGxmLp0qWsoxAb8tlnn+HmzZtYv349nJycWMchZsbj8fDDDz9Aq9XSCvl2SCaTwdnZGe7u7k16vr4iTNft1o8GuzZm+fLl0Gq1mDNnDusoNsvDwwMzZ87EihUrUFxczDoOIQZLTk5GcnIy7R+agc/nY/bs2di2bRuys7NZxyE24OLFi/j888/xySefoFOnTqzjEEYCAgKwfPlyJCQkgOM41nGIGUmlUvj7+zd5wUh9RZi6AupHg10bUllZie+++w5vvvlmk/v+iWHmzp0LhUKBlStXso5CiMGWLVuGiIgIvPbaa6yjWLXJkyfD2dkZq1atYh2FWDmFQoHJkyejQ4cO+Nvf/sY6DmFMIpEgPj4es2bNQm5uLus4xEyac49dUGX3hWiwa0PWrVuHgoICzJs3j3UUmxccHIw///nP+Pbbb6FQKFjHIeSF8vLysGnTJsycORMODg6s41g1T09PvPHGG1i5ciVUKhXrOMSK/d///R9SU1Oxfv16WlCSANWTknw+HzNnzqSF8OyEvrLbVN7e3nBwcKDKbgNosGsjNBoNFi9ejIkTJ6Jly5as49iFDz/8ENnZ2XQbEmIV1qxZAwC0cJ2RzJ49G9nZ2di+fTvrKMRKJScn48svv8Snn36K9u3bs45DLISfnx9++OEHbN++HZs2bWIdh5hBcyu7fD4fYrGYKrsNoMGujdi2bRsePHiAjz76iHUUu9GqVSuMGTMGixYtouXeiUXTaDT44YcfMGnSJIjFYtZxbEL79u3Rv39/WqiKNIlcLsfkyZPRuXNnfPzxx6zjEAszYcIETJo0qWZSjdi25g52QffafS4a7NoAnU6HL7/8EoMGDULXrl1Zx7ErCxYswO3bt7Fnzx7WUQhp0N69e5Genk6rfBrZ7NmzcfLkSaSkpLCOQqzMp59+ivv372P9+vUQCASs4xALtHTpUjg5OWHGjBnUzmzjmtvGjFr32iXPosGuDfj9999x8eJFLFiwgHUUu9O7d2/07dsXCxcuZB2FkAYtW7YM3bt3R7du3VhHsSnjxo1DUFAQli1bxjoKsSJnzpzB4sWL8e9//xtt27ZlHYdYKF9fX6xcuRK7d+/GL7/8wjoOMRGVSoXCwkKjVHapjbl+NNi1AQsXLkTHjh0xdOhQ1lHs0oIFC3Dq1CmcOnWKdRRCnpGamorExESq6pqAo6MjZsyYgQ0bNqCoqIh1HGIFKisrMWXKFHTt2hXz589nHYdYuDFjxuD111/H3LlzkZWVxToOMYG8vDyg1u2Dmooquw2jwa6Vu3btGg4cOIAFCxY0+f5cpHlGjBiB1q1bY9GiRayjEPKM5cuXQywWQyKRsI5ik6ZPnw6lUon169ezjkKswCeffIL09HSsW7eO2peJQb777jsIhUJMnz6d2pltkH6ASpVd06HBrpVbtGgRIiIiEB8fzzqK3eLz+fjoo4+wc+dO3L59m3UcQmqUlZVh3bp1eOuttyAUClnHsUlBQUGYMGECli9fTgvVkec6deoUvv76a3z22Wdo3bo16zjESvj4+GDVqlXYu3cvTarZIP0A1RiV3by8PDoO1YMGu1YsPT0dv/32G+bNm0f352PsT3/6E4KDg6m6SyzKxo0bUVpainfeeYd1FJs2e/ZspKam4vDhw6yjEAtVUVGBKVOmoGfPnvjggw9YxyFWZtSoUZg8eTLee+89ZGRksI5DjMiYlV2tVouCggIjJbMdNNi1Yt988w08PT3pvpkWwNnZGe+//z42bNhA19UQi6DT6bBs2TKMGjUKERERrOPYtL59+6JDhw60UBVp0N///ndkZGRg3bp1cHBwYB2HWKFvv/0W7u7ueOutt6id2YZIpVK4uLjAzc2tWa+jHyzTdbvPosGulcrPz8ePP/6I2bNnN3sDIcYxffp0uLi4YMmSJayjEIKkpCSkpKTQwlRmwOPxMHv2bOzZswdpaWms4xALc+LECXz33Xf4/PPPERsbyzoOsVJeXl5YvXo1Dh48iJ9++ol1HGIk+nvsNnfdHX0bNF23+ywa7FqpH374AVqtFnPmzGEdhVTz9PTEO++8gxUrVqC4uJh1HGLnli5ditjYWAwePJh1FLvw+uuvQyQSYcWKFayjEAtSXl6OqVOnok+fPpg7dy7rOMTKDR8+HG+++SY++OADPHr0iHUcYgTGuMcuqLL7XDTYtUKVlZX47rvvMHXqVKNsIMR43nvvPVRWVmLVqlWsoxA7lp2djW3btmH27Nng82k3bw5ubm6YOnUqVq9eDblczjoOsRB//etfkZ2djbVr11L7MjGKr7/+uuYSNmpntn76ym5zeXl5QSAQUGW3HnQWZGXS0tLw2WefIT8/H/PmzWMdhzwlODgYf/7zn/HNN99g27ZtrOMQO3Tz5k3861//grOzMyZPnsw6jl2ZNWsW8vPz8emnn+Lx48es4xCGtFotjh07hqVLl+LLL79EdHQ060jERnh6emLNmjU4fPgwVq1aRavvWjljVXbPnTsHDw8PbN68Genp6UbJZitosGtlFi9ejIULFyI8PJyu1bVQISEhyM7OxoQJE2iGjZjdN998g7Vr18Lb2xslJSWs49iV4uJiiMVifPXVV/jll19YxyEM9e/fHxMmTEDfvn3punlidEOHDsXUqVPx/vvvIzg4GGq1mnUk0kTGquzu378fBQUFOHHiBHJzc42SzVbQYNfKpKWlQa1WQ61Ww9nZmXUcUo+AgICav1PbGjG33NxcaDQaiEQieHt7s45jV4KCguDg4ACNRoOioiLWcQgjWq0WZ8+eRWFhIcrKyuhSAmISCoUCcrkcubm5dP2ulbp27RpycnLg5OTU7Nf64IMP4OTkBE9PT3Tr1s0o+WwF7YGtTJ8+fdCuXTtcu3YNPj4+rOOQesyePRtff/01oqKi4OXlxToOsTMjR45Ejx49kJycDHd3d9Zx7EpISAguX76MNm3a4JVXXmEdhzCiVCqh0WgQGxuL9evXs45DbNQXX3yBgQMHAgBdNmGl5s2bh9LSUnz++efNvm2ll5cXtm/fDo7jmr2ys63h6ejqdkIIIYQQo8nPz4ePjw+ddBKTy8/Ph6+vL+sYpAk+//xz/OMf/0CPHj1w9uxZ1nFsFg12CSGEEEIIIcSMCgoK0K9fP2zatAnt27dnHcdm0WDXQBqNBhkZGVAqlayjGI2Hh0ed60vJEzqdDtnZ2SgvL2cdpUkEAgFCQ0Ph6OjIOopd0mq1yMrKQmVlJesoTeLo6IjQ0FAIBALWUcxOqVQiIyMDGo2GdZQmcXd3R2BgoF1VFLVaLTIzM23ilk9CoRAhISF0na8dysnJQWlpKesYzWbPxw9D5ebmWvUCkr6+vtZ1KaWOvJBCodCNHDFCB8Dm/ixatIj1j9civffee8x/N83907FzF11BQQHrH6Xd0Wg0usmTJzP//Tf3T79+/XVlZWWsf5xmlZubq4tr3Yb5z765fz755BPWP0qz0Wg0ujdef535z9yYf/44aZJOrVaz/tESM/r000+Zf+6M+adfv352d/ww1BdffMH899PcP3w+X7dx40bWP0qDUWXXAKdPn0afPn3wn7fHoHNMGOs4RrN27ynsT76N8vIK1lEsSmFhIXx8fBA0eCrEXUewjtMkymIp7qyYhXXr1tG9Vs3s/v37iI6OxrCp89Gm5yDWcZok99E9bPzve9i9ezdGjhzJOo7ZLF26FO/OnYu4WashcPNkHadJZKe3QHZqM+RyuVFW+LR0d+/eRWxsLN4f1AL9oq2o0tCA0w8K8dXhB7hx4wbatGnDOg4xA5VKBaFQiDck4zB50kTWcZrt3sM0zPjgb9ixYwfGjBnDOo5F0el0ELq4wLPzcAQN/DPrOE2j0+HRrm/gq87DvdTbrNMYhHoMDFBRUTUYHNO3I8ID6j+Y/rz/DP4yvFeDr1FUVoGi0goo1RrEhhm3dVir1T7T8pRXVIbfjiTDz9Mdk17phvScfGz9/RLG9e+MFsFiAMCDTBm2Hr9s1Cy2QP/79m4/CJ5xDf9Om0qn1YJXT4ta4fXfoa4ohmdcbxRcSYRQHAavtv0BAA9++xQB/SbBLbS1we9z98e5Nd8LMR/9z7zjgBFo0e6lBh9XJMuGVqOGRq2GX2iLmq8n7ViPvmMn1/zXUPXtB0oL87Bn1Rf448eLcffyaSQfSMCrUz7ApSM7IfL2Q2hMWzy6fRVhcR0QFtcBx7eshndAKDoPHImN/33P7j4/FRUVcHb3gm+XYSZ5/edt+5qKYnjE9UZZ2hVUZt9DyLCZAID0rf+DT+dhEEV1Nug9VCUySJM2QaFQ2MVgV/8ZfbWNHzqGetT5t43nM/F695AGn1tcqUJRhQpKjQ4x/sa9b71WqwOfX7eVvFKlwT933sGX41rhelYpzj4swsQuQRC7O2HFiXTEBrhhWBs/fHX4gd1te/ZMqVRCq9ViyMB+6N+7R51/W/PLZkx74w8NPreouAQFhUVQqlRoFdPSqLnqO6ZUVsrx3t//H5Yv+gw79iWioqISvbu/hOioSHyzfDVax0XjD2NHYcYHf7OJz/CyZcuw8odlUCqMcwmjTqeDUqGAd5t+8GpV9/wy+/hGBA14vcHnqsuLoSovgk6thGtwjFHy1OSq59ikkZej8OZJqMsKEdj/j5DLHkN6bgf8uo+CR0w3VFzcatQMpkSD3Sb6JfEcsmRF6N2+JW48zIKsqKxmwPvz/jPILylH/04xuPtYikupjzC2fydcvPMIIhdnPMjKQ4VcAaGTE05fvw+xpxvel1TdpuLDpVvQMtQPHq5C/GFwV/yaeB6PpIVwd3FCqJ83eDweJgzsgoKSchy7dAcuzk7o2ioCD7PzUFohh5e7C7q2ioSjowOKSivg6eYCAHBxdoKftwiyotKawS4xHunpLSh9eBUhr85AwdVDUBbmwL1FJ1Rk3oZPxyFwj2iHkvsXoSySgu/oDI+Y7ii9lwwAcA2Jg7NPMEofXIaoRSdolZXwatsf8tyHNa/v7BsCVWk+w++QNMWpHT/D0y8Izi6uuJ18HK26D8S1E/vg5umD4JZt4OHjh7uXT8M/rCXuXTmN/hPerPP85ANboFYr4RcahavH96D/hGk4uW0tug+XIDSmHfKzH+Hh9QsQODqjVbf+SLtxERq1Gp5+gQiNaQeRtxhhcVWLXsR07o2M1OtwFXmivLgQru6eCI1tj8epKRD5VN3Q3jsgFCqFHIpK6z9JMRfp6S0oS7uK4KEzUHj1EJRFT7Z97w5V237p/YtQFldv+9HdUfLUtl/24DLcq7d9z9Z9IZem1by+s28oVKV5DL9D67HpQhayi+Xo2cIbN7NLkV+uqhnwbjyfiYIKFfq29MZ9WQWuZJRgVHt/XH5cAndnB6TlV6BCqYHQ0QFnHxbC180JcwZGAgD+tuM2WopdIRIKMKFzIDZfzEZmkRyuTg4I8RKCxwPGdgxEQbkSJ+4VwMXRAV3CPJBWUIkyuRqeLo7oEu4JF0cHdI+suh1dSz83HLqdB0eHqgFxiJcQpXI1vF1onQV7tu63BGRm5aBfr+64dvM2ZHn5NQPeNb9sRn5BAQb27Y3Uew9w4co1TBw9HMmXrsHd3Q33H6ahvKISLkIhTp45Dz9fH3w09x0AwLsf/wsxLVvA00OE1yeOxfpNW/EoIxPurq4ICw0Gj8fDH8aNQn5BIQ4fT4Kriwu6d+mI+2mPUFpWBi9PT/R4qRNcXITo06MrAKC0rAyTxo3GrgOHEB0VibDQYJSUlkFhpIEha9euXcOcOXMwKMYLsf4uRnlNnU6H1PtVf885uQmKgmx4xvVE+eObUJXk1wx4s49vhKq0AF5t+qIy+z5KH16BX7dRKH1wGQ4u7qiUpkGjqICDkxDFd87CUeSLsBFzAAB3f/4bXANbwsFFhIDeE5CTtBmKvEw4CF3h7BsCgAf/nmOhKitA4fUTcHB2gSiqS9VrVpZB4OYJj5Zd4CB0g6PIB6qSqnNPvpMQTh5iqEqs73hEg90mUqnU6BQThohAX9x4mAUeD/DxdMP+s9cBAPq1QRQqNTzdXeAmdAZqdYzzeVUzKLGh/nBw4COvqAwqjQYdWlbNQkcGibHvzHWUVioQ7u+N8AAftAgW4/jlVACAp5sLgsVeKCytgEarhUarhVqjhUZb9R6FJeUI9PGARqNByoNMBPl4wsvdFbfSc9C9TYunvx3STFqVAgJXDyjyM6q+oNNBq5LDPbwdBC4iAIBLQBTU5UWATgtAB51GXf3sqt+Za3AMtGoV5NI0qOXlkOc+gLNfOBxFvhCKw1H++Ba8Wvdl9S2SJuLxeCgrykdwy9aQZTx85t91Oh3kFWXwCQxHQU4mACAjNaX6yQCPx4dOp0VoTHvcu3IG4a06IvViEkJj2sHDNwDuXr5QVJRDq9VAo1FDo1FDp9UCABSV5ci8ewNZD25DpahEROtOKCsqgJdfEDQaNS4c2oZiWXbNe3qKA/Aw5QKK83LM+SOyarr6tn2lHG7h7SBwrdr2hdXbvk6rhQ466LR1t32X4BjoNCrIZWnI3LcUXu0HQVWaD51aBUcPP1Q8vgmfjkNYfYtWQ6XRokOIB8J8XHAzu2qhHx83RyTelAFVmxMAQKHWwkMogKuTA2pfx8WvPnBH+7lBwOchv0wJlVaHdsFVv8cIHxck3spDuUKNEC8hwryFaOHrihP3CgAAni6OCPIUoqhCBY2uqrqr1uqgqT72a7U63MwuRYy/GzQ6HbxcHFEqVyOjUA5/D2ecTyuCr5vtV+NJw5RKFbp0bIfI8FBcu3kbPPAg9vHGnoNHAAC86k+xXKGAl4cH3NzcUPtqRH0lNi6mJQQCB8jy8qFSq9GpfVsAQFREOHYfOIzSsjKEh4YgMiwELVtE4siJUwAAL08PhAQForCoGBqtFlqtBmq1umbBPq1Wi2s3bqFVTDTc3dyQsHMvenXvgqvXbyHQ3w+nz19AiQ0ssoXqBcMA4IuRUQjxcm7y69yTVSLar2qwnFWswMozVa+rVasgiuwAoV8Yyh/fBHiAo7sP8i8nAtXnDqh1fukgdIWu1h6LVz2OcAmKBo8vgLIkHzqNCu4R7QAAQv8I5F9OhEZeDmdxCITiMLj4t0DhzRMAAIGrJ5x9gqqPTRpAq4VOq676OwBVaT5UpQUAdCh7dANOXoEQuHmhPONOk38WrNA1uwY4fPgwhgwZgmvr/9VgG7M1+nn/Gcxdshn0EagrMzMToaGhaPP+Bvh0aPw1l/lXEqEszEHQy38xST5DnX47Aku//w4zZ85kmsPepKSkoEOHDvh43dF625gb257Mgry8FO8PCMXmzZshkUhYxzGbhQsX4l+ffYGXvr3epOcXXEmEsigHgQPZbft5ybuQumImSkpKIBKJmOUwl6tXr6JTp07YP6f7M23M1uhGVimGfHcOycnJ6Nq1K+s4xAzKy8vh7u6ODSu+xaTxo1nHabby8gp4tWiHX3/9FX/84x9Zx2myxMREvPrqqzg/rwtCPBs32P3lQi40Wh1a+AqRUaTAvbxK+Lo6omOIG/6w/hZi3/wKgf2t92eTtm0hVBe3IivjEesoBqG17RlIfZxb8/fs/GKUlNd/u4Sisgqs2ZOE3w6fr/naj7tO4vdLd3D8ciq+3nQISpW63ucSdnw7DUXQy39BRfa9mq8pCnOgrqx/tlNdUYzsY+uReyoBAFCZ+wC5pxKQl7wbpQ+vIOPACiitsG2E1M/QgW5OWmrN34tk2agsq/82BRWlRTi+ZTXO7vmt5mu/cz/i1rljKC8uwIb/zDFCamIIn05DETiw7ravfMG2n3NsPaSnn2z70tPV2/69C8g69KPZspMn7kqf3HIup0SBUnn9x9niShXWn81AwsUsAEB+mRJ/32kdC7YQ23b77v2av2fl5DZYbS0qLsGKtb9gw+ZtAIC0Rxn4csly3H+YbrastkxfnY0Wu0Ds7gi11jjFpYqsuzV/f+75ZXkxso7WOr/MqTq/lJ3fjayj65F/5RC0KoVRMlkyamM2k3X7TkOj1aJlsB8e5Rbg5wNnIfZ0w0txEQjx84KHmxDnbj6sc91t6qNc9OsYg3M3q1ofcwtK4CKsanHq1zEaV+49hqPAgfF3RmrL+f0X6HQauPi3gDw/A7knfoWjyBfuUZ3h7B0EgYsIJfeSq66LcPWEqGUXVGTdhWerPii5dwEAUPbwGvy6j4L07A54BbZEwdXD4AvoOi57cHLbWmi1GviHtUR+9iMk7VgPkZcYke26wjsgGC7uHrh/9Rzk5aVw9fBCi3ZdkfMwFXFd++P+1XMAgOK8XDgJq1qmbp45ish2VB0yh5zjvwBaDYQBLaDIy4D0xK8QiHwhiuoMp6e3fTfPqmuksu7Co1UflOq3/bRrEHcbBdnZHRBFd0VFVuoL35cYxy/nMqDRAS18XfC4UI5fkzPh6+aELmEeCPIUQiQUIDm9qM41uHel5egd5Y0L6UUAAF93J7QNsv1qOrFMP/78GzQaDWKiIpH2OBM//bIZfr4+6P5SJ4QEBcJDJMLp8xfrXIN7K/UeBvbthTPJFwEALkJn+PuJIc3LR8sWEay/JavVK9IDR+8WIcpHiH5RT1b21zZjsJv9+y/QaTVwCWgBed5j5FSfX4qiusDZp+oYU3w3uc51txXZd+HVqnfN+WVp2lX4dRsF6dntcPYJhlalgEZRDr5j09u0rQFVds1MP8sTG+oPPy8RNBptzb89fd1tbFgATl69Cwc+HykPMnE7PQd8Hg+PpIX497q9CPL1hFKlYfa9kOeo/j27BEXD0UMMaJ5UBnRaLXQaNXS6qt+da1A0im+fAo/PR9mjG3CLaIe85D1wcHZFReZtCFw9oa6wjWtgiGH0+4nAyFiIfP2hrfX50V+bq62+hiogMgZ3LpwA38EBGakpyH5wCzw+HwXZj1FZXoLsB3carAoTU3iy7Tt5iGtdn4tnrolyCYpGSfW2X/74Btz1277QFRXZ91CecavBGXtiGrxa1+36uTvVqcQ8fQ1utJ8bTj8ohAOfhxtZpahQanArpwypuWXM8hOi/wzHxbSEv78YanXd40fta3BbxbTE70ln4MB3wNXrt8Dn8+Ht6Ykbt2mirTlail3wdq+gZl3r26A655d+LzzGFN0+DfAdUPboBtwj2kOWvAcOQjc4eQVAVSyDsjC3oXeyGVTZNZO+HaKRmHwTUSF+GNA5tt7H9G5Xd9l4L5Erpo2kBYmsiWerXii4dhTCgCh4telX/2Ni695aQODmhaCX67a2ugZF1/zdI7qbidISSxP7Uj9cP5UI//CWaNV9YL2Piencu87/u3l4Y8DEt8yUkDTEM64XClOOwuU5275HPdt+4FPbvkvgk20/6k//MVFa8rReUd44eicfLcSuDd6vt0cL7zr/7+XqiMk9Q+t87bPRcSbNSUhDBvTpgf2Hf0d0VCQG9e9T72P69uxe5/+9vTzxztQ36nxt7IhXTZqTNI1nq14ouHoULgEt4N3Q+WVc3WOMo5sXggc1fH4piuxgorSWhQa7ZhId6o/oUH/WMYiJuQS2REigce91R+xHQEQ0AiKiDXgksTQugS3hQtu+1Wrp54aWfsa91y4h5hTbMgqxLaNYx7Bba85mo4WvEGqNDufSS/DnboFYdToLImcHtA1yQ7CnM/bdaPr6K66BLeFKx5gmocEuYyev3kWInxeigv0Mfs6U/67D9x9Mwtq9p+Ht4Yre7Vri+sMsuDo74m6GFAIHB/xlWE8Ineg6T0tSdPs0nL2D4BJg2K2fyh7dQHn6dbhFtIWqJA/5l/bDv9dEyPMz4ODsBt/OQ02embB358JJeAcEwz/MsINc5r0buPr7Pgx7cz72/7QYHj5+CG/dCZn3biKmc28USbOQeukUhk+dD74DXfNvasW3T8OpEdt9ReYdlN6/CPcWHVGSeh5C/wi4hbdH2YNL0CrlEPcYY/LMBDh9vwBBnkK0ELsa9Pgtl7IhcOAhxs8N59KKEOnrgtaB7riWWYpKlQahXkJcflyCt/uGmzw7IXrHT51FSFAgoqMiDXr8b1t3QujsjAB/P6TcvA2lSoWhL/fH+YtX4OIixMTRr5k8s7VqE+iKY3eL0CrAFaFezsgqVqBdUNUE2tA4H+y9mW+y9y66dRrOPo07vyxLT4F7eDs4OLsi+8Sv8O08FMoiKRycXZt0JxJLRoNdE1ix4zhahvhBpdbizPX7eHNEHyzb9jtErs7oEB2KELEXdp+6Bh8PN7SODEJWXjE2Jp5HyxA/lJRXomWIH4Z0a4PSCnnN4lStI4IQ4ueF41dS0TE6FE4CASKDfJF07R7+/GpP3M+UIdDXEwIHB1y8k47HuQWICQtg/aOweVmH1kAY0AI6jRold88hcOCfkXVwFRxcRHALbwtnn2DkX9oPgZs33ELioCzKQW7SZrgERkFTUQphQAv4dBgEdWUZSu8lAwBcQ+Lg7BMM9/C2KH98A44iMVyDY6HIy4CzOBTq8iKUpl2jwa4VO7ppBfzDWkKjVuHeldPoP+FNHN64DEI3EcLiOsAnIBSXj+2Cm6cPglu2QZE0G6d3bURARDQqy0rgH9YS7foMgby8tGZhquCWreEdEIKQ6LZ4eL1qMQqlvAIqpQL3Lp+Bf3hLqBRyBETE4MaZw09uBk4aLftwre0+tXq7T6y13XtXb/fu3nCt3u6lpzbDJSAKmsqq7d67/SBoKstQ8tR2LwyIQmHKUfCdXFH++CacxaFw8vQD+A4ATU40y+pTjxAldoVKo8O5tCL8pUcIVp58BJFQgHbBourKiwzero5oFeCGnBIFNl/MQpTYFSVyNaLErhgUJ0aZQo3ktKpFqeIC3RHsKUSMvxtySxS4/LgYN7NLEeYtRJCnsGY1564RXriTW/7CjIS8yPc/rkNMVCRUKjWSziZj+uQ/4dsVa+Ahcken9m0RGhyEHXsPwtfHC21bxSIrJxfrN21BTFQLFJeWIiYqEsMGD0RpWRlOn69amKptq1iEBgfB0dERD9IeIToqEk5OjogIC8Hla9cRP2YEftu2k/W3btF6RXqiV6Rnna/1bvHk/yd09ENlI9bZyTy0Gi4BUdBpVCi+cw5Bg/6CjAMrIXARwT2iHZx9gpF3YR8E7t5wC20FRWEOck5Wn19WlsAlIKrm/LLkbtVxxi30yfll2aMbcPQQo/j2abgEtEBl9n0E9v8jck789sJs1oYWqDKBdlEhOJVyH2WVcoQF+CBDVogOLUPQIkiM4T3b4WF23dkdBz4fvp5uiAzyrXkuAOh0gFpTtWiV/kbShSUVyCsuQ1ZeERwFDmgTGYTT1+/jVMo9uAud4SZ0grOjAJFBYibfu71xC2+DkjtnoZGXwdk3FIqCLLhFtIPQPwK+nYdCLntq+X6eAxxFvhD6RdQ8t4quatEqjRqo/l3Lzu+Csqhq4YDCa0fh3WEQ+I5CaNVKuEe2N/e3SowoNKYd7l5KgryiDD6B4SjIyURYXAf4hbZAx/6vQZbxsM7j+Q4OEHmLIQ6JrHkuAOh0Omg0amg06pr7ZRfkPEbm3RsozM2Ai7sHdDodwuI6QFFRBunjB8i6fxPOLm5QKSqZfO+2wDWsnu0+vB2EfhHw6fTsds/jP9nu9c9F1VZfvZjIk+2+MusOBO4+UJcXwiWoJRSyR1AUZFbtH9QqJt+vrWgbJMKZB4UoV6gR6iVEVpEc7YJFiPBxwdDWYqQX1N0m+HwefN2cEOHjUvNc6I/N1YtV6W9T7+7sAGmpAr2ivBHt54b0gkrck5WDu5gNP5Ez7krLcSunrMHbGBFiqI5tW+PE6XMoLStDeFgIMrKy0al9W0RFRmDUq6/gQVrde5/y+XyIfX0QFRlW81xUHz/UajXU6ifHj4qKSsTFtERWTi4UCiXuPkhD5w7tsGXXPri7UZt/c/2pi+FFKLewtii+fQbqynI4i0OhyM+Cu/78stNQVEqfPs7w4SjyhYtfRM1zqzw5zuh/z/rzS51WDY2yEhWZqXAJiIIseS+cPG3vkkuq7JpA3w7R6Nuh7nV3/TrG1Pz9D4O7QqFU4S/De9V8rVe7qDrPBwAPNyGG9Whb53XG9u+Esf07AQBaBD8Z0OoXt2oRLEb3Noa1MZDm84zrBc+4XnW/2OrJAkL+vSYgR6VAYP8/PXlObPc6zwcAgYsIPp2G1HkZv+5Pbi7v7D2s5u/iriOM+00Qs4t9qS9iX6q7+Fxc1ycLTvR47Q9Q7ZDXuSdvdKdedZ4PAC7uHujQb1id1/EJDMMfPloIABg2ZV6979/Q4lfEMPVt9561tnu/XhOgVSkQUGu794hpYLvvWHe7dwtvB7fwdgAAUVSXmq87+4SY4DuxL72ivNErqu4iU71rXR0woXMQ5KpMvN79yc+6R6RXnecDgEgowJDWdS89qn3Nb+1rf/83tlXN32nxKmIM/Xv3QP/edRciGtCnZ83fX48fC7lCgWlv/KHma317dqvzfADwEIkwYujgOq/zl0kT6n3PuGi6Frixfr2Yiz+91PQOS69WveDVqu5xxqv1k+NMQO8JyFbJETTg9Zqv1V4AVf9cgYsIvs85v6z9fFtFg11Gag90iW2rPdAlxFC1B7rE+gTQdm+Vag90CbFWtQe6xPR+u5iLYE9ntBS7YENyDlr6Vd3rXj/g/fViLrJLlBAYuZ/WHgaqxkBtzEbw8/4zBjzqiY2J5/AwKw+nUu5j4caD0Gi0OHjuBn7efwbnbz7E8u2/Izu/GAs3HsS6facBAEVlFVizJwm/HT5f57X+s24vHmTJsDHxHA6cu4Gisgr8tPcUVuw4DmlhKT5atqXmsYnnb2LHiSs4f/MhvvjlADRa7TPZSNPlnPi1UY/PTdqMSmkaVGWFuLv2wzr/VnTzJB7v/R7qylIUXDmE9G1fIjdpMwquHIK6ohiPdn5d3fJMrFXSjvWNevzp3Rshy3iAUzs34NKRnagoLcLxLatxds9vyLp/C0k71iMjNaXm8XmZadj+/acAgGsnDyDx5yUoyMnA79yPyLx3ExcPb8eZPb9C+vg+dv3wmdG/P3uS28htX5q0GXJpGopunHjmucV3zuLx7m+grihB5sEVKH1wGeWPbyA3aTPKH13HY9r2m2Xj+cxGPX7zhSyk5Vfgx6RH+On0Y1SqNJi/5SbUGi0upBfhx6RHyC9TYsWJdGy5lF3nuf87cA+XHxfjfFoR9qTk4uidPJx9UIhvjjyAQq3Ft0ceGPm7I7ZszS+bG/X49Zu24P7DdBQUFmH6B39FrlSGXfsPYfP23diyax+27d6PsrKq68h/3rQVP/y0AcUlT+7Jnnz5Kr5Zvhq5Uhm+XvZjTfvzx//vf7j3IA0AsGXXPvy8aSvuPUjDp198bdTv15q0FLvgUkbVvbaj/VzxuFABAPBxdUTinQIAgKMDD7H+hi14V5/s4xsb9fick1XnmDknfoMseW+dfyu5dwEZB3+EoigXeRf3I/PwTwCAB5v+jcrch0jf8ZVNHWeosttIPx84i1A/L0SH+mPt3lM1i0D9vP8M/jK8F37efwaZeUVwchRg7sRB4PGA3y9X3Zy7RZAYLUOqWp/CArzh5uKMIxduQa5SQVV9g+/ubVrgYuojeLq5oFKhhFxZdY1W6qNc9OsYU7Ngld7A6nv2hvp5o1yuRFFZJRwFDgjz94ZOp0P7qCez1LmFJfjzqz2x4eBZhPl7Q6mynQ+yueWc+A3OPsFwCWyJnN83wCWoZfXXf0Vg/z8h58SvUBRkgy9wRMiwmeDxeCi6eRIAIPSPgEtAVUuQ0DcUecl7IIrqXOf1PVv1QVl6ChyE7nDyDoR3+0HQquTQKCqhLi+Gsy9VH6zJqR0/wzswBAERMTix9ScERlZtt0k71qPv2MlI2rEehblZEDg6Yuhf3gPAw+3zvwMAxKEtEBBe9fnyCQzH4zs/oHWPl5GReh1xXfvj/tVzCIiIxvVTiXByeXIgFYdEwi+s6nPWqtsAyB4/wP2rZ+Ei8oRaKYe8vAzdXp2Iq8f3wicojMnPxRrlnvwNzt7BEAa2RO7xDTW3G8o98SsC+v8JuSd+haKwatsPfrXhbd/ZNxRC/8hnBrsugS1RdP0YKrLuAAB0GhXcojqj/FHVYnW07Rvu1+RMBHsKEe3nip/PZSLar2r72Hi+qlV54/lMZBfL4STgY2b/CPAAnLxXdWIa4euKqOqVmEO9hIgNcMOVxyXILJKje3Vrs37RKUcBH0WVKni41D2lCvUWIq9MibwyJf7YLQS/JWfilVZiHEvNhyOfBz+Rs9l/JsQ6/LRxM8KCgxEbHYVV6zciLrpqP7Pml82Y9sYfsOaXzcjMyoaTkyPmz54OHo+HIydOAQCiIsMRE1V1OVtEWAi27NqH7l06IcDfDwKBAwQCB1y4fA39enWHQqmEO9yg0WowsG8v3Eq9j55dq85H4qKjsC/xKHQ6IFeWB5VKhZSbtxEe9mQfVFpWhknjRmPXgUMID7XffVP3CA90j/AAgOcOaLVanUGvl338Vzj7BsM1MBrZx36GS/W9cbOPb0TQgNeRfXxj9TmmE0KHVx1nCm9UHWdc/CPgEvjkHDMz/Tq82/WHVqUA37Fqn+MR3RWlD65A4CKCi38k5NJ0lD++BWdx1X3DnX1DG8xmjaiy20gxof5Ivp2GCrkSseEBSM+pWmzKx9MN+89eBwA4OQrQKiIQjoKqlTP1i0xpn6qk3krLhpuLMy6nPgafx8cjaSGWb/8dTgIHFJZWwMPNBToAD7PyEOznhZNX78KBz8feMyk1r3Xtfiau3H2MQF8PlFXKcT9DCqVKjfuZMri7OuP6wyzcTs9ByoNM+HuJsPPkFcTQ/X6bzSWwJUofXIJWUQGXoGjIZY8BAI7uPsi/kggA4Asc4RoSB76g6hZQ+gWodE99DtTyUlRkpaL88U1U5lQtTpa+9Qs4eQVCp1ai5N4FeMR0g5NXIDTyMlTmUjXA2gRExuBhygUoKisQFBmHvMyqhSXcvXxx7cR+AIDA0RFBUa3hUP15qVl46qnPS2CLWJQUSBEYGYs7F06A7+CArPu34O7li/LiQlw+thsAUFqYh8y7N5CXmQbuq4/hGxyOsLiOUFSUQZbxEM6ubrh4eDvCW3d+Ji9pWM22r6ze9vOqtn2Buw8Kam/7wbW2ff0iVLq6v8uy9Osoz7hVZ9uvyLwNB6FbzcmGPPch8pKfLFZHDNfSzw2XHhWjQqlBjJ8rHlUvQOXj5ojEmzIAgJOAj1h/Nzg6VJ0O6Ree0urqnpS6OTnAScBHmLcLbmaX4lpmac2iUxmFlQjwcIZGq8OBG9KaE1qxuxNuZpchys8Ne1Ny4S9yxu3ccrg5O0Cups4q0rDYllE4d/Eyyisq0ComGmmPqvYzYh9v7Dl4BADg5OSINnGxcHSs2s/oF5t6ekBVUlqGW6l3kf44EyqVGkqlCq1jY1BaVo7M7BxcvX4LDnwH/J50BkEB/vg9qapb8fqtVHh5eUKhVMLH2xN3H6ThUUYmKisq8SgjE1ev34K7mxsSdu5Fl47tzP4zYmHzZSnUGsMGrLX9erFx+2/XoJYovX8JGkUFXINjIJdVLTrm6O6D/Mv644wTXENinznO6J46zrgGx0BZnAdlsQxFt6omRDIO/giewBHqylLI8x4BfD7k+RnQKishz89o9Pdn6aiy20i92kXVLCbVKiLwhY8XODg8s8hUVLAfMmRFGNA5FgOqK7MA8FqvujuLD/7wSp3/nzay7oI2ADB7/JOFZuLCn82zcNaTxQZqV3kf5RZApTZ8CXRSl2ds95qFplxDYl/4eJ6D4JkFqIT+LaAoyELQwD8/8/jI+L/X/D148NSq9wmOgWtw1UJn0jPbAB7NVVmL6E69ahaYCo5q9cLHOwgEzyw85R8WhcLcDAyMf7vmawMmvlXz97C4DnUeL/IW1yxU9cY/vqv5emBkDJ72MCW5Ud+PPfOI6V6z2JRrsIHb/lOLUAkDqrZ994h2cI+ou9/3atMPXm2qFisLefWdZ19P4EjbvoF6RHrVLDAVG+D+wscLHPjPLDwVKXZFVrECXSO80DWi6rX+b9SThab0i061CRI983rD2/pjeNtnvox+0T5QqLUQCekUjNSvb89uNYtKtYl7dp/9NIFA8MxiUy0jI/A4MxvTJz9ZPyAirP7qa8d2rZ95TO/uL6F395cAAB+/N6vm32u/T+3nnbtwxaDvzRr9djEXAR5O0OmAVFkF9tzIR8cQd9zKrUCfFh64llWOFr5CDIrxRplCg+RHVe3gcf6uCPZ80sFxKLXQoPfzjO1Rs9iUm4HnmE8vQuUSEAl5QRaCB0+p+ZqwunIb+uqT8wjnzq/W/F3/Grmnbesc03a+E4Y2Jp6DWmP4wLFXuyhEBvo2+lrfxkh9/PxZJMmgruDTfTYNlpu0uUnXL+iv48058Ssqsu/V+bfKnHsQ+oU3KY9/r/Hg8fmoyL5Xs5Q8sVynd2+ERt34z4/+ut6kHevh7uULcUjkM//WHDlpd6HT6dBzxKRmv5YtkjZxu9e3JufWs93nnvgVHjHdm7zt+/UcD7n0AW33Bth8IQtqTeMrqLWv6+0R6YVwHxejZborrbpG0lnAx+gOTV+pldiH9Zu2QN2EY8eaXzajb89uaBFh/EtUbt+9X+/X35CMM/p7WRL9GXNeuQodQ9zxMF+OtoFuOPWwBG0CXXE2rWqAq9PpoNYCaq3+hnKAQq3FoTuFKKx89vZxOSebdpzRX8ObfXwjKrLuPvNvnrE94NLE40xA7/GozLWd4wxNKzbDzwfOIsjXA1qdDrfTc7Hj5BV0jg3DzYfZ6NcxGlfuPkbLED8M6dYGpRXymuttW0cEIcTvye0MDpy7gQq5AkInJxSVVeD8zYfo3qYFRK5C3ErLxqs92mLt3lP46xvD4OnugoUbD8LfxwMRAb44c/0+3hzRB0sSjiA8wActQ/3B5/FQWFKOPaeuQezpji5xETh84SZyCkrwxTvjGf7ErE/Oid/g5BUAnU6HiqxU5CXvgXuLjijPuAWvVn1QlnYNwoAWNTfuLr1XVSFzDam6cbdWpURhyjEoC3NQcvc85LkPodWoIZelQ1NRgowDKyDuOhI5x3+BS2AUFAVZ8G47AKKozsg9uRmKwqr/z798sOqem9X/Lj2VAGFgFAQuIigLslApTYOD0A1aRSV0Og1c/On2U5bg1I6f4ekXBJ1Wi+yHt3Hp8A6Et+6MrHs3Edu1Hx7dvgL/sJZo12cI5OWluH+1agGQ4Jat4R0QArVSiRunD6NImo17V85A+vgBNGoVZBkPIS8rwaFfvkeXwWNwcts6BEREozAnE617DkKLdi/h9K5fUCjNQpueg3Dl9z0IjIyt+feze3+Ff3g0XNw9UJibAdnjB3B2dYdSXgGtVgMvv2DWPzqmck/W3e7zL+yBe2TVdu/Zqg/K06u2e+/2g6CpLEPJ09u9+sl2X3r3POTSh9Bp1JBL06GprFp4yvelkcg98QtcAqq2ey/9dp+0GcrCqv8vuHwQLoEta/5ddjoBwoCq7V5RkAW5NA0Ozm7QKCsBrQbCANruUX2tbqCHM7Q6HVKl5diTIkWHEBFu55Shd0sfXMssQZTYFYPixChTqJGcVgQAiAt0R7CnsOZ1Dt2SoUKpgdDRAcWVKlxIL0bXCE+InAW4nVuGV1qJseFcJua/EgUPFwG+OfIQ/u5OCPNxwbm0IvylRwiWH09HmLcQUWJX8Hk8FFSocOCGFD5uTugc5oGjd/IhLVXg36PotkTkiZ82bkZwYAC0Wi1u3rmLrbv346WO7XH91h0M6NMTl65dR0xUJIYNHojSsjKcPn8RANC2VSxCg4NqXmdv4hGUV1TCRShEYVExziRfQq9uXeAhcseN26l4beggrFr3K/614D14eXjgs6++Q4C/H1qEhyHpbDKmT/4TFi9dhcjwEMREtQCfz0d+YRF27jsIsa8vunXugINHjiNbKsXXn/2L4U/MhHTAH59zC6EhcVW3JOsV6Qnob00WV/cWZ1N7VP1OtFod5u+ouhQt+/ivcPYOBHRalGelIu/8Hri36IDyjNvwat0bZWnX4BIQVXN+WXK36jjjFlp1nNGplCi4VnWcKb57HpXSNOg0alRK06CpKEXG/hUQdxuJ7N9rnV+2GwCPqM7IObkJioJseLcbgPxLB+ASFF3z77lJHFwDW8Kh+jhTmVt9fqmshE6rgYsVHmdosNtMvOrqaF5RKTrHhuFBpgztW4bg5NV76NUuCocv3MKQbm2qbkJfPcOsq57rkavUOHDuBgpKyuHq7AQAuPMoBy+/1AqywlI4ChzQIToUnm5CdIkNh7SoFGqtFu6uQsSFBSCvuAxhAT7IkBWiS2w4HBz4GNGrHX5NrFqxWezpjgGdY3HjYdUKkTYyQWN2+t+xqiQP7i06ojL3IdzD2qLo9il4xvZA4bVj8OkwqOo3WzM7V/XD5js6wbv9y1AU6n8HT34JzuKqBWoUBVlwFPlC6BcBnUYNoTgcJfcvQqtRwj2yQ9XgNSgactkjOPsEQRTVGeUZt+pk9GrTD8V3anUKUNXeYug/P6UFMoS37gzp4/sIjWuP1AsnEd25F26cPoR2fYZAp9NBU/350X9OBE5OaNv7FRRKqypNta/f9QkKg19oFApzMyHyFkMcEgmNWgVxSAQepCRDrVIivFUnaDUaBEXGQZaZBu+AYLRo9xIy712vk7FVj4FIvZj0TGb7Vr3dl+bBPbJqu3cLb4vi26fgEdsDRSnH4N1+EHTQVV2PCzzZ7gVV272yeruvvfPVL0ylLHxqu/cLR+n9i9CplXCP6FB1UqHf7r2rtvuKp7Z7z9b9UFJ7uwf93vRqqjBlSnQIEeFhfiXaBotw+n4BerTwxtE7eRgUJ646Nldf46j/NSnUWhy6JUNhhQoujlVrb6RKyzEgxgeyMiUEDny0CxbBQyhAx1APyMqUUGt1cHd2QLS/GwrKlQj1EiKrSI6OoR4Q8Hl4tY0fNl+s+jz4uDmhf7QPbuaU1XlfQmrT74dlefl4qWN73HuQho7tWuP4qbPo27MbDhz5HcMGD6yqJKrrHjvkCgX2Jh5BfkERXF2rOhNupd7FkIF9kSvLg6OjAJ3at4GnSISunTsgV5oHtVoNkbsbWsdEQ5afj/CwEGRkZaNr5w4QCBwwevgQrN+0FQAg9vXF4P59kHLzdvX7MvohmVBgYNWlgX/d8wCxfsbp7ni2Ulr7/LJD1flleFsU3TpdfX559Mn5pbbu75jn6ASfDi9DUZhV/eJPzg+cxSFw8W8BRUEmHEW+cPGLgE6jqjq/vHcRWrUKosiq44xrcAwqpelw9gmCR1RnlD++WSehd9t+KLp9ulZk6zvO8HS2UqM2ocOHD2PIkCG4tv5fCA/wYR2nSY5fScW1+5l4d8LLNV/7ef8ZzF2y2WbaFIwlMzMToaGhaPP+huqdjPGoSgtQfOcMeA6O8O081KivDQCVOfdRcO0ofF96DZf+2htLv/8OM2fONPr7kIalpKSgQ4cO+HjdUbRo95JRX7usKB+pF5PgIHBExwGvGfW1ASA3/R6un0pEm56D8H+SHti8eTMkEonR38dSLVy4EP/67Au89O11Ax5tOFVpAUrunAFP4AifTqbZ7gtTjsK3y2sofXARqStmoqSkBCLRs9eR2pqrV6+iU6dO2D+nOzqGerCO02hJ9wpwPasU7/SPAADcyCrFkO/OITk5GV27dmUdj5hBeXk53N3dsWHFt5g0fjTrOI127ORpXEm5iQ9mVa0hUV5eAa8W7fDrr7/ij3/8I+t4zbJs2TKsWrEcCrnCKK+n0+mQev8BYt/8CoH9jfuzUZXmo+j2WfAFAvjWug7XWCpy7qPg6lGIuw5HzvFfobq4FVkZj4z+PqZAlV0DuLpWLSO+M+kqOsdY5y06HPh8dI4JQ9K1J9ePHb+SWjPjR57Q/74LU47Cwdn4Px9HUdWESZ1KrBG5R7RD6f0L0GrUNd8LMR/9z/zq8b1QKSqN/vruXr4AUKcSa0xhcR1w7+pZoNb3Yi9cXV2hKCtC/qUDELh5GvW1BSbe7t3C20Ge9whF14+Dz+fD2dk+bmuj/4wevFnVcmxtHPg8dAz1wJkHVQvXnK7+r71te/bMyckJfD4fh34/ieBA67uO28HBAS91al9zH957D6vuwWsLn+HZs2dj9uzZRns9nU4HoYsLCm+ehNA/0oBnNI7+/LLotunOL+XSRyi5mwxfa/r96sgLKRQK3cgRI3TVPWo29WfRokWsf7wW6b333mP+u2nun46du+gKCgpY/yjtjkaj0U2ePJn577+5f/r1668rKytj/eM0q9zcXF1c6zbMf/bN/fPJJ5+w/lGajUaj0f35jTeY/8yN+eePkybp1Go16x8tMaNPP/2U+efOmH/69etnd8cPQ33xxRfMfz/N/cPn83UbN25k/aM0GLUxG0ij0SAzMxMKhXFaGQBAq9Wif//+GDZsGP75z3/W+xidTofhw4ejY8eO+PLLL4323gDg4eGBgADrm0U0B51Oh+zsbJSXlxv9tWfPng25XI5Bgwbhs88+w82bN41+jaRAIEBoaGjN/feIeel0OmRmZqKysvmV3Vu3bmHMmDFYvXo1+vfvX+9jHj9+jMGDB+Obb77BiBEjmv2ejo6OCA0NhUBgf80/SqUSGRkZ0DRihX1DVFZWomPHjli0aBE2btyIqKgofPHFF0Z9DwBwd3dHYGCgXV13rdVqkZWVZZTtTe/111+Hi4sLVq9e3eBjZsyYgaKiImzevNlo7ysUChESEgI+n26WYW9ycnJQWlpqtNf729/+hgsXLiAxMbHB/cHnn3+O3bt3IykpCQ4ODkZ5X3s+fhgqNzcXJSUlRn/dzZs345NPPsGhQ4cwZMgQrF27Fn369DH6+/j6+sLHx3ou66RPooEcHBwQHt60JbwbkpSUBKlUiunTpyMmpuH7qL3xxhtYsmQJwsPD7aY1jTUej4fgYNOsSFtRUYGoqCi0bdsWGo0Gfn5+8Pb2NuCZxFrweDyEhoYa5bXWrVsHb29v/OUvf2lw8iImJgbdunXDyZMn8f777xvlfe2Vk5MToqKijP666enpAIAOHTogKSkJcrn8uft9Yjg+n2+07Q0AsrKycOHCBfz000/P/R29+eab+POf/wyhUIiwMOu8xIlYjsDAwJpFkZpLqVTi6NGjmDVrFmJjG75P64wZM7Bu3Trk5ORg4MCBRnlv8mIBAQEmKTbxeDyIxWL07NkTqD6e0XGG7rPLFMdxCAkJQa9evZ77OIlEguLiYhw6dMhs2YjpyGQy+Pv7w8/Pr+b/CamPTqcDx3EYP378C6v0EokE+/btM2plgBiPfjv38/ODn58fbfcWbOvWrRAIBBgzZsxzHzd69Gg4Oztjy5YtZstGiCGOHDmCwsLCFy4w2KNHD4SHh4PjOLNlI6Yjk8ng5+cHNzc3CIVCOs5Uo8EuIxqNBlu2bEF8fPwL25Xatm2LNm3a0M7IRkilUvj5+cHf37/m/wmpz5UrV3Dv3j2DVkSOj4+HXC7Hnj17zJKNNI5+O/f394e/vz9t9xaM4zgMHTr0hR03Hh4eGDZsGB2bicXhOA5xcXFo3779cx/H4/EQHx+PrVu3Gv3SDWJ+UqkU/v7+4PF4dJyphQa7jJw6dQrZ2dkG39ZDIpFg586dRr1mmJifUqlEUVERVXaJQTiOg6+vL15++eUXPjYiIgI9evSgE28Lpd/OxWIxVXYtWGZmJpKSkhp1bD579iwePbKOW3AQ26dUKrFjxw7Ex8cbdO2+RCKBVCrFiRMnzJKPmI6+sovqLiI6zlShwS4jCQkJCA0NRY8ePQx6fHx8PEpKSpCYmGjybMR08vLygOqdkI+PD/h8Ps28kXo1poVZTyKRYP/+/SZZ+II0j1QqhaenJ5ydneHv74+KigqTLIBHmmfLli1wcnLC6NGG3e901KhR1MpMLMrhw4dRVFRk8IRNt27dEBERQROlNkBf2UV1FxGdX1ahwS4DjWlh1mvTpg3atm1LOyMrV/u6PQcHB/j6+tLMG6nX5cuX8eDBA8THxxv8nIkTJ0KhUFArswV6esYd1NVhkRISEjB06FB4eXkZ9HiRSIThw4fTsZlYDI7j0KpVK7Rr186gx9duZVar1SbPR0yHKrv1o8EuA0lJScjJyTF41k1P38osl8tNlo2YVu3r9kAzb+Q5GtPCrBceHo6ePXvSibcFenrGHXS9vsXJyMjAqVOnmnRsPnfuHNLS0kyWjRBDKBQK7NixAxKJpFG3H5NIJJDJZDh+/LhJ8xHT0el0NQuggs4v66DBLgMcxyE8PNzgFma9+Ph4lJaW4uDBgybLRkyrdmUXNPNGGqBvYZ4wYUKj71VIrcyWiSq7lq+xLcx6I0eOhFAopFZmwtyhQ4dQXFzc6Ambrl27IjIykiZKrVhRURHUajWdX9aDBrtmVruFuTGzbgDQunVrtG/fnnZGVkwqlcLFxQVubm5A9cwb7YzI0y5evIiHDx82+oQF1a3MSqUSu3btMkk20jS1K7tisRigwa7F4TgOw4YNg6enZ6OeJxKJ8Nprr9GxmTDHcVzNZW+NwePxIJFIqJXZitXXOVhcXAylUsk4GXs02DWzEydOQCqVNukkFtVVm127dqGystLo2Yjp6as7+okOPz8/ajMhz+A4Dn5+fhgwYECjnxsWFobevXvTibeFqV3ZdXJygpeXF237FuTRo0c4c+ZMs47NycnJePjwodGzEWIIuVyOnTt3NusznJ+fj2PHjhk9GzG9+joHQZOqAA12zY/jOERERKBbt25Nen58fDzKyspw4MABo2cjple7ugOq7JJ6NKeFWU8ikeDgwYMoKioyej7SNE9v+9RiZlm2bNkCZ2dnjBo1qknPHzFiBFxcXJCQkGD0bIQYIjExESUlJY1a1LC2Ll26ICoqiiZKrVR9lV3QYBegwa55qdVqbN26tdELB9QWFxeHjh070s7IStWu7qDWCa9Wq2Wai1iO5ORkpKenN3l2HtTKbHHKy8tRWVlZZ9unxUMsC8dxGD58ODw8PJr0fHd3d4wYMYKOzYSZhIQEtG3bFm3atGnS8/WtzNu3b4dKpTJ6PmJaMpkMfD4fPj4+QK3KLh1naLBrVsePH4dMJmvyrJtefHw8du/eTa3MVqi+yq5Go6EKHKnBcRz8/f3Rv3//Jr9GSEgI+vbtSyfeFkJ/slHfRBdhLy0tDefOnWvWBBOqj80XL17EgwcPjJaNEEM0t4VZj1qZrZdUKoWvr2/NLU2pjfkJGuyaUUJCAiIjI9G1a9dmvU58fDzKy8uxf/9+o2Uj5lFfZRc080aq6VuYJ06cCAcHh2a9lkQiQWJiIgoLC42WjzSN/mTj6Yku2u4tw5YtWyAUCjFy5MhmvQ61MhNWDh48iNLS0mYXUzp16oTo6GiaKLVCtW87BABubm5wdXWl4wwNds3HGC3MerGxsejUqRPtjKzQ0zsjuqaC1Hbu3Dk8fvy42ScsADBhwgSo1Wrs3LnTKNlI0z29cAiosmtR9C3MIpGoWa/j5uaGkSNH0rGZmB3HcWjfvj1at27drNfh8XiIj4/Htm3bqJXZyjxdTAGtC1ODBrtm8vvvvyMvL6/ZLSZ6EokEu3fvRkVFhVFej5ieQqFAcXExVXZJgxISEhAQEIB+/fo1+7WCg4PRt29fqjJZAP32rb/lEGpVdnU6HcNkJC0tDcnJyUY9Nl+6dAn37t0zyusR8iKVlZXYtWuXUT/DhYWFOHLkiFFej5jH05fJge74UYMGu2bCcRyioqLQpUsXo7xefHw8KioqsG/fPqO8HjG9vLw84KlWRm9vbzg4ONDMG4FWq0VCQoJRWpj1qJXZMshkMnh5ecHJyanma35+fpDL5SgvL2eazd4lJCQYpYVZ77XXXoOrqytNMhGzOXDgAMrKyozSEQQAHTt2RExMDHUoWBmq7DaMBrtmoFKpsG3bNqO0MOtFR0ejS5cutDOyIvUtUsPn8yEWi2nmjdS0MBtrdh7VrcwajQY7duww2muSxqtvxl3//7Tts8VxHEaMGAF3d3ejvJ6rqytGjRpFx2ZiNhzHoWPHjoiLizPK69VelVmpVBrlNYnpUWW3YTTYNYNjx44hPz/fqCexqK7a7NmzhyoDVqK+RWpAM2+kGsdxCAoKQp8+fYz2mkFBQejfvz+deDNW34w7rZTJ3oMHD3DhwgWTHJuvXLmC1NRUo74uIU+rrKzE7t27TfIZLioqwuHDh436usQ0tFot8vLyqLLbABrsmgHHcYiOjkanTp2M+rrx8fGorKzE3r17jfq6xDTqq+yCZt6IiVqY9SQSCQ4fPoz8/Hyjvi4xHFV2LVNCQgJcXFwwYsQIo77u8OHD4ebmRq3MxOT279+P8vJyo7Uw67Vv3x5xcXH0GbYShYWF0Gg0VNltAA12TUylUmH79u1GbWHWi4qKQteuXalqYyVkMlnNUvC10cwbOXPmDDIzM40+Ow8A48ePh1arpVZmhuqr7Pr6+tb8G2GD4ziMHDkSbm5uRn1dFxcXjB49mo7NxOQ4jkOnTp0QExNj1NelVmbrUt+K/6g+vywtLYVcLmeUzDLQYNfEjh49ioKCAqPPuunFx8dj3759KCsrM8nrE+ORSqXP7IhAM2+k+oQlODgYvXv3NvprBwYGYsCAAXTizVB9lV1HR0f4+PjQts/IvXv3cOnSJZNMMKH62Hzt2jXcuXPHJK9PSEVFhUlamPUkEgmKi4tx6NAhk7w+MR79caS+yi5oUpUGu6bGcRxiYmLQsWNHk7w+tTJbj6fvsatHlV37pm9hjo+PB59vml2yRCLBkSNHalYEJ+aj0+nqreyC7rXLVEJCAlxdXfHaa6+Z5PWHDRsGd3d3agMlJrNv3z5UVFSYrJjStm1btG7dmiZKrcDzKrugwS4Ndk1JqVSarIVZr0WLFujWrRvtjKzA8yq7eXl50Gq1THIRtk6dOoXs7GyTzc6jupVZp9Nh+/btJnsPUr+ysjLI5fJ6J7posMsOx3EYNWrUM5eVGAu1MhNT4zgOXbp0QXR0tEleX9/KvGPHDigUCpO8BzEOqVQKBwcHeHt71/k6VXar0GDXhI4cOYLCwkKTnsSiumqzb98+lJaWmvR9SPM8r7Kr1WpRUFDAJBdhKyEhASEhIejZs6fJ3sPf3x8DBw6kKhMDDc24o/r3Qm3M5nf37l1cuXLFZBUxPYlEgpSUFNy6dcuk70PsT3l5Ofbs2WPy88v4+HiUlJQgMTHRpO9Dmkcmk0EsFj/THaY/7tj7cYYGuybEcRzi4uLQvn17k75PfHw85HI59uzZY9L3Ic3zvMouaObNLmk0GmzZssWkLcx6EokER48epc+ZmTV0LRWosstMQkIC3NzcMHz4cJO+z6uvvgqRSESTTMTo9u7di8rKSpNP2LRt2xZt2rShDgULV9+6EKjuMHF3d7f74wwNdk3EHC3MehEREejRowftjCzc8yq7oJk3u2SOFmY9amVmgyq7lsfULcx6QqEQY8aMoWMzMTqO49C1a1dERUWZ/L0kEgl27txp9yv6WrKG1oUAHWcAGuyazqFDh1BcXGyWk1hU74z279+PkpISs7wfaRy5XI7S0lKq7JI6OI5DWFgYevToYfL38vPzw6BBg+jE28z0JxlisfiZf9NXdnU6HYNk9unOnTu4evWqWY/NN27cwI0bN8zyfsT2lZWVYd++fSav6urFx8ejtLSUWpktWEOVXVAHEUCDXdPhOA6tW7dG27ZtzfJ+EydOhEKhwO7du83yfqRx9Dua+nZGXl5eEAgEdj/zZm/M2cKsJ5FIcOzYMfqsmZFMJoOPjw8EAsEz/+bv7w+FQkHrLZhRQkIC3N3dMWzYMLO839ChQ+Hh4UGtzMRozNXCrNemTRu0a9eOJkot2PMqu3R7SxrsmoRCocCOHTvM0sKsFx4ejl69etHOyEI9r5WRx+PRzJsdOnnyJHJzc81WYQKAcePGgcfjYdu2bWZ7T3v3opMQUFeHWXEch9GjR8PFxcUs7+fs7IyxY8fSsZkYDcdx6NatG1q0aGG299S3MldWVprtPYnhXtTGbO/HGBrsmsChQ4dQUlJitlk3vfj4eBw4cIBamS3Q8xapAc282SWO4xAeHo7u3bub7T3FYjEGDx5MJ95m9Lz2Mrpe37xu3bqFlJQUs04wofrYfOvWLWplJs1WWlqKffv2MfkMl5WV4eDBg2Z9X/JiWq0WeXl5dH75HDTYNQGO49CmTRuztTDrTZw4EUqlErt27TLr+5IXe15lFzTzZnfUajW2bt1q1u4PPYlEguPHjyMnJ8es72uvqLJrORISEiASifDqq6+a9X2HDBkCT09PmmQizbZnzx7I5XKzF1NatWqFDh060GfYAhUUFECr1dL55XPQYNfI5HI5du7cafZZNwAICwtD7969aWdkgaRSKUQiEYRCYb3/TjNv9uXEiROQSqVM9hNjx44Fn8+nVmYzeV5l19fXFzwej7Z9M+E4DmPGjGlwP2wqtVuZaTEy0hwcx6FHjx6IiIgw+3tLJBLs2rWLWpktjCGdg2VlZXb9e6PBrpElJiYyaWHWk0gkOHjwIIqKipi8P6nf86o7oJk3u5OQkIDIyEh07drV7O/t6+uLwYMH04I5ZvK8bV8gEMDHx4e2fTO4efMmbty4wfTYfPv2bVy/fp3J+xPrV1JSgv379zOZJEV1K3N5eTn279/P5P1J/QzpHISddxDRYNfIOI5Du3bt0KZNGybvT63Mlul51R1QZdeu6FuY4+Pjzd7CrEetzOah0+leuO3TPRDNIyEhAR4eHhg6dCiT93/llVfg5eVFnVekyXbv3g2FQoGJEycyef/Y2Fh07NiRPsMWxpDKLux8bQga7BpRZWUlsxZmvZCQEPTt25d2RhbGkMpufn4+NBqNWXMR8zt+/DhkMhnT/cTYsWPh4OCArVu3MstgD0pLS6FUKp+77dNK7ObBqoVZz8nJCePGjaNWZtJkCQkJ6NmzJ8LDw5llkEgk2LNnDyoqKphlIHXJZDIIBAJ4eXnV++9U2aXBrlEdPHgQZWVlzNqk9CQSCRITE1FYWMg0B3nCkMquTqdDfn6+WXMR8+M4Di1atMBLL73ELIOPjw+GDBlCk2Im9qIZd1Bl1yxu3LiBmzdvMp1gQvWxOTU1FdeuXWOag1gf1i3MetTKbHmkUin8/Pwa7BSjyi4Ndo2K4zh06NABrVq1YppjwoQJUKvV2LlzJ9Mc5AlDKruw85k3e8ByFeanSSQSnDx5EllZWUxz2LIXXUsFquyaBcdx8PT0xJAhQ5jmGDx4MLy9vWmSiTTarl27oFQqmbUw68XExKBz5870GbYgLzq/dHZ2hoeHh10fZ2iwaySVlZXYtWsX81k3AAgODka/fv1oZ2RBDKnsgga7Nu/YsWPIz8+3iP3EmDFjIBAIqJXZhAyp7NJg17R0Oh04jsPYsWPh7OzMNIujoyPGjx9Prcyk0TiOQ+/evREWFsY6Sk0rc3l5OesoxIDzS9Bxhga7xnLgwAGUl5czb2HWi4+Px6FDh6iV2QJUVFSgvLzcoMquPbeZ2AOO49CyZUt07tyZdRR4e3tj6NChNClmQjKZDDweD76+vg0+Rt/GTIMf07h+/Tpu375tERNMqD4237t3D1evXmUdhViJoqIiHDx40KI+wxUVFdi3bx/rKMSAyi7ochka7BoLx3Ho2LEjYmNjWUcBqluZNRoNduzYwTqK3dPPpj1v5s3DwwOOjo52PfNm61QqFbZt22YRLcx6EokESUlJyMzMZB3FJkmlUvj6+sLBwaHBx/j5+UGlUqGkpMSs2ewFx3Hw8vLCK6+8wjoKAGDQoEHw8fGhSSZiMEtpYdZr2bIlXnrpJfoMWwiq7L4YDXaNoKKiArt377aYWTcACAoKQv/+/WlnZAEMuW6Px+PZ/cybrTt69CgKCgosaj8xevRoODk5YcuWLayj2CRDZ9xBXR0moW9hHjduHJycnFjHAaiVmTQBx3Ho27cvQkJCWEepIZFIsHfvXpSVlbGOYveosvtiNNg1gv3791tUC7OeRCLB4cOHaYVfxgy5bg8082bzOI5DTEwMOnbsyDpKDS8vL7z66qs0KWYihs64g67XN4lr164hNTXVoiaYUH1svn//Pi5fvsw6CrFwRUVFSExMtLjPcHx8PCorK7F3717WUeyaRqNBfn4+nV++AA12jYDjOHTu3BkxMTGso9Qxfvx4aLVaamVmTL+DEYvFz32cvc+82TKVSoXt27cjPj7eYlqY9eLj43H69GlkZGSwjmJzqLLLVkJCAry9vTF48GDWUep4+eWX4evrS5NM5IV27twJtVqNCRMmsI5SR4sWLdC1a1ckJCSwjmLX8vPzodPpqLL7AjTYbaby8nLs2bPH4mbdACAwMBADBgygAypjUqkUnp6eL1wJ1N5n3mzZkSNHUFhYaJH7CX0rM520GJ8hlV0fHx/weDza9o2sdguzo6Mj6zh1CAQCTJgwgVqZyQvpW5iDg4NZR3mGvpW5tLSUdRS71ZjOQf1iqfaIBrvNtG/fPlRUVFhcC7OeRCLBkSNHkJeXxzqK3TKkugOaebNp+hbmDh06sI7yDE9PTwwbNowGuyZgyLbv4OAAsVhM276RXb16FXfv3rXoY/PDhw9x8eJF1lGIhSosLERiYqLFfobj4+Mhl8uplZkhQ9aEQa3BsL1OqtJgt5k4jsNLL72Eli1bso5Sr/Hjx0On02H79u2so9gtQwe7VNm1TUqlEtu3b8cf/vAHi2th1pNIJDhz5gwePXrEOorN0Ol0tO0zxHEcfHx8LK6FWW/AgAHw8/OjzivSoB07dkCj0VjMKsxPi4yMRPfu3ekzzJChg117XxuCBrvNUF5ejr1791rsrBuqZ3MGDhxIOyOGDGllRPXvKj8/H2q12iy5iHkcPnwYRUVFFtnCrDdq1Cg4OzvTqsxGVFxcDJVKZfC2T5Vd49G3MI8fP97iWpj1BAIBrcpMnovjOPTv3x9BQUGsozRIIpFg37591MrMiFQqhaOjIzw9PZ/7OHtfG4IGu82wd+9eVFZWWvRgF9U7o2PHjtntjA5rjanuoHrBAWI7OI5Dq1at0K5dO9ZRGuTh4YHhw4fTpJgRGTrjDqrsGt3ly5dx//59i55gQvWxOT09HRcuXGAdhViY/Px8HD582OI/wxMnToRCocDu3btZR7FL+vPLF3WN6RdItdfjDA12m4HjOHTt2hVRUVGsozwXtTKz1ZjKLux45s0WKRQK7NixAxKJxGJbmPUkEgnOnTuHtLQ01lFsgqELh4Aqu0bHcRx8fX3x8ssvs47yXP3794e/vz9NMpFn7NixA1qtFuPHj2cd5bkiIiLQs2dP+gwzYuj5pZOTE7y8vOz2OEOD3SYqKyvD3r17LX7WDdVVg0GDBtHOiJHGVnbtdebNFh06dAjFxcVWsZ8YOXIkhEIhtTIbCVV22dC3ME+YMAECgYB1nOeiVZlJQziOw4ABAxAYGMg6ygtJJBLs378fJSUlrKPYHUPPL2Hnxxka7DbRnj17IJfLLb6FWU/fymyvszqslJeXo6KiwqCZN/0Oi35HtiMhIQGtW7dG27ZtWUd5IZFIhOHDh9OqzEYilUrB5/Ph4+Pzwsf6+/tDJpPRgMcILl26hIcPH1rVsfnRo0c4f/486yjEQuTl5eHIkSNWMUmK6lZmpVKJXbt2sY5idwyt7KL6HNNezy9psNtEHMehe/fuiIyMZB3FIOPGjQOPx8O2bdtYR7ErjanuiEQiODs72+3Mm62p3cJsLSQSCc6fP0+tzEYgk8ng6+sLBweHFz7Wz88ParUaRUVFZslmyziOg1gsxsCBA1lHMUi/fv0QEBBAnVekxo4dO6DT6Sy+hVkvLCwMvXr1oolSBhpT2dVPqtojGuw2QWlpKfbt22dVJ7FisRiDBw+mA6qZNea6PR6PZ9czb7YmMTERJSUlVlNhQq1WZjppab7GzLjT9frGYU0tzHoODg6YOHEiEhISoNVqWcchFoDjOAwcONDg/YclkEgkOHDgAIqLi1lHsStU2TUMDXabYPfu3VAoFBZ777OGSCQSHD9+HDk5Oayj2I3GVHZh5zNvtobjOLRt29YqWpj13N3dMWLECJoUM4LGXksFul6/2S5cuIC0tDSrmohG9bH58ePHOHfuHOsohDGZTIajR49a3WeYWpnNT61Wo6CggM4vDUCD3SbgOA49e/ZEREQE6yiNMnbsWPD5fGplNiP9LJp+2fcXsecFBGyJXC7Hzp07re6EBdUn3hcuXMCDBw9YR7FqjZ1xBw12m43jOPj7+6N///6sozRKnz59EBQURJNMBNu3b7eqFma90NBQ9OnThz7DZpSXlwcY2DmIWueX9rg2BA12G6mkpAQHDhywqtZEPV9fXwwePJhaFM1IJpPBy8sLTk5OBj2ebkFiGw4ePIjS0lKr3E+MGDECLi4utJ9opsZUdn18fMDn82nbbwZrbGHWc3BwwIQJE7BlyxZqZbZzHMdh0KBBBu87LIlEIsHBgwdp7QEzaUrnYGVlJcrLy02czPLQYLeRrLWFWY9amc2rMdUdUGXXZnAch/bt26N169asozSam5sbRo4cSTP0zdSYbZ/P50MsFtO23wznz5/Ho0ePrLKbAtXH5oyMDJw9e5Z1FMKIVCrFsWPHrPYzPGHCBKjVauzcuZN1FLvQmDVhYOcdRDTYbSSO49CrVy+Eh4ezjtIkY8eOhYODA7Zu3co6il1oTHUHVNm1CZWVldi1a5fVnrCg+sT70qVLuH//PusoVkmr1SIvL4+2fTPiOA4BAQHo168f6yhNQq3MZNu2beDxeBg3bhzrKE0SEhKCvn370mfYTJpS2YWdLoRIg91GKC4uxoEDB6z6JNbHxwdDhgyhnZGZNKWyW1hYCJVKZdJcxHQOHjyIsrIyq2xh1nvttdfg6upKrcxNVFRUBLVaTV0dZqLT6ZCQkIAJEyYYdKsnS8Tn8xEfH0+rMtsxjuMwePBgg9f4sETx8fFITExEYWEh6yg2TyqVwtnZGSKRyKDHU2WXGGTXrl1QKpVW28KsJ5FIcPLkSWRlZbGOYvOaUtlFrYUHiPXhOA4dOnRAXFwc6yhN5urqSq3MzdDYGXdQZbdZzp07h8ePH1v1RDSqj81ZWVk4ffo06yjEzHJycnD8+HGr/wxPmDABGo0GO3bsYB3F5unPL3k8nkGP10+i2ONxhga7jcBxHPr06YPQ0FDWUZplzJgxEAgE1MpsBo0d7NrzzJstsIUWZj2JRILLly/j7t27rKNYHf3JRGO3fdrum4bjOAQGBqJv376sozRLr169EBISQpNMdmjbtm3g8/kYO3Ys6yjNEhwcjH79+tFn2AxkMlmjuoccHR3h7e1tl8cZGuwaqKioCAcPHrSJk1hvb28MHTqUdkYmptPpmtTGDDudebMF+/fvR3l5uVW3MOsNHz4cbm5u1MrcBPqTicZs+1TZbRqtVouEhARMnDjRaluY9fStzFu2bIFGo2Edh5hRQkICBg8eDF9fX9ZRmk0ikeDw4cMoKChgHcWmSaXSRq/a7efnZ5fHGRrsGmjnzp1Qq9WYMGEC6yhGIZFIkJSUhMzMTNZRbFZ5eTnkcnmT2pjtcebNFnAch06dOiE2NpZ1lGZzdXXFqFGjaFKsCaRSKRwcHODt7W3wc/z8/JCXl0fXazbS2bNnkZGRYRMT0ag+NmdnZ+PUqVOsoxAzsZUWZj1qZTaPxlZ2UX2OaY/nlzTYNRDHcejbty9CQkJYRzGK0aNHw8nJCVu2bGEdxWY1dll4VN/2RSgU2uXMm7WrqKjA7t27beaEBdUn3levXsWdO3dYR7EqMpkMYrEYfL7hh1h/f39oNBpa2KWROI5DUFAQ+vTpwzqKUfTo0QNhYWE0yWRHtm7dCgcHB6tvYdYLDAzEgAED6DNsYlTZNRwNdg1QWFiIQ4cO2URrop6XlxeGDh1KLYom1JRFang8nt3OvFm7ffv2oaKiwqb2E8OGDYO7uzvtJxqpqSchoK6ORtG3MMfHxzdqYsGS8fl8TJw4EVu3bqVWZjvBcRyGDBkCHx8f1lGMRt/KnJ+fzzqKzaLKruFs4+hgYrbWwqwnkUhw6tQpZGRksI5ik5pS2YUdz7xZO47j0KVLF0RHR7OOYjQuLi4YPXo0zdA3UlNPQkDX6zfK6dOnkZWVZVPdFKg+Nufk5CApKYl1FGJiWVlZOHnypM19hsePHw+dToft27ezjmKTVCoVCgsLqbJrIBrsGoDjOPTr1w/BwcGsoxgVtTKbln72rLELTtjrzJs1Ky8vx969e22qqqsXHx+PlJQU3L59m3UUq0GVXfNISEhASEgIevXqxTqKUfXo0QPh4eE0yWQHtm7dCoFAgDFjxrCOYlQBAQHUymxC+ttTNrWyq9PpTJTMMtFg9wUKCgpw6NAhm5t1AwBPT08MGzaMdkYmIpVK4ePjA0dHx0Y9z15n3qyZLbYw61Erc+M1pbLr5eUFgUBA276Baq/CbCstzHo8Ho9WZbYTHMdh6NChjVrMzlpIJBIcPXqUJvBMoCm3t9M/XqFQoLS01ETJLJNtHSFMYMeOHdBoNDbXwqwnkUhw5swZPHr0iHUUm9PYe+zqUWXX+nAch5deegktW7ZkHcXohEIhxowZQ5NijdCUyi6fz4dYLKZt30CnTp1Cdna2TU5Eo/rYLJVKceLECdZRiIlkZmYiKSnJZj/D1MpsOk25vR3s+I4fNNh9AY7jMGDAAAQGBrKOYhKjRo2Cs7MztTKbQGPvsatHlV3rUlZWhr1799rsCQuqT7yvX7+Omzdvso5i8bRaLfLy8pq07dO9dg3HcRxCQ0PRs2dP1lFMolu3boiIiKBJJhu2ZcsWODk5YfTo0ayjmIS/vz9efvll+gybQHMqu7DDtSFosPsc+fn5OHz4sE2fxHp4eGD48OG0MzKB5lR2i4uLoVQqTZKLGNfevXtRWVlpky3MekOHDoWHhwe1MhugoKAAWq22Sdu+n5+f3c24N4VGo8GWLVtsahXmp/F4PEgkEmzduhVqtZp1HGICCQkJGDp0KLy8vFhHMRmJRIJjx47Rfs3IZDIZXFxc4Obm1qjnUWWXPGP79u3Q6XQYP3486ygmJZFIcO7cOaSlpbGOYlOaU9mFHe6MrBXHcejWrRtatGjBOorJUCuz4ZraXgaq7BosKSkJOTk5Nj0Rjepjs0wmw/Hjx1lHIUaWkZGBU6dO2fxneNy4ceDxeNi2bRvrKDZFf6kMj8dr1PP0C6ba23GGBrvPwXEcBg4ciICAANZRTGrkyJEQCoXUymxkzansgga7VqG0tBT79u2z+RMWVJ9437x5Ezdu3GAdxaI15f7aelTZNQzHcQgPD0ePHj1YRzGpl156CS1atKBJJhtk6y3Men5+fhg0aBB9ho2sqeeXAoEAvr6+dnecocFuA/Ly8nD06FGbbk3UE4lEGD58OLUoGpFOp2vyzsher6mwRnv27IFcLreL/cSQIUPg6elJJy0v0NRrqUCVXYPUbmFubFXD2uhXZd62bRu1MtsYjuMwbNgweHp6so5ichKJBL///jtyc3NZR7EZTVnxX88e14WhwW4D7KWFWU8ikeD8+fPUymwkpaWlUCgU1MZs4ziOQ/fu3REREcE6isk5OzvXtDLb2z36GkMmk0EgEDTpOjw/Pz/k5+dDq9WaJJstOHHiBKRSqV1MMKH62JyXl4fff/+ddRRiJI8ePcKZM2fsoiMIAMaOHUutzEbWlBX/9eyxg4gGuw3gOA4vv/xyk2dOrI2+lZmqu8bRnFZGNzc3uLq62t3OyNqUlpZi//79dnPCguoT79u3b1Mr83NIpVKIxeImLZzk5+cHrVaLgoICk2SzBQkJCXcwp04AAQAASURBVAgPD0f37t1ZRzGLLl26ICoqijoqbMiWLVvg7OyMUaNGsY5iFmKxGIMHD6bPsBE1p7Jrj7e3pMFuPWQyGY4ePWpXJ7Hu7u4YMWIE7YyMRN8iQm0mtmv37t1QKBSYOHEi6yhmQ63ML9bckxDQJQwNUqvV2Lp1KyQSic23MOvpV2Xetm0bVCoV6zjECDiOw/Dhw+Hh4cE6itlIJBIcP34cOTk5rKPYhOZWdu3tGEOD3Xps27YNPB4P48aNYx3FrCQSCS5cuIAHDx6wjmL1mlPZhZ3OvFkbjuPQs2dPu2hh1nNycsK4ceOolfk5mnsSArqEoUH6FmZ7mohG9bE5Pz8fx44dYx2FNFNaWhrOnTtnd5/hsWPHwsHBAVu3bmUdxeoplUoUFxdTZbcRaLBbD47jMGjQoCafsFirESNGwMXFhVqZjUAqlYLH49Us895Y9jjzZk1KSkrsroVZTyKR4M6dO0hJSWEdxSJRZdd0OI5DZGQkunbtyjqKWXXq1AnR0dHUUWEDtmzZAqFQiJEjR7KOYla+vr545ZVX6DNsBM0tpujPL+1pwpoGu0/Jzc3F77//bpcnsW5ubhg5ciTtjIxAJpPBx8cHAoGgSc+3x5k3a7Jr1y4olUq7amHWGzx4MLy9vWk/0YDmVHY9PT3h6OhI23497LGFWY9amW0Hx3F47bXXIBKJWEcxO4lEgpMnTyI7O5t1FKvWnHu565+nUqlQUlJi5GSWiwa7T7HXFmY9iUSCS5cu4f79+6yjWDWpVNqsxc2osmvZOI5D7969ERYWxjqK2VEr8/M1p7LL4/Fo22/A77//jry8PLuciEb1sbmwsBBHjhxhHYU0UVpaGpKTk+1mJfGnjR07FgKBgFqZm6k5t7eDnd7ekga7T0lISMDgwYOb3H5q7V577TW4urpSK3MzNfUeu3pU2bVcRUVFOHjwoN2edKP6xPvu3bu4evUq6ygWRaPRIC8vr1nbvj3eFsIQHMchKioKXbp0YR2FiQ4dOiAmJoaOzVYsISHBLluY9by9vTFkyBDqCmomY6wJAztbG4IGu7Xk5OTg+PHjdn0S6+rqSq3MRmCMym5JSQkUCoVRc5Hms+cWZr1BgwbBx8eH9hNPKSgogE6na9a27+/vb1cz7oZQqVTYtm2bXbYw6+lbmbdv3w6lUsk6DmkCjuMwYsQIuLu7s47CjEQiQVJSEjIzM1lHsVpSqRSurq5wc3Nr0vOpsmvntm3bBj6fj7Fjx7KOwpREIsHly5dx9+5d1lGsljEqu7CzmTdrkZCQgD59+iAkJIR1FGYcHR0xbtw4JCQkUCtzLc1tLwNVduv1+++/Iz8/327bP/Woldl6PXjwABcuXLDrYgoAjBkzhlqZm6k5l8qgerEwHo9nV8cZGuzWwnEcXnnlFbttYdYbPnw43NzcqF2qGYxR2YWdzbxZA2phfkIikeDevXu4cuUK6ygWo7kLh4Aqu/XiOA4tW7ZE586dWUdhqn379oiLi6OOCiuUkJAAFxcXjBgxgnUUpry8vDB06FD6DDdDcxZBBAAHBwf4+vra1XGGBrvVsrOzceLECTqJrW5lHjVqFO2Mmkin01Fl10bt3LkTarUaEyZMYB2FuZdffhm+vr60n6iFKrvGRy3MT1Ars/XiOA4jR45scuupLZFIJDh16hQyMjJYR7FKza3swg7XhaHBbrWtW7dCIBDYfQuznkQiwdWrV3Hnzh3WUaxOSUkJVCpVs094QZVdi8NxHPr27WvXLcx6jo6OGD9+PK3KXItMJoOjoyM8PT2b/Br+/v7Iz8+HRqMxajZrdfToURQUFNBEdDWJRILi4mIcOnSIdRRioHv37uHSpUv0Ga42evRoODk5YcuWLayjWKXmFlNgh3f8oMFuNY7jMGTIEHh7e7OOYhGGDRsGd3d3amVuAv0OpDkzby4uLnBzc7OrmTdLV1hYiMTERDphqUUikeDBgwe4dOkS6ygWQd9e1pwKpJ+fH3Q6HfLz842azVpxHIeYmBh07NiRdRSL0LZtW7Ru3Zo6KqxIQkICXF1d8dprr7GOYhG8vLzw6quv0me4iZp7mRzssIOIBrsAMjMzkZSURCextbi4uGD06NG0M2qC5i4Lr0fX7lmWHTt2QKPRUAtzLQMHDoRYLKb9RDVjzLjrT2Jo2weUSiW2b99OLcy16FuZd+zYQav1WwmO4zBq1Ci4urqyjmIxJBIJzpw5g8ePH7OOYnWMdZyxp2MMDXZrtTCPGTOGdRSLIpFIkJKSgtu3b7OOYlWMUdmFHc68WTqO49C/f38EBQWxjmIxBAIBJkyYQK3M1Yw14w66Xh8AcOTIERQWFtJE9FPi4+NRUlKCxMRE1lHIC9y9exdXrlyx+5XEnzZ69Gg4OztTK3MjKRQKlJSU0PllI9Fgt7rFZOjQofDy8mIdxaK8+uqrEIlE1MrcSDKZDDweDz4+Ps16HXubebNkBQUFOHz4MJ1010MikSAtLQ0XLlxgHYU5quwaF8dxiIuLQ/v27VlHsSht27ZFmzZt6NhsBRISEuDm5obhw4ezjmJRPDw8MGzYMOoKaiRjdg7KZDK7maS2+8EutTA3TCgUUitzE0ilUojFYjg4ODTrdext5s2S6VuYx48fzzqKxenfvz/8/PzoxNtIlV2RSAQnJye73/aVSiV27NiB+Ph4amGuh0Qiwc6dOyGXy1lHIc9BLcwNi4+Px9mzZ5Gens46itUwZuegWq1GUVGRkZJZNrsf7G7ZsgVOTk4YPXo06ygWSSKR4Pr167h58ybrKFbDGNUdUGXXonAchwEDBiAwMJB1FItDrcxPGGPb5/F4tO0DOHz4MIqKimgiugHUymz57ty5g6tXr9JnuAGjRo2iVuZGMmZlF3bUQWT3g12O4/Dqq69SC3MDhg4dCg8PD6raNIIxqjugyq7FyM/PpxbmF5BIJEhPT0dycjLrKMyo1Wrk5+fTtm8kHMehVatWaNeuHesoFqlNmzZo164ddV5ZsISEBLi7u2PYsGGso1gkDw8PDB8+nD7DjWCMe7nDDteGsOvB7uPHj3H69Gk6iX0OoVCIMWPG0M6oEYxZ2S0rK0NlZaVRcpGm2b59O3Q6HbUwP0f//v3h7+9v1/sJ/a2CqKuj+RQKBXbs2EGrML+AvpWZjhGWieM4jB49Gi4uLqyjWCyJRILz588jLS2NdRSrIJPJ4O7u3uzPFFV27ciWLVvg7OxMLcwvIJFIcPPmTdy4cYN1FKtgzMou7GjmzVJxHIeBAwciICCAdRSL5eDggIkTJ9p1K7OxrqUCVXZx6NAhFBcX00T0C8THx6OsrAwHDx5kHYU85datW0hJSaHP8AuMHDkSQqGQugcNZKzzSx8fH/D5fLs5ztj1YJfjOAwbNgweHh6so1i0IUOGwNPT066rNo1hzMouaLDLlEwmw9GjR+mExQASiQSPHz/GuXPnWEdhwljXUqHWSpn2iuM4tGnTBm3btmUdxaK1atUKHTp0oGOzBUpISIBIJMKrr77KOopFE4lEeO211+gzbCBjnV/y+XyIxWK7Oc7Y5WBXq9Xib3/7G86ePYuJEyeyjmPxnJ2dMWbMGGzYsAG//vor6zgWTafTQSaTGWXmTX/943//+1+oVCojpCONkZ6ejg8//BBarRbjxo1jHcfi9e3bFwEBAfjf//6Hixcvso5jdsaq7FZUVODBgwfIyMjA2rVrjZTOeixZsgTbt2+nY7OBJk6ciJ07d+Lrr79mHYVU4zgOP//8M0aPHg2hUMg6jsWbOHEiLly4gI8//hgajYZ1HIsmlUqNMti9du0ahEIh9u7di9u3bxslmyWzy8GuVCrFF198AR6Phx07drCOY/E0Gg327t2Lhw8f4tNPP2Udx6IVFRVBrVYbZWe0detWAMDevXtpsMvA0aNH8fPPP0MoFOLAgQOs41i8CxcuoLi4GLt378amTZtYxzE7mUwGJycniESiZr1OSUkJdu3ahbKyMhw6dMho+azFX//6V5SVlWH79u2so1iF7du3o6KiAn/729/s9hICS/Ppp5/i/v372L9/P9RqNes4Fm/Xrl3g8XhYuHAhsrOzWcexaMYqphw7dgyPHj3C2bNn8fDhQ6Nks2R2OdgNCAgAn88Hj8fDO++8wzqOxXNwcMDMmTNr/k4atn//fqD69iHN9b///Q8A0LlzZ7pHHwP6CQsPDw8MGTKEdRyL1759e7Rq1Qo6nc7u9hNlZWW4cuUKfH19UVFR0azXCgwMxNixY4HqazLtjX7hlQ8++IB1FKug/zm5uLjQYl4WQr//mz59OgQCAes4Fm/GjBk15+TBwcGs41is27dvIysrC0KhsNkTW9OnT4ebmxucnZ3t4vyGp7PTqcApU6bg5ZdfxuTJk1lHsRozZ85Eu3btMHv2bNZRLJa7uzvKy8sRGBholBnK5cuXY+jQoYiOjjZKPmK4srIyjBo1Cj/++CP9/A1UWlqKcePGYcmSJXZ1veXu3bsxevRoODo6Yv78+TUTVU1VVlaGJUuW4O9//7vdDWD+8Y9/wNnZGf/6179YR7Ean3/+OYqLi/Hll1+yjkIArFy5EpcuXcKKFSvsbvttqo0bN+LAgQPYsGED6ygWa9KkSTWLQKakpPx/9t47Pq6zSvj/Ti8aSSPNSCONei9juTuO7TiJU5yQwAIJJRAIfSm7bAFe+L3wLrvLsrAsyy4bQgsJpBcIaaQ6jhPXuPer3rs06mU0mvr7YzSyZMu2ylxN0f1+PvrYGt1y5txzz3nOU86z5G3Z9u7dy8DAwIpYprVik10JCTHYsWMH7777Lt/97nf593//93CLIyEhsQyMjY2RlJSE1+ulurqa4uLicIskISEhIRFDPPbYY3zmM5+hpKSEqqoqqSNlAUjJroRECHn77bf51re+xXvvvScVppCQWEF8+ctfRqVS8cADD4RbFAkJCQmJGGNiYoJrr72WBx54gO3bt4dbnKgi7Mmu3++ns7NzyeucwoVarSYzMzPi16j19fUxODgYbjEWjFarJSMjA7k8speXd3d3Mzo6Gm4xFoVCoSAjIwONRhNuUS7B7/fT1dXF+Ph4uEUJCenp6RgMhnCLMSf9/f0MDAyEW4xFEVzrtdxr291uN+3t7VFbhEav12O1Wi87QiD5NfHo6elhZGQk3GIsmXC9e/PF5/PR0dGB0+kMtygLJikpCbPZHG4xrojH46G9vT1qi2hGQxtzZGSEnp6ecIuxaFJTU0lMTAyvEP4w4vP5/F//+tf9QFT/3PG+2/1OpzOcqrwiDz/8sF8mk4VdT4v9+ehHP+J3u93hVuNl+cEPfhB2HS31p6i4xN/V1RVuVV7Ct771rbDrJpQ/iUaj//jx4+FW6yU8/vjjUe0jAL/JnOI/f/78sulsaGjIv37jprB/76X+fO1rX/P7fL5Lvl8s+LWSosKI9Gs//OEPw66bUP6kpqT4BUEIt1ovwePx+D/xiXvCrp+l/Dz44IPhVuNlGR8f99+4Y0fYdbTUn0988pN+j8cTbnXOyTvvvOPX6nRh19FSfjRarX/37t1h1WNYR3b7+/sxm818cXs+d6yOzgpsZ9uH+JeXzrN//36uu+66cIszJznZWZRYk/jHe+9ERnTN8T90toZ/e+h5Tp8+zZo1a8ItziV4PB60Wi0FN9xN6a2fDLc4i2JyfIS3fvw5/uunP42oCqijo6OBSsgf/yJbb7873OIsGY/Hw+/++W/YedP1EVeEo6CwmEFtGtnv/3uIwnVAPvckdQ/9HZ+/92P88pe/XJZ7PvXUU9x7772UfuWXqI1py3LPUNN/8g06dv3ukr0bg37trtUp3LMhOr/bsNPDl54S+Ol//Syi/JrX60Wn03HX1jI+dcv6cIuzZJwuD1+9/0Xu+fRn+cUvfhFucWZRWVmJzWbj/37m/Vy3JrrW0fv9fh74027Ottjp6IzM7XjeeOMN3ve+93Hv//1vrPml4RZnUVQdfZdXfvefVFVVUVoaed/hjjvuZN/ZevI/+UOQR/YM0jnx+2h6+vtsLslk91u7wiZGWGuiB6cu31KextbCy0/V6B6ewOPz4/X6yTHHTX/+5OFm7r02d/rf+eLz+ZHLZzfo+sYm+dmb1fz47jUcbujj+ZPtfGF7Pu819GPUqShJi+eN8938484SAH79Th3FaQl8YI2Vf3npfERPw3Y4Jti65lq2rysL+bV9Pt+c0z+qmto5cr6eDWX5vH7wFFtWF0/f/19++yfev309G8sLrnp9k9HAvz30fEj0+8wzz/CjH/8Ex8TEkq8VxOfz4fV6yVy3A2vFtpBd115/Bn2SBZUuDrX+yvt2+n0+ZHM8g77G8/Q1nMVcUIE5vwLhtT9gMGeQue4GFKrZU/v0CckRZ8MTU89p3faddLU0cPNHPrus93/7uUfmvOflbL7y+AGqjh/gzvu+ziP/8W2+9P3/RaFUUn3yPYb6utHo4sgoKI04PQOMOxwkVFyDsWzrZY+ZHOzG7/Pg93rRpeZMf96190nSb7h3+t/5Mpfdukb6aXnpZxR9+ke0v/k7ZAoFpnW3YT/6F9QJgRghUyjRW4swZNvo3PMommQrSbbr0Vny5tSt2+3ma1/7Gnv3H8Tn881bvqsxMjwEQOq14lSyvNx7PXDuXTyOYYylW/FOjNK17ynyP/b/8IwP03vkRRQaPZZt89uyyO9107Hrd5foze124/V6uaEoiS35SZc9v3tkMhCbfX5yknXTnz95rJN7N1mn/50vc8XmruFJznaOMuHykpmk5VTbCB9cncrv3+vg4xvSONU2ilYpJyVezaacRB493IHVqGFHsYlkgzbi3jev14vb7ebGNQU0dPZz360blvX+j711Ys57Xs6vDY46+OfH3uL+v/kgD71+lEKriRvXFPDUnlOYEvRcW5ZNXvrSt9wSg6BMd25bS0VBZkiuebq2FUtyAnE6DQlxuisee9n2UXMnR4VG1pfmUlGQyUMv7yUzJYkdG8rQqFXTx52qbeFwVWtI5BaDoH437bwLQ2JyyK9/Of211Z6jpeoM2aWrObv/DQrXbqF0Y2AN6/O/+FfW7riT/FUb53UPrd7AK7/7z5DY7+OPP87PfvoTnBOhmzLf1tlN3OrbMJaHfjDtcjFmcCrGJJZupf/k6/g8Lqw3fw6ZXEHzcz/GtP524vPXzfs+cTkVjI93hFj6hRExG4A9dbgZS6IOvVrB/lo71xen8KbQTbJeTUl6AinxGg439JGfYuBwYz+f2Zo36/wXTrbj8vjIM8fx+vkuPrs1j8fea+buDZmUWxNpG3BwsmUQjVLOdUVmTrUO4fb6SEvUUm5NxGzQsCojMKf82gIzQucIGUYdqfEaTrQM8qH1mZxsvbDmNSNJz6jTjcsTusZTpPD0Gwc5Wd3E1++5ndcPnqLTPsiG8nyqGju4feta1hTncFSop7t/CK1axZbVxRw+VwdAeV4mGanJFGal8eZ7Z9FrNWRaTPQPjU1fPzvNjH1wedeBdXd3c++992Io2kxc/rUhu67f64GGujn/VvXm43hcTsz5FfQ1nCV74y00HvwL1tXbGWgWyFh7AyNdTTQffh2dMYX0VVvoOLOfzDXX03z0TSylG9ElmOhrOo9CqcY5Oogu0UT6qq0YMwroqT6OY6AHhVpDWvm1dFcdASA5pwyD2Yo5fxX9TefRJQZGbAzmDDwuJ+6J8UuS3UhnZLCPt597hMKKjZw++BZKpQqt3sDNH/ksbz/3CG31ldz+ya9w4NVnueWjn8dotvDHB/6NhOQUckvXcHr/m6TnFtHX3c6arTeTll3AiXdfo62ukqyicnw+HwM9HdiuuWH6WKdjjL0vPcnmWz+IVm/g2J5XkMlkGM1pJJpS6GisAaBswzY0Oj3W3CLOHNiNWqujdP2Wadm7muvYcdd9vPP8Y2HU4Pzo2vsU6qQ0FBo9Q5X7MZZfT/+pN1EZkojLLEWVkMJwzWF0aXkM1xzBetN9s87vPfwCPo8bnSWXvhNvYL3pM3S9+zipW+7CkFWOs6+dkcaTyJVqjGXXMdp0Cr/HgzrJgiGrHHWCCUN2YMsifUYxo42n8YwP4RkfQqlPwJBtY3Koh5HGUxiybWiSrfjck3gnL7+m+5e//CUPPfQQlhs+hVwbuvXSrvYq6F3YOqqeg88x2nSazNu/Qv/pXbgGu4nPX8d4ezWmtbdgyKlgpP4EruFe5CoNCUXXMFJ3DIC4zBI0yVZGG08Sn7cOr2uC0abT6CyBWOjoqsNYupWR+uMh+44ATx3vJC1eE4jNDYNcX5DEm9V9JOlVlFriSDGoOdw0RJ5Zz5HmIe67JmPW+S+c6cHt9ZFr0vFGZR+f2ZzB40c7uWuNhfJ0A+2DTk62jaBWyriuIIlTbSN4fH4s8RrK0w2kJ2roHplkdNLDxuxETreNYNAoub4wkISrFDKaBybIMwcSD6tRw6Tbx7jLG1I9iEH/iIPH3jrBhqIM3j5Vj1KpwKBVc9+tG3jsrRNUtfby13du5k/7zvLZnRtJNRr40dN7SEmMoyIvnd0n6yiwmujoG2bH2gIK0k28fqyGqtZeyrJT8fn8dPaPsL0ib/rYMaeLp985zQeuLcOg0/Da0WpkgCUpnpTEOGra7QBsteWg16jZc7qBDcWZ9AyOopuRiGWYE3E4XQyNRd9a2EdfPYDT5WZ1YRZn6lq5dfMqXtp3khvWlXC+oYMbN5TS2GHntUNnSE1KYOvqIvaerObG9aW89t5ZrinPx5xo4FxDOyqlgsFRB+ZEA9tWF1GYZeFYZSPdA8NoVSqurSjkyPkGAMryrGSkJFGYaWHXkfPotWoAMlOScLrcjE9Mzkp2Y5H3XnmapsqT3Papr3Nm3+sM2rvIs22go6GSNdtvJ7t0DQ1njzLc14NKo6Fo7RbqTx8GwFpYTrIlg6ziClprzpKQnEJyWiZjQ/3T1zelZzE6YF/279Xa2spnPvMZtuYmsCU9dOvXX7L7WEhFiJ5DzzHWdJqM277CwOldTE7FGEdHNclrpmJMwwlcQzNiTP1UjMkIxJiRxpPE56/D55pAplChM2XiHu1HnZiKxpSJa6QvZN9vuYiYZBdABgyMuyhNT6C5/9LGix8Ym/SQmaSnYyjQCyN0DE+fK5eBz+/HZk3kcGM/FZmJHKrvo9yaSGqCBpNBzfikB6/fj8fnw+Pz45uaxT0+6aGyc4Sa7hGcbh9rsoyolYEpA+XWBNoHHVR2jmAfddI7MoklQcvRxn4KUuIukTPacbrcJBr0tHYHDNoPOCfdrC7KIcEQaFAUZqUxODKOz+fH7wfPVNIfnBVf1dSBKdHAwPAYluREDp+rY9vaEjxeLylJCZxvaOV929Yu23ey2+34fD6yP/Jd4vOXNnVsoqseXXpg31VnbzPdux+a+0CZDJlMPv3/mf8qNXo6zuwjPjVr+nDnyADJOaUMdzejSzSD348ff+AaMhm6RNN0gmzMKCAxowDn6CB+vw/w4/dONe6mnkH9/hcZ7++GqVFefbKFnurjjA90o00IfS+smCQkmanYsoPW2vOBqfgyGQlJJk68+xoAWYXl6A3xJKWk03D+BKa0C3r1+33EJ6eQmpmLx+0mNSMH16STquMHWbv9Vvw+H2MjQ+SXryPFmj19rNMxhtfjwTtVfCi7yEZbfSV+vw+/zzf9eZC2+kq0+jhczglaas6RkV+CSq0lPbeQI2+9iNFsWWatLQ4ZMtyjA8RllOLsbZ7jCD/eiXG05kwm+zsBGGsVLpwtk+P3+TFk2xiuPYIhp4Kh6kOBZDYxBZUhOZCc+rz4vV78Pg9Mjbh6Jx2Mt1Ux3lGLQhuHXKVGrtKgNlrw+7wodAZcLecwlm5hrFVAbbQwUn+CycHLJ51dXV0Y0nLJv2/pe5DOfPc73/g1w8LeBZ3vc0+i1Cfg7G8PfOD343NNYMhZhUKXAIAuLR/P+BB+39R77fNMHRp4r/XWYvxeF46OGryuCRwdtTi66lEnpTNwZjdy9ZVHmxaDTAYD425KLXE0D1w6M8Y/FUMzjVo6hwPJj9AV6OAMxGYZfh/Y0gwcaR6iwmrgUNMQ5ekGUuLVJMepGHd58U6NEs+MzfV2B3882cV9mzP43cE21Ao5bq+P851j2MdcTHp8FKbo6R6ZxOcHS7yGE63D9IxMhlwPocaUoOfGNfkIzT2BeDH12RvHpjrSslOJ12lIS4rnZF0HmeYLRV78fj+mBD25liTcHi85qUlMuNwcqmzhlnWF+Px+hsecrC1IJyslcfrYcacLj9eHd+qdK89Opaq1F58/oHPvRbMfRh2T1Hb0kZIYh1wuo80+zPmmbtKS4znb0EV9Zz/RhkwmQz4Vi4PF2YJLvPRaNXtP1pBluRAj+4fHKMuz0tRpJ8UYj9/vxz9l1zKZDHOiYTpBLsyyUJBpYXB0HJ/fj9/vxzMVm6fbR82dmBINDI6Mc87ZjsWUyPHKJrr6h0lOjMwChqHC7ZpEH59If1cbTOnEPTlBdslqdIaAD7TkFDI+Mojf58Pv9+P1TsXaKf0d2/U8w/ZA2ybRZKH+9GFKNlyH1+MmwZRKW+151lz/vmX9Xr29vfj9fr5/Ww6r0hefF9TbJyhMCfjw7hEXxzsctCzgfJ97EoU+gclgjCEQY+KyZ8QYSz6esSGYbjvO1q/eWozf42Kitxmfx8VETyOGnAomB7tRJZoZb6vEtPbWRX/HcBDWNbttbW1kZ2fzzJe3cmNp6iV/X+j05HDQMehgww928eabb7Jz585wizMnKWYzf3P3Dr716Q8s+NzXDp6iyz7IFz50kyiyXY2qpnauue97HDp0iC1btszjjLk5d+4cq1evZtX3XlnQ9IsgPXufwO/zorXkMdnXzkRXPap4E/qscqp//ilu+uavKd7xkUXJVvXm45Td9ulFnRsqnvh0Of/fN/+e733ve2GVYya9vb1YLBa+/cAf2XDjHQs+/3LTkMPJf3z1LvJSDPz5z38OtyizSLNmot18D7kf+uYlf1vo9ORwcfZHH+SDW2384Q9/mPX5d77zHX712J+o+PcDi7ru5d5999gAXW/+husf6VzUdftPBXrdLx4dX04GhX2c++k9NDc3k5NzYWr6xMQEer2eBz5Wxl1rL12zu9DpyeFizX8c5u+//b2I8msulwuNRsOv/+7DfPzGhdehuNw05HBy23f/QMXWm3n44YfDLcosjh8/zqZNmzjw4P9b1DTmR189wGfuDF8tlvv/uIufPfM2g0NDYZPhSjz//PPcfffd/Pyd5kVNYz6993WG7J3c+JEviCLffGipOs2/3Xs9J06cYP36xQ+EBG1t11dXY0tbWLL7xPEevD4/eSYt7UOT1PdNYNKrWJdp4Ie72+nMvIXSLy98S7vg7KH0HeGLMQC1D/8Ded4O3ju0uBgcCiJqZPdi5pvo1vWMUmQJrGvsHp4gTqMkXnvpVJDhCRcvnOxAr1bwsU3Zs9bpPrQvMM3kk9fmoFdHtFqWlTu2raOm5UJjrqtvkDidds61KkOj4zy3+zB6nYZP3h4IEA8+v5ui7HTO1bdSmmtl57WRV2RqIQR7f3XphcjkCvy+pU+VK7vt0wy21ZGUVQTAeH/3ZdfqTo4NU7/veZQaPSU3fxzHYC89NSfwTjoxpGbSW3uC1R/8ypJligUuTnQ7GmvIyA+suR/o7UKrj0M/1ZM8k/GRIQ6+9ic0ujhu+GCg6NibT/+W9Nxi+rva0McnsPnWDy3Ttwg/8010HZ116K0BG54c7EahjUOpu9SGg2tL5Ro9ads+iqO7kZGGEyhUU/tSy+QkV9yIQhtZs2YufvddI0ubKmdaF+gcXajegmtyJ6b0JldpcY8NTK9dli/DEoX5Jrp1veMUpQaeY/fIJHFqBfHaS+Pr8ISbF8/0olcr+Oj6NBr7HJxoHUGrkjPi9CCXybiuwEhWUuhHraONmYlubbud4szAMpWugRHitGoS9Jfu7z48PsGf959Hr1Fxz4619A6Ncby2nQmXm1HHJHKZjJ0biklLvnJ9iJXGZ+68jtrWboqzAx0+XX1Dl12rOzTm4Lk9x4jTavjEzsBSqd+9+C6FWRbWFGXz/Qef54FvhbdTO9JYe0Ng9LWrqZb0vEABsSF7Fxpd3PQo70wco0MceeM5NDo9W98fiM17nn2QtNwiskvX8Nz/fp/Pfj969zkPzjIoNOtQyGV4fEsbizStnYoxXXXo0+cRYxzD9B6eI8aotZjW3U7Ng39L2dd+uySZwkXUZnWPH2rG6/eTb46jbdDBk4dbMBnUrM9JwpqoI16r4lhTP6NOD0a9ivU5ydT1jLGt0Myx5sBekjPX6bq8PiZcXlSKyN1razn5/cvv4PP6KMhKo6XLzqOv7MVsTGBTeT7WlGQS4nQcPlfHqGMCoyGOTbYCalq62L6+jCPn6wHo6R9CpwmsScmymBgddzLpckflmpSEki0MnduD1pJPYvmFzby9rsUXu6p84zH8Pi+J1nxGe1qp3vUE2kQTqcUbMJjTUevj6a46issxisZgxFKygcG2WqwV19FTdRQAfVIqcoUCn0JBWtkmBlurQ/J9Y4Xdf/o9Pq+XtJxC7B0t7PnzoyQkmyms2IgpLQO9IYGaU4eZGB8lLsFI0epNdDTWYLvmempPB9ZAD/X1oNYG1uA0VZ9h9ZabcLsmUamja92zGHS++wT4vOgseTj72uja9xSqeBMJ+evRJKej1MUzXHcM78QYyrhEEgrWMz61tnR4am3pWPMZUjd9gJ7DLzDR3UBi8bX4PJMoiIxk93Lvfs++pxZ9za53A6PFQb11T+kt/gp6u3hN7mjzGVI2fYDewy/MWru8HMnulXjiaGdglMKso23QyVPHuzDFqViflUB6ooZ4rZJjLcOMTXpI1ClZn5VInd3B1nwjx1sD+86e6RjlAxUpvHCmF78fescm0amisBKpCDyy6zg+n5/89GRae4d4fPdJzAlxbCjOwGpKIEGv5Uh1K6OOSYwGHRuLM6lp7+O6VbkcrQlMHU01GlDK5SjlckoyU6jv7Edo6ZGS3Sn+8Mp+vD4fBRmptHb38+hrBzAnxrOxLBdrShIJcTqOCA2MjjsxxuvZWJZHbUs3168t4YgQGDjpGRhGN7Umd8/xSjaWRfYsxeVm75//gM/nxZJdQF9nK/tffJT4JDN5qzaSlGpFZ0ig/swRnGMj6BOM5FdsoquxhtKN19NwJhCbh2fEZuG9t+ddlCrS2JKbwJ66IfKTtWzPn70f7c/3La4S98wYM9nXRvfeqRhTsB5NUiDGjNQdw+McQ6mfijGddRjLtjJSNyPGXPMBet97gYEzu0ks3hyS7xsOoj6zC/aEFFkMpMRr8Hov9IQE1/54p3pHClMNHKzvQyGTIXQMz1qnK5fJSI5TM+Rwhe27RCLBupjF2emkJiXg8V5Yz+P1+fB4Lqz9Kc5JZ//JKhRyOefqW6lq6kAul9Pa3YfFZKS5y87IeOgqIS8nurQC0m/9EhpTxjyOXigBLRszC9EZU6bX6AGBNY1e7/QIclJWEZ3nDiBTKOhrPM+YvQOfx4PP42awrY7+5kpcjuUt/hUNBJdMW/OKSTSl4vVeGJH3+bx4PR58U59Z84oRju5DrlDQXH2OtvpK5HI5fZ2tZOSXMNzfy/hIZE4rCxtTCtanF6JOuMiGfb5AFecpG9anFzJUfQiZXMFYq4AhpwL7sVdQaOPQW4vxOseYHOwO21e5GFHffdmF0WLVRXrjIr3ppvTGHHpTGy24h+24rrB2ebkJxo7CFD0pBvWsUQrfdGy+cMyhxiEU8sBa3wprPK+ctxOnVuD1+ck0aukZlWLzTKbbPhlmUoxxs2KzzxdYezsdmzPMHDjfjEIu53xTN+19w7i9XtweLwadmrGJSdYVRv609OUmqOPirDRSk+Jnt3+8Pjxe77SOi7It7DtdE2j/NLRT1dyFXCajrWeAkfEJalq6orb9IybBGTNpucUkJKfi817wgT6vF6/XM11FPy2vmOrj+5Ap5LTVnqOzoQqZXEZ/VxvOsVE6G6uZGBsJ23dZLAVmHV/akk6GUYSOypmxOTHlwvrcqXomfq8HZsaYqrljs9c5xoS9Bdfw8hf/CgVRO7K7tdDM21Xd5KXEsb04Zc5jri2YvZ2RUa/ms9tmV3H+97tWA1CSdumUiZXM9rVl7Dp8hoKsNG7caJvzmG1rSmb9nhQfxxc/fPNlr7l1dXTtczcfRmoOL/pca8U2Wo+/RaI1n8y11895TPqq2euUNQYjtjs+N+szQ8qFRvh1X/7xouWJRco3befU/l2k5xRSce2OOY8p2zB7yyhDYhI77/nSMkkY3RhLtzBwZg86Sx5JM0Y9Zx1TMrs3WBVnxHrTZ2Z9pp8q+hQtDFcfwr2EipSJ89Bb4gL1Fp+7etHyhJIt+Ub21PSTZ9azvXDudXyb84yzfjfqVHzm2tmdCYUpoatoGktctyqXt07UUZCezA2r8+c8Zkt5zqzfjQYdn79906zPZha7qshLF0na6GT7mmJ2HT1PQUYqN66fe+/VrauLZv2eFB/HF//qhmWSMPop2Xgd5w7sIjW7gLLNN855TPH62VvhxSUkseOjX1wmCaObxNItDJ69SowpXliMme+WdpFI1Ca7BakGClKjq4EUTRRlp1GUfWlhkpVA1+6H0Vry8Hs9jNQeIe3GT9O560EUunjism1okqz0n3wdlSEJrSVvHlecG2NGAcaMq+81LLF4rLlFWHOL5nGkxGLQpxWgT4sNG17Ie6/PKMHjGF70vWJJbxdTYNZTYJYSVbEotJoptJrncaTEYinMslCYFR3V86OVtJwi0nJWdmx++HAXeSYtHq+fIy0jfHpTGg8e6iReo8CWHoc1UUPr4CQsoikeyzFmMURtsnslDtbbsSbqyEuZXwn3mu4RdgndXJNn4khjPwatkg+ssXKsaYCmvnH+5qaV/ULOZP+pKqwpyRRkzj8Q3Pf9B/j997/Kv//+BT51x3ZcbjdHztezoSyf9p4Balo6+YdPLrzarljos8oZOvcO+sxSNKZMJgc6icteBUDy2p30H391WeToOHsQgzmdROvcvfcX09d4nr6Gs5gLKuitPU1CWjaZa6We5osRju7DlJZBWvb8AkFr7XmOvfMqd/31t3nlkfspWLUev99Pb3sza667lYOv/YnMglLWbY/MauzhYqjqEJrk9Ol9YK/GWKvAWMs5DNmrGGk4ic/rwliyhdGmMyj1CaRser+o8i70vZfJxVsFtFDdjXfUMFJ/nPi8tQyeewe5SkvGzsgZATnUOEh6ooY80/yS4OdOdaOUyyhKjeN0+whZSVq0Kjm9Iy70agUqhYzT7aN8+bos1MqoX40VMg6cb8JqSiA/3TSv45/acwpTgp5ry7J58VAlOalGxiZcyGQQr9dwfcX8Ys9KYv/pGqwpSRRkXLqDyOX4zA8e5IFv3cfv/7KP5IQ4Pv2+bfy/3/6Zz71/+4KusxKoPr6fpFQrlnnG546GKhrOHiXPtp6Gs0fxuF2su+FOzux/g5IN15FRWC66zIulPE3PO3VDlFr0ZBo1dA5PTm9btLMkmVcrxdnWa6j6EJqkRcTmnFW4hu2Mt1WSULSJyb52FNo4TOtuE0XOUBI1ye5D+xrISzHg8fo43NjPZ7bm8Zt364nXKlmVYSQjScerZztJ1qspSU+ga9jJM0dbyU8xMOp0k5di4OYyC2NON0ebAgWqStMTsBp1lKQlcKCuj835JoYcLvbV2knQqZDLZHxonRhrNCOLXz+3i4JMC26Pl0NnavnCh3bwwLNvEq/XsqY4h4xUEy/vPU5yooHyvEy67IM88dp+CrPSGBl3UJBpYee1axh1THD4XB0A5XmZZKQms/dEJWuKA4UZbtoUmA5dmJXGm++dRa/VcOPGcho7ImedGUBiyRYSS2ZPH04svTCdJmXL3fjck1iu/+SCC1Sde/lBEq35+LweuoTDlL/vM5x98deodfGYCiowmDNoeu9VtPFJJOeUMd7fRfXupzFmFOAaHyHRmk/2xltwOcborgoUaUjOKcNgtmLOX0V/03l0iSlkrgvsx7tSeP2JX5GWU4jX46b6xCFu+dgXePWxX6CLSyCvbDWmtEyO7n4ZgzGZrMJyBno6efeFx0nPLcIxOkxaTiHrtu9kYnyUmlOBqelZheWY0jLILl5F3dnjDPf3Mtzfi8fjITE5hZHBPkYG+jCnZzIxNrIiila1v/UQOks+fq+b4ZojWG+6j/Y3fotCF48hZxWaZCt9x19DZUgiLrOUycFuuvc/G9g7dmIEnSUf0+qb8EyMMVI3tZF9ZmAje0O2jbFWAVWCGZlShc6cGVi/O9Q9Z+XIULOQ9x5Y8Nqljot0lz6lO+VFulPOoTvvlO6SL6M7nSWfgTNvo9Do8bknWY4dBR861E6+SYfb5+dI8xD3XZPBbw+0Ea9VsCo9HqtRw2uCnSS9ilJLHN3Dkzx7opt8s44Rp5d8k46bSkyMTXo41hIYJS+xxGFN1FKUoqdn1MWpthFuKEqiqX+CBvsEn9iYztPHu/j4+jTOdo6iUsiuKme089tXD5OfbsLj8fJeVSufu20jv3r5PeL1Giry0sgwJ/LK4SqS43WUZafSNTDKU3tOU2A1MeJwkp9u4tb1RYxOTHKkqhWm9u/NMCeSYU7E4XQxNOZkx5p8GrsGKMww0W4f5nR954pJdn/z/B4KMlJxe70cOlfP5z9wPb/8027i47SsLswiMyWZlw+cIjkhjvJcK119Qzz5xiEKMy2MjE9QkJHKrZtXMepwcuR8oEBVWZ6VjJQk9p6qZk1RNmqlgjxrCgfO1CI0dpBtia697pfC7qd/jSW7AK/HQ93JQ9zwkc/z1hMPoDUkkF2ymmRLBif3/IU4YzIZBWUM2bs4+PKTWHIKmBgbwZJdQMW2nTjHR6k/HYjP1sJyki0ZWLILOXdgF2qtHqVSjSk9i4ZzR9HHJ+J2OcP91a/IltxEtuTOLki1Ne/C73evSeF/9nUxNo9rzYovtUdI33EfHW/+FoV2Rnw58drUzKRAfOk58Gxgz92L40v9VHzJuBCbx1sFVPFmlLoERhtOojVn4RkfZqz5TFQku1HTJVpuTeS9+j7GJj1kJunpGHJQkZlIrjmO21al0dw3Put4hVyGyaAmx6SfPhfAD3imimMEGwQujw/NVO+wXq0kx6RHo1TQMTRBRlLsT8eqKMjmwOkaxhxOstNMdPQOsLoom7yMVO7Yto6mi5JRuUKO2RhPrjVl+lym9qP2eAJFq4K6HRgZo29olNaePs7UtnC6ppmqpg5MiQYGhsf49v8+QXZa9E3JCjZ4F4opz0bn+UO4HGPEp2QyZu/EnF9BQnouuZtvZ6S7edbxMrkCXaKJBEvO9LkB/NPFq4Ibgdfvf5Hx/kBhn/6Gc9jrzyzxW0YPOSUVVB0/wMT4GGZrFv3d7eSWrsGSlceGHXfS0zY78ZcrFMQnp5CamTt9LlMb3Hs9Hrwez7QN93W10Vp7HoC4xCS6W+rRxycgl8vpaKwiKSWN3o4WHKOLn9YaLRiybAxXv4d3YhytOZPJ/k4MOavQpeZgXrsTZ2/LrONlcjmqeBPalJzpcwP4p4ovXdBz79GXcQ0FfI1/aiN7ZDJ0Kbl43ZHRaFnsew8QN/X9PRPjaGboTpuag2ntTiYuoztdSs70uQEu1Z2jowZVfDLusUFkcmXItkW7Era0ON5rGmJ80kOmUUvnsJNVVgM5yTp2lplo6Z/dESiXyzDFqchJ0k2fSzBuTMfkwLEGrZLeURdb8o2c7xzjbMco+WYdr57vJTVezY93NZKeoMHlFT+pDzerctM4JDQzNuEiKyWRjr5hKvLSyLUk8b5NJTR3D8w6XiGXYUrQk2tJmj6XoG+bKloV1FpacjxjEy7qO/s529jNmYYu4nUahsYm2FSSFYZvGx5WFWRy4GxdoA1kSQ60gQqzyEtP4Y6ta2jqnN2xpZBPtYHSzdPnMqVjj9eLx+ud0QYap39ojI6+IVQKBWW5Vtp6+nE4XbT1DMwpT6yRVVxBzYmDOMdHMaVnMdDTQVbpGlIy81h7wx30tl8Un+UK4pNMpGTkTZ9L0Ia9Hrxez3S7p7OxCoPRxPjwAG73JD2tDWSXrGHSMU5vW/R3+Kca5rd7SVyWjeGa9/A6x9FOzUwyZAdis2ndFWJzas70uQH8+L2eQOGqKR3bZ8Tm8Y5qZAolcpUWv8eFIUJqRVyNqBnZ3VpoZmvh7KRoW+GFwlQf2ZjF5GHvrL15N+ebZp0PEK9VsdM2ewK8WinnU1sC520vTpkuePWF7SujV/O6daVct252EYbt68qm/3/Pbdtwut7lsx+4UERgZrGp4LkJcTret23trOt8eMc1fHjHNQD87cdvn/58dVGggMYmW2SvKejZ99SSGrgXY63YhrVidkGkjNUXfi/e8VGqXE7KbruwH1+67dpZ5wOo9fHkXDN72mzh9gt7v+ZtvTNkMkcD5Zu2U75pdhEG2zUXin5t/8A9uCads/beLZ1R/CJ4rt6QwIYb3zfrOub0LD733f8C4MNf+tb05ynW7DmvFcsYS7dgLJ09+mksu/DdLVvvxud2ztqbd2YRjOC5Sl08prW3zrpO6jV/Nf3/mUUyEouuCfG3mB+hfvfno7uuRerOkLMKQ05gynVCwfqQyXwltuQnsSU/adZnW2f8fve6NJzHOmftybs51zjrfIB4rZJbS2fH9pnrfuda/3tzyfym6cYC22y5bLPN3rbmulUXph9+7IY1OF0nZu2/e21ZzqzzARL0Wm7bOLuoZElmCiWZlxb4/Mj10dGADRXXrSnmujWzC2huX3tBVx+/dTPOV9185s7rpj/bUlE463ym2kC3b5mtuw/fsIEP3xB4NvnWC7q++LhYpmTDdZRsuG7WZ6UbL8TrLXfewz7Xo1z/4Qt+v2jdllnnA+gMCay5fnZ8zi5ZTXZJQJf5FReKsKVFWa2Op0708MkNi18nPld8YcbMpNStd+Pb6yRtEfElZUZs1iSlTe/fa94YPe3MqEl258PMRFcitMxMdGOVnv1Po0myoksroHvv4+imFvcHG709+57CNdiFTKnCettXkclkDAn7Qi7HzERXInTMTHQlxGNmshYtLObdd3SEfk/raNTdlZiZ6EqIx8xEV0IcZia6EqFnZqIb6zx9ogdrooYCs47Hj3VTkKKDGQnvUyd66BpxoVLICOXclbQYiy8LIWqmMQd58nDzPI66wDNHW2juG+dwQx/f/tNpxic9fOOZU3i8Ph452MQuoZtJz4XpXs+faOPVs50ca+pnl9DNL/fUMTLh5lfv1InwbSKDR/7y7oKOf+K1/TR29PDucYH/evwvjIxP8PrB0/zgd88hNLTxn4++hN/v5y/7TvDbP78169w/vPwu7xwXAPjeL5+hob1n+rOX9x3nL/tOsPdEJU++foCG9uVdy6tLK2C08SRelwN9eiGTfW0AqAzJDJzeBYBMqUJvLUGunJpaMnNfzEVQ9ebjCzq+evfTDHc14Rwd5N37/2HW39pOvUvVm4/jGOyl6dCrnP7zA3SeO0j76b1LkjFaePu5RxZ0/LsvPkF3ayN/eeR+Tu3fRU9bE7ue+R0HX/sT7Q1VvPTwf1N98tD08b3tzTz1P98H4K1nH+L1J35Fd2sjL/zuv+hubeTt5x7hnecfo7ejhWd/8YOQf79IpGvvkws6vnv/s0z0NtO172nsx2YXfBquP077m79jcrCLjrcepnPPYzi6G7Efe5X+s3voPvBHJnrEmZa2uHffd6VLXpHF6m3w/N5Lzh2qOUzLS/+DxzFC/+m3aPrzT3D2tS/4HovlyWOdCzr+2RNdNPdP8PChdh461M6o08Nb1X38ZFcjNT3jPHmsE6FrjN+/186emtkFWg43DfE/e5oZcXr4zf5WTrWN8G5tPy+d7cE+6uJnbzfN2gs1VnjsrRMLOv6pPado6h7gkNDMT/+4l96hMR546RDPvnuG803dPPn2Kc41dU0f39IzyL8+HojVu0/Wcf8LB+gdGuOVw1Xc/+JBDgrNvHumIeTfK5J49NUDCzr+yTcO0dhp5+DZOv7z8VcZHpvg1YOnefz1wJTbz/zgQTwz9nMXGjv46ROv4ff7uf+PuzhwppbD5+t5ce8J3jpynqfefI+Gjt6Qf69IYt8Ljy7o+IMvP0lvWyPC4T3se+FRelrrOfTKUxx/6wUazhzhrSd/yXDfhXZiW+05Drz0BK01Z3n3uYfZ/fSv8Xm97Hn2QSqPvMPBvzxJT2v47bjArONk+ygOl5fCFD1tg5MAJOtV7KoJTG1XKWSUpOpZbFWC7gX6/54DgRjT/sZvGDi7Z9bfRuqP07Hrd7iGeug7+Tqdu38PQOOzP2Cip4mWF382a//eSCSiR3afOtyM1ainINXAY4eaKEwNFCl58nAz916by5OHm+kcmkCtkPO1m4qQAftqA2srcs1x5E9VY85M0pFrjkPoHCFOo+Sa/EBhAKtRx6Tby/ikF41SAYBSIae5b5x8cxyrMow0942RoFORqJvfvPlI59FX9pKZmkxRdjoPv7iH4pxAz/sjfwlMU37kL+/SaR9EpVTyD598HzJkvHMikJzmWVMpzApMAc+2mMlNT+FUTTPxei3pZiO3bl6NrSCLY5UNyGQy8jNSaeqc7bxv2mSjsaMXoaGN7DTTrM+Ks9Jp6+3nZHUTG8uXfwp5QtE1JExNmdRbr74nsEyhxFhx07yvX7XrCQzmDIyZhVS+9gjGrMA0m6o3H6fstk9T9ebjjPV1oVCpWHPX3yKTyaYT1YS03OltiuJTs2g48DKpxbN787PW3UjVm4+jT0oFuZzC6z+Mz+eNyUJVe/78KKa0TKx5Rbz17MNk5Aee19vPPcLNH/ksbz/3CAM9HShVaj7wuX9AJpNx7vA7AFiy8kjPCUxBS7FmTxeYijcmYzRbqDt7jG13fJTzR/bOmp6cmpmLJStgl0qVGrM1G4VSidGUysiAHb/fx6C9F41Whzk9e065o5muvU+hMVnRpxXS+c5j0/vvde19kvQb7qVr75NMDnQhU6rJel9g9HNQ2A+ANjUHfVpAd1pTJmMt50ladT0+9yRyVaCoV2LhRkYbTwOgs+QzOdSNPi2fiZ4mNEYLCpVWtO+2mHdfnzW/Kp8z9db1zmPoLqM3uVJN5kV606XmoJuhN11q7iVJrD6tgMFz76DQGlAbLSSv3oHWnLlgHcyHp453Yk3UUmjW89jRjum9cJ+cmq785LFOuoYnUStlfHV7NjJgf8MgADnJOvKnpiRnGjW4vD4mXF60KjmWeA07SpLJN+t4u6YfvVpOZdcYWUmzn3mBWc87tf3U9ARqdLi8Pk62jbAuK4EJt5dMo3g2slw8vvskGeYEiqxm/rDrOEUZgSnej70VmKr82Fsn6OwfQa1U8PUPbUMmg3fPNAKQl5ZMgTUQV7NSEonTqnn7VD1alZKhsQkS47SsykvjXHM35sS46XvmWJLISwu0i4oyzJyo6yDVaEAul3HXdavw+Xw0dsXO+tLHXjtIRmoSRVkWfv+XfRRPtWseffUAn7nzOh599QCdfYF20N9/fGdAxycCMznyrObp3SiyLckYtBp2HxWI12swJRqwD41OF6WaiS0/g+NVTfQOjtA7OIrb46Wp086n37eNx18/SG569NUuuRL7X3yMZEsGaTlFvPvn309PK973QmC68r4XHmVwKkbfdt/fI5PJqDoSiNEpWXlYsgN+0pSeTWpWPvteeJTmylNsuvUujrz+JwrWbKZJOIE27kLxwqziClprzpKQnDJdrGp0sA+1Vj99rUjgmpwErslJAKA49cp1gX773tUHfbr3PRUoVDgVY4KxuXvvk6TdcC/de59kcjAQmzNvn4oxlVMxJmV2jNGYMvBOjM6KzQlTsVmhi0eXkouzt4Xxtiq0pkCcESvehJKIHtktSI3nRMsADpeHIks8rQOBAJccp2bX+UCvpFohpyQtAZUi8FWChS58F1WjPNM2xJosIz6fn8qOEc62D2FJ0GIfm6RneII3zgWuN+HyUpRqoGvYyT+9cJas5NgqUFWUnc4xoQHHxCQluVZaugKdA6bEeF47eAoAlVJJWV4GKmWgLyRYdOpinf7Lg89hTUnC5fZw5HwdW1YX09bTj9DQTmt3H81dduQyGftPVTE4Gnh2Z+paOFXTTGv3VIGG7r7pz+LjdAyOjHPNquXZP7n3wLOL6o3q2ffU9L/O7sZ5n2fMKKSn5gRupwNjVjEj3YHKmNoEE81H3gRAoVKRlF2KYmr06OIiVEHcjlEG22robxIY6gj0VPY1nKW/uRKf18O4vQNDSuxWErfmFVF39iiTE+Nk5JfQ2x6Y8ZGQZOLEu6/BVEKaWViGUhXQ5XThqYtG5IIFptyuQO9qdvEqPG7XdGXlo7tfBmBkwE5r7Xl625txuybpbqlHpdYQl2Ckrb4Sn9dLijWbQXtkVRcPFfr0AkYaTuKddKC3FuG0B+xXZUim71Rw9FNNXEbx9OhnsJAS/tk611uLcA/34Rq2M1gVGAlpf/N3yJUq5CoNjp4G/B43QzVHGK55D4U27hJ5Fkso3vuJrvp5n6dPL2D0Mnrrn9KbXKlGP4fe/BfpbazlHONtVYy1VeLoDrz34x3VKDRx+NxORuqPi7rGucCs52TrMA6Xl6KUOFoHAoXDkuNU7KoKFIFUK2UUp8bNEZNnX0suC8TyIYeH463DXJNjpKZnnOQ4FYMON4UpeloGnFR2jdHQ5wCgumeMOI1iOqlt7p+gODUOl9dP88DCKuNHKkUZJo7XtjM+6aI4w0xLT6CzwJSg541jgWKQaqWC0uxUVFOd9MHCUxfH6KrWXuK0ajr6R0hLjsfr9fHCwfN0D4wC8MrhKgD6hsepbOmhpWeQqtZelFPPrqNvmEzz7GqxsUBRloXjlU2BdlB2Oi3dAds1JRp4/dBZCLaDctOndRwsPHWxjiubO4nTaWi3D9I/PIbff6EoVWvPAK8eDHTgtfUMIDR1IENGUnwcDR29FGZaeGnfSSzJCcuuA7FJyymi8dwxJp0O0vOK6esIFEiKN5o4vfd1mIrR1oIZMXqq+JT/ImfRWn2G9rrz5JSu5fhbL6DRx/HWk79EoVLjcU9y6t3ALKFju55n2B4o0hksVtXZUIVMLqO/q22ZNQDPnurFs4giek+dWFgbQpd2UWzuC8QYZXwy/adnxGbrjBgzVYTq4hijTkzF2deKa9jO0FRs7tj1O2RKFd6JUZx9rchkcpz97XhdEzj72xf8/cJBRI/sbs43TReZKkm7ujNQKuSXFJ/KMxvoGJpgTdaFwhg/+HDF9P+Dn5dZAw7949dc6Pm5qSzQezcy4cZsiI0tRbauLp4uLlWad/VkSKlUXFJ0Kj/TQnvvAD/4ysemP/vy3YEF7VkWEz/9h08BzFll+a+u3zj9/4uvC/CxWwOL5HcfOUdCnI6+IfcCvt386Nn/NGqjBfx+HJ219B9/BUPuGhztVSSUbmO85SxaSx5JFTfhnVGGXT9Vht3vcTF47h1cg92MeOYvX7rt2uliU8nZJVc9Xq5QXlKEKjE9jzF7B+Xvu3R9i7lgNdcVBAo1rPpAYI/NydFB9MmL2JE8wildv3V61DWzoOyqxyuUyksKT6Vl59Pf3T7rWtfccqEQw80f+dyszxKSU6YLVe2850vTx808J0iwenMskVi8ebqgRVzG/EY/Ly50obPk4hzoJOPmC+ung73Cmbdd0GnmrRf2iDWWBO450dOMYglbEIX0va87iqOtcl73DaXeDDkVFOZUzPpbUvl2ksoDxV4ybvk8AM6+9ul1x6Fkc65xushUseXqHRBKhfyS4lO5Jh2dw5N8+boLsfbzWwI2sMoazypr4Bmvz7o0ydpemMz2wsAI5Fe2XzpK8/zpbuSy6N6O6NqynOkCU6VZV9+DValQXFJ4Kj89mY6+EW5Ync8NqwOjNmXZl17r/dcG2lXmxDj+44uBve5zLEncvilwvS/dEbDbgdEJ0pLF3/5rudhSUThdYKo09+rrypUKxSUFpfIzUmnvHeTG9aXcuD5QpDPbcqFw2sVFqbIsyfzn334cgG9+8nYuZvcxgQR99M9MCFK0bst0kSlrfulVj1colZcUn0rNymegp53s0jV8snQNXKbw1LobA4WSNu28a/qzHR+9dJ/x84d2ozOI37Hw9IkeLAlq/H6otTt4RehnTYaBqh4H2/ISONs5Tp5Jy01FSYxNejnWOgJASaoea+KFXOOtmkH6HVdvY4YixmhTc5kc6Jx1rWBszth5ITbP3GYoeI3e954HWUSPnUbeyO4zR1sWtebmcmt5N+ebyDEtbVSgZ8TJbavSl3SNSOKJ1/bj8Sx8W4rg2t6tq4vJtV5awXEp1LTMXvd1y+YKUpLEdEqBBpF7tA9D7hqcPU3EZdsYqT6IPquckZrAXm5+/IF1uT7P1MZVgR6ypIodqJPmTiKrdz+NbxEjR8H1u1VvPs5gW92cf0u3XUtCWs6c589FSuGa6cR6qL1+WfbfFJt3X3wCr2fh+g2u6X37uUfoaKyhdP1WUjNzZ/1tKXQ21U7r9/q/+sSSrxdOuvcvbvQzOMW2a++TODrrLvlbYvFmdCmLm0qWXHEjnvGhJdpw6N57/xylQyJFb1pzJsaSC1XcHV2hefefPdG1uPg8Y13v5lwj2cm6JcsSpK73wraDd61NQy6P3mT3qT2nZq3znC8Xr+m9tiyHHEvSZY9fCLXtdtYWWOeVeEcDT75xaFE6vnhN75aKwpBNPa5t7eaWTTaR2zzLw8GXn1xUfA6u5933wqN0NdXCVMKckpG74LW+c9HdXIdty80kJIe27Xo5gl6ob9zNmgwDTf1ObGlxHGwaoTxNz+HmQILr9/vx+MDjYzqiTHp8vFUzyOCEG9lFq3Z7FjkzKbiGt3vvkzi66i75W2LxZrSLjM2pW+5ioqcxotuXETOy+9ThZiyJOnx+qO0Z5S+nO1iTlURV1wjbCs2cbR8iL8XAzWUWxpxujjYF1o+UpidgNV4InLuEbhwuDzqVgiGHm+PNA2zMTSZeq6S6e4Rby9N47FAz37qtlASdiv/eVU1qvJZsk57Djf18Zmsev9xTR1aynvyUOOQyGYMOF6+f68JkULMuO4m3q3roHXHybx+OrtLxj76yl3SzEZ/fT3VzBy+8e4x1JXlUNraxfV0Zp2ubKci0sPPaNYw6Jjh8LvBClOdlkpF6YQP01w+exuGcRKtRMTTq4Mj5OjavKiI+TktVYwe3b13Lwy/t4buf+zCJ8Xr+4w8vYjEZyUk3c+hMLV/40A5+/tRrZKeZKcpKQyaXMTA8xl/2ncBsjGdjWT67jpyjp3+Iz37ghhBrwY9l++UTkaQ1gZ6qxJILZdiDnwUJbkdiuf6TeF0TND/5XZhakxuXnAY+H4OtNTQceJmUorUMNFdiXX0dffVnSLTmk73xFlyOMbqrjgCQnFOGwWzF63bReuJtxvu76a48zEhXEz6Pm+HuZlzjI5x5/lfkX/cBKt94DGNGAWP2DjLX7cBSsp7qt55ivK+LzPU30vzeaxiziqb/XrvnGRKtBajjEhjr62C4swmVLg7P5AR+n5dEa3RssbXnz4+SlJqO3+ejvaGaw7ueJ9+2ntY6Adum62mqPEVaTiHrtu9kYnyUmlOBxCWrsBxTWgYe9ySnD7zFQG8n1Sffo7u1Ea/HTU9bE46xYf7yyP1cu/NDvP2n35OeW0Rfdztrtt5MYcVG3nnhcQZ6Oli99WaOvf0KGfnF03/f+9KTpOcUoo9PpK+7g57WBrR6A5NOBz6vl7ScQlZv2RFu9c2Lrr1PoU5Kw+/3Md5Zi/3oK8TnrWa8vRpj2VZGm8+is+RjCm4+Xze1+XxmYPTT53YxcPYdJge7Ga47ykRvM36vh4neZjyOUdpe/w0pm95P17tPoEvLZ3Kgk6RVN5CQv47u/c8wOdBF0qob6Dv5RqBQ1NTfew78EV1aAUpdPJMDnYFRXm0cXtcE+LzoLHlX+Wahfe8BOnf9bpbeNElpMKW3vqOvYJiht7EpvSVfRm/+Kb255tCb1zFK++u/wTwPvfWffAPdRXrTpxWguEhvPlfg3fdOjM3LLp463klavCYQn3sdvHK+l9UZ8VR3j7O1wMjZjjHyTTpuKjExNunhWEtgz+kSSxzWxAujVW9V9+FwedGqFAxPuDneMsLGnATiNUqqe8a5pdTE40c6+ebNuSTolPzPnmZSDWqyknUcaR7ivmsy+NW+VrKStOSbdchlMgYcbt6o7CM5TsW6zAT21PbTO+riB++Pnq1HHt99krTkeHx+PzVtdl48VMm6QiuVLT1ctyqPM42d5KebuHV9EaMTkxypCkxTLMtOJWPGNOM3j9cw7nSjUysZGndytLqNa0qziNdpqGrt5baNxfzhzeN85+M3khin5ad/2kuq0UBOqpH3qlr53G0buf+Fg2SnGimwmgL6HXXw6pFqTAl6NhRlsPtkPd2Do/z4C++7wjeKPB577SDppsSp9k8XL+47ybribCqbOtm+tpjTta0UZKRy6+ZVjDqcHDkfWCZQlmclI+VCx8Eb751l3OlCF2z/CI1stuUH2j9Nndx2bQW//8t+/u9n3k+iQcdPHn8VS1JCoP1zrp7Pf+B6/veZXWSnmSjMTEUulzEwPM5fDpzGnGhgQ2kubx0V6BkYxppivMI3iiz2v/gYxpQ0/D4fnY3VnNj9Ajnl6+moFyjZeD0tVaewZBdQsW0nzvFR6k8H4rO1sJxkSwYe1yTnD77FUG8ndaffo7etAa/Hg729iYmxYd58/BdsvPmD7H3+ESw5BQz2dFB+7U3kr9rIgZeeYLC3A9u1N3Hq3VdJyy2a/vt7f3kKS04hOkMiAz3t9LY1otHF4XJO4BNhL3K/Hz5xhS2Ebi0J2NKW3MB7G69VTn8W5HObLwyuPXOqn6GpdblqY0C/js5a7MdeIT43EGMS54oxUzOT4qZmJvk8LgbOBWLzSO1RJnoCMcbZ24xnYpT2N36DeeP76d77RKBmxlQMiZ+KMa7BLoy2QIyZFZsP/hGdpQClPhBjnL3NKDSB2OyfV2xeHiIm2WVmT8joJGuykmjsG8OWkcjB+j4255vYU9XDzWUW/FPrgJjqFQFwun3sEroZHHehUwfWWNT2jHJDSQr20UlUChmrMowkaFWszTZiH3Pi8fkwaJQUWeLpH58kM0lPx5CDtdlGFHIZt69K59ljgaBiMqjZXpxCVWewNyYsKloysqkpXvahUdaV5NHQ3k1FYQ77T1WxdXUJu46cZee1a/D7A2t1maHjSZeb1w+eZmBkDL1WDUB1cwc3b1pF7+AIKqWC1UU5JBh0rC/No3dwGI/Xi0GvoyQnnb6hUbLTTHT0DrC+NA+lQsGd163nidcDC+XNxnh2bLRxvqFt1n1DQUpKCnK5nNbnfkRc7pqQXfeSHrYp/U4M95FStJbhzkbM+RV0nj1Auu1aWk+8TfbGW6Y27p5ytFPfU6FSk73hZsb7Oqc+vjCCEp+aSUJ6PmP2DnSJJhIsOfg8bhLSsumpPo7P48ZcuBq/zzu1HrgFgzkdS8l6BpqFWSJmrr2eznMHZwodMn2ITdB+hwfs5NvW093SQG7JaoRj+yhbv5XTB95i3fadgc3np3qXg3akVGlYe92t9Hd3TH1+Qb/m9Ozpac3xySmkZubicbtJzcih9sxRPG4X+eXr8Hm9U2uEm0i2ZFBYsZGWmtlTliu27EA4un+GzMuimpAR7El2j/QRn7eaiZ4mDNk2hqoOkVi8mYGzezCtvilgw77ZOpar1CSv3sHk4KU2rDVnoEvNY3KgI7CZfUoOfq8brTmbkfoT+DxuDLkBG9Zbi3D2tqBJTichfx3jF00ZTrJtZ6j60AyhL6/k9PR0xrqbaXzsO8i1hpDpydFeddEnF/RmmENvg2f3kHwZvcku0tvMNc6ai/Smm0Nv8TP0NrEgvc3/+wZV3DfuYnVGPE39E9isBg41DLE5N5E9tQPcVGIKxI7p+Bw4Z9Lj463qPgYdbnSqqfjc6+CGoiTsY26Uch+rrAYStErWZMZjH3Ph8fkxaBQUpsYxMO4i06ilc9jJmsx4lHIZt5WZefZkYH1ecpyK6wuTqOwen3XfaCL4KOzD46wrtNLQ2U9FXhoHzjexpTyH3SfruHV9UcC3TdUdmB4Jcnt483gNA6MT6DSBNXk1bXZ2rC3APjSGSiFndX4aCXoN6wqt2IfHAu0frZriTDP9ww6yUhLp6BtmXaEVpULOHdeU8NSewHpTU4KeG9fkIzT3zLpvtDGr/VOcTUNHLxUFmew/XcuWikLeOipw6+ZVgdG2qfg83f5xu3njvbMMjIyjC7Z/Wrq4aWPZhfZPYRYJcTrWl+TQOzgSaP/otBTnpNM/NEq2JTnQ/inJQamQc+e2NTz5xnsAmBMN3LihFKGxY9Z9o4lg7BgdtJNTvp7e1gayiiuoOb6PonVbOXfwLSq2TcXnYNspGJ/VGlZtu5WB3mDsuPD9k6eKVA30dBCfZCIlIw+vx0NKRi4NZ4/idbvIKVuLz+cjPa8Ye3szSZYM8ldtpL1udvun7JobqTlx4BKZl0pqaioymYwfvNlCRXroav20Dk5CcBLhlP26RvqIzw3EmLhsG8NVh0go3szguRkx5iL9ypVqkit24Bq4NMZoTRloLTNic2ogxmjM2Yw0nMDvcWPIWQ3B2GxvQZOUTvwcMcZYvp3hecbm5UTmD+Mb1dbWRnZ2Ns98eSs3lkbPFJkDdXbOtQ/x1R1FdAw62PCDXbz55pvs3LlzHmcvPylmM39z9w6+9ekPhFuUebP3RCVn6lq4dXMF19z3PQ4dOsSWLVvmcebleeaZZ/jRj3+CYyJ0hUx8Ph9NDXXc9M1fU7zjIyG7LsDEcD9d5w8hV6rI3XzpGp+lMtTRQOvxt8jb8n5e+uZO/r9v/j3f+973Qn6fxdLb24vFYuHbD/yRDTfeEfLrjwz2UXX8AAqlio07Qr85emdzHaf272LzLX+FOT0LgP/46l3kpRj485//HPL7LYU0aybazfeQ+6FvhvS67tF+hqoPI1MqMc9Y6xMqHN0NDJzZg3nj+6j97d/wwa02/vCHP8yWwe3ma1/7Gnv3H8S3hO2CLmZkeAh7bw/XP7KwrXfmQ1BvcqVy1hqpUBHUmyrBRM1v/5bm5mZyci4sj5iYmECv1/PAx8q4a210rfk/0DDI+c5RvrI9mzX/cZi///b3IsqvuVwuNBoNv/67D/PxG0PX8bpc7DvXyNnGbv72gxcq1d/23T9QsfVmHn744bDKdjHHjx9n06ZNHHjw/1FREPkVY4PsPVXN2bo2/Pj52TNvMzg0FG6R5uT555/n7rvv5ufvNGNITJ7HGfNndLCf2pOB+Lz2htDH/+6WOs4d2IUlu5D7//6jnDhxgvXr1y/pmo8//jg/++lPcE44QyZnW2c3catvo/TLD4TsmkzFmOGaw4H1uyLFmMGzezBteB+tL/4Xed4O3ju0sO29QklYR3b1+kDvx+7KbtTKiFs+fFnkMhlrspI4VN/H2faAEwp+l0hEr9dx6EwN+1cVhqwXS2wUcjnrS/L4y77AWqRQ6Peee+7hnnvuCYF0F/B4PGi1WtpPvYPBHPp13dqEQACZPRIbOsz5FfQ1nsMxMhBxNqzTBZYnnNq/C12cOMVR4o2BgiKVx/Zf9djFkFe6mt72Znrbm/F4PLQ3VGHLCfXU/KUTp9czWHuEoapDIe+JVcUHbHio+r2QXjeIIWcVjs56Jnqa0Os3XXp/lYrf/e53c567FJ566inuvfdeeg+/gNoY+oRwOfTWf/INmMO/qlQqFAoFe+sGSU+IruKMChmsyYjnjUo7A2POiPNrSqUSlUrFu2cayEyJvkrHCrmcdYVWDgqBOilOl4emrn42R5iemWHXrx48zfCYI9zizBuFXM7a4mx+8cfd6PWhW98eaoL6Pbbr+XkVoVoohqn4PHMkNpRkl66h6migFk0o/MSnP/1pPv3pT4dAsgvccced7Dt7nqHKAyBXhPTaSoO4MSYue1Vgm6KWc8SVhLmzyR9GfD6f/+tf/7p/alZM1P7c8b7b/U6nM5yqvCIPP/ywXyaThV1Pi/356Ec/4ne73eFW42X5wQ9+EHYdLfWnqLjE39XVFW5VXsK3vvWtsOsmlD+JRqP/+PHj4VbrJTz++ONR7SMAv8mc4j9//vyy6WxoaMi/fuOmsH/vpf587Wtf8/t8vku+Xyz4tZKiwoj0az/84Q/DrptQ/qSmpPgFQQi3Wi/B4/H4P/GJe8Kun6X8PPjgg+FW42UZHx/337hjR9h1tNSfT3zyk36PxxNudc7Ju+++69fp9WHX0VJ+NFqtf/fu3WHVY1inMU8l23R1dTE+Pj6Po+fP9u3b+fCHP8w3vvENAF588UW+/e1vc/LkSQyG0K3b0mg0ZGRkoFCEtscl1PT19TE4OBiy67355pt8/etf5+DBg6SkBKrb3XXXXRQXF/Mf//EfIbuPVqslIyMDuTyyR/67u7sZHR0N6TXvvfdeTCYT999/PwCnTp3i4x//OC+++CLl5eUhu49CoSAzMxO1Wh2ya4YKv99Pd3c3Y2PzK6SzEGpqavjABz7AU089xcaNgS2xvvGNb9DV1cXTTz8d8vsBWK1W4uJCt2dsKBkYGKC/vz+k1/ze977H+fPneemll6bvce211/Lzn/+cO+4I3dQ0mUyG1Wpd9lE8t9tNe3s7nkVUH70Sfr+fiooK/s//+T8cPHgQuVzOb37zm5DeAyAuLo709PTptYwXI/k18ejp6WFkZCTk111uvxaud2+++Hw+Ojo6cDpDN7V0ufxaUlISZnNoKj6Lhdfrpb29HZfLFbJrOhwO1q5dy49//GPuvvtuAH7+85/z7LPP8t57oR2F1Ol0WK3WiG5jjoyM0NOzsL13r8aDDz7Ir3/9a06ePIlMJsPv97Nhwwa+9KUv8dWvfjWk97JYLCQkhLfSeNgLVAUdZSgZGhqip6eH7du3U1QUqMh48803w9R6meBnKwmz2RxSp/nMM8+QnJzMli1bphtKGzZsoLKyckXqNy0tjbS00E5lbGpq4s4775zWZ2pqYF376OjoitGxTCYjPV2cbb9OnAhMkb/99ttJSgpUQ7z22mv52c9+RmFh4WUTgFglOTmZ5OTQrrtqb29n/fr1s+w1NTWVgYGBmLBhlUpFXl7oq02Ojo7icrlYtWoVnZ2dVFVVhUVfkl8TD4vFgsVy+aqti0Xya7ORy+VkZWWF9Jqx7tcWgkKhmLXePxQcP34cgJtuumlan9dffz2/+tWvSE5OxmQyXeUKsUVCQkLIk8Wenh5WrVpFcfGFfXlXr15NT09PTNpw5HZlLIHKykB1MJvNNv1ZaWkpMpkMQRCucKbEfBEEAZvNNitw2mw2KisrQ1oEZqXS29tLX1/fLBtOTEwkMzNTsuEQIQgC6enp0w1Cpmx4cHCQ7u7usMoWC/j9/mk/MRObzSbZ8FWw2+0wVUU+JSVl+vdoR/Jr4iP5NXGR/Jr4BPU4c6ZHUN+SjkPDSrPhmEx2BUFALpdTUlIy/Zleryc/Pz9mH+Ryc7kXZXx8nNbW1rDJFSsE7XQlOaPl5nI2jBRQQ0JHRwcjIyOSDS+C3t5emBotSk1Nnf492pH8mvhIfk1cJL8mPoIgkJOTM2vJYXFxMUqlUtJxCPD5fFRVVc1pw9XV1Xi9od9/ONzEbLJbWFiIVqud9bnkjEKD2+2mpqZGCqgiIggCKpWKwsLCWZ9LNhw65moU5ufno9VqJR2HgCslNnV1dUxOToZJssjn4pHd0dHRkK45DBeSXxMfya+Ji+TXxGcuG1ar1RQVFUk2HAKampqYmJiY04YnJydpaGgIm2xiEbPJ7sUPESmghoz6+nrcbvclOs7OzsZgMEg6DgGCIFBSUoJKpZr1uc1mo6mpCYcjerZRiEScTif19fWX2LBCoaC0tFSy4RAgCAI6ne6SNa02mw2v10ttbW3YZIt0giO5ZrN5ek1rLExllvyauEh+TXwkvyY+UhteXK7UYUOMDlituGS3vb2d4eHhsMgVK1zuRZHJZJSXl8fki7LcXMmG/X4/VVVVYZErVqipqcHn80kBVUQEQaCsrOySKpexHFBDhd1uJzk5GaVSOV3tPlaSXcmviYfk18RH8mviMjY2RktLi2TDIiIIAgkJCWRkZMz6PC0tjaSkpJjUccwlu4ODg3R1dV32RWFGASuJxSEIwqwRh5lIzmjpXK4ABjMKNkg6XhpzFcAIErThMO/KFvVczoaTk5NJS0uTbPgK9Pb2TvvX4L/Rvm5X8mviI/k18ZH8mrjMVWA2iM1mw263x0THXziZq8AsUwNWsdqGj7lk93KjjkxVZJbL5TH5IJeTyzl7pvReVVUlVWReAj09PQwMDMyp4/j4eLKzsyUbXiKCIJCRkYHRaLzkbzabjeHhYTo7O8MiWyzg9/uprKy8op+QbPjy2O326RHdWBnZlfya+Eh+TVwkvyY+Qf2VlZVd8jdp9Dw0XK0NH4v6jclkV6FQzNo7KohWq6WgoCAmH+RycrUXxeFw0NzcvOxyxQpX6rAhhp3RcnI1G0YKqEuira2N0dFRyYYXycxkV6vVEh8fH/Uju5JfEx/Jr4mL5NfERxAE8vLyiIuLu+RvRUVFqFQqScdLwOv1Ul1dfUUbrqmpwePxLLtsYhKTyW5RUREajWbOv0vOaGm4XC5qa2ulgCoigiCgVqspKCiY8++SDS+dKzUK8/Ly0Ol0ko6XwHwSm/r6+pioMCwGM6cxMzW6G+0ju5JfEx/Jr4mL5NfE50o2rFKpKC4ulmx4CTQ2NuJ0Oq9owy6Xi/r6+mWXTUxiLtm90hQTpIC6ZOrr6/F4PJfVcWZmJgkJCdK66CVQWVlJaWkpSqVyzr/bbDaam5sZHx9fdtligYmJCRoaGi5rw3K5nLKyMsmGl0BlZSV6vZ6cnJw5/26z2fD5fFLl0sswc2SXqXW70T6yK/k1cZH8mvhIfk185tOGl2x48VxpTfTMz2NNxzGX7F6pV4ipB9nZ2cnQ0NCyyhUrXK1nU6rIvHTmY8OAVLl0kVRXV+P3+6VOMRERBIHy8vJLKpYGkWaAXB6/3x+zI7uSXxMPya+Jj+TXxGV0dJTW1lbJhkVEEASMRiPp6elz/j01NRWTyRRzOo6pZHdgYIDu7u55BdRYe5DLhSAIpKamYjabL3uM5IwWz5UqlgYJFm6QdLw4rlSxNIhUuXRpXM2GjUYjVqtVsuE5GB0dxeVyzRrZTUlJieqRXcmviY/k18RH8mvicrVRx+Df+vr6otofhpPLVWIOEqsVmWMq2Z2Psy8uLpYqMi+BYM/mlSgvL5cqMi+S7u5uBgcHr6hjg8FATk6OZMOLRBCE6en2l6O8vJyRkRE6OjqWVbZY4GoVS4NIM0DmJtiImzmym5qaGtUju5JfEx/Jr4mL5NfERxAEZDIZpaWllz1G2qZsacynDS8luxGOIAgolco5KzEH0Wq1FBYWxtyDXC6u1rPJ1IsyMTFBU1PTsskVK1xtmniQWHRGy8V8bRgpoC6K1tZWxsbGJBteJMGk9uKR3WhOdiW/Jj6SXxMXya+JT7ASs16vv+wxhYWFUkXmRXK1SsxBghWZ3W73sskmNjGX7BYVFaFWq694nOSMFofL5aKurk4KqCIiCAIajeayFUuDSDa8eObTKMzNzUWv10s6XgQLSWwaGhqkyqUXcbmR3bGxMSYmJsIo2eKR/Jr4SH5NXCS/Jj7zsWGVSkVJSYlkw4ugoaGBycnJedmw2+2OqYrMMZfsXu0hIgXURVNbW3vFSsxBMjIySEhIkHS8CARBoLS0FIVCccXjbDYbLS0tjI2NLZtssYDD4aCpqemqNhysXCrZ8MIRBAGDwUB2dvYVjwtWLq2url422aIBu92OTCbDZDJNfxYc5Y3W0V3Jr4mL5NfER/Jr4iO14cVlIR02xNiA1YpNdru7uxkYGFgWuWKF+b4osbrAfTlYiA0Tg+XhxaaqquqqFUuDSDa8OIJrgi5XACOItPZqbnp7ezGZTLMSw+Aob7QWZZH8mrhIfk18JL8mLsPDw7S3ty/IhqVCawtDEASSkpJIS0u74nEpKSmkpKTElA3HTLIbrM62kIAaSw9yORAEAYvFMmvE4XJIAXXhzKdiaRCpcunimE8RuyDB/fykgLow5mvDRqORjIwMyYYv4uI9donykV3Jr4mP5NfER/Jr4jKfSsxBbDYbAwMD9PT0LINkscPVKjHPJNba8DGT7M531JGpiswKhSKmHuRyMF9nz9RzqK6uxuv1ii5XrNDZ2cnw8PC8dBwXF0deXp5kwwtEEASys7OJj4+/6rE2m43R0VHa2tqWRbZYwOfzzatiaZBYC6ih4OI9dpmR7EbjyK7k18RH8mviIvk18REEAblcfsVKzEGkAavFsdA2fCzpN6aSXZVKRVFR0VWP1Wg0FBUVSVOlFshCXxSn00ljY6PocsUKC+mwIQad0XKw0AYLUkBdEC0tLTgcDsmGl8BcI7sajYaEhISoHNmV/Jr4SH5NXCS/Jj6CIJCfn49Op7vqsQUFBajVaknHC8Dj8VBTU7MgG66trcXlcoku23IQU8lucXExKpVqXsdLzmhhTE5OUl9fLwVUEREEAa1WS15e3ryOl2x44SykwyY7O5u4uDhJxwtgMYlNY2MjDodDZMmih7lGdplatxuNI7uSXxMfya+Ji+TXxGchNqxUKiktLZVseAHU19fjcrkWZMMej4e6ujrRZVsOYirZne9DRAqoC6ampgav1ztvHaenp2M0GiUdLwBBECgrK7tqxdIgNpuNtrY2RkZGRJctFhgfH59XxdIgcrmc8vJyyYYXgCAIxMfHk5mZOa/jbTYbfr9fqlw6g7lGdonivXYlvyYukl8TH8mviY/UhheXxXTYEEMDVis62e3p6aG/v19UuWKFhb4oUkXmhbMYG0aqXDpvqqqqYAE2jBRQF8x8K5YGkSqXzsbv91822Y3mkV3Jr4mH5NfER/Jr4jI0NERnZ+eibFgqtDY/BEHAZDLNOWtoLoLHxooNx0Sy29vbS19f36ICaqw8SLERBIH09HSSkpLmfY4UUOeP3+9f0LorgNLSUmQymaTjeRLUU7Di63wIVi71+XwiShY7LDSxSUhIICsrS7LhKYaHh3G73XM2SKJxZFfya+Ij+TXxkfyauCx0MCV47NDQEF1dXSJKFjsspBJzkFhqw8dEsruYF6WoqAilUhkzD1JsFursmVGR2ePxiCZXrNDe3s7IyMiCdKzX68nPz5dseJ4IgkBubi4Gg2He59hsNsbHx2ltbRVVtljA5/NRVVW1KD8h2XCAYDIbKyO7kl8TH8mviYvk18QnWIm5pKRk3udIA1YLY7Ft+FjRb8wku2q1msLCwnmfo1arKS4ujpkHKTaLfVFcLhcNDQ2iyRUrLKbDhhhzRmKzWBtGCqjzoqmpiYmJCcmGl0AwmY2VkV3Jr4mP5NfERfJr4iMIAoWFhWi12nmfk5+fj1arlXQ8D9xuN7W1tYuy4bq6OiYnJ0WTbbmIiWS3srKSkpISlErlgs6TnNH8cDqdNDQ0LDqgSmuvrk5lZSV6vZ7c3NwFnRecjiZxdRbTKMzKyiI+Pl7S8TwI6mgxfqK5uZnx8XGRJIserjay63A4okpPkl8TH8mviYvk18RnoUsdABQKBaWlpZINz4P6+nrcbveibNjr9cZEReaYSHYX4+yRkt15U1NTg8/nW7COLRYLycnJko7nQbBiqVy+sFfSZrPR3t7O8PCwaLLFAmNjY7S0tCzYhmUymVS5dJ4IgkBCQgIZGRkLOk+qXHqB3t5e5HI5ycnJl/wtmABH0+iu5NfERfJr4iP5NfGR2vDispQZNsTIDJCoT3b9fv+SXhS73R5VjYdwEDT0YIXB+SJVZJ4/S7FhpNHzq7LY3nmkgDpvFlMAgxmFdSQdBxJZk8k05zY9wanN0RSvJL8mLpJfEx/Jr4nL4OAgXV1dS7JhqSLzlREEgZSUlDlnDF2J5ORk0tLSYsKGoz7Z7e3tpb+/f8GJGFJ5+HkjCAJWqxWj0bjgc6Xe46sTrFi6GBsuKSlBLpdLOr4KQf2UlpYu+Nzy8nKpcuk8WGxiEx8fT3Z2tmTDU/HscltDBBsq0VKkSvJr4iP5NfGR/Jq4LHYwJXjO8PAwnZ2dIkgWOwS3zloMsdIpFvXJ7mKH55mqyKxSqWLiQYrJYp09U8+lpqZGqsh8Bdra2hgdHV2UjnU6nVS5dB4IgkBeXh5xcXELPtdms+FwOGhpaRFFtljA6/UuqmJpkFgJqEvlcnvsApjN5uljogHJr4mP5NfERfJr4iMIAgqFYkGVmIPE0jRbMVlqGz4W9BsTya5araagoGDB56pUKqki8zxY6ovicrmor68PuVyxwlI6bIghZyQmS7VhpIB6RZqamnA6nZINL5Erjeyq1WqMRmPUjOxKfk18JL8mLpJfE59gJWaNRrPgc/Py8qSKzFfB5XItqhJzEJvNRn19fdRXZI6JZLe0tHTBlZiDSM7oykxMTCyqEnMQKaBeHUEQ0Ov15OTkLOp8yYavzlIahZmZmSQkJEg6vgKhSGyam5sZGxsLsWTRxZVGdomy7YckvyY+kl8TF8mvic9SbFihUFBWVibZ8BWoq6vD4/EsyYa9Xi81NTUhl205iYlkd7EPEWmB+1Wprq7G7/cvWsepqamYTCbJGV2B4HqKhVYsDWKz2ejs7GRoaCjkssUCIyMjtLW1LdqGpcqlV0cQBIxGI+np6Ys6P/hsqqqqQixZdHGlkV2m/Gk0jexKfk08JL8mPpJfE59QteEl5iYUHTbEwIBVVCe7S6nEHMRms9Hf3x81DYjlZinFA5AqMs+LUNgwMeCMxGIpFUuDSDZ8ZRZbsTSIVLkUfD4ffX19MTWyK/k18ZD8mvhIfk1c+vv76enpWbINV1ZWSgNWl0EQBFJTU6drPiwUo9GI1WqNehuO6mS3u7ubwcFBKaCKiCAIZGZmkpiYuOhrSAH18vh8vkVtqD4TqXLplREEAZlMtqiKpUFsNhtVVVVS5dLLsNTExmAwkJubu6JteGhoCI/HExMju5JfEx/Jr4mP5NfEZamjjsFzR0ZGaG9vD6FkscNSbZgYacNHdbIbihelsLAQtVod9Q9SLEL1otTW1uJ2u0MmV6zQ2trK+Pj4knSs1WopLCyUbPgyCIJAfn4+er1+0dew2WxMTEzQ1NQUUtliAa/XS3V1tRRQl0hwxDYWRnYlvyY+kl8TF8mviY8gCCiVSoqLixd9DWnA6spIyW6AqE92tVot+fn5i76GUqmkpKQk6h+kWITqRXG73dTV1YVMrlghFB02xIgzEotQ2TBSQJ2ThoYGJicnJRteIvNJdoMju5E+ZU/ya+Ij+TVxkfya+AiCQFFREWq1etHXyM3NRa/XSzqeg8nJSerq6kJiww0NDTidzpDJttxEfbJbWlqKQqFY0nUkZzQ3DoeDpqYmKaCKiCAIGAwGsrOzl3QdyYYvTygahVarlcTEREnHcxDKxKa1tZXR0dEQSRZdBKcnX2kac0pKCk6nk/Hx8WWUbOFIfk18JL8mLpJfE59Q2LBcLpcqMl+G2tpavF5vSGzY5/NRXV0dMtmWm6hPdpf6EJEqMl+WqqqqJVViDpKSkkJKSorkjOYgWLF0sQUwgthsNrq7uxkYGAiZbLHA0NAQHR0dS7ZhqdDa5REEgeTkZCwWy5KuE3xGwcI7Kw273Y5CoSApKemyxwQT4Uhftyv5NXGR/Jr4SH5NfELdhpeYTag6bIIFaqNZx1Gb7IaiEnMQm83G4OAg3d3dIZEtVlhqJeaZSM5obkJpw0S5MxKDUFQsDSLZ8NwstWJpkLKyMmQy2YrVcW9vL2az+Ypb9QSnOEf6ul3Jr4mL5NfER/Jr4mK327Hb7SGzYaki86UIgkBaWhrJyclLuk5iYiKZmZlRbcNRm+x2dnYyPDwsBVQREQSB7Oxs4uPjl3wtKaBeis/no6qqKiQ2XFxcjEKhkHR8EYIgIJfLl1SxNIjNZqO6uhqv1xsS2WKFUCU2er2evLy8FWvDdrv9iut1iZKRXcmviY/k18RH8mviEqpRx+A1xsbGaG1tDYFksUOobJgYaMNHbbIbyheloKAAjUYT1Q9SDEL9otTV1eFyuUJyvVigubkZh8MREh1rNBqKiookG74IQRAoKChAq9Uu+Vo2mw2n00ljY2NIZIsFPB4PNTU1UkANAb29vVdcrwtgMpkgwkd2Jb8mPpJfExfJr4mPIAioVCqKioqWfC1pwGpupGT3AlGb7FZWVqLT6cjLy1vytRQKBaWlpdKaiotY6j6JM7HZbHg8Hqki8wxCORWNGVN5JC4QahtGWns1i4aGBlwul2TDIWA+I7sqlYrk5OSIHtmV/Jr4SH5NXCS/Jj6VlZUUFxejUqmWfK3s7Gzi4uIkHc9gcnKS+vr6kNpwY2MjExMTIbnechO1ya4gCJSVlV1xfdNCiPZei1AzPj4ekkrMQaSet0sRBIH4+HgyMzNDcj3Jhi8llD2baWlpJCUlSTqeQShn2ASv09bWxsjISEiuF0309vZeNdklCvbalfya+Eh+TVwkvyY+obRhuVxOeXm5ZMMzqKmpwefzhdSG/X5/1FZkjupkN1QPEaki8yVUVVVBCJ29yWTCYrFIzmgGoSqAEcRms9HT00N/f39IrhftDA0N0dnZGTIbliqXXoogCJjN5qtOv50vK3mUyW63z0uPwb12IxXJr4mL5NfER/Jr4iNWG14iQCgLzBIDFZmjMtkNVmIO1UNk6kEODQ3R1dUVsmtGM0GDLisrC9k1pZ632YTahqXR89mE2tkj2fAlhNqGS0pKVmTlUp/PR19f37wa19Ewsiv5NfGQ/Jr4SH5NXHp7e+nr6wt5sltZWYnP5wvZNaMZQRBIT0+/4lZ2CyE+Pp6srKyoteGoTHY7OjoYGRkJ+YuCFFCnEQSBnJwcDAZDyK4p9bxdIJQVS4MUFRWhVColHU8RrFhaUlISsmtKlUtnE+reeb1eT35+/oqz4cHBQbxeb9RPY5b8mvhIfk18JL8mLmJ12IyPj0sVmacItQ0T5W34qEx2Q72eAiA/Px+tVhu1DzLUiPWi1NXVMTk5GdLrRiNNTU1MTEyEVMdqtVqqXDoDQRAoLCwMScXSIDabjcnJSRoaGkJ2zWjF7XaHtGJpkGgOqIslOC052qcxS35NfCS/Ji6SXxOfYCXmwsLCkF1TGrCajZTsziZqk129Xk9ubm7IrhmsyBytDzLUiPWieL1eamtrQ3rdaESMDhui3BmFGrFsGCmgAlBfX4/b7ZZsOAQER2oXMrIbifUlJL8mPpJfExfJr4mPIAiUlJSEpBJzkOzsbAwGg6RjwOl00tDQIIoNNzU14XA4Qnrd5SBqk91QVmIOIjmjAGNjY7S0tEgBVUQEQSAhIYGMjIyQXley4QuI0Si0WCwkJydLOhY5seno6GBoaCik141kFjqyOzk5yejo6DJItjAkvyY+kl8TF8mviY8YNiyTyaS151NUV1eHtBJzkGBF5mAB22giapPdUD9EpIrM04R6n8QgycnJpKWlSc5IhIqlQWw2G3a7PWLX9C0XAwMDdHd3ixJQpYZ3AEEQSElJmddo5EJYiZVL7XY7SqUSo9F41WOD+o7Ed1zya+Ii+TXxkfyauAQLzIrZhl/piLEmmiivyBx1ya7f7w/phuozsdlsjIyM0NHREfJrRxNiVGIOIjmjAGI6e6LUGYUSsXrnkWx4GrFsuLS0FLlcvqJ0HNxjdz5JYnD0NxLX7Up+TVwkvyY+kl8Tl56eHgYGBkSz4aqqqhVfkVkQBDIyMubVeboQDAYDOTk5UWnDUZfstrW1MTo6KgVUEREEgby8POLi4kJ+bSmggtfrpbq6WhQbLioqQqVSrXgdC4KAQqGguLg45Ne22WzU1NTg8XhCfu1oQqxGoVarpaCgYEXZsN1un/dIUqSO7Ep+TXwkvyY+kl8TF7E7bBwOB83NzSG/djQhlg0TxW34qEt2xXxR8vLy0Ol0UfkgQ4nYL0p9fT1Op1OU60cDjY2NOJ1OUXSsUqkoLi6WbFgQKCoqQqPRhPzaNpsNl8tFfX19yK8dLbhcLmpra6WAGiIWkuyaTCZkMlnEjexKfk18JL8mLpJfEx9BEFCr1RQUFIT82tKAVQAp2b2UqEx24+LiyM7ODvm15XI5ZWVlUfkgQ4nYL4rP56OmpkaU60cDYnbYEMXOKJSIbcOs8IBaV1eHx+ORbDhE9Pb2zqs4FYBSqSQ5OTniRnYlvyY+kl8TF8mviY8gCJSWlqJUKkN+7czMTBISEla0jh0OB42NjaLacHNzM2NjY6JcXyyiMtktLy8PeSXmICvdGY2MjNDW1iYFVBERBAGj0Uh6eroo15cKrYnbKExNTcVsNq94G0bkxKarq4vBwUFRrh9pLGRklwjda1fya+Ij+TVxkfya+Ihpw1JF5kAlZr/fL3obPtoqMkdlsivWQ2TqQVZWVq7YgCpWJeYgRqMRq9W6op2RWBVLg9hsNvr7+yOuMbxc9PX10dvbK7qfWOk2bLFYMJlMolx/pXWKLWRklxl77UYSkl8TF8mviY/k18RFzErMQSQbFqcSc5Bg4dpo03FUJbs+n0+0SsxBbDYbo6OjtLW1iXaPSEYQBGQyGaWlpaLdQ3JG4jt7otAZhQqxe+eRbFh0Gy4pKUGhUKwIHXu9Xvr7+2NiZFfya+Ih+TXxkfyauHR1dTE0NCS6DVdVVeH1ekW7RyQjCAJZWVkkJCSIcv24uDjy8vKizoajKtltbW1lfHxcCqgiIggC+fn56PV60e6xkgOqx+MRrWJpkMLCQtRq9YrVsSAIKJVKioqKRLuHzWajtrYWt9st2j0iGbEbhRqNhsLCwhVhwwMDA/h8vqge2ZX8mvhIfk18JL8mLsvVYeN0OmlqahLtHpGM2DZMlLbhoyrZXY4XJScnB71ev2I3/hZ75Jyp59fY2MjExISo94lEGhsbcblcoupYqVRSUlKyom24uLgYtVot2j1sNhtut5u6ujrR7hGpuFwu6urqlsVPrAQbDiat0TyyK/k18ZH8mrhIfk18Kisr0Wq15Ofni3aP4PNbyTqWbPhSoi7ZjY+PJysrS7R7yOXyFb3Afbl6hVZqRebl6LAhSnveQsVy2TArdAZIbW0tXq9XsuEQEUxaFzOyGym1JSS/Jj6SXxMXya+JT7ASs0KhEO0eVquVxMTEFaljh8NBU1PTsthwS0tLVFVkjrpkt7y8XLQCGEFWqjMaHh6mvb1d9BcluHB+JepYEASSk5OxWCyi3mclVy5djkah2WwmNTV1xdowIhbACGKz2eju7mZgYEDU+4SbxY7sut1uhoeHRZRs/kh+TXwkvyYukl8Tn+WwYZlMtmLb8FVVVaJWYg4SjaPnUZnsik15efmKrMgsdiXmIImJiWRkZKxIZ7ScHTYDAwP09PSIep9Iw263Y7fbl81PrFQbTktLIzk5WdT7rJROsd7eXlQqFYmJifM+J5gYR8q6XcmviYvk18RH8mvishyVmIOs1GQ3+J2DFZPForS0FJlMFlU6jppk1+fzUVVVtWwvytjYGK2traLfK5IQBAG5XC5qJeYgK9kZLZcNswID6nJNp0SyYdHvU1xcvCIqlwb32F1Iohic8hwp63YlvyYukl8TH8mviUtnZyfDw8PLZsPV1dUrriKzIAhkZ2cTHx8v6n30en3UVWSOmmS3ubkZh8MhBVQREQSBgoICtFqt6PdaiQHV4/FQU1OzLDZcUFCARqNZcToWBAGVSiVqxdIgNpuNuro6XC6X6PeKJJarUajRaCgqKop5G17oHrtE2Miu5NfER/Jr4iP5NXFZ7g4bp9NJY2Oj6PeKJJbLhonCNnzUJLvL+aJkZ2cTFxcXVQ8yFCz3i9LY2IjD4ViW+0UC9fX1olcsDaJQKCgtLV2RNlxcXIxKpRL9XjabDY/HQ21trej3ihQmJyepr6+XAmoICY7sLoTk5GTkcnlEjOxKfk18JL8mLpJfEx9BENDpdOTl5Yl+r5U8YCXZ8NxETbJbWVlJQkICmZmZot9rpVZkXu4Xxe/3U11dvSz3iwSWs8OGKHRGoWC5bZgoK9KwVGpqapalYmmQlWDDixnZVSgUmEymiBjZlfya+Eh+TVwkvyY+giBQVlaGXC5+2pGWlkZSUtKK0vHY2BjNzc3LasNtbW2MjIwsy/2WStQku8tVACPISnNGQ0NDdHZ2LtuLshKLNAiCgMlkWnDDdrGstMqly1kAA8BkMmGxWFacDbPMiU1vby99fX3Lcr9wsJiRXSJor13Jr4mL5NfER/Jr4rOcNrwSKzJXVVXBMtswUdQpFlXJ7nI9RGZsmuzz+ZbtnuFkuZ19QkICWVlZK8oZBW14OTtshoaG6OrqWpb7hZve3l76+/uX3U+sNBu2Wq0YjcZlud9KmI62mJFdZuy1G24kvyYukl8TH8mviYvf76eyslKyYRFZrkrMQUpLS5HL5VGj46hIdpezEnMQm82Gw+GgpaVl2e4ZToKVmIuLi5ftnivRGS2nDa+00fPl7rBBsmHRKSoqQqlUxqyOPR4PAwMDUT+yK/k18ZD8mvhIfk1c2tvbGRkZWZats4KUl5dTXV2Nx+NZtnuGE0EQyM3NxWAwLMv9dDod+fn5UWPDUZHsNjU1MTExsezOnhUWUAsLC5elEnOQlRRQ3W43tbW1y2rD+fn5aLXaFaNjQRBQq9UUFhYu2z2DlUsnJyeX7Z7hZLkbhWq1muLi4pi14f7+fvx+f9SO7Ep+TXwkvyY+kl8Tl3B12LhcLhoaGpbtnuFkuW2YKGvDR0WyG44XJSsri/j4+Kh5kEslXC9KU1MT4+Pjy3rfcFBXV4fb7V5WHa+0yqWCIFBSUoJSqVy2e9psNrxe74qoXOp0OmloaJACaggJJquLGdmNhGRX8mviI/k1cZH8mvgIgoBeryc3N3fZ7rkSB6wkG748UZPsJiYmYrVal+2eMplsRVVkDteLwoyF9bFMODpsiDJntFTCacMrQcfV1dX4fD7JhkNIcBryYkZ2U1NTsdvtYS3UJPk18ZH8mrhIfk18lrMScxCLxUJycvKK0PHo6Citra1hseGOjg6GhoaW9b6LIWqS3eUsgBFkpTijgYEBuru7l/1FWUlrrwRBICUlZVEjOEthpVQuXe6KpUGSkpJIT09fMTbMjPd2ubDZbPT19UXE+tRQs9SRXY/HE9aGhuTXxEXya+Ij+TXxCYcNr6SKzMGKyOHqFIuGisxRlewuNzabjaqqqpivyByu3nmDwUBOTs6KcEbhtOGRkRE6OjqW/d7LSXd3N4ODg2HT8Uqx4czMTBITE5f1vrE8ymS321Gr1cTHxy/43OBocDgby5JfExfJr4mP5NfEJRyVmIOsJBuWyWTLVok5SElJSdRUZI74ZNfr9VJdXR22F2ViYoLm5uZlv/dyUllZiUKhWNZKzEGCWzzFOuF09kRJz9tSCFfPJisooIbLhgsLC1GpVDFpw8FthxYzayk4mhrOdbuSXxMXya+Jj+TXxKWtrY2xsbGw2XBNTU3MV2SurKwkLy8PvV6/rPfVarUUFhZGhQ1HfLLb2NiI0+kMa0CNdYcvCAJFRUVoNJplv/dKCKgul2vZK5YGycvLQ6fTxbyOBUFAo9FQUFCw7Pe22WzU19fjdDqX/d7LSbhG8VQqFSUlJTFpw3a7fdFTgMM9siv5NfGR/Jr4SH5NXMI1czB4T7fbTX19/bLfezkJlw0TRW34iE92w/miZGRkkJCQEBUPcimE+0Vpbm5mbGwsLPdfDurq6vB4PGHRsVwup6ysbEXYcGlpKQqFYtnvbbPZ8Pl81NTULPu9l4uJiYmwVCwNEi0BdaEER3YXQ1JSEgqFImwju5JfEx/Jr4mL5NfERxAE4uLiyM7OXvZ7r6QBK8mGr0xUJLtGo5G0tLRlv/dKqcgczhclWBQilisyh6sARpBocUZLQRCEsOl3JRRaq66uxu/3h1XHsViQaCkju3K5HLPZHLaRXcmviY/k18RF8mviE7Th5azEHCQ1NRWz2RzTNjwyMkJbW1tYbbizszPiKzJHRbIbjkrMQWI9oPb399PT0xO2ZDe4oD6WdSwIwrTTDQfBddGxGlDDVbE0iNFoxGq1xrwNE+bEpr+/P+Yqly5lZJcw77Ur+TVxkfya+Eh+TXzCacOsgDZ8ONf1E0Wj51GT7IaLYEVmr9cbNhnEJJzTxJmqyJybmxvxL8pSiAQbHhkZob29PWwyiElXVxdDQ0Nh13Gs23BWVhYJCQlhuX+0BNSFspSRXaZGLsI5shvud07ya+Ii+TVxiVW/FsTn84WtAFiQlWDDMpmM0tLSsNy/pKQEhUIR8TqO6GTX4/GErRJzEJvNhtPppKmpKWwyiIkgCCiVSoqKisImw0pwRuG2YWI4oIa7wwbJhkWnsLAQtVodUzp2u90MDAxE9chuuN85JL8mKpJfE5dY9GszaW1tZXx8POw2XFtbi9vtDpsMYiIIAvn5+cteiTmIRqOhsLAw4m04opPdhoYGXC5X2F8UYjygFhcXo1arwyZDLAfUyclJ6urqwmrDOTk56PX6mNWxIAhotVry8/PDJoPNZqOhoYGJiYmwySAm4W4UKpXKmKtc2t/fDzO2EFoM4RrZlfya+Eh+TXwkvyYukdJh43a7qaurC5sMYhJuGyZK2vARnexGwotitVpJTEyM+Ae5WCLlRWltbWV0dDSscohBbW0tXq83rDqWy+UxXWgtnBVLg9hsNvx+P9XV1WGTQSwcDgdNTU0R4SdiyYaDSWo0juxKfk18JL8mLpJfEx9BEIiPjycrKytsMqyEASvJhq9OxCe7ycnJWCyWsMkgk8mi4kEulkh5UZix0D6WiIQOG6LEGS2WSLDhWK5cWlVVhd/vD7uOgzYcKwWJgknqUkd2+/r68Pl8IZTs6kh+TXwkvyYukl8Tn2Al5nAVmAUwm82kpqbGpA0PDQ3R0dERETbc3d3NwMBAWOW4EhGf7IazEnOQWA2odrsdu90e9helrKwMmUwWkzoWBIG0tDSSk5PDKkesVi4Nd8XSIImJiWRmZsasDRPGiqVBbDYbg4ODdHd3h1WOUBGqkV2v18vg4GAIJbs6kl8TF8mviY/k18QnEmyYGG7Dh7sSc5BoGD2PimQ33NhsNqqrq2OuInOk9M7r9Xry8vIi+kVZLJFkw2NjY7S2toZblJDS0dHByMhIxOg4Vm04JycHg8EQVjmiIaAuBLvdjlarJS4ubtHXCCbKy71uV/Jr4iL5NfGR/Jq4+Hw+qqqqJBsWEUEQkMvlYavEHKS4uBilUhnROo7YZNftdlNTUxMxL8rk5CQNDQ3hFiWkCIKASqWisLAw3KLEtDOKFBsmBgNqpHTYINmw6BQUFKDRaGJGx8E9dpcycyk4BXq51+1Gik1Ifk18JL8mLrHm14I0NzfjcDgiQsc2m426ujpcLle4RQkpgiBQUFCAVqsNqxxqtZqioqKItuGITXbr6+txu90R86IQowG1pKQElUoVblFiMqA6nU7q6+sjwoazs7MxGAwxp2NBENDpdOTl5YVbFGw2G01NTTgcjnCLElIipVGoUCgoLS2NGRte6h67hGlkV/Jr4iP5NfGR/Jq4RFqHjcfjoba2NtyihJRIsWGioA0fsclupMxFB0hLSyMpKSmiH+RiiLQXpb29neHh4XCLEjJqamrw+XwRoWOZTBaTlUsFQaCsrAy5PPyuLBYrl46NjdHc3BwRNkwUBNSFEBzZXQpGoxGlUrmsI7uSXxMfya+Ji+TXxEcQBBISEsjIyAi3KDE9YCXZ8PwIvye9DIIgTFdRCzexWJE5UgpgBInFisyR1LNJFDijxRBJNhyLlUurqqogAm04FgoShWJkVyaTkZKSsqwju5JfEx/Jr4mL5NfEJ1IKzAIkJyeTlpYWUzY8ODhIV1dXRNlwb28vfX194RZlTiI62Y2Uh0gMBtTe3l76+/sjRselpaXI5fKY0rEgCFitVoxGY7hFgRmVS5d7mxKx8Pv9VFZWRowNx8fHk52dHXM2zFTF9EjAZrMxPDxMZ2dnuEVZMqEY2SUMe+1Kfk1cJL8mPpJfEx+pDS8ukdjpSAR3iknJ7jyx2WzU1NTg8XjCLUpICI6ghrvsfhCdTkd+fn5MjexGUoOFqWftcDhipnJpe3s7o6OjEaXjWAuolZWV5OXlLalicCiJpRkgoRjZZWrd7nKO7Ep+TVwkvyY+kl8TF6/XS1VVVcS0L5nyE7GiX6ZsRaFQUFJSEm5RACgqKkKlUkWsjiMy2XW73dTW1kacs3e5XDFTkVkQBNRqdURUYg4SawE1EjtsiOCet4USaT2bSDYsOnl5eWi12qjXscvlYmhoKGpHdiPJJiS/Jj6SXxOXWPFrQZqbm3E6nRGl42BF5snJyXCLEhIEQaCwsBCNRhNuUQBQqVQUFxdHrA1HZLJbV1cXMZWYg8RiQC0pKUGpVIZblGliKaA6nU4aGhoiyoazsrKIj4+PGR0LgoBerycnJyfcokwTrFw6Pj4eblFCQqQ1ChUKBWVlZVFvw8F1TdE2siv5NfGR/Jr4SH5NXCK1w8br9cZMReZIs2EivA0fkcluUFmRNAUiNTWV5OTkiH2QCyUSX5Ty8nI6OjoYGhoKtyhLprq6Gp/PF1E2HGuVSyOpYmmQ4PMOFkCJZsbGxmhpaYkoG2ZKx9Fuw8GR2Ggb2ZX8mvhIfk1cJL8mPoIgkJiYiNVqDbco08TigJVkw/MncrzpFHV1dTzwwAMkJSVF1L5uQ0NDZGRk8OKLL7J///5wi7MkfvWrX3H69GlUKhVerzfc4kwTlOWv//qvI0quhTIwMMB3v/tdgIgqmuJ0OklMTOTAgQM899xz4RZnSbzwwgvs27cPo9GI0+kMtziX8E//9E8RW5VwPvh8Pr74xS8CRFSdAp/Ph1Kp5MyZM/ziF78ItziLwuv18sMf/hCAY8eOLfl6KSkp9PX1ie4zJb8mPpJfExfJr4nPwYMHef7558nMzGRwcDDc4kwzOjqK2Wzm17/+ddRvo/Wd73yH7u7uiKve7fP5sNvtfPOb3wy3KJfijzBef/11P+CXyWT+H/3oR+EWZ5rnn3/eD/gB/3//93+HW5wlcdNNN/kBv0Kh8A8MDIRbnGmuv/56P+BXKpX+8fHxcIuzaOrr66dt5XOf+1y4xZnm7Nmz03J95StfCbc4S+LrX//69Hc5depUuMWZ5ktf+tK0XFVVVeEWZ9FMTEz4VSqVH/Bv3bo13OJMMzw87FcqlX7Av3379nCLsygmJib8Go3GD/hvvPHGJV/vhRde8AP+3t7ekMh3OSS/Jj6SXxMXya+Jz/333z9tK3/84x/DLc40P/nJT/wymcwP+F9++eVwi7MkMjMz/YDfbDaHW5RZpKWl+QF/WlpauEW5hIgb2b3xxhuRy+UkJibyd3/3d+EWZ5oPfvCDlJaWAnDnnXeGW5wlsXbtWgC+8Y1vkJSUFG5xpvnf//1fZDIZWVlZ6PX6cIuzaAoKCoiPj0elUvGDH/wg3OJMU1FRMW27W7duDbc4S+K6664D4Lbbbpu250jgX/7lX1Cr1cTFxUVMlcTFoNVqp9cM3n///eEWZ5qEhAS+/e1vA7BmzZpwi7MotFotGzduBOAnP/nJkq8X3MfyjTfeWPK1roTk18RH8mviIvk18Xn/+98PU9V577rrrnCLM83f/u3fkpSUhEwm4+abbw63OEsiOH35l7/8ZbhFmcUDDzwAEbYEdZpwZ9tzcf/99/uPHDkSbjEuoa2tzf/9738/3GIsmcHBQf+3v/1tv9frDbcol/DQQw/59+zZE24xlswzzzzjf+mll8ItxiWMjY35v/nNb/o9Hk+4RVkSHo/H/81vftM/OjoablEu4ZVXXvE/9dRT4RZjyezbt8//29/+NtxiXILX6/V/5zvf8ff394dblEXT2Njof+CBB0JyrWAvv1ar9ft8vpBc83JIfk1cJL8mPpJfE59//ud/9re0tIRbjEs4fvy4/+c//3m4xVgytbW1/h/+8IfhFmNOfvSjH/mrq6vDLcYlyPyRNulbQkJCQkJCYl7867/+K//yL//Ctm3bOHDgQLjFkZCQkJCQiCikZFdCQkJCQiJKmZycZOvWrfz4xz9m586d4RZHQkJCQkIiophXsmu326NyOxi73X7JvnDJyckkJCSETaYr4ff7sdvtOBwO5HI5aWlpqNXqcIt1WdxuN93d3Xi9XnQ6HampqdPrxyINn89Hb2/vrAqX8fHxmEymsMp1NQYHBxkeHp7+XalUkpaWFlH7Iwfp7+9ndHR0+neZTEZqaio6nS6scl0Jj8dDd3f3rMqcKpWKtLQ0FApFWGW7HDP9mkajwWKxRNQ2JRczNjY2XcE1Gvyay+Wiu7t7uuKwyWQiPj4+3GLNyUzdBtHr9aSkpESsL/b7/fT29jIxMTHr88TExIiqIXExAwMDjIyMQIS3I4JMTEzQ29uLWq2OeB/BDF/s8/ki3kcAjI+PT2/5Fck+Yiajo6P09/cDYDabMRgM4Rbpssxss0VyuyfIxX4t0mWOtvzocqhUKjIzM6+q56s+hd/85jd89atfDaVsEjGCQiHH642cLSgkJBaKTC7HH0HbqMQkMhlE0QQimVyB3xcdW59FmWollhGFXI43inybXC6PqC2troZcJsMXZS+fTCaLuO1qJCSWyrbrtvPmG68TFxd32WOuOrKblprCmlQFX74hn8jsJ74Ur8/PPQ8e4d5PfZrPf/7z4RZnXrhcLnbu3MmnbrTx0a2RX+3w3fOt/M/Lx3n0Z/9Mekpkj4529tj57P/5N771qTu4aaMt3OLMmy/8++/xppVT8uF/CLRqI5jDP7mXOzYW8aUPbAu3KPPmRE0r//z7V/nU//1vrPml4Rbnqvi8Xn72tQ9hvvbDpG6/J9zizIuW536EfHKMDV/4ETJ5ZI6Uz6T9yGvUvv4QH/nXx9DGG8MtzhV553c/QGuv5Md/VYQist3DNE63l3sfPcd9n/9rPvTRj4dbnHnzlfs+zqpUNV/fuSrSXTEAv95dyamOcR7+739DE+EjpACHjp/mX372K37zn/9MQW52uMW5Kj++/0Hqaqr5+Rd3olJG9oh5kH964l08fvjxF96PXB7ZRtzVP8KX/vuP7PzsNynZfFO4xbkq7kknv/mHu7Hc+ClSNn8o3OJcEb/Xg/CzT1K442MU3Rwd7YgrMdLVxMEH/pEXX3yRD37wg5c97qoju46JCbYW5NDcN8691+aEWs4r8uThljnv6fP553xZB8dd/NsrVfzjrUV4fX527tzJDTfccNnrd3Z24vF48Hg85OfnT3/+0EMP8cUvfnH63/ni8/kumSpkt9v513/9Vx544AF+/vOfo1Qq+eAHP8gf//hHUlNTYcYwPMBNFdlsK8uc9z3nJ9fc+jrfYudsi52KnBTsww5ePdHAzz4XcCw//OMh7tiQz/qCtDmvWd81hFwu42N3XrmEe2dPHx6vF6/XS16WdfrzP/zpFT730fdP/zv/7zKHjgeG+PcH/sDPv/+P/OrxP+P3+/ncR9/P3iOn6Lb3Mzw6BsAd29aysSz/kmuerm1hbXEOtS1dFOekz1uWuQheazHfY2jUwcEzNQyMjLO2OIdxp4uMks2k2EKfQPp9PmRzTGtrO/A8cpUGrTGVoaazxFlySVsXeMbnn/4R1k23k1y4/pLzvG4X168p5LqKglmfP/bGEe67ffNl5Rgam2Bo1IHL46U4KzUk3y3IXDqemHTz7V+/wP98/W7sgwG72HTbXRgSk0N678vdH6Ct5hwt1WfILl3N+UNvo9JouPWTXwPgz7/4V9btuJP8VRsvOc/lnMDv82K03UBiyZYFy9Oz7yks139y+vfeA8+SsuVuZIr5TbOay2b8Pi/dex5FplCStuM+AJqe/mdSt99DXGYZcpWGJGselortl73uxEA3Pq8Hv8+DwZI7/XnD7icouOVT0//Ol7nkdPR3Mdh4Bs/kBHEpmfTXnaTg1vs4+fvvsvGvf0rD7ifQm6xoEs1oDUZKrgvd9nJdtWcwJKdy5vUnEd55Aa/HveBruCcn8Pt9KNVa5HIFk45R3GND3FmaSMvABPduss7jKqHjyWOdc97zsrHZ4eaHbzTw3dsC/vemnbezdfvs2PzkIw9z72e/cNl7Dg8NMTQ4gMvloqgktJ1Tc72rLU2NvLN7F0ZjEh6vly1FFraVzB0Pl3bvuXVW3TnE8UY7a3NNnGrqI9ts4IaygM7/6Y/H+MS2Qsoz5p72/eTBeoryTNx6/cL9xNXlnduvVdY2cPjkWTauttHe1U11fTPf+HLAJ/zTTx/gr269kU1rV815za7ewHTgj/3V7cSFeNvBy8l7trKGU+erWGsrRa/X8Yenn+dH3/1HAL71rz/lsx//EKtKi+a85i8efoKyTBM3Vlw+1ncNjuH1+vB4feRaLnScPf7OWT69Y/X0v/P/HpfaSd+Ig//88yH+83O38F51O88drOJLt63jUFU7xjgtd20t5fP/+zIP/u37USsVVOSks331pW2gUHG5mPudB//Cf3/tgygVCg6ca6S5Z4Cb1xWTbpp7yqzQ3A1AxfV3kmPbcNn7Ddu78Ho9+LwezBl5058feulRtn7wM9P/LkX+0cE+3njoP/jo//kvGk4d4viuP3H9R79M/akD6OONbNj5ER78ViBpTKq46ZLY3L3vKdJmxN2L8TiG8YwN4fO60acXzlvW+TBXLBxvrwa/j4x1N5K2avZWbbW7nqB45+Vj7eTYMK6xQbweN8bMud+NUMrqmZzg8IPfZevXfkrL4dfwTDqwlF1DQno+51/8FcasEvK2f4iDD/wjDofjitef92Ty/jEXTx5uYV12Enuqe1EpZBg0Su69NocnD7dQ3TXKF7bn8ecTHdy3NYeUeA0/eb0as0FDRWYib1f1kJ9ioHNoghuKU8hPieNNoYfqrlFK0+Px+f10DTm5rsg8fezYpIdnj7Xx/tXpxGmUvHG+GxmQmqDFbFBT1xNorF5bkIxereTdGjvrs42YDZppuR9++GGsVitxcXG8/fbb3HLLLbz88suYTCZWrVqFxWJh3759FBUVsX//fr7yla/M+t5PP/00LpeLwsJCXnzxRb761a/y29/+lnvvvZfVq1fT0tLCkSNH0Gg03HTTTRw9ehS3243VamX16tWkpKRM75dns9k4evQoAwMDDAwMYDQaWbNmDV1dXZw4cWK+jwKAPx6o4lRjL1+7Yx1vnmqia2CM9QVpVLX3s3NtLqtzUzle30XPkAONSsHmYitH6zoBKMs0YU2OZ1VOCudb+zAn6CjJSKat78J6y0xzPPaRiStIcIFHnnuF9FQzcTot77x3kh1bN/DqnoMkGxOwFeWTak7iwLEzFOZmcvD4Wb50z+zel2df2Y3b7SY/J5O/7N7PX3/iQzz07Evc84GdVJQU0NLRzbGzlWjUKm7cvIHj56pwezykp5qpKCkgJdnImrLAizfpcjHhnMTr9eGeWodZWd80fa+fPfka5kQDW1cX88TrB7CYjIw5nGjVKo6cr+fw+Xp0WjXZFhPvnKiioiCTO69bx5/3HEWv1RCv19LS1YdSqcA56SI/IxVrShJ/evsoluQE7IOjaNUq/vCXfXz2/dsZm5ikqqmD++7cTv/wGO8cr0SvVbOxLI+mTjsj406M8Xo2ledjjNdTmmvlTF0rFYVZLHQqReu+PzHYcJqi93+FrhO7mBjoJqlwHSNt1aSvvxVjXgUDtSeYGOpBodJgKt1Mf81RABKyStGbrMgUSsZ7mjGk5zPcUok+JWv6+npzJpPDfVeQAJ7YdZTOvmG2VuQjNHVhHxqbTngfe+MI/SPjXL+mkLp2Oyfr2vjQdas5UdtKvE5LY2cfDqcLrUbFofONmBPj+IePBjpfvvXL5ynISCEhTsvHb1rPU28dp7V3EINOTWZKEjIZ3H3DOgZGxnnnVC06jZqNJdk0dfUz6nBiNOjYWJqDTqPiWlsgKJ6qb1uYgoFDrzxNs3CSnZ/+Omf2vc5Qbxd5qzbQUV/J6utvJ6d0DQ1njzLc14NKraFw3RbqTx8GIKOwnGRLBlklFbTWnCU+KQW3yzlrHqopPYvRAfuC5WIqeXV01qHPKEaXVshEVx0yhQpHZw3mzR9mrOUcGmEfk/0dqI0W/H4/js5a+o+9giFvDePtVSSWbmO8+SxaSx5Jq2/C65pg4OSbKDR69JmleBwjuEfsyFUaEku34h7pQ2vJwzXUMy2HxpSBZ7R/lmwNbz+JLikNpVZPz7n9WCqup/P4m6jjk0jMKkVrTMFeeZj49DzsVUco2Dm7gdJy4Hl8HjeGtDw6jr5O4W2foX7X4+Ruvwtjro1xexv9dSeRK9VYKrbTX3cSv9eDLsmCMdeG3pTOxEAX7olRzCWbGG6rQanRYS4NdMToTVZ87kl8Htecuj316mN4Jp2kFa2mu+4MBZtvpXrvy+Ss205vo0DehhsZ7Gik9uDrxCWlkL16K02n9pK3/kbqDr2ONj6JvX/4EUnrbkebmjvnPa6Edo7fB4+/DHgYGHfz5LFO1mUm8E5dPyq5nDiNgns3WXnyWCc1PeN8fksmz5/u5tPXZJASr+Y/32rEbFCzympgT80A+WYdnUOT3FCUTJ5Zx66qPqp7xim1xOHzQ9fwJNsKjNPHjk96+ePJLu60pQRic6UdmUyGJV6NOU5NnT2wFmxzrhG9WsG7dQOsz0qgb+yCfp9+/BG6Otq5dtt2Ks+fo9/eO53wPvnIwwz097Hthh001NVy+sRxPvDhuzl14hgGQzxNjfU4xh3odDreO7gPkzmFr38jsE/p//ePX6egsIj4xEQ+cs+9PPvEo7S3tqA3GMjMzEYmk/Ghj36cgf5+9u3ZjU6vZ/3Ga2huamB0dASjMYn1mzZjMqeQaknjxLHDC35efzzcwOmWfr56Szm7zrbTNeRgXa6Z6s4hdlZkUJFt4nijnZ7hCbQqBZsLUzna0AtAqdWINSmOAksCu8+3o1cruaHMSpN9ZPr6Gclx9I86ryDBwnjy+Vc5cVbg77/4aV57ex8dPb1sWmNDqGngjpu3s9ZWypFT5+jutaPVaNi6cS3vnTgDQHlxAZnpForysnnjnYPE6XXs2HYNDS3t09fPzkjH3j8QOnn//BeOnxH4h7++j1d376Wzu5dNa1ch1NRzx83Xs3ZVGUdOnqW7145Go2HbpnUcOn4aAFtJIZnpFlaXl3BGqCHFlMy+w8cpzLuQuGZlpM1L3ifeOUdaUhx6jYp9Qis3rMrhjRP1JMXrKMs0k5Ko573qdvLTkjhc3c5nb5m9d/KfD1Xh8njJtyTx2vE6PnfLWh7Zc4aPbivHlp1Cm32YEw1dqJVKttuyOdnQhcfrIy3JgC07BXOCnorcQCfxltJMzrf0kmFKINUYx/H6TsyJelbnWRal4//64zvsWFvInlN1+Px+1hdlMunysL44k4dfO0JhhplP3LSegREH75yuR6dRsbEkKxBzJyYxxunYWJIViLnlF3yeMV6PYWScvpHxyya7M3nv5cdINKej1umpPbaXkk03cm7/a8QlJpNeUE58cgoNpw6RklVAw+lDbLtr9mzOE28+h8fjIiUzn7N7X+G6u7/AwRf+wMbbPkZG0SoGulr5/9l77/C4rvPO/zu994LeO3tToUh1q1iW5Y1LYseJ7DhWEsd2vLtOsrvZzS9l17uJW2zLRZbVSJEU1QtJkWLvvaMDRO/TMJje5/fHxaARIFHmAHPp9/M8emxi7hy8uPOd77nnPec9p7P+IsQSGSo3PICuhkuIx2LQmbORV7ECGoMZeZUrAQBla+9D3406GLLyoDVlobPuAjRGC3LLV6DuxF4AwNCJNxEZ7oe26l74exoR9TjGBryDx3cg5nVBV7MJwcE2+DquwXTX0/C1X4FIrkZoqAPxSABCiQKelrOQaEzIf+rbAIC21/8BiuxSiBQaWDd+AUOn3kLY0QuRXAWZMQ8QCGC553OI+lxw15+AUKqApnQtQvZOxIM+iJU6aMrWQaweT+y3HnwDfmc/spdvhKuzAaERx9iAt2X/NoQ8LuSs2oyRvhtwtF5F8aZn4Gi9DIlCDe9AB6KhAMRSOQYbzkCuNWHVF/6G+8xe+G/Q5pVBqtSi7KEv4sahnfDZeyGWK6G25AMQoPSBP0DI40L/1WMQyxSwVK2DZ6AT0aAPMpUOlqr1EMsUyFrG9dHRoA+l9/8Bus/tgzanFCpLPiIBL+LR8Kz0POvBrkktxf2VFjT2eyAAIIAARpUU++u5DEx1jgZquRjZOhmudA8jTz++KU0imYRJJUORSYlYPIFCkxKhaAJn25x4pMaKRBIYCUSwKl+HfINi7Fp/OIZ4PIlYgnsYrMnRoGnAi2QyiUQSYz9P4Q1FccPmgy88OXMuEAjgcDiwYsUKtLW13fS3JZNJeL1eFBUVoaeHewC+du3a2HtTtSSrV6/GiRMnsG7dOhw9ehSrVq1CdnY2zGYzfD4f4vH42ExxqvbE7/fj+vXraGhogFqthkwmg1wuR25uLmKxGLRaLS5fvjx2mPxsCUXj0KpkYwPUJIBgJIaVRRZoldxgvyzbgGFfeLSuJIlYPDn693JtfHCuBYOjs1sHr3bisTVFcHgCiMYTsGqVqO924Im1JTOFcPM9Hh7BssoSdHT3T3+P/QEU5mahd4Dr1K833bjpHq+qLsepi9ewZlkljp+7gpVVZci2GGE26OALBBFPxBGLcf+N3eNAELXNbWi80QmhUAiTQYfGtk4IhQJ09w+idMKMslmnxkPrl+FKcydyLAb024exoqxgrLZJr1HCPuyFNF+MPIsB2WY9akcHRakNXwQTsqvnG9rxnx5cj3uWl6F70IHiXAviiQSWleSipiQP//jC2/jSo9yXVa9WIs9iwLDXj3giiXgigVh8/O9wur348bY9+PPPPYT3jlxAIjG32pp4NAyJSouAPfWQkUQiEoK+eAUkSq5TUeeWIuIfRjKZAJJJJOOx1AfEtREJQpNXgaBrAJrccvht3Qh7HEjEYpDrLRjpakDO+pl3fI3G4lhTkY+iLCPqOwYgEABGrQp7z9WP3kPuunA0Cp1KDpVCxol3lFTmujLfCpFICMeID9FYHKvK8gAAxdlGfHy2Ad5gGIVWAwqzDCjJNePYlVYAgE6lQK5Zj2FvAPFEYvQeJxAfvZeJRAJ1Hf2oarUiFJnHDFskDKVGB+dAz+htSyISDqKwehWUau4eZxWVwz8yjMToPU5MuccX9r8Ht53zTZFIDKFIhBGnDYl4HFqTFT0tdVj9wKfnHJtQKoembB2Grx2CIqcCEHBZUrmlCKr8agglcsRDoxtSjH4QUY8D6pLVCA51QFWwHCNNp6CtvAfu60dgWPUIhBI5FKOD2WQiDiTiSMZjSI7OBku0ZoQG2yEQSxCydUKsMUFmLoS/pxG6msmeJhAIEPa4oCuohm+o8+Y/IJlENOiD0pKPgKMPADDcWZ96NyDg6qv1xcthbzwHY+lK2OpPQ1+8HHK9FTKNEbGQH8lEHMlEnJstHr3nnr4b6Dj6Jsof/xo8fa1wdzUgGvDC3VmP4bwKKAxZcLZcQjTgxSRBToh9POssmHQPJXIlOi8fgy5rPDEUGHHCWlyD4f4OKPVmBNxckqjs6z+CRL2wVQTBgRtQ5JQj2HUNQBuMKgkeKDegYdAPAQTcd04lwf5G7ndWZamgkYmQpZXhSq8HefrxoXMyAZhUEhQZFIjGkyg0yLm+uWMEj1Qaub45GMWqPA3y9fKxa/1hH2KJCX1zthpNQ34kkkkkksmb+mZfKIYbjgCkE9ZbRyMRrFq7DoXFJWioqwUEAhhNZuz/eNek+xsOhaDV6aBSqyfVG6ZmYCoqqyESi+Gw2xGLRbFyNTegKCouwSd7dsHn8yK/sAgFRUUoLi3HiSOHAAA6vR45eXlwDw8jnoiP9d/xOFevLZVx/eiyFauQiM+thjscjUOrkKLXxX3fkkgiFI1hZYERGgW3rLgsSwu3n+ufk8mb++emfjdMajmG/WEMuoNos3lQaNbArJah0KxGQ98w7q9e2EqkFKFwGDqtBt19A0gFEQyFsWZ5FbQabhOjipJCDLtHkEgkuHhHk8mpz6ShtR0mox7OYTd+8tstePLhTbA7hxGNxZBlNuJ6YyueevSBNMUbgV43Hm9yNN7Vy6uhHd0oqqK0CK5bxPvOrk8wMGRHLB5HIBhCQ0sbmts6kWM1o7ggD7WNrXh408yrklIIBAI4vUHU5JvRMXTzRq7JJOALRpBv1qLPySUs6rq4ZyABBGO1v8uLrDjT3IvVxVk42dCD5YUWWPUqGDVK+EMRJBKJsZni1LOBPxRBfbcdTb0OhCIxrCnJhkzClYssL7Bg2BuE0xNAj8OD4Bz7O6tejXUV+Thd34le+8jY3xqLJ2DWqVCUxfmYTiVHrlmLYW8Q8dG+lutzuecars8dQGW+BTKpGDqVHEKBAM09NqwsmaV+BQL43U7klNXA0ddx08vJZBKhgA/GnEK4h7i+o6+ldvS9gGC078irWIm2q2dQULUaNy6f5Aazpiyo9SaEA34kRvsNru/g4g8H/ei/UY+B9iZEw0EUVK+BWMp5Q275CvhHXPCPjCdGkvEIVMWrIB/tByEQQKI2wnV1/9jfAgCJaBgipRYi2eQ6U8Fov63IKYdAKELU40QiHoWqiFsVIbcUwXV1P+IhH2TmfMhN+ZBnlcDdcAIAIFbqIDPkIOp3j/aFCa7PTnIeJpSMlzXEYxGYylZDnVUIV2cDAECmNaL7/Cdj9w6jz5ZSlRYShWqSB6f6RH1eBQQiMUIj3LOiqZRLDmiyi9B9fh+iQR/UlnyorQXQ5JRg4NpxAIBUpYPKnIOw141kPDEWa2J0z4xkIgFXRz30+RWQyFXoOPUhrNV3w9VRB6XBiqGG86N99iwkdLuaXa1Gje8/UoS/eqjsVpdNy0zLkFkTjMRR8t8/xrZt2/DVr371ptfnujx5MRgZGYFer8cr3/00nrl7bssD9l1ux8CwH3/26Epm8U1ly+E6/N2WI/A3HJv29bkuT2ZJXXMb7vrcn+Hwb/5h2mXMrPAFQnh970l86wufmtf7y7/49zA99A3UfOlv5/xebmZ3AKWPzX4Jz0L44I/z8KO/+hz+/DP3zeLqzOCjU7V49gdb8POjnfNaxnz12F64bf146EszL71MJ5FQEN/amIWK556HZePnF+V3LpS6H34RBksuNn7v1ze9NtflyYtB4we/RPOHv8T3P7w5KTobruzZirWfefamnzcd34V3//lr2PDzOkjUc99xeOjYNiQTccizShB29CI4cAPuq/vwRHYQv/7y3PchmGkZMmuc/ghW/uAUXtv5Hp58+plF//3zZVmhBd96oBjfe3Lufewn13sw4A7g6w8s3l4c3371JPrjGhx6+5U5v3fPwePoH7Lhua9+kUls0/HmR/vwte/9T7iazsx5GfPuA0fRP2jDX/zpHzKLbypfeu4/I2Trwht/d7MPz3V58mLx5D/tQFVRDp7/bub3HfWdg9j8vefx/VcOT7uMea7Lk1njczvxD0+Uovq7r8C09omlDueWxMMBnP1WBR78/gsofSDztXA7oiE/tv1RCXbs2IGvfOUrM17HdE/sqQPd1iEvKrK4rNvgSAgqmQgaueSm940Eo3j/ch+UUhH+8K4COHxh/OSTFvy/L6zE2XYn3rvch39+ZhmU0vmFP5eBblNTE6qrufqg/v5+qNXqabfmdrvdeOONN6BSqfDss8+is7MTb7zxBv7wD/8QZWVzTxTMhSfXcQO41n4XKnK5h/aBYR/Ucgk0CtlN14/4w3j3TDNUcgn+aHMNbCMBXLwxgFAkjuIsHc409eEPN1XDopt/7cxsB7rN7V2oKuV00j/kgFqlgFZ9845qbo8Xb+05BJVCjq/+pycBAC9sfw+VJYVoausaq9NVKqYu+EsvE+t6BxxuqBQyaFU3H63j9gbwzuFz0KnH7+GL7x9GRUE2VlcW4v974R388u+/zizOibOv3r5WaPK4BErQNQixXAWJ8uZjEiL+EfSeeh8imRJFD/4hgq4BDLdfRzwcRMGmxdl0oaXHNla7O+Ac4e6v8ubP1O0L4t1jV6CUS/GVR7n61t/tOoWKfO7IlUvN3fjO5x+EVMLO4tY8yM2+DnS0IKekEgAwbBuAXKmCQn2zRwS8bpzb+w5kCiXu+yxXw3P4zReRXVSBnpY65JZWYeVm9uekBgZujNUGRYYHIZSrIFbcrIdYYASOcx9AKFXCuulLCA61w3vjEoRSOWSGHHjbryD38efmHcdsB7qevlZoZ6nfrpPvQyxTouShP5xUp6vOLoa94SyKH/wi5DrLvGO+HWs/8ywc3S0wF3J68DoGIFXMvEPkXBGMptoVOeXw1EoAzK7UZCpTB7qtNj8qrFycg54wVFIRNPKbvzsjwSg+uGaDUirCl9Zlo90RwKVuD+QSIQoNcnxw3YY/vy8f+Xq2PgwArc1NY7W7gwP9UKnU0EzTN4+43Xj/7Z1QqlT4wz/+U3R3deKDt3fimc9/CcWlbPtmAHhiVQFaB8ePjxt0B6CSicdmeCfFGojgvQsdUMrE+KN7yzAwHMC1bieCkRhEQgEEAgEeXpYL9TTPTeniM5/iZl+b2zpQVcat7OofskOtVIzN8k7E7fHirY/2QalQ4E++wPX7L2x9CxWlRWhoaYNYJMKfffk/QS67+VkkHTz92EMAgKYbHaguH4130Aa1Sjl9vCMevPnRPqgUCvzJFz8LAPjNlp2oLC1GffMNiMUifOPLn4dcPr94ZzvQbelzojKP29xzYNgHlUwytipvIiP+EN493QSlTIIvP7ActhE/LrYOIBSJwe0PIc+kwUMriyBj2NdNirvXjsp8zkMHnB6oFNJp++gRXxDvnLgOlUyKLz+yFgDwuz1nUZFnxkNrFlabOtuB7lBnC7KKOS8esXNePFPffGn/O5ApVLj7KW7AdPzt3yGrqBwiiRQ3Lp/C41//PoSMjyOc2DeHhwchukXfbD/3AUTT9M1SQw587VdgvudzkOrSuw/KVNy9rWO1uwHnIMQKFaTT9M1h3wg6TrwHsUyJ8kf+CH7nAJw3uL45FvIDQiFyVm6GJovd5nTMvx2vn+lCPJFEqUWFHlcA2891w6SSYV2RHrk6BTRyCS50uOANxaBXSrCuyIDWIS82lZtwoXMYAGBWy7AijxPovaUm1Pd55j3QnQ0vvvgi4vE4Kioq0NnZiZdeegkWiwX33HMP8vPzodVqcfr0aXg8HhgMBtxzzz1obGzEww8/jNOnTwMAFAoFsrKyYLPZmA52txyuQzyRQFm2Ht0OD14/Wg+zVoF1ZdnINaqhUchwvmUA3lAYeqUc68uz0dLvwv3L8nG+lVsCZNUpIRYJIRYlUJGjx/4rHZCK2X2pX37zI8QTCZQX5aOrbxCvvr0bZqMed69ahrxsC7RqFc5croXXH4Beq8Hdq5ehqa0LD96zFmev1AEABu1OKOWcwabqdCWMzjN7ddcx7h7nZaF70IEte07ArNdgQ00Jci0GaFUKnKu7Man+trl7AA+sqca5em6GaMg5AqWce7g5dKEeG5axnWHuOPg6kok41Nml8Nt70Hl4O6RaE4zl66Aw5UKi1MDZfAHRoBdSlR7GinXw9rXCsnwTnC0XAAAKI1fnGAv4mMb62t6z3P3NNaN7aBhbPzkHs06F9VWFyDProVXKca6hc1LtbUvPEO5fVY5zjdxy2CGXBwoZ9wB4/6oyXG3thYShho+9+yoS8TiyCsvg6O/G8fe3QGMwo3TlBhisuVCotbhx9RyCfg9UWj1KV96F/vZmVN/1AG5cOwcAGHEMQSrnkiHGnHwE/V5EI2FIpOl/KBw8ug1IxiG3liDs7IXt+A6INSZoStdCasiBWKGB58aFSbU9wf5WaKs3wXvjIgDA13Ed5rs/C/vZD6Ap34BAf0va40xx48BWJBMJaHJK4Lf1oO3gdsi1Jhgr1kE5ql9HU0q/Opgq18PT24KsFZvgaOL0O7FOV5tbjv5LByAUs9mZ9vLu15CMJ2DML4V7sBtX97wOpd6MvJr10FgWPoOqrdoId+1hyLNKoVvGbfblOvceAM9t3zsT2873I55IosSsQM9wCDsuDsCkkmBdgRY5Ohk0cjEudI3AF45BpxBjXYEOrfYA7ivV42I393uv9Xnx2ZUWvH/NhtX5Wlzs9jAd6L7+yu8Qj8dRWl6Onq4ubN/yMkxmC9ZtuBu5efnQaLW4cPb0pNrb1uZGbHrgIVw4dwYAoJArYLZmwWG3MR3sbj3Rwj37WDXocfqx7WQrTBo51hebkWNQQqOQ4nybDb5QFDqlFOtLLGgZHMHmqmxcGK3fzTEoMeAOwBuK4FjjADZWZCESiwNgM9h9acd7SCTiKCsuRFdvP17d+QHMJgPuWrMC+dlZ0GrUOHPpGrw+P9c3r12JphsdeHDjBpy5dB0AMGh3QDGadK6pKMXFa/Xo7h1AZdnca9VvG+/2d7hnibF434PFaMBda1ciL2c03otX4fH5YdBpcPfaVaPx3oWzl7ga3kGbYyxJvqyyDBev1aGrbwBVDOLdcugap4lsA3ocI9h2tBYmjQLry3OQa9RAq5ThfEsfvMEIdCo5NpTnoKXPhc3LCnBhdM8Vq04FsUgAsUiAPJMG4WgM/lCU6WD3tU/OI55IoizHhG7bMF4/cBEmrQobKvORa9ZxfXRj16Ra3eZeO+5fWYrzTV0AgKFhL5QydkmaFKfefxWJRBzWgjI4B7px5sMtUBnMKF6+AfrRvrn9+jmE/F4oNXoUr9iAoc4WVK5/AO3Xub7Z4xyCVM5NYlgLK9B45iCzEzEGj25DMhmHwlqCkLMXQ8d3QHKbvjnQ3wrdDH2ztnwDfB1XIZKzOfe5+ZOtSCbi0OaUwmfrQcuBbZBrTbBUrofKnAOpUoOhxvOTam9HeluQvXIzbKN9s8qUg4BzANGAF96gFyGXHWLZzZNG6WTR9kxPyaTCqoZFIxuroQOA+GiNT+pn5VY1Tt1wQiQUoL5vBP5wDA39XjQPenGtx43VBbrFiXlU3NXV1cjKyhqr+QBwU31PdXU1jhw5ApFIhGvXrkEoFMJgMKCurm5RY63INcCiVU46/zaeTCAWH7+/FbkGnGjohUgoRF2XHX1OL2KxBCKxBBp7XNCrZPAEZ1f0nY6Yq0qLkGUyIjahLiqeSCAWi4/d36rSIhw7dwUioRDXm26M1udyNbmpOl3XyPwf/OYSb2VhNqwGLWIT7/GU+tvKwmwcv9oEoVCA2hs9aOzsh0AgQM+QE15/CE2d/fD45zcrM8egAQDq3ArIdRYkJ9zjZKr+crQ+QpNbDnv9KQiEIrg76+Htv4Guo29Cpmc3EzY51PF6XYteM1nDU2pvK/OtOHH9BkRCAWrb+9HUPcTpwTaMf92yFzlm3ehDIfOgAQA5xZXQmqxITPCI8fof7u/IKalE04XjEAqF6GmuRV9bI1fvNdADvTkbjr4uBH1sNZyKV5FTDqnWPF6zzQU8qbZHkVMOT9MpCIRC+LvroS5aAceF3RDJlAgM3IC/pxGx4OzqZRYQMABAm1cOmd6CZOLm+5s6J1mbV4GhulMQiEQY7qwfq9OV6ywY6W6CVKVDNLA499dUWAGVwTJer71AFNllyHnsOchMeWlpbyKpvrncooRFLZ1Ub5tIpPrm8WtOt7shEgL1Az6szNVgd50dKqkIdm8EWZrFOeYmNcNdUVkNizUL8fjMfXN5ZTVOHT8KkUiE+tprEAiF0OsNaGqon7H9tMaa6puzdbBq5IhNOEs2kUhO7puztDjZzPVpdb0u3Bgcwc4zN2DRKlCZo4cvFMWAm32/MebFZcWwmo2ITfDSeDzB3d/Rv6OqrBjHzlyESCTE9YYWNLS0c17cNwC1SgmZVIKSwvTrdrp4q8pKYLWYpo83nhi75tiZCxAJRbje0IyGljYIBUJ09/VDrVJCKpWilHm83P9W5Bph0anG6rUxenQmV5ebGLvmZEMPhEIB6rps6HN6EB19XsvSq2AbCYztvcKaMS3nmWHVq6c8A02u1a3Mt+BEbTtEQiFqOwbQ1G2DUChAj/3mumZGwQIArMWV0Bqtk7w4GR/tm0effbKKKtBy6TiEIhH6Wmox0N4IgVAI12APBtobIFOqEA0z/t5N6JslU/rmqXW3ypxyjEzom1UT+ub+/b+DQCxBMj79ZovpjlefVwGF3jptvKn7q8uvwGDtSe6edtRhpPcGbhzeCbnewk3KWPMRHB6a8VelA+Yzu/eVmXCo0YYSiwr3V07/0Hxv6eRzWvVKKb6+aXJW7Qefn37LehY89NBD+Pjjj1FRUYFHH53+aJ377598lIbBYMC3vvWtST/7gz/4A6ZxAsCmmjwcvNaJ0iw9HlheMO01G6smG7deJcc3PjV5qU2eaTwLdHdleja9mIkH7l6LfcfPoKwoHw9vnH5b+c0bVk/6t0GnwV98ZWnOL9u8pgr7z9aiLN+Kh9bXTHvNfasqJ/3boFHhm597eJEivBnzsvswdOUQ1DklsM5w7Iu55t5J/5aq9Sh9fPLS6rXf/HemcQLA5pVl2H+xEaW5Zjy4Zvp69ftWTJ4J12uUS1ofXLVhM2pP7kdWYRmW3fPQtNdUrpscn0prwMN/OHMJRcXa9B8TkkJXvRHD1w9DkVUK/bLp9aCtnLwZi1ilR/bDk5eLKSYcjVD61f/NKFrAunwTBi4fhCanFNmrpt/UxrrsZv1WPDFZvxueG9evufouRtECRas3o+3cARjzylCy7ubj7mxtizOwmgsbS/U43OxEiVmJ+8unr1m/p2TyWcN6hQRfu3dyf1JuGS/VeHol22Vz993/IA7t34uS8grc//D0ffO9mybrW28w4OvPTT5l4aln2PclmyqzcbCuF6VWDR6YYSOpeysm75SrV8nwZw9Oru394R9zOp/pmKF08uC967Hv6CmUFxfgkU13T3vN5rvXTvq3QafFX/zJl2Zs89517OpXH9i4AfsOn0R5SSEe2Tz9ZlKb75l8VJ5Br8Vf3qK+9971q2d8baFsWlaAg1c7UJZtwIMrpt/PZmP15KMn9Wo5vvHY5F2c8ybsYrymNP3HYU1l84pSHLjUjNJcEx5cPf1qiPuWT35m16sV+PNP336Dr3RTsf5+1J/aD0tBGarumr5vLls7uW9Wag24/wsz980ztZMOZtM366bpm3Om9M3pPrZoJrJXbELvpYPQ5pYid/X0fXP28sl9s0ytR/Wn/2zSzzb+1Q8BAMbiZQyjHYf5YLfMqkaZ9ea6iUymsrISlZWVs7hy6SnPMaA8h30nmE4qSgpQUTL9wDwTqSjIRkUB+w4lnWhyy6DJZV+Plg7K8y0oz1+c2eN0kV1Ugeyi9J4zxxJFdhkU2fzQAwBoc8ug5Yl+AcBUUA5TQfoeNgYOvgx5VgmS8Rg8LeeQ/dCfon//ixApNFAVLofMkIuQvQtYwARUmVmJMnN6zzRlTVlFJcoq+NE3l2VpUZa1OA9y6aKitAgVpYu/qeh8qSwtRmVp+pcbs6I8x4jynPSf6c6a8jwzyvPMSx3GrLAWlsNauDgDv3TAt75Zl1cGXR5/4k2xaMuYp3LqhgMdo2fxzYbmQS+eP3QD59qdONJkw9+/fR3drgB+cbAVnY7Zt7NQjh49ihs3bsz6+mvXruHVV1/F1atXsXv3bvzoRz9iGl+Kk429aJ9mG/yZaOhx4CcfnEcymcTHF9vw0oFr6LKNYMfxBrx1qgm/+vgyDl6b5riQNHH83JVJ5/LdjutNN7D13Y9xrbEVB06cx3f/6cfo6h3Aj367De3dfbhU24T//u+/Qnc/26URKU5caUJb7+x/V2NHH7bsPj52rNFiYq8/Bd/gzdv3z8RIdyOa3v0PJBMJNL77U3QcfJ1pfBM5cf0G2vtvfbbvROo7BvCjNw4CAP73lr1o73egtr0f2/afx/W2PoaRAk0XT2Coe/a7+Pa21mPX77js5rvP/wva67j6m7f+439hqLsNtacOYO9rP2MWb4qRptMIDs1eD/7eRvTs+hmS8RhcVw+gY+c/I2TvRtfb/5dpnBMZqjsF78AcNNzThLaD2zDcWY+Bq0dw4bd/xzS+haIsWAZP81nueAlTPsKufqgKV0BuKYJxzePcQJcBp9uH0eEMzPr6d64M4oNrQ6gf8GHruT68dLoXnc4gnj/ahU5nEFd7PXjhRPek83VZcer4UXS0zb5vBoDn/vTL8Hm9+NXPfowdW19lFttUTjUPot02+yX1Tf1ubDvZirpeF14/0YJjjf3ocnix61IXDtez9TUAOHb2Ito6Z99XXW9owZa3P8K1hmb8bvs7+NWrb6CrdwAvbH0L9c1z+4zmy7EzF3Cjs3vW119vaMaWtz7Atfom7Dl4DD954TXUNrbg1Z3v4b09B5jGCgAnG7rRPjg86+vrumzYfrQWtZ02/O6Tyzh4tR19Tg9e2n8FjT3zO6t9PpysbUf7gHMWV3LUdw7ix28dQSKRwI/ePIzXPjnPNL6JtF46AXvP7PvovpZanN21Db0t13Fg63/g6M7foK+1Dmc+2oorhz5gGivm0zd312PoxJvwddfBdfUAevf+BlGPE23b/ifTOKcyUHsKnoH2WV/v6mzA1bd+imQigatv/gTNn2xNe0xpndl96Xg7Sixc/cHZdhe+dl8RXjjWDo1MjBX5OuTp5dhzfRBGlQRV2VoMjASx80I3Si1qeINRlFhUeLQmC75QDOc7uHOrqnM0yNUrUJWtwclWB+4pNSESS6B3OAiFRASzRgaHL4xi8/x3vPzFL36BiooKRKNRnDhxAn/1V3+Fn/70p9BqtVi7di0KCgrw3nvvwWQyYcWKFejr68Orr76KyspKjIyMoKKiAp/+9Kfh9Xpx6tQpAMCKFSuQn5+P1atX4+rVq7BaraiqqprTQHkqL35yFaXZekTjCZxt7sfXH1mB3+y9Ao1CipXFFuQZNdh9sQ1GtRzV+SYMuHx443gDyrIN8ATCKM3W41Ori+ENRnB+dLODmnwTco0aLCsw41LbIAQCAYqzdOiwjaDIqsOJhl589t5y7L/SAW8wgnA0NuuNEH619R2UF+cjGovh1MXreO7Ln8MvXnsTGpUKq5dVID/big8PHIdRr8XyilL0Dzmw9b29qCjOx4jXj/LifDzxwL3w+gI4c4U7M21ZRQnys61YVV2O642tsBgNqCkrRnf/IORyGaxmA2zOYdy7dgXOXa1HYW4W6prnV8/ym3cPoiw/C7FYHKevt+IbzzyIX759AFqlHKsqCpFnNWLX8cswalWoKcnDgMON7ftOoSw/Cx5/EGX5WXj8npXwBkI4W8t97stKcpFnNaK8IAv7z9WObVq1UG7sfQnq7BIk4jE4m86i5FNfw409L0Cs0EBfsgIKUx76z++BVG2EtqAKQdcAuo7uhDqnFNGAF+rsEmSvfRTRoA/OZq7z0RZUQ2nKha6wBq7WywCAeDg460O8Z+KFD0+gLNeMaDyBM/Xt+MZTG/Gr945Do5RjVVku8ix67DpdC6NGhZqibPQ7R7D9wAWU5Znh8YdQlmvGY3fVwBsI4VwDl4CpKc5GnlmP5SU5uNTMPeA8tJabeV1Zmova9j5Y9HNfYXJwx2+QVViGeCyGliun8dAXv4H9234JhUqLwupVMGTl4fLhXVDrjMgrr4HbNoBTH21HVmEZgj4PsgrLsHLz4wj6vbhx9SwAIK98GYxZecivWI72Wm6Aa8opgNdlR29rPUw53KqH7OKKsQHwXBk4MGFmsHV0ZvCTCTODxlw4L++FWGWAMq8KEfcgbCffhCK7FPGAF/KsEhhWPYJ40AfPjdENn/KqIDPmQpVfA1/7FQhEYqhL1yIRCUJuKYQ8a2EzLC17fgd1TimS8SjsjedQ9vjX0LzrBUiUahhKVkJpykXvuY8h1RigK6hG0DWAjiNvQJNbhqjfA3VOKXLXcRp2NHEa1hVyGtbklKH/8iGIZUpYl2+C356+JNOF934LQ14pErEYemrPYN1n/wzn3vk1ZEoNsipWQmvJQ+3+nXNqU1e1EbqqycvaddXjS+8sG7+A/j0/B3D7mumXTvei1KRANJHEuU43nr07D7892QONXIQVORrk6mX4uN4Og1KC6iwVBkfCePPSIErNCnhCcZSaFHikygRfOIYLXdyuwlVZKuTq5KiwKDHkjeBKjwcSkRD5einEQgHMaikc/giqrCocaHJCIprf5i4v/fp5lJSXIxaN4ezpE/jan/8lXnj+Z9BoNVixai3y8vOx56P3YTSaULVsOQb6+7Dz9ddQWlEJ78gISsrL8ejjn4bP68X5s1zfXL1sBXLz8nHy6GGsWrMWEqkUxSVlOH1i+mP0ZsvvDjei1Krl+ucbQ/jaA1V44WADNHIJVhYYkWtUYc+VLhhVMlTnGjDoDmDn6TaUZmnhDUZQatXi0RV58IWiOD+6QVV1rh65BhXKsrQ4WNcLpVSMB2ty0WH3oMiswanmQZi189sQ7FevvoHykkJEozGcunAF3/zqF/CLl7ZDo1FhzbIq5Odm48N9h2E06LC8sgx9gzZsefsjVJQWwuPxobykEE88tAlenx9nLl0DRjd4ys/JwqpllbjW2AyLyQiJRILCvBycu3IdOq0aofD8Ex+/fGU7ykuKRmO+jOe++iX8/KXXoVWrsGZ5NfJzs/HBvkMw6XVYVlWO/kEbtr71ISpKijDi9aK8pAhPPrwZXp8fpy9yG1QtryofjbkK1+q5mCvLitHW2QOFQo7+QRu06vmtTvztvssoSz2zNfXi659ag19/fBEahRSriq3IM2qx+0ILDBoFavLNGBj2YcexOpTlGOAJRFCWrcen1pRyz2wtXFKjOt+MPJMGK4qsqO2ywaxTor7bjkKLDuea+6FTyhCKLmy/it/uOo3SXBOisQTONHTiG0/ejV99eAoapQyrSnORZ9Zh15l6GDVK1BRlYcDpwfaDl1A+2keX5prw2PoqeANhnBvdoKqmMAt5Zh2WF2fjUgvnv4FwFOHIwvY1OPbmC7AUlCEei6Lt6mls+vw3cGTHryBXaZBftQqGrHxcO/IRVDojcsqWwW0fwLnd22EpLEfI54GloAzL7nsMIb93bIOqnNIaGLLykFe5Er2ttdAYLIhFwkAyCalcAbdtANkl89sAqv/Ay1Bkcc9qU/tmdeFySEf7Zsk0fXMs4IVitG+OBX3wTu2bC5fD31MPicYMRXYZQrZOSLQmqArnfjzdVBp2/Q7a3FIkYlEMNZxF1ZNfQ/2HL0Ci1MBUuhIqcy66zuyBTGOEoagaAecgWg/uhDavFFG/F9rcUuSvfxTRgA9Do/2zobAaKnMujMXL4GjhnjFj4SDikfTvGZTWmd1luVqcaXPBF44h36BAnzuIlXlaFJuVeGJ5FjodkzPGIqEAJpUMRSbl2HsxegB76sD61CnAkVgCMjEX7qHGITxaY4VAwNUQNQ0sbJOU1atX49ixY/B6vSgqKkJPTw/Wrl2LsrIyPPPMM2hrm5wJEolEsFgsKC0tHXsvRg+2jsViiMViYwcvv/XWW+jv5waW3/ve91BcPP8HwuWFZpxu6oMvGEGBWYM+lw8riy0oztLhybWl6LCNTLpeJBTCpFGgyKodey8HtylGLD5+f3sdXjR0O9Hj8KDL7oFwtPg8FI1BIRUjS69Ct90DT2D2HdWq6nKcuHAVXn8AhblZ6B2wYXVNJUoL8/D0I5vQ0dM/6XqhSAizUYfigtyx9yKlh1gcsVh8/ED4vYcxYOOyifuOn8UTD94LoVAIvVaDhtYODDlcyLaYpolq9qwsK8Cpq83wBkIoyDKhz+bC6vIClORa8NR9a9DRZ5t0vUgohEmnQUmuZey9SOkiHkcsHkdqG4rGjn6YdGq4POlZlaArWgZH4xnEgj4ozfkIOvugK14JVVYxctY/Af/Q5Fl5gVAEmcYElbVo7L2jwXIbIcRjSIkj4OiFp7sBQWcfJErt2M/ny4rSXJyqa4cvGEaB1YBeuxuryvJQkmPCp+9djo4pWWLuvqpQnG0aey8AJAHE4tzGVamQemzDqOscgG3Yi+tt/bja2ov3j1/FoHN+GxMVVK5E86VTCAW8MOUUwDXUh8Kq1bDkl2DNg0/B3js56yoUiaAxmGDJLxl7Lxdscuyw+lSwzoEe9LbWYcRpg9ZkRU9LHZwD3YiEgnAO9KDvRiNEovnlI5WF08wMFq2A3FoE49qbZwYFAhEkGhPklqKx92L0uzemh1H1hp198Pc0IjJix/DVAzCseQxRjxP+nkaE7LOfSZmKvng57A2nEQ36oLTkI+Dog6FkBdRZxcjb8AR8Q1NiFoog03IaTr2XC3r8Xqf8YqSnGTKNERGvCwNXDiJ33fzOvp4Oa9kKdF87jUjQB21WATz2PmSVr4Q+txiV930aw/1sVsTM9liJ5dkqnOlwwx+OIV8vR/9ICCty1SgyKvB4jQldzskbrwiFAphUEhQZFGPvBXdbb+qX1XIxbN4INpbqEYkl0O4MQiYWQq8Qo3nIj6YhP/QKMbyh+T18L1u5CmdOHofP50V+QRH6enuwcvUaFJeU4YnPfBadHZNnD0QiEUwWC4qKS8beixn6ZpfLBYfDjoG+XkgkYlQvW9gD4fJ8A063DsIXiqLAqEa/y4+VBUYUWzR4YnUBOu2Tn1OEQgFMGhmKzeqx947FOqV/bup3w6SWY9gfRm2PC9e6uc2r1HIJPMH5DR5X1lTixLlL8Pr9KMzLQe/AEFYvr0JpYT6efuxBtE9ZaSUSCWExGVBSkD/2Xsxwb9/ZvR8DQ9zsYiQSwY2ObqxZVgVfIIj27tmv4JrKqmVVOHH2InxjMQ9izfJqlBYV4OnHHkJ71+QklkgohNloQElh/th7Z4x51ydjMf/Xf/ohigpyYbM7UVpUgGBofg/fK4osONXYC18wgnyzFn1OD1YVW1GSpceT68rRYZu8+k4kEMCsVaLYqh9771i8o31dyoc/ONuEwWHu+aEi14hO2whWFlvhD0fROYdVfdPGXZKDU3Wdo320Hn2OEawqzUFJthGfvrsaHYOuSdcLhQKYdSoUZRnH3ovUs9tYH83F3WN3o75zCL2OEWiVcizsaQLIrViBG1dOIhTwwZhTCPdQH/KrVsGcX4KV9z8Fx9Q+WiiCSm+GObd47L0YvcdjffRoVJcPvocRO3dqiVAkglAogtdlhzm/BNFwaF7xqgqXYWS0b5ab8hGZZd8ssxSNvZfj5r7Zcf4jRNzcCsOOHf8EmbkA8XAAgZ5GBPoWdnqCsWQ5Buu4/lllLYDf0Q9T6Upos4tRcPcT8A5OfcYUQq4zQZNVPPZeTHmmSGnCZ++Fq7MBfkcfpEotkgtWxc0IkslbP7lqNWp8/5Ei/NVD6Vmjvf1s103n76abYCSOkv/+MbZt24avfvWraWnzpZdemtP5vHNlZGQEer0er3z303jm7vnXAr5+tA5/+hD7zby2HK7D3205An/DwrLhr769e9Zn8s6XuuY23PW5P8Ph3/wDNtSk98ifLbuP42tPT1+kv1DKv/j3MD30DdR86W/T0l7Hoe0oeTQ934epfPDHefjRX30ubZtGbd13Ds8+yXZzi49O1eLZH2zBz492Qq2bfx3V8fe24IHPsz/gPhIK4lsbs1Dx3POwbFz4YfBDx3cg64E/TktsM1H3wy/CYMnFxu/9Oi3ttR3cNuvzeedD4we/RPOHv8T3P5z9UrfZsPdn38flj17Fhp/XQaKe+x4L031WjT/6Ih6StuHXX1541n77hf6bzt5lgdMfwcofnMJrO9/Dk08/k5Y2t7/2Mr769T9PS1szsazQgm89UIzvPblyQe1sO9mKP9nMvtb/26+eRH9cg0Nvv7Kgdl7Z+T6+8WX2G22++dE+fO17/xOupjNQKRdWR/7KG+/hG19ZuD/eii89958RsnXhjb9b+O95/cj1WZ/NuxCe/KcdqCrKwfPfTc+92br/Ap59nM2mf/Wdg9j8vefx/VcOo2j59JuYzoXTH26Z9dm888HnduIfnihF9XdfgWntEwtub/D4DmQz6pvj4QDOfqsCD37/BZQ+kN7vScv+bah8nF3/PB3RkB/b/qgEO3bswFe+8pUZr1v0ml3WA11WsBzoppPFGOimE9YDXdawGuiygNVAlwWsB7rpZDEGuixgPdBlAcuBLktK1s1+N8+hE2/AXXcMYUcvut79f7Cdeov7+fEdY//b8+FPEHamr1ZzMQa6rGA90E0nizHQTSeLMdBNN6wHuulmMQa6LGA10GUBy4EuC1gNdFmz2APducBssLv97Nw20Nh5vgedDj/Otjvx9+9cx+BICK+d6sRbF7hlKc9tuTjpTK+JG1ZtO9OF4y122L1hvHxi9sXc0/HSSy/N6frXXnsNbW1tOHDgAF566SXY7XZ85zvfmXTNxJ+lrhsZGcGPf/zjOcf3+tG5ndv7xvEGdAy5cbS2G68frUPboBtvnmzEh+da8frROmw/Vo9uuwcXWgfw/J5LY++LxRPYc7ENLx+4hj0X2/DxxTYcr+8ZaycUid72d7/69u65/W3v7UV7dx8OnbqAV9/ejZ6BIbyw/T3Ut7Tj7JU6PL/lLfQMDOGnL7+BLe/umfTeV97ahcOnL6Kztx//6ycvAAA+PnIaP335DbTOYWONW7Fl9/E5Xb997ym099lw9FIjfrL9Y0Si47Up5+rb8Ku3DyAcieKHW+d2n2ZDx6Htc7q+6+hO+AY7Yas9geb3f4FEbHxpnLPlIm7seRGxkB+tu34D143LCNh75vw7ZmLrvnNzun77gQvoGHDgdF07/usv30VT9yBe3nMa7x67MnZNMpnE7tN1eHHXSXQOOvHhyWs4eLEJOw5emNOGVxiduZ0LJz/aDltPOz7Z+jxqT+5HJBTEa//yHcRjMRx/bwtOfPA6HP3j/pjaqCoRj+PQGy/g6NsvY6jrBi4e/BC1J/ePtRNdQB1LaqA0W2wn30TI1gl3/fGb3pv6WWTEDuelvejb+xs4LuyC7dRbCA51oPu9H847zom0Hdw2p+vbj+yEd7ATTR/9Bv2XD016zXnjCpo++g1CI3b0nvsYrXtfQchtQ8vel9MS60Su7FnY5hqK7DJ42y8jHglAmVOOsIPzL4naCNfV/QAAgVgCkUwxp3a3X+ifxVXjvHlpAJ3OIF4+3YuXTvfCG4rhQJMD/76/HY2DPvzscCeSyST2NtjxypnJS1OPtDjxq+Ocxl8904vjN1x46/IAdl4cnFMMk+J/bW6f1c5tW9DZ3oYTRw7hFz/+N3g9Huzb/dGkjahisRg+/ugDvPLbX+PalUvYuW0Lujra8eb2rXPe7Goi2062zi3W0zfQYffieNMAfr6vFt5gBL8+UI/LHZxXffPFY5Oef1I/84Wi+OX+Ouw41QqbJ4iXjzTNK95Xdr4/p+u3vvMR2rp6cPDEWbyy833YncP4z/8fd8zXr1/biV+9+gYCwfHl8a/sfB+vvfUh2rt78X9/8Tu8tOM9DNmd+M2WN+cX7xvvzS3etz9EW2cPDh4/g1feeA99g0PYtf8o3vpoL17a/g5eeeO9sSXMALD93V1466O9uN7QjB/+8mX8ZstOjHi8+Olv59YXTOT1I9fndP2OY3XoGHLjWF0X/uPDc7CP+PHKgavYebweO47V4ZPLbRjxjy+lvdo+iB3H6tA55MaR2k68fuQ6PIEwfrn7wrxjxugM7pziPnQZHQNOHLl6A1v3X4DN7cPH5xrw7vHJf/8/vLQH9Z2D6LYNz/l3TMfpD+f22ZzbvR323nYce+u3OPbmCxhob8KJd1/Cpf3vTLpu92/+FfaeNpz/eCcu7X8HfS212P/aT3D87d8h6BvBoW2/WFDcg3Psm4dOvomgrRPuhhPo3fP8pGc1z42L6N//O0RGbOh6998QHOqA7fQ7sJ/7EP7uenR/+NNJ5+HOl5b9c+ubWw/thGegA4P1Z3D1zZ8gER8va7E1XUD9R78FAJx76R/h6myAz9Yz599xO9KyQdWOs93INchRZlFj6+kulGdxxfypJcvbz3ah3x2CVCzEXz9cBgGA4y2ciReblSi1cNfnGxQoNqtQ3+dB73AAm8pNuNA5jJOtDqzK1036nRM3rMrRK9Dp8MOikUEumf34/eWXX0ZBQQGqqqrwwgsvoLq6GpiwZPmll15Cb28vpFIp/u7v/g4CgQAHD3I7vZaVlaGigsvSFhUVoaysDC+99BIsFgvWrJl8JtrEnz322GN46aWXoNPpoNfrb4ppItuO1iPPpEZ5jgGvHapFRS631DK1VPn1o3Xod/kgFYvwnafWQSAQ4Fg9VzNXbNWjLJtrv8CsRUmWHq8frcPVjiF87u4KvHumGYkEYPcGIJeK0ePwQq+Sjf1usUiIe6tysediG8pz9Oh1enG1w4a/eXo9Xj9aB7lUMinW197ZjfxsKypKCvHSzg9RVVoITFim/Orbu9E3aINUIsF/+fOvQCAADp/hBtelBbkoL+Y25SnMzUJpYR5efXs3zlyuG9vQ4t61K3CxthFGnRalBbk4fv7qpN//6H0b0Nbdh+L8XJQVcufUPbxxPdq6eyGXzX0TqK17TiDPakRFQTZe+egoKgq5o4dSy5a37D6OPvswpBIxvvflJyCAAEcuNQIASvIsKM/nzk8szDKhOMeMqy2dkIhFY+3fs7wMTR19kEklyDJqZ4hidnQe3gGFKRea3DK0H9gKTR637X5q2XLHoe0IuvohFEtR+dm/BgQC2Gq5gbs6qxjqHG5pt9KSD5W1EO72axCIxj9fU+UGeHqa4enmHqQSsSiUlvkdHbX1k3PIt+hRnmfBqx+fRUUBd+RQatny1n3n0OdwQyoR42++8BAEAuDoFe7BsSTHhLI87voCqwElOWbUdfQjz6yH1aDBxaYufOFB7gxIgUCAkhwTOgYdKM424cT1Nph1ahRYb72E9MT7W2HIzkN2UQWOvfMKsou573hqqfLx97Zg2NYHsUSKJ579HgQCARrOHQEAWPNLkFXE3XtTTiGMOfkI+r0QCIUoHz1DN5lMwOOwQSofX6qX2qjK47LDWlgGt30QWUXlGOpug96Sg1DQj6B/9vsSDB1/AzJjLuTZZRg6+joUOWWjP+eWwg4d34GwawBCsQS5T34LAoEA7oYTAAC5tQiKLE4PMlM+5Nbimwa7+uUPYOj4Dkh1FgiEQpjveQbu+hMw3/M5DF/ZD5k5f5qobk3boe1QmvKgzSvDjf1boM3j7ntq2XLbwW0IOLmYaz73bUAgwND1UQ1nF0MzqmGVJR9Kcx5iQS/i0TBEEs7TtLnl6L90AEKxFJaae9B77mPI9dax1+fL1Y9fh9aSB1NBBS7vehWmQi7uK3u2Yu1nnsWVPVvhtffD1Tf7nSm1FXdDW8GdcarMnfmYHW/DcQDT796642I/cnVylJuV2Hq+b+ws3NRy5e0X+jEwEoZULMC37i+EAMCJNq6tIqMCpaNHEuXrZYjEEwhG4pBLhMjSyPBwlRE12Wpc7vFwGxoaFTfV/ZaZlbjc44HNG4ZCyvlePAHcXTw7r9ux5RXk5uejrKIKW1/+Lcorub45tWR5+2svo7+P65v/+j//LQQCAY4f4frm4pIylJZzn0N+YREKi0tw7eplqDUaGE0mOOzjey2IxWLcc99m7N31Ac6dPomSsnIEg0HkFxTOKk4A2H6qFbkGFcqztNhyvAXl2dyzSmrJ8raTregf9kMqFuHbjy/nnn+auDrAYrMGpVncPSkwqlBkUuNalxNNA9z+G5F4HCeaBrCqcHKZRepnEpEQxRYNTrcM4Y83VUAmEd0U31ReffMD5OdkobK0GL/b8Q6qyrh9RFJLll/Z+f5YX/1f/+JPIRAIcPgUt6FMaWE+yku4e1OUl4OyogK8svN9WEwGrFrGaTUciSAQCkEiHn+8TCSSsDkcUCuVCIRCCIfDyLKYIJtF3/zqzveQn5vNxbvtbVSVlXDxji5XfuWN99A3MASpVIL/+pdfg0AgwKGTXAK1tCgfFSXcasKi/ByUFRfglTfeQ152FvoHbfB4/cjNykJrRydqm1qQk8X1L9XlpRiw2XH+Si1qKstw+ORZyGUy6LWz25Ro25Fa5Jk0KM8x4NVD18af3UaXLL9+5Dr6nV5IxCJ89+m7uGe3Oi45VGzVo2z0OMkCsxZFFh2udQyhc2gEm5cV4EJrP/LNWgTCUbj9IehU3AZlZ5v7UJqtRygaw8Mri/H6kevQKmXQqWbvca8fuIg8sw7leWa8uu88KkePBEwtWd66/wL6nR5IxCL8zR/cz/XP17iSj5JsI8pyueOJCqx6lOSYsHX/BVj1aohEQohFk5/N8y16OD1+LC+e+7GOZz7aCr01D1lFFTj53ivIKua0l1qufPrDLXDb+iGWSPDon3wPgADNF44CAMx5JbAWcn2iMbsQsUgYkVAQhqw8aE1Z6Ky7gPWPf3Hsd1Xd/TAAILukEiOOIXTWX0ROaQ2aLxyFWCqHQqObNsbpGDr+BqTGXCiyyzB49HUoR/vm1LLlweM7EHENQCCWIO8WfbPclA+5uRC+rtpJz2ra8g3wdVyFSK6Bfjm36lCRU4HoyBC87VcgM839rLqWA9uhMudCl1eOpn1boMvnnnFSS5Zb9m+D38k9X678A65v7r/G9c2a7GLocrmY1dYCSBQq9F0+DIFgfMNCa/VdcHdz+9uoLXkIeZxMzt5Ny8xumVWFS51uBCJxVGSp0T16dIFRJcX+ei6TKxULUZWtgWRU8KmNLhJTKoav9bixukCHcqsap244IRIK4PJH4PBF0DscxL46rr2JG1bV9Y7gWs/kzZlmQ1VVFc6ePQu/34+amhp0dHCzwmazGbt27eLilkqxfPlySCScoFKbGiQSk7OsV65cwfXr1zEyMoLr16+joaEB77/PZUv9fv/Yz1LXxWK3z66U5xhw8cYgAuEoKvOM6LJzf6NJrcC+y+2j91WEqjzj2EAqtbFFYkop9vVOGxq6nVhVbMVH51uhkksQTySQb9bA5vYjiSRa+4fx8aU2JBJJRGJx/OP2EyjJ0kGjkGLYF8ZdFdlj7SSSk//+ipJCnL/WgEAwhOqyInT2cp25yaDDnsPcJj1SiQQ1FcWQjO7mnNp0KjFFBFcbWlDb3IY1NRXw+4No7+nD81veglQiQTQWg0QsxvKKEhw/dwXDI9wg4GpjKy7XN8PucqO2uQ2dvf342x/8AkV5OXC65745UUVBNi40tCMQCqOyKAddA1xyxqTTYO/pq6N/jxg1xbljnfrYJlRT/p5/+d17yDEb4PEHcfwKN2Bs6RpAXXsvPP7gTb97rqhzy+BqvYRYOABNXgX8Ni7hIdMaMXCJmwkSiqXQ5ldBKOZ0PL5BwOTPsX7n/4XcmINY0At7Hbdxg7evFZ7uBsgN3IY4/jkcWzSVinwrLjR1IRCOoLLQiq7RjS6MWhX2nqsHRu9rdWHWBE1zG1xM1fTV1l6sKc8f2x18eUku9pypQyKRQDAcRdeQC0KBEK29NmgUMngCt99QIru4Au3XLyASDCCnpHJsBlZtMOHqsb0AALFEitzSGohHPWHqZkgp9OZsOPq6EPR50NtSi67GK0jE4zDlFGDEPogrR7jVCamNqgRCIYa6biAejaDl8mk0Xz4FmVI13s4sB7ypmcFEOABFTjlCozsPiyfMDArFEijzbtYDpviar6sO/p5G+HsaEBxsm/SzZDyGsKsfMmMeRDIlnBd2QVU8v5pGbW45nK2XEAsFoM2rhG9oXMN9Fz8Zi1lXMB7z2H2fErPCkAWfrRshtw1Doxoe6W6CVKVDNODBldf+CeqcknnFORVTQQX6Gi8iEvLDVFQJ9wCnF6XOhJbT+wAAIokUWsvNDxm2k2/OK8ueSj5ERmwzXlNmVuJy9wjXJ1tU6HZx2jeqJNjfyHmZVCxApVV12z5ZKOD6cncghovdI7i7SI9edwiNgz70DofQPRyCUCDA6fZhuIPcip+mIT/EQgGah/wQCoBedwgiIXC+c3ZeXFZRiUvnzyHg96OiqgbdnZznGE1m7P94vG+uqrl93/x///l/Iic3Dw6bDS6nE8lkEvt2f4REIoFIJIJ/+h9/i+LSMqxYtQZ+nx+d7XOr1y7L0uJShx2BcAwVOTp0O7jvqVEtwyfXe0bvtQhVObrxez1DP/2DDy8jR69EkZmbAOi0eTHsD8PhC6PH5cfeq9z3IvWzfncAEpEQ1bm3TpxPpLK0COev1iIQDKK6rASdoxtFmo167DnIPaRKJRIsqyi97b29Wt+EuqZWjHi8qGtqRWNrO4RCIcwGPfqHHDh6hpuxSyTiKMzLwaDNAZ1GPacNaCpLi3H+8nUEAkFUl5eis4dbvm8y6rH7ADeAkUolqKksmybeKX1GXSNqG1vQ3NaJrW9/hCyLCRq1El5fAOtXLcdH+7nEpUajwqDNgQc2boBKqUBJYf6sBuYpuGe3fvjDUVTmmtA9unmoUa3AvkucviRiEarzzbft5/73myeQY1CjKEuHkw09EAoFyDao4QtG0DYwjN0XuGTwymIr/KEo2gfduN45hPpu+02rAW4bd54ZF5t7EAhFUZVvRdcQlwAzaVXYe75xLO6aQuvNcU+519fb+7mNqOxuxGIJRGJx7D7D9fGBcARFWQbUd85vpYe1sAKddRcRDgaQXVIFZ6qf1ptQeyLVT0uQXVID0dT+Ysozj0AohFpvRCTEPYvllq/A9WN7xrTe23IdPU1XIVdp4XEMomL9/ZAqlDDlFkMinVuydGLfrJzQN09dtTNd3zy1n+t6998g1WcjHvTC3cg9Y/fv/x0EYgmS8Qh83XXwdV2HWKFGxG2DrnrjTfHMBl1eGezNXN+sz6+Y1Dd3n0/1zVLoC2//PDHc1QSxXIVo0IeB61zf7O5thauzAZGAF+qsQgx3Nswrztux6BtUzcS5dieydQoUmea/OYHdG0Z9/wjuKTGlfYOqmTh58iTy8vJQUjK3h6eRkREcO3YMzzzzzNi/07FB1VTONvcjx6BCkXX22afZ8Nt9V/CPb5xc8AZVEzl16Trysswozk9v/RjLDapuxZnrrcix6FGcY5nxmnAkij2nruLzD99c/5LuDapuhaPpHBTGbKiss6upD9h7ELD3wryMM9B0b1B1K87UdyDHpEVx9tx32z50qRmrynJh0WvStkHVVFqvnIHemgNL3sKO4pmK3+PG3zxYmLYNqm6Fp+U8pIZsyC2zn+FKYTv9Dqz3cZnxdG9QdSvsjZyG1Vmz03DIbcNwZwNy1ozX07LaoKrp+C68+89fw4af18F1ZR+k+ixE3TaoilfBeXE31MWrEehthLZ6E/xd17mjn1ZOf/TT4OHXILMUoWvb/8ATueG0bFA1Hec63cjRylBonNty6VvBYoOqmTh3+iSyc/NQVDz3xMaRg59gxaq1sFi5BF+6NqiaibM3hkYHufM7zgQAbJ4g6nuH8fCy3LRtUDUTpy5cQW62FSUFc58pSjFkd+J6Ywsee2BjWjeomo5T5y9z8RbOfdVJihGPF8fPXsJnH38orRtUzcTZpl7kGNUoss4+kTEVTyCMU409+PT68rRvUDUTZxo6kWvSoihrdn1qt20YPXY3Ni0f/56me4Oq6Wi7yvXTptz599NB3whuXD6FklX3pHWDqluxoL75zHswrnkc575dxWSDqpkYajgLpSkHmln2zT5bD3z2XmQvv/0AnfkGVTvP98w5a4Rb1PLeU2pa0EAXANyBCB6qmvk4htdee21WM6pTuVUd7+bNm+c80AUAnU6HZ555Bk1NM9fYvHG8YV73eGJd771VuWkd6Lb2czNxU5cxY7Tmdj73N1Xbu2n9qrQPdJvbZ64d3773FGKxuR+JMdva3Y2rKm450AUAmVQyaaDb0jUw47VdR3eObos/N1K1tR2HtsPb1zrta+bqe2Y90AUApaVgbKDr7Z+5tm37gQuIxed+j29Vx7txecm8BroA8Oj6Kgx7Z55NP/nRdsTnoeFUXe/x97ZArTdNGujOteZ3OgY7WyGW3DyzsNDZwaHjOxAYuHHTa9rKu+fVmQKA9b4vIjhw46aZbozW1c5Hw6n63baD2+CZouHUa5aae2Y90AUAud46NtD19E0f77V9O+YVb6pu98qerXB0T3fkA7eMK+p1QF28GqGhDqgKl8PTdArKgslHPyER4/4bnQ0TiKUwrHwYgmn0gNFa23n1zVNqeu8p1qdtoNtqm/mItZ3btsyr30jV8G5/7WW0Njfd9No9922e10AXAB7+1BMYcQ9PqwmM1tjO5x7PVMt7b3nWgga6ADASiODhZdP3n1vf+Whe93imWt5Nd61d0EAXANweDx57YOaH2a1vfzi/mKep591097oFDXQBQKfVoKJ0Zn/Zcaxufs9rM9Ty3ludv6CBLgAMDvvw6fXl076249Dl+fXNt6mv3biseNYDXQAotBrGBrotvfYZrzu3e359c6qW9/SHWzDUOe7FZWs2ovnCwiZrFGodrEUV0/rE0Dz75lQN7+A0ffPgQvvmjZ9H0Db9yrzWQ/Prm1O1tS37t8Hd2zrta1nL7p31QBejS55TA92R3un75rky55rdHWe7kaWTIZFMomXIh13X+rG6QI/GAQ82lZtxvceNEosKj9ZkwReK4XwHNziqztEgVz/ece6vH0IgEoNCIoI7GMXFDhc2lBihkYnRNOjFY8uysPV0J/72ySpo5RL8dH8LrFoZCo1KnG134Wv3FeFXh2+gwKhEqUUFoUCA4UAEe2sHoZVP/rNefvll5ObmIpFIoKGhAW+//TY2bNiA2tpaPPzww7h06RIqKirw6U9/Gl6vF6dOcUsCVqxYgfz8cYPcvXs3/H4/FAoFhoeHcfr0adx3333QarWoq6vD008/jRdeeAH//M//DL1ej3/9139FdnY2SkpKcOLECfzVX/0VfvjDH6K4uBiVlZUQCoVwOp14//33oVKpxn7PtqP1yDaokEgm0dznwkfnW7G6xIrGHic2L8vHtQ4bSrP1+NTqYu6w8VbuIaUm34Rc43iH+cmVDgTCUcilYoz4wzjfOoC7K3KgUUjR2OvE42uK8drhOvz95++BTinDj98/B6tehUKLFmeb+/H1R1bg+T2XUWjWoCzHAKFAAJcviD0X29DcP37O2mvv7EaO1YxEMoHGti68t+8I1q2oQn1LOx64Zx2u1DWjvDgfTzxwL7y+AM5cqQUALKsoQX72eHLi4yOn4Q8GoZDL4B7x4uyVOty7dgU0ahUaWjvw6Yc24qWdH+J/fufPoNdq8H9/9RqyLEYU5+fg1MXreO7Ln8NPX9qBorwclBfnQygUwuX2oL5lcr3c1j0nkG3WI5FMoqmrH+8fvYR1VUWob+/DA2urcKWlC2X5WXj8npXwBkI4W8sZzrKSXORZx0187+lrCITCUMikGPb6cb6+DXcvL4NWpUBDRx+e3Lgar3x0FP/j689Ap1bi37fsgtWoQ3GOGaevt+IbzzyIn+/ch8JsM8rzsyAUCuAa8WHXySsw69SIj3acnYd3QG7IQjKZgLe3Bb1nd8FQuhqe7kZYlm/CcMd1qLNLkL32UUSDPjibufoqbUE1lKZcJGJhDF49jJBrAI6m8/ANdiARj8E/1IlowIvWXb9B3r1Po+PQNqhzShF09MO6+kEYy9eh88gbCLoGkLXqIfRf2AtNXvnY693H3oI6pwwSpQZTV6Vt/eQccoxa7h53D+GDE9extiIfDZ2DuH9VGa7e6EVZrhmP3VUDbyCEcw3cGW01xdnIM4938PvONSAQikAuk8DtC+B8YxfurimCRilHY+cgnrhnGV79+Az++1cfh06lwA93HIDVoEFRthFn6tvxjac24ufvHEWh1YCyPAuEQgGGPQHsPl2LPvv4WYQn3t8KvSUbyUQC/e1NuHjgfRQvW4feG/WovusBdDVcQVZhGVZufhxBvxc3rnKDkbzyZTBm5SEWDaP21AEM2/vReuUMbD1tiMdisPV2IOgdwSdbn8f6T30Ox997DVmFZXAN9WH5xkdQumIDTn64DcOj/75yZA+yiyvGXj+9aweyisqhUOug0Y8P8IeOvwGpPgvJZBKB/hY4L+yGumQ1/L2N0FVvgr9zdHZw1fSzg4loBMO1RxAZHoS39TxCQx1IxmMI2bsQD3jQt+8FmDY8jaFj26DILkXY1Q/98gehKV2LoRNvIjLM/dt15RMocsrGXrefehvy7FKIFRqEXf2Ium2AJRdth7ZDYcgGEgl4eprRfWYXjGWrMdLdCOuKzRhuuwZ1Tily13EadoweOq8rHNVwNIKBK4cRdA3C3ngO3gEuXt9gJyIBD5o++g0KNj6NtgOvQ5NbhoCjD9mrH4KpYh3aD7+BgHMAOasfRO+FvdDmVYy93nH0LWhySyFRahFw9sHRcgnJZBJXP34dalM2kskE7J3NaDz2AXKq1sLe3oCitZsx2HINhrxSlN/zGMIBL3rruOSMpaQGWkse4tEI2s4fhNcxgJ7as2PLm4Eksu6fOftsWP0Y93dXcR29WKEZ+1mK1C7a3Dm740vbd1zsR7ZGhkQSaLEFsLvOhlV5GjQN+nFfmR7X+3woNSnwSJUJvnAMF7q4pZVVWSrk6uRj7RxociAQiUMuEWEkGMXFLg82FGm5vnnIj09Vm/D6uX58/9FiaBVi/MfhTljVUhQYFTjX6cazd+fh18e7UWCQo9Ss4PqNQBT7GhyQicdrtXZseQVZOTlIJBJoaWrArvfewep1G9BYX4tNDzyE61cuo6S8HI8+/mn4vF6cP8v1y9XLViA3Lx/hcBiHD+zDQH8fzp85hY72G4hFY+jsaIN3ZAS/+cVP8fR/+gK2vfI7lFZUor+3Bw8++hjWbbgbb7z+Ggb6evHQo49h7+4PUV5ZPfb6W9tfR1l5BTQ6Hfr7etDR1oZohNsEZvupVmTrlFzfPDCCXZc7sbrQhMZ+NzZVZuN6txOlVi0eXZEHXyiK823cUvPqXD1yDeN9/P7rvQhEopBLxHAHIrjQbsNdpVZo5BI09bvx+Mo8vHaiBX//9GpoFVL8ZM91WLUKFJrVOHtjCF97oAq/3F+HQpMapVYt9/zjD+Pjq90wqeVwByJISLn63NwsCxKJJBpbO/DuxwewfuUy1DXfwIMbN+BKbSPKSwrxxEOb4PX5cebSNa6vqyxDfk7WWLwfHzoOfzAEhUyGYY8HZy9dx73rV0GrVqG+uQ1PPXo/frf9Xfyv//wX0Gs1+MEvfodsiwnF+Xk4deEKvvnVL+Cnv92KovwcVJQUQSgUwDk8gg8/OQKz0QDX8HgZ2qs730NOlhWJRAKNre14d89+rFu1HPVNrXhw4124XNuA8pIiPPnwZnh9fpy+yJUVLa8qnxTznoPHEAgEIZfL4R7x4Mylq9i4fg20GhXqm2/gqUcfwIvb3sY//pdvQa/T4Ac/+y2yLGYUF+Th1IXLeO6rX8JPXngVxfl5qCgdj/mjfYfR1TsA62iuaduRWmQbVEgmk2juc+LDs81YU5qNhh477l9WiKsdQyjL1uNTa0q557UWbhl2db4ZeaYJz2uX28ae19z+EC609OOuylxoFDI09Tjw+LpSvHbwGv7+C/dBp5LhR++dQZZOhUKrDmebevH1T63B87vOo8CiG3teG/YFsefiDZi1CgQj3EDm9QMXkW3UIJFMoKnHjg9P1WJteR4auoaweWUprt3oQ2muCY+tr4I3EMa5Js67agqzkGcenzjZd6GJ65ulEoz4gzjX1I17qguhUcjQ2D2EJ+6qxiv7zuO/f/kRrm9+8zCyDBoUWg0409CJbzx5N37+/gkUWg0ozzVxPuENYPfZBkSi4xugnvloK3RmzicGO5pw9dAHKKhZi4G2BlSsvx89TVdhKSjDsvseQ8jvRft1zotzSmtgyMpDLBJBw5mDGLEPoO3aGdh72xGPReHo7UDI58Hh7c9jzSOfw+kPXoOlsBzuoT5U3/MIipavx9ld2+C29aP6nkdw/dhuZBVXjr1+bs8OWAvLoVBrIVOqx+JN9c0Y7Zsdo31zYLRv9nVeh2K0b44FffBO6ZuTE/pmz5S+OTaHvtl55RMoJ/TNtlNvQ5FdCoF4cpK05cB2KI1cX+fuaUbnqV0wla/GcFcjclZugvPGdWhzS5G//lFEAz4MjfbNhsJqqMy5iEfD6L18GH7XAGwNXN+ciEXhGeSeL+s++DWK7/ssmj95Hdq8Uvgd/chb8xAslevQevAN+J3cv7vO7YUuv3zs9RuH34Q2rwxSpRZ+Rx88Ax2QKFSIhYNIJuLQ5pQid82DmC3zmtkVjGalHb4wVhfo0W73Y3muDqduOLAsV4szbdxAKInkTYfQh6IJ7K8fwnAgAuFokXLLoBcPVlkQiMQRisaxIk8HrUKMNYV62L1huPwRqOViVGSp4QvHkG9QoM8dxJpCPaxaOZ5ckY3hANcZmdRS3Fdhvjnm0d9ls9mwYcMGtLa2Ys2aNThy5AhWr16NY8e4DM90h42HQiHs3r0bTqcTQiF3yxoaGvD444/D7/cjGAxi7dq10Ol0uOuuuzA0NASHwwGNRoOamhp4vV4UFRWhp6cHd911F3JycvC5z30OTqcTGN3A6qGHHpoSL/e/Dk8Aq0usaB8cwYoiC0429GJ5oRmnm1LHTtx8AH04GscnVzow7AuN3ePmPhceXlmIQDiKYCSGlUUWaJUyrC21wj4SgMsbhFohRWWuAb5gBAVmDfpcPqwttSJLr8Kn15XC5eNmxExaBSpzjVPi5X6P3TmMdSuqcKOzF6uqK3D83GWsqi7HiQtXxzUxWqs7dn/DYXx85DRc7pGx+9vY1olHN90FfzCEYCiM1TUV0GnUWL+yBjbnMBzDbmhUSlSXFsHrD6AwNwu9AzasX1mDbIsJn310M1yjtbrTbSqR0rB92It1VUVo67VhZXkBjl9pxsqyApy62jyuh1Qt7uh7Q5EY9p6+BpfHNxZvc9cAHtmwHIFQBMFwFKvKC6FVKbCuqhg2lwfOER/USjmqinLgDYRQkGVCn82FdVXFyDbq8JlNa+Aa8QEAzDo1Hlq/DPGJ9Q6j9zc84oChdDV8g+3QFS+Hvf4UdEXL4Gg8MyqHCQeNj95foViG7DWPQG7MGfubUijN+dCXrkLA2Q+ZxgSVtQgyvRUqayFcLZeQiEVhKF2FZCI+Vg8s01thLF8HXfFKiGQzr8ZIacLh9mFtRT7a+x1YWZqLE9fbsKI0F6fq2kc1gQkHz4/e42gU+841wOX1Qygc1XD3EB5eW4lAKIJQOIpVZXnQKeVYV1EA27AXTo8faqUMVYVW+IJhFFgN6LW7sa6iAFlGLT6zcTmGPYGxe7ysJGdqwAAAr8uO4mXrMNTThsKqlWi6cBwFlSvRfOnU2D0eO3x+NGCxRIaVmx6DwcLNrEys2zblFKJo2RoMD/VBYzDBkl8CnSkLltxitF0/j1g0gqKaNUjEE2N1wjpTFkpXbEBh1WrI5CpMy2i8UY8D6pLVCA51QFWwHCNNp6AsnDw7OPXweaGEmx2UGrLH/qYUMnM+1MWrEHH1Q6IxQW4pglRnhdxcCG/bJSTjEaiLVyGZjI/VBEt1VmhK10JVtGKSJkRK3YRwuXhDHgeMZavhG+iAvngFbHUnoS9eDnvD6Zvub0qrQokUOWsfgcKYinf8u6Gy5MNQugoBRz9kWk7D8lENO1ouIhGLwli2CslEYqweWK63wlSxDoaSFRBPiFeTUzI+gzoab8BtR07VWgz3tiGrfCW6rpyEtWwFuq9NjDfO7TA5Gq9IIkXZ3Z+CxsxpTK7i7kPba3+Hzrf+d1r+C9lvXrUy1m/4I1iVp0GHM4jluWqcbnNjebYKZzrcYx/31L45HEvgQJMDw4HoeN9sC+DBCgMCkQSC0QRW5KqhlYuxOl8Duy8Clz8KtUyEcqsK/nAM+Xo5+kdCWJ2vgVUjxRM1ZrgC3IOrUSXBxhL9lHhHPcJuw+p1G9De1orlq1bj1PGjWLZyFc6cPD4a7839skwmwyOPPYmc3LxRSYxrOL+wCKvWrEN/bw9MFguKiktgzcpGYVEJLp0/i2gkglVr1yEej4/VBFuzsrFuw91YuXoNlBOSzw88/Oj099gbxOpCE9ptXqzIN+JUyyCW5xtwunVwPOZp+ub913vh8ofH7/GAGw/V5CIQjiIUjWFlgREahRRri8yweUJw+cJQyyWoyNHBF4qiwKhGv8uPtUVmZGkV+PTqAgz7uZ3aTWo5HqjOQSAcnRDv6LOP04X1K5fhRmc3Vi+rxLEzF7GyphInzl2a8R6HwxF8fOg4nO6RsXibWjvwqfvvRSAQRDAUxprlVdBq1Fi/ahlsDhccLjc0KhWqykrg9ftRmJeD3oEhrF+1DNlWMz772INwjg5uzUYDHtl8DxyuyRutjcXscGHdquW40dGNVcuqcOzMBaxaVoUTZy/OGHMoHMaeg8fgGp7wPNHahsceuA/+IBfz6uXV0Go02LB6BWwOJxezWoXqihL4xmIexIbVK5CdZcZnH39oPGaTARaTYVKCd+z5ZySANaXZaB8cxsoiK040dGNFkQWnGnsnaCIxOgM8Gm8khk8ut8HlC054XnPioVXFnCYiMawstkKrkGFtWfb485pciso8E3zBCPLNWvQ5PVhblo0svQpPrS/H8OjzmlmrwIMrihCZMCs6qW8uz0NbvxMrSnJwsrYdK0pycKqOSz4nkZzQN4/GG41h34UmDHsDY31zU48Nj6wphz8U4Z4vS3OhVcqxrjwPdreP65sVMlTmW0b7Zj36HCNYV56HbIMGT91TA5d3tG/WKnFX5ZSZy9F4fcN2FNSshb2nDXmVK9F66QRyK1bgxpWTY/d3rG8evb9iqRTLNn4KOsvo88+E5ypDTgEKqrm+WaU3w5xbDI3JCmNuETpqLyAejaCgeg0SifhYbbDGZEXR8vXIr1oFqWKG558pfXNoQt+sKlyGkdG+GdP0zYIpfXPyFn2zzFIEyZS+WTXaN6dqgiUT+mbhTM9rqb7Z7YCpfDU8/e0wlazAQO0pGEuWY7Du9Jgexvd7SfV1MuSvewQq4833V23Jh6lsNfyOPsh1JmiyiqHUW6HJKoSt+SLisQhMZauRSMTH6oGVeissletgKl0JyYR4c9c8gPjEEykmbHI1GzKmZjedBCPxRavZTResanZZseVwHf5uy5G01uyyYqlqdhcKq5rdsMcJR+MZCEQS5G5IT33JYtbspgtWNbsA4B12ovnSSYjFEqx56Km0tBkJBfGtjVlManajXhc8zZwmjGsfT1u7rGp2wx4nbA1nIBSJkXfXk2lrl1XNbmDEiYO//l/oqj0DkXjuu8NPh9/Rh6cqNcxqdlnAsmbX6XDgzMnjkEgkeOIzn01r26xrdtPNt189ib64BocZ1eymG9Y1u+lmMWp2081i1eymA5Y1uz63Ezcun4RILMHKB9LTN/vcTmY1u1GvCyOjfbMpDX1zPBzA2W9VMKvZDXmcGKw7DaFIgsJ70tc3pxjpa0PvpYMo2vgZqC35s67Zve0yZqVCgdNtTqzM12Fu4+ilI55IQiQUYP/+/ZOWIWcykUiE2+K/thsmTfo2BGFFr9ODRCKJt/YcQo5lfvWTi0X/6Pl5H5+6ilD49ucDZwoigQCOprOw15+acxbrdkg13OBubDZtgYgkUhy/dgOVBdZJ28pnMh2jO2xf+OQ95JZWp7391LLj5osn09JeIh6HQCiCu/4YpMacWbxjbohHNTHSfCZtbSaiYQx31GKo9gQEwtsfizIXZKPx2urTo2EACLoGEfK50XxyD+SahdXLTWX1U3+C1U/9SdraO/K7f0XtQANOtg1DxI+vHEJRrkbw8P590OrSu2kiABhN3Hfu9In0JmHFIhHOtA5hQ4kl3VbMBE8wght93Thw/Axk0vQkV1jS0c2tVHvro30oK55fPeJi4vMH0NrrxNHaLkjEaTnUhDmRWBxXbvTixPX2sRnZTGXAya3Kqz2+B5Hwwk+smIpqtG9uvZyevjka5na7H649DLFyYUdJTockjX1zMh4DBEL0XTkKpXHuxz7NBrmWu7+pGeF0YypdCd9QN3xD3fAMcDXIytskyW47s/vCCy/gW9/6VnojJe4IRELh5KW2BMEzBELhTVv6E2lGIJy07DjTEQhFSCbmvnHLUiAQTFqBThBj8K1/FgqFNx1tlMkIBYKbjgnKdAQCQVo2+yGITGLT5vvxyb69k/Y+msptB7sAYLfb4Xa7b3fZvNm8eTO+9KUvobe3Fz09Pdi5c2da2rXb7fD7J+8CaTQaodUuLPPyD//wD2hubsbXv/51fP/738fly5ehVqtn8c5bk0wmYbfbEQgEIBQKkZ2dDWkasrKffPIJvvvd7+LQoUN49NFH8bOf/QxPPbXw5RvRaBSDg4OIx+NQKpWwWCxpmdULBoNYvXo1fvSjH2H79u0oLS3Fv/3bvy2ozWQyiaGhIYRC42etajQamEzpmZX+6le/iqysLJSVlWHbtm04cyY9s2Nut3vSd08sFiM7Oxti8Zz3lpvEiy++iBdffBGvvvoqvvCFL+CDDz7AsmULO8jb6XTC6x3fMEcgEMBqtUKhWPhKhaamJjzzzDN466238Jd/+Zf42te+hr/+679ecLvxeByDg4OITtgQQyqVIisrCyLRwmYiF8PX5HI5rFbrWG3aQmDlaz6fDw4HN4vOB1+LRCIYHBwce/A2m81puQ8sfG3ivU2RTi9m4WsT+7mJ6HQ6GAyGBbXNwtdSuFwueDzcjJPJZIJGs7Ddk8HQ1zCqN5vNNuZn6fAIMPS1WCw29r1Ll0eAoa/5/X7Y7dyqsXTpAQx9DVP8wmKx3HJwMFtY+BqmPLOl67knxWL4WjpjZuFr042P+OBrU5FIJMjPz7/tfZ7Vp2CxWGCx3PoIlfmSTCYxPDyMmpoayOVyNDQ0oKIiPTWr6WpnKuFwGIWFhVi9ejUAQKvVoqwsPTXNlZWVaWlnIocOHYJIJMKDDz4IqVQKkUiUtnuTrgeJiXR1cRuvrFq1CidPnkQoFEpLvCzubQqfz4dNmzahuroabrcbZWVlaXu4YEEikUBOTg42bNgAjA6aFnqPWX3fMEET69evR87oDq7p+n3V1elfwky+xh6WvrZ8efrrYFn5GktY+RorL2bhayxh6WssYOlrAFBTU5O2tlKQr7GFpa+x8gnyNf4+r82XJX8aHxkZQTQaHRtQpzJlmYzdbp+UAMj0mO12O8xmM0QiES/ucSo+vmoiHo9jeHh4Fu9aOvioYfBIE+Rr7CFfYw/5Glv4pgnyNfaQr7GHfI0tmaiJJR/s2mzcOXRWqxVWqxVutxuR0TPtMhWbzTYWLyb8DZlKKl6M3mc+xIsJmsj0eOPxOJxOJy81oVAooFareRGvXC6HWq3mhSbI19hDvsYW8jX2kK+xh3yNLeRr7CFfWzhLPtidmgEAcFMNUqaRyrKk6j0zIWtxK1LxYvQ+8yFejNbK8SFep9OJZDLJu8wb3zSRqkPkS7wgX2MKHzUM8jWm8FET5GtsIV9jC/kae/ioiUzztSUf7E7NCiHDsyyhUAherxdWqxUSiQRGozGj4wVPM4U6nQ7TFHOLAAAtjUlEQVQymQxWqxWBQOCmQvpMgm8aBk81wbd4wSNNkK+xh3yNPXzUBN/iBY80Qb7GHvI19vBRE5kW75IPdu12OwQCAYxGIy+yLBMzm+BZlgU8jRc80oRer4dYLM7oeFO7BvJZEw6HI6OPUCBfYw/fNQweaYJ8jQ3ka2whX2MP+RpbyNfSQ0YMdlPF+KlMQCZ/kKnYMi1rcSsmZlksFguv4uVD5m1ipjC1bCOT4/V6vQiHw2NmxDcNW61WxGIxpsehLRTyNfaQr7GFfI095GtsIV9jD/kaW8jX0sOSD3ZtNtvYh6hSqaBQKDL6g0zFxpcsSyKRgMPhmPRFcblciMViSx3ajPAxUyiVSsfOJ8t0TUx9AMj0eDGDJjLdJ8jX2EG+xh7yNfaQr7GFfI095GtsIV9LD0s+2LXb7WMfIkY/0Ez+IKcui8n0LIvL5UIikZj0RUGGbyoxMStkNpvHfpappOIVCAQADzQx9QEg0+PFDNnjTPcJ8jV2kK+xh3yNPeRrbCFfYw/5GlvI19LDkg92J2YKwYNlGzabDWq1GgqFAuBBlmU6s0cGCO9WTMwKSaVS6PV63sQLHmliYofq8/kQDAaXOLLpiUQiGBkZybhM4a0gX2ML+Rp7yNfYQr7GHvI19pCvsYV8LT0s+WCXj5nCqfHabLYlL76eiYn1Ccgg4d2KiVkh8CCTxcd4AYwdxZDpHepUszcajRAKhRkbL8jXmEO+xh4+xgvyNaaQr7GFfI09fIwX5GsLZskHu3zMFE6NNxqNwuPxLGlcM8G3TKHf70cwGORd5o1v8ZpMJojFYoAHdTZTNSwUCmE2m3nnE3yLl3wtfZCvsYd8jT3ka2whX2MP+RpbMtXXlnSwmyrG53umEBmcebPZbBCLxdDr9QAAtVoNmUyW0fFiwn0FTzJvU+N1OByIx+NLGtdMTH0A4IOGMY0mMtUnyNfYQ77GHvI1tpCvsYd8jS3ka+whX0sPSzrYdbvdiMVivM8UIsOzLBaLZawYXyAQZITwZmJqVgg8ybxNjTeZTMLlci1pXDMx9QGADxrGNJrIVJ8gX2MP+Rp7yNfYQr7GHvI1tpCvsYd8LT0s6WB36tru1P/3eDwIh8NLGNnM8DFTODFeZIjwZoJvmcJoNAqXy8U7TUw0IplMBq1Wm9HxKpVKqFSqsZ/x4QGAfI0d5GtsIV9jD/kae8jX2EK+xh7ytfSwpIPdqVtqgwdZi6nCM5lMEAgEGRvv1CwWMkR4M5GKK7WFPSZkCjNxUwmn0wnwTMNTHwCQ4dnY6TTMhwcAPmmCfI0t5GvsIV9jC/kae8jX2EK+xp5M9bWMnNlFhgovEAjA7/dPilckEsFkMi35BzkTfMwUGgwGSCSSsZ9ZrVaEQiH4fL4ljW06ZspsgkeZQmR4NnY6DfPhAYB8jR3ka2whX2MP+RpbyNfYQ77GHvK19LDkM7sikQgGg2HsZ5m81fp0a9HB0ywL3+JFhnao02lCq9VCIpFkZLzJZPKO0YTD4UAikViyuGaCfI09d4qGQb6WFsjX2EO+xp47RcMgX0sL5GvpY8lndk0mE4TC8TD49kUBD4WXCVmWmbgTzFMgEGSsJjweD6LR6B2xLCYej2N4eHjJ4poJ8jX2kK+xhXyNPeRrbCFfYw/5GlvI19LHkg92p36IqcLmTPwgp1vGgwxeUhCPx286KgCjwhseHkY0Gl2y2GZipiUQyNDssc1mg1wuh1qtnvTzTNXEdHVXyOB4cRtNZKpPkK+xg3yNPeRr7CFfYwv5GnvI19hCvpY+lnwZ89QPERlcozCT8DI1y+JyuZBMJqf9ogCAw+FYoshmZrqskMlkGnst07BPOSogRaZqYqYHgEyNF7fJHmeqT5CvsYN8jT3ka+whX2ML+Rp7yNfYQr6WPjJuZhcZvGzDbrdDq9VCJpNN+nmmZlmmK8ZHhghvJqbLCkkkEhiNRt7ECx5oYroO1e/3IxAILFFk0xMOh+HxeDIyUzgT5GtsIV9jD/kaW8jX2EO+xh7yNbaQr6UPmtmdA7eK156BW63PVLOSCcKbjpmK8ZHBmSw+xisQCMayrykytc5mJg3r9XqIRCLe+QTf4iVfWzjka+whX2MP+RpbyNfYw8d4ydfSA83szoFbxRuLxeB2u5ckrpngW6bQ5/MhFArxLvPGt3hNJhNEItGkn2dqnc1MGhYKhRndQZGvsYN8jT3ka2whX2MP+RpbyNfYQ76WPpZssJtIJOBwOO6YTCEyNMsikUig1Won/VylUkGhUGRkvJgmK4QMz7zNFK/L5UIsFluSuGZipgeATNYwbqGJTPMJ8jX2kK+xh3yNLeRr7CFfYwv5GnvI19LHkg12h4eHEY/H75hMITI0y2K1Wm8qxk9ttZ6J8WKarBAyPPM2U7zJZBJOp3NJ4pqJ2z0AZNo9nqlmBRnqE+Rr7CFfYw/5GlvI19hDvsYW8jX2kK+ljyUb7N7qplgsFni9XoRCoSWIbGb4mCmcLl5kgPCmg2+ZwkgkArfbzTtNTGf2UqkUOp0uI+NVqVRQKpU3vZbJDwDka+wgX2ML+Rp7yNfYQ77GFvI19pCvpY8lG+zOtKX2xJ9l4gc5XbxGoxFCoTAjO6jp4kUGCG86UvGYzeabXktlCjNpU4nUUQB8yx7fqkPNxHhn0nAmPwCQr7GDfI0t5GvsIV9jD/kaW8jX2EO+lj4ydmYXGSa81Dbf08UrEolgMpky0uz5lik0Go0Qi8U3vWaxWBCJROD1epcktum4XWYTPHoAQIZmY2+l4Ux+ACBfYwf5GlvI19hDvsYW8jX2kK+xh3wtfSzpzK5YLIZer7/ptUzMFN4qswkeZlmWWnjTcbusEDKsQ71VzYpGo4FMJsuoeG91VAB4qGGr1Qqn04lEIrHocc0E+Rp7yNfYQr7GHvI1tpCvsYd8jS3ka+llSQe7ZrMZQuHNIWRiluVWWSHwNMvCt3jBI02kNpXIpHjdbjdisdgdpYlEIgGXy7Xocc0E+Rp7yNfYQr7GHvI1tpCvsYd8jS3ka+llSZcxz5QBkMvl0Gg0GZW1uFVWCBmYZYnFYnA6nbeMd2RkBOFweNFjmwk+ZgqVSiVUKtW0r2eaJvimYfBUE+Rr7CBfYw/5Gnv4qAnyNXaQr7GHfI09mayJJZ3ZnSkDgAzMWqRima4YHxkYb2oL9dtl3lJF+5nArTRhMpkgEAgy6h7zVcO3yxRm0qYSfMwe81ET5GvsIF9jC/kae/iqCfI1dpCvsYV8Lb1k5MwuMjBrYbPZoNfrIZVKp309E+PFbbJCyMDM20zxpjaV4Eu84KkmgsEg/H7/Ikc2PcFgED6f747RMDJUE+RrbCFfYwv5Gnv4qAnyNbaQr7GFfC290MzuLJlNvA6HI2M2lZhNVggZlD2+XTE+eKqJTItXKBTCaDRO+3qmaeJ2GtbpdJBIJBkTL3iqCfI1dpCvsYd8jT181AT5GjvI19hDvpZeaGZ3lswm3ng8juHh4UWNayZulxXKtOMCPB4PIpHIHaeJTIt3pk1GkAGZt6ncTsOpTSUyJV7wVBPka+wgX2MP+Rp7+KgJ8jV2kK+xh3wtvSzJYDcej8PpdPIuy3K7eJFhWRaZTAa1Wj3t6yqVCkqlMqPixS2yQuCpJoaHhxGNRhc1rpngo4bBI02Qr7GHfI095Gts4ZsmyNfYQ77GHvI1tmS6JpZksOtyuZBIJG57UzIlY4HRrMVshJcpMafiFQgEM16TSZmsVBx3oiYyZVOJ22U2U5t5ZMo95psmyNfYQ77GHvI1tvBNE+Rr7CFfYw/5GlsyXRNLMthNjexvt6TA7/cjEAgsYmQzY7fbbxsvMizLcqt4kWGZt9lqIlPiDYfD8Hg8vNPErYxIIpHAYDBkVLwajQZyuXzGazJJE+Rr7CFfYwv5GnvI19hDvsYW8jX2kK+llyUZ7M42A4AMEV4ymbxtVshgMEAkEmVEvJjFFwUZZkZ2ux0CgQAmk2nGazJpq/VU9o8vGgZPO9TbaTiTssfka+whX2ML+Rp7yNfYQr7GHvI19pCvpZeMntlFhgjP7/cjFArdMl6hUAiz2ZxRHdRsviiZFK/JZIJIJJrxGqvVimg0ipGRkUWNbTpuV4w/8bVMusez6VAzKd7baTjTHgBAvsYU8jW2kK+xh3yNLeRr7CFfYw/5WnpZspldiUQCnU434zWZVFMxm8wmeJpl4Vu8yJAOdTbF+CqVCnK5PCPiTSQScDgcd6QmnE4n4vH4osU1E+Rr7CFfYwv5GnvI19hCvsYe8jW2kK+lnyWb2b1dMX4mflFmk7XIBLPHHLIsfIsXPOpQBQJBxtzj4eFhxOPxO1ITyWQSTqdz0eKaCfI19pCvsYV8jT3ka2whX2MP+RpbyNfSz5IOdm+FTCaDVqvNKPPkS5YlGo1ieHh4VvF6vV6EQqFFi20m+JgpTB0HcCsyRRN80zB4qgnyNXaQr7GHfI09fNQE+Ro7yNfYQ77GnkzXxJItY75dBgAZlLVIxZDa6nsmMiXeVDH+bDNvmfBlmY0mjEYjhEJhRtxjvmp4tpnCTNhUgo/ZYz5qgnyNHeRrbCFfYw9fNUG+xg7yNbaQr6WfjJ3ZRQZlLex2OwwGAyQSyS2vy6R4McusEDLEPGejCZFIBJPJxJt4wVNNhMNh+Hy+RYpselLHWNxpGkaGaYJ8jS3ka2whX2MPHzVBvsYW8jW2kK+lH5rZnQVzidfhcCCRSCxKXDMxl6wQMiB7nEwmZ7XNOniqiUyJVyQSwWAw3PK6TNHEbOuutFotpFLpkscLnmqCfI0d5GvsIV9jDx81Qb7GDvI19pCvpZ+Mn9ld6g8Rc4w3kUgs+aYSc80ULvU9HhkZQTQavWM1kSnxms1mCIW3/spniiZmq2GBQJBR95hvmiBfYwf5GnvI19jDR02Qr7GDfI095GvpZ9EHu/F4HE6nc9ZZlkxYUjCXrBAyYJmJzWaDQqGASqW65XUKhQJqtToj4sUsskLgqSZGRkYQiUQWJa6Z4KOGwSNNkK+xh3yNPeRrbOGbJsjX2EO+xh7yNbbwQROLPth1Op1IJpO8Wz8/23iRAcKbzVEBKTLhHs82K4QMiRfz0ERqE4qlYrbxmkymseuXktTvv90mI8gQTZCvsYd8jT3ka2whX2MP+RpbyNfYQ76WfhZ9sDvXDEAgEIDf71+EyGZmrlmWpV5SMNt4kSE1CnPVxFLHGwqF4PV670hNiMVimEymjIhXp9NBJpPd9tpM0AT5GnvI19hCvsYe8jX2kK+xhXyNPeRr6WfRB7tzzQphibMWqWL82cSr1+shFoszIssym3iRIZk3u90OoVAIo9F422stFsuSbyrBNw2Dp5rgW7zgkSbI19hDvsYePmqCb/GCR5ogX2MP+Rp7+KiJTI8342d2scRZFq/Xi3A4PKt4M2VTCT5mCmdTjI/ReGOxGNxu96LENh1z0XCmbCDAR03wLV6QrzGFj5ogX2MLHzXBt3hBvsYUPmqCfI0tfNREpse7JDO7UqkUGo3mttdmQpZlLlkhUJZlXsw1XvBIEyqVCkqlcknjTW0ycidrwuVyIRaLMY9rJsjX2EO+xhbyNfaQr7GFfI095GtsIV9jw5LM7Fqt1lkV46eKnZcyazGXrBAoyzIv5hovMkQTs/1yL/U9drlcSCQSd7wmlnJTCfI19pCvsYV8jT3ka2whX2MP+RpbyNfYsCQzu7MVnVQqhV6v501WCBmQZYlEIhgZGZlTvH6/H4FAgHlsM8HHTKFGo4FcLp/V9UutCb5pGDzVBPkaO8jX2EO+xh4+aoJ8jR3ka+whX2MPHzSxJDO7s70pyIBDnlO/O7XF9+1Y6njn80XBEpvRXDRhMBggEomWXBN81PBcNGGz2ZBMJhlHNj3JZHJO9zgT6mz4qgnyNXaQr7GFfI09fNUE+Ro7yNfYQr7GhiWZ2Z3tdDcy4FBqu90Ok8kEsVg8q+szIV7McRkPMiDzNtt4hUIhzGYzb+IFTzURjUbh8XgYRzY9fr8foVDojtUwMkQT5GtsIV9jC/kae/ioCfI1tpCvsYV8jQ00s3sb5jI9j9F4nU4n4vE407hmgm+ZwkQiAYfDMed7vNRmxLd4xWIx9Hr9rK5fak3MVcNqtRoymYw32W6Qr80Z8jX2kK+xhXyNPeRrbCFfYw/5GhtoZvc2zKXwGqPxJpNJOJ1OpnHNxHyWQGAJl0q53W7EYrE53+OlXmbCt3gtFsusNhlBBmwqMddNRgQCwZLfY/I1tpCvsYd8jS3ka+whX2ML+Rp7yNfYsKiD3Wg0CpfLdcdnCrHEWRalUgmVSjWr6+VyOTQaDW+yQsiQzNtc4/V4PAiHw0zjmgk+ahg80gT5GnvI19hDvsYWvmmCfI095GvsIV9jC180saiD3VT2bD6ZwqUqvp5PVghLnGWZS7xY4kzWXLNCyJDM23w0sVRmNNd4TSYTBALBkmsidZTFbFhKTZCvsYd8jT3ka2whX2MP+RpbyNfYQ77GhkUd7M51yUbq2lAoBJ/PxzCymeFjlmUu8WKJM298yQqlCAQC8Pv9d7QmRCIRTCbTksar1+shlUpn/Z6l1AT5GnvI19hCvsYe8jX2kK+xhXyNPeRrbFjUwe5cdxnDEmdZUltqzyVenU4HiURCmcJZYrPZIBKJYDAYZv0eq9UKh8OBRCLBNLbpWIiGSROzg2/xkq+xh2+aIF9jDx81wad4ydfYwzdNkK+xh4+a4EO8vJjZxRIJz+PxIBqNzilegUCw5Jk3vmUKzWYzhMLZS9FisSAej2N4eJhpbNMx38wmeJQpRAZogk/xkq+xh2+aIF9jDx81wad4ydfYwzdNkK+xh4+a4EO8iz6zK5fLoVarZ/2epcwUzqc+AZRlmRPzjRdL1KHORxMKhQJqtXpJ4o3H43A6nb8XmhgeHkY0GmUW10yQr7GHfI0t5GvsIV9jC/kae8jX2EK+xo5Fn9mdy5baGC2+xhJ9UeaTFQJlWebEfOPFEnWoqd85l2J8LOE9djqdSCaTvzeacDgcjKKaGfI19pCvsYV8jT3ka2whX2MP+RpbyNfYsegzu3PNAEgkEhiNRsoUzoJwOAyPxzOveFOF/IsNHzOFOp0OMplsTu9bKk3wTcPgoSbI19hCvsYe8jX28E0T5GtsIV9jD/kae/iiiSWZ2Z0rS3V2m91uh0AggNFonNP7lirLspDMJpYw8zbXePV6PcRiMW/iBU81sRRHSCSTSd5lj8nX2EK+xh7yNbaQr7GHfI095GtsIV9jR8bP7GLC2W2Ljc1mg9lshkgkmtP7+JgVwhJm3uYab2pTCb7EC55qIhaLwe12M4pserxeL8LhMK80TL7GFvI19pCvsYV8jT3ka+whX2ML+Ro7Fn2wy7csy3zjdblciMViTOKaCb5lChOJBBwOx++NJpYqXolEAq1WO6f3LZUm5qthlUoFhUJBmpgF5GtsIV9jD/kae/ioCfI1dpCvsYd8jR2LvoyZb1mW+caLJdhUYj5HBUy8frHvscvlQiKR+L3RxFLGO5dNRrCE2eP5ZjaRAfd4rvAxXpCv3RbyNfaQr7GHr5qYK+Rrs4N8jT3ka+xYtMFuJBKB2+3mXZZlvvFiibIsarUaCoViTu+TSqXQ6XS8yQqBp5rw+XwIBoNM4poJPmoYPNIE+Rp7yNfYQ77GFr5pgnyNPeRr7CFfYwufNLFog91U1mwhGx4sdvH1QjZowBJlWeYTL5ZoU4n5ZjaxRPEiDZpYbDOab7xGoxFCoXDJNJE6wmIuLIUmyNfYQ77GHvI1tpCvsYd8jS3ka+whX2PHog12U6KZ73R3JBKB1+tlENnMLGSDBixRlmU+8WKJNpVYqCYWO16/349gMPh7oQmhUAiz2bwk8RqNRkgkkjm/l48aJl+7PeRrbCFfYw/5GnvI19hCvsYe8jV2LNpgd6FZISxy5m2+W2oDgEajgVQqXRLhLSRTuBTxisVi6PX6Ob/XYrHA6XQiHo8ziW06FrpkA0tknnzTBJ/iJV9jD980Qb7GHj5qgk/xkq+xh2+aIF9jDx81wZd4eTOzi0UWntvtRiwWm1e8AoFgSQrc51uMjyUqyE8t2ZhrMT5G400kEnC5XExim46FFOMv5VIpvmmCT/GSr7GHb5ogX2MPHzXBp3jJ19jDN02Qr7GHj5rgS7yLOrOrUCigUqnm/N6lEN5CskKgLMusWGi8WOQOdSGakMvl0Gg0ixpvLBaDy+X6vdLEyMgIIpFI2uOaCfI19pCvsYV8jT3ka2whX2MP+RpbyNfYsqgzu/PNAJhMJggEgkX9IBeSFQKPsyyLuanEQuPFIneoqd9lNpvn9f7F1kRqk5HfJw1jCTpU8jW2kK+xhXyNPeRrbCFfYw/5GlvI19iyqDO7880AiMViGI1GyhTegmAwCJ/Pt6B4Q6EQ/H5/2mObCT5mCvV6PaRS6bzev9ia4JuGwUNNkK+xhXyNPeRr7OGbJsjX2EK+xh7yNfbwSRO8mNnFEuzcZbPZIBQKYTQa5/X+xc6yLKTGBkuYeZtvvDqdDhKJhDfxYgk0kY5st91uRyKRSHNk05NMJnmXPSZfYwv5GnvI19hCvsYe8jX2kK+xhXyNLbyY2cUSnMlkt9thNpshFM7vFvExK4QlyLzNN16BQLAk93ihGuabJuLxONxud5ojmx6Px4NoNMorDZOvsYV8jT3ka2whX2MP+Rp7yNfYQr7GFprZnYF0ZIWGh4cRjUbTGtdMpCMrhEXMssTjcTgcDt5l3vgWr0wmg0ajmdf7F1sTC9WwUqmESqWiGZBbQL7GFvI19pCvsYd8jS3ka+whX2ML33yNZnZnIB1ZIUwoOmfNQrNCqSL+xeqgXC4Xkskk7zJvfIx3PkcFYAkybwvVMJbgHpOvsYV8jT3ka2whX2MP+RpbyNfYQ77GlkUZ7IbDYXg8nt+7TCEWOcui1Wohk8nm9X6JRAKDwcCbrBB4min0+/0IBAJpjWsm+Khh8EgT5GvsIV9jD/kaW/imCfI19pCvsYd8jS1808SiDHbTmQFYrK3W05UpXMwsy0LixSJnWfiWFUomk793mtDr9RCJRIsar0AggMlkmncbfNUw+dr0kK+xhXyNPeRr7Pl90zB4rInFgHyNPXzztUUd7C40AxCNRjEyMpLGyGaGj1mWhcSLRc6y8C0r5PP5EAqFfq80IRQKF3U5ms1mg8lkgkgkmncbi6kJ8jX2kK+xhXyNPeRr7CFfYwv5GnvI19iyKIPd1B+TjizLYtyYRCIBh8OxoHhVKhXkcjlvskJYgkyhRCKBVquddxsWiwUulwuxWCytsU1HujKb4FGmEEugCT7FS77GHr5pgnyNPXzUBJ/iJV9jD980Qb7GHj5qgk/x8mYZcyrjsRg3Znh4GPF4fEFZFoFAsOiZN75lCq1W67yL8TEabzKZhNPpTGts05GOzOZiPgCAx5pYCEsxA0K+xg6+aYJ8jT181cRCIF+bGfI19pCvsYevmlgId+TMrkqlglKpnHcbiym8dJg9KMtyS9IVLxapQ02HJqRSKXQ63aLEG41G4Xa7fy814fV6EQ6H0xbXTJCvsYd8jS3ka+whX2ML+Rp7yNfYQr7G3tcWbWZ3oTfFaDRCIBDw5osCngpvsTaV4Kt5LqQYH4uoidQRCr+PGsYiaoJ8jS3ka2whX2MPHzVBvsYW8jW2kK+xh2+aWLSZ3YVOd4tEIpjN5kXJFKZjCQQWcYo+EAjA7/enJd5wOAyv15u22GYiXUsgsEjZY5vNBqPRCIlEsqB2FksTfNMweKoJ8jV2kK+Rr02FbxoGTzVBvsYO8jXytanwTcPgoSZ4M7OLRcxa2O12iEQi6PX6BbWzmPEiTVkh8Ch7rNFoIJVKeRMveKoJh8OBRCKRpsimJx1HBYCHGgb52oyQr/EjXvBUE+Rr08NHTZCvsYV8jS3kazSzO4nFzLJYLBYIhQu7PXzMCoFH2ePF3FSCjxpGmjSRSCTgcrnSFNn0uN1uxGKxBce7mLVifNQE+RpbyNfYQr5GmpgK+Ro/NEG+NjPkazSzO4nFzLKkK96RkRFEIpG0xDUTfMsUxmIxuFyu31tNLFa8crkcKpVqQe0slibSpWGFQgG1Wk2amAbyNfK1qfBRw+RrbOGjJsjX2EG+Rr42FT76Gs3sTkM648UiCC8d5+IBgNlsntQeK5xOJ5LJ5O+tJhYz3oUcFYBFzB6nK7MJ0sSMkK+Rr02FrxomX2MHXzWxUMjXpod8jXxtKnz0NeaD3WAwCJ/Px7ssS7rixSJlWXQ6HaRS6YLaEYvFMBqNvMkKgaeaCAaD8Pv9aYlrJvioYfBIE+Rr5GtT4ZuGQb5GmpgC+Rr52lT4pmGQr5EmpoH5YDf1R6QrA2C325kXX6c7U7gYWZZ0xItFyrLwLSuUTCZ/bzWh1+shFosXJV6hUAij0bjgthZDE+Rr/NEwyNemhXyNfG0q5Gv80TDI16aFfI18bToWbbCbrgxAPB6H2+1OQ2Qzw8csSzrixSJlWfiWFfJ6vYhEIr+XmhAIBIumCZPJBJFItOC2+Khh8rWbIV8jX5sK+Rq/NEy+djPka+RrUyFfuwNmdtOdFQLjLEsikYDD4UhLvCqVCkqlkjdZISxiplAmk0Gj0Sy4LavVCpfLhWg0mpbYpoNvGgZPNcG3eMEjTZCvka9NhW8aBk81wbd4wSNNkK+Rr02FbxoGTzXBp3jBx5ldMM6yuFwuJBIJ3mXe+BjvQovxMUETTqczDZFNTzo1nNpUgjQxGT7GC/K1tLQ1E3zUBPkaaWIifIwX5GtpaWsm+KgJ8jXSxET4Fi8Wa2ZXo9FALpcvuK3FyLKkMysEyrJMS7rjBY80IZFIYDAYmMYbDocxMjLye60Jn8+HYDCYlvamg3yNf5rgW7zgkSbI16aHfI0/GgZPNcG3eMEjTZCvTQ/ffA2LMdgdGhpKWwbAYDBAJBJhcHAwLe1Nx8DAAJCmrFCqnaGhISSTybS0N5VoNArb6KHq6SCVZWG1zCSZTKZVE6l2WGpicHAQAoEAJpMpLe2lNMGK1L1I5z222WzMNhpJJBJp1zAmfJdZQL5GvjYR8jXytamQr5GvTYV8jXxtKuRr7H0N4MTMjHfffTep0WiSRqMx+eqrry64vX/5l39JyuXypEqlSl64cCEtMU7E5XIllUplEkDyj/7ojxbc3vHjx5NWqzWp0WiSP/jBD9IS41Tuv//+JIBkUVFR0uv1LqitQCCQLC4uTgJI3nvvvWmLcSL//u//ntRqtUmr1Zo8fPjwgtv7kz/5kySApFKpTNrt9rTEOJErV64klUplUiaTJf/xH/9xwe29/vrrSaPRmNRoNMk333wzLTFOJTs7OwkguX79+gW31dbWlszJyUlKpdLk17/+9bTEN5XnnnsuKZPJkjk5OcmWlpYFt3f33XcnASQtFkta4psK+Rr52lTI18jXpkK+Rr42FfI18rWpkK+x9bUUYpYD6ZqaGni9XgBAcXHxgtsrLCxEKBSCSCRCWVlZGiKcjE6ng1KpRCAQQGFh4YLby8/Ph8vlQiwWQ01NTVpinEoqTrFYDIVCsaC2ZDLZ2Nlv6fj7p6OmpgYejwd+vz8tvyPVhkwmg8FgSEOEkykpKUEkEkEsFktLvMXFxXC5XACAZcuWpSHCm8nJycHg4GDa6q4CgQAikQiqq6vTEt9UqqqqEA6H4ff707qpRE5OThqiuxnyNfK1qZCvka9NhXyNfG0q5Gvka1MhX2Pra2MwHUonk8ni4uLkXXfdlZa24vF4sqCgILlx48a0tDcdzz33XFKlUi0465bi2WefTapUqmQkEklLe1M5evRoUiQSJT/88MO0tPfxxx8nRSJRcv/+/WlpbyrRaDSp0WiSf/zHf5yW9vx+f1KtVjPLYiWTyeQDDzyQzMvLS8bj8bS0t3HjxmRBQUFa2pqOn//850mxWJxsbm5OS3v//u//nhSLxcne3t60tDeVwcHBpFgsTv6f//N/0tJeW1tbUiwWJ3/84x+npb3pIF8jX5sI+Rr52lTI18jXpkK+Rr42FfI19r6WTCaTgiSr4oTxwXRadnGb2B5Gz5NiBYuYKV527S9GvEiz5uges22fj/GCfI1p+xTvze2DfI3iZdg++Rr79inem9sH+RrFOwXmg12CIAiCIAiCIAiCWGyY78ZMEARBEARBEARBEIvNgjeoGhgYwG9/+1v4/f45vS8/Px/f/va3IRZPH4Lf78cvfvGLseLw2WIwGPDd734XGo1m2tfj8Th+/etfo7u7e07tqlQq/MVf/AVyc3OnfT2ZTGLbtm24fv36nNqVyWT4yle+guXLl894zZ49e3D8+PE5bSUuFovxmc98Bps3b57xmjNnzmDXrl1z2rZeKBRi8+bN+OxnPzvjNY2NjdixYwdCodCs2wWAFStW4Nlnn51xOQNpjYO0Ng5pjYO0Ng5pjYO0Ng5pjYO0xkFaG4e0xkFaG4dvWpsNC1rGnEwmUVNTg46ODuj1+jm912az4Tvf+Q6ef/75aV9/+umnsXfvXpjN5jm163Q68eijj+KTTz6Z9vX/8l/+C372s5/BYrHM6ca53W4UFhaiubkZQuHNE+K/+c1v8Nd//dcwmUwQiUSzbtfr9UKhUKCpqWna3dj27duHp556ClqtFjKZbNbtpnZku3DhAlatWnXT6w0NDVi/fj3EYjGUSuWs241EInC73di9ezc+85nP3PS6y+VCZWUlAoHAjKYyHfF4HE6nEz//+c/xN3/zNze9Tlobh7TGQVobh7TGQVobh7TGQVrjIK2NQ1rjIK2NQ1rj4JvWZsuCZnaHh4fR3NyMz3/+89PetFvx/vvv48SJEzO+furUKdx///14+OGH59Tu8ePHcfr06RlfP3nyJFauXIkvfOELc2q3rq4O77zzDux2O7KysqaNNz8/H9/85jfn1G5/fz9efPFFtLS0TCvos2fPQqlU4nvf+960X6SZCIfD+H//7//h8uXL0342V65cQSgUwn/7b/9tTlvgJ5NJ/Md//AfOnDkzraBbW1vhdDrxzW9+E/n5+bNuFwBeeeUVnDp1alpBk9Ymx0taI61NhLTGQVobh7TGQVrjIK1Njpe0RlqbCGmNg29amy0LqtlNTZ2nzvqaC1Kp9JZT74lEgkm78Xh83u1iwt88lYXEO5t25yJmAJBIJLdtd+J1s0UgENzyHrPSBGltHNLa5HZJa6S1ie2CtDbWNmmNtMa6XZDWbmqXtEZaS0Fam9wui89uNtAGVQRBEARBEARBEMQdBw12CYIgCIIgCIIgiDsOGuwSBEEQBEEQBEEQdxxMBrvTbbFdW1tL7WZ4uyzbpnap3cVqm9qldherbWqX2l2stqldanex2qZ2qd3FaptlzBNJ+2DX7/dPW4AslUrh8/mo3Qxtl2Xb1C61u1htU7vU7mK1Te1Su4vVNrVL7S5W29QutbtYbbOMeSoLOnpoOlQqFSKRCAYHB6HRaBCPxxEIBBAOh6FWq6ndDG2XjzFTu/xsl48xU7v8bJePMVO7/GyXjzFTu/xsl48xU7v8bJevMU8l7YNdADed3aTVapGdnU3tZni7LNumdqndxWqb2qV2F6ttapfaXay2qV1qd7Hapnap3cVqm2XME6ENqgiCIAiCIAiCIIg7DhrsEgRBEARBEARBEHccNNglCIIgCIIgCIIg7jhosEsQBEEQBEEQBEHccSxosCsUcm+PRCJzfm8kEhl7/0xts2hXJBLNu11M+JunspB4Z9NuIpGYU7vRaPS27U68brYkk8lb3mNWmiCtjUNam9wuaY20NrFdkNbG2iatkdZYtwvS2k3tktZIaylIa5PbZfHZzYYF7cZsMBhQVVWF3bt34+TJk7N+XzKZhN1ux3e+850Zr9m0aRP27t2LxsbGOcXkdDrx6KOPzvj65s2b8bOf/QyDg4MQCASzbtftdqO8vBwWi2XGeLdv347nn38eIpFo1u16vV4YjUZUVlZO+/q9996LQCCAn//855DJZLNuNxAIQCqVYt26ddO+vnbtWsjlcvzqV7+CUqmcdbuRSAQejwcbN26c9vWKigqYTCZs374dGo1m1u3G43E4nU58//vfn/Z10trkeElrpLWJkNY4SGvjkNY4SGscpLXJ8ZLWSGsTIa1x8E1rs0WQTCaTC2lgYGAAL7744pwPAM7Pz8e3v/1tiMXTj7f9fj9+8YtfwOVyzaldg8GA7373uzPezHg8jl//+tfo7u6eU7tqtRrPPfcccnNzp309mUxi27ZtqK2txVxuqUwmw1e+8hUsX758xmv27NmD48ePzymDIxaL8fTTT2PTpk0zXnPmzBns2rVrThkcoVCIzZs347Of/eyM1zQ2NmLHjh0IhUKzblcgEGD58uV49tlnZzQa0hoHaW0c0hoHaW0c0hoHaW0c0hoHaY2DtDYOaY2DtDYO37Q2q3YWOtglCIIgCIIgCIIgiEyDNqgiCIIgCIIgCIIg7jhosEsQBEEQBEEQBEHccdBglyAIgiAIgiAIgrjjoMEuQRAEQRAEQRAEccdBg12CIAiCIAiCIAjijoMGuwRBEARBEARBEMQdBw12CYIgCIIgCIIgiDsOGuwSBEEQBEEQBEEQdxw02CUIgiAIgiAIgiDuOGiwSxAEQRAEQRAEQdxx0GCXIAiCIAiCIAiCuOOgwS5BEARBEARBEARxx0GDXYIgCIIgCIIgCOKOgwa7BEEQBEEQBEEQxB0HDXYJgiAIgiAIgiCIOw4a7BIEQRAEQRAEQRB3HDTYJQiCIAiCIAiCIO44aLBLEARBEARBEARB3HHQYJcgCIIgCIIgCIK446DBLkEQBEEQBEEQBHHHQYNdgiAIgiAIgiAI4o6DBrsEQRAEQRAEQRDEHQcNdgmCIAiCIAiCIIg7DhrsEgRBEARBEARBEHccNNglCIIgCIIgCIIg7jhosEsQBEEQBEEQBEHccdBglyAIgiAIgiAIgrjjoMEuQRAEQRAEQRAEccdBg12CIAiCIAiCIAjijoMGuwRBEARBEARBEMQdBw12CYIgCIIgCIIgiDsOGuwSBEEQBEEQBEEQdxw02CUIgiAIgiAIgiDuOGiwSxAEQRAEQRAEQdxx0GCXIAiCIAiCIAiCuOOgwS5BEARBEARBEARxx0GDXYIgCIIgCIIgCOKOgwa7BEEQBEEQBEEQxB0HDXYJgiAIgiAIgiCIOw4a7BIEQRAEQRAEQRB3HDTYJQiCIAiCIAiCIO44aLBLEARBEARBEARB3HHQYJcgCIIgCIIgCIK446DBLkEQBEEQBEEQBHHHQYNdgiAIgiAIgiAI4o6DBrsEQRAEQRAEQRDEHQcNdgmCIAiCIAiCIIg7DhrsEgRBEARBEARBEHccNNglCIIgCIIgCIIg7jhosEsQBEEQBEEQBEHccdBglyAIgiAIgiAIgrjjoMEuQRAEQRAEQRAEccdBg12CIAiCIAiCIAjijoMGuwRBEARBEARBEMQdBw12CYIgCIIgCIIgiDsOGuwSBEEQBEH8/+3XgQwAAADAIH/re3xlEQA7sgsAAMCO7AIAALAjuwAAAOzILgAAADuyCwAAwI7sAgAAsCO7AAAA7MguAAAAO7ILAADAjuwCAACwE2LFPKJF2J3NAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -27,7 +27,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAHHCAYAAAASxkpJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUXtJREFUeJzt3XlYVNX/B/D3DDDDOsOibIqIoiiuaX2NzC0RRCxMSk1LcE1Dy90sF8SKwn1LK0vQNLNFU9AUxV0yJcmdFDFNRU2FEZT9/v7wx80RHJnLjAP4fvnc53HuPffcc3kQPn4+59wrEwRBABEREZGByU09ACIiIqqZGGQQERGRUTDIICIiIqNgkEFERERGwSCDiIiIjIJBBhERERkFgwwiIiIyCgYZREREZBQMMoiIiMgoGGQQPSFnz55FQEAA1Go1ZDIZNm7caND+L1y4AJlMhtjYWIP2W5117twZnTt3NvUwiJ5aDDLoqZKeno63334bDRo0gKWlJVQqFdq3b4+FCxfi3r17Rr12WFgYjh8/jo8//hirV6/Gs88+a9TrPUnh4eGQyWRQqVTlfh3Pnj0LmUwGmUyGOXPm6N3/lStXEBkZidTUVAOMloieFHNTD4DoSUlISMDrr78OpVKJgQMHonnz5igoKMD+/fsxceJEnDx5El9++aVRrn3v3j0kJyfjww8/xKhRo4xyDU9PT9y7dw8WFhZG6f9xzM3NcffuXWzevBl9+vTROrZmzRpYWloiLy9PUt9XrlzBzJkzUb9+fbRu3brC523fvl3S9YjIMBhk0FMhIyMD/fr1g6enJ5KSkuDm5iYei4iIwLlz55CQkGC069+4cQMAYG9vb7RryGQyWFpaGq3/x1EqlWjfvj2+++67MkHG2rVrERwcjJ9++umJjOXu3buwtraGQqF4ItcjovKxXEJPhZiYGOTk5ODrr7/WCjBKeXt747333hM/FxUVYdasWWjYsCGUSiXq16+PDz74APn5+Vrn1a9fHz179sT+/fvxv//9D5aWlmjQoAFWrVoltomMjISnpycAYOLEiZDJZKhfvz6A+2WG0r8/KDIyEjKZTGtfYmIiXnzxRdjb28PW1hY+Pj744IMPxOOPmpORlJSEDh06wMbGBvb29ggJCcHp06fLvd65c+cQHh4Oe3t7qNVqDBo0CHfv3n30F/Yh/fv3x9atW5GVlSXuO3z4MM6ePYv+/fuXaX/r1i1MmDABLVq0gK2tLVQqFYKCgvDnn3+KbXbv3o3nnnsOADBo0CCx7FJ6n507d0bz5s2RkpKCjh07wtraWvy6PDwnIywsDJaWlmXuPzAwEA4ODrhy5UqF75WIHo9BBj0VNm/ejAYNGuCFF16oUPuhQ4di+vTpaNOmDebPn49OnTohOjoa/fr1K9P23LlzeO2119CtWzfMnTsXDg4OCA8Px8mTJwEAvXv3xvz58wEAb7zxBlavXo0FCxboNf6TJ0+iZ8+eyM/PR1RUFObOnYtXXnkFBw4c0Hnejh07EBgYiOvXryMyMhLjxo3DwYMH0b59e1y4cKFM+z59+uDOnTuIjo5Gnz59EBsbi5kzZ1Z4nL1794ZMJsPPP/8s7lu7di2aNGmCNm3alGl//vx5bNy4ET179sS8efMwceJEHD9+HJ06dRJ/4Tdt2hRRUVEAgOHDh2P16tVYvXo1OnbsKPZz8+ZNBAUFoXXr1liwYAG6dOlS7vgWLlyI2rVrIywsDMXFxQCAL774Atu3b8fixYvh7u5e4XslogoQiGq47OxsAYAQEhJSofapqakCAGHo0KFa+ydMmCAAEJKSksR9np6eAgBh79694r7r168LSqVSGD9+vLgvIyNDACDMnj1bq8+wsDDB09OzzBhmzJghPPjPc/78+QIA4caNG48cd+k1Vq5cKe5r3bq14OzsLNy8eVPc9+effwpyuVwYOHBgmesNHjxYq89XX31VcHJyeuQ1H7wPGxsbQRAE4bXXXhO6du0qCIIgFBcXC66ursLMmTPL/Rrk5eUJxcXFZe5DqVQKUVFR4r7Dhw+XubdSnTp1EgAIy5cvL/dYp06dtPZt27ZNACB89NFHwvnz5wVbW1uhV69ej71HItIfMxlU42k0GgCAnZ1dhdpv2bIFADBu3Dit/ePHjweAMnM3fH190aFDB/Fz7dq14ePjg/Pnz0se88NK53L88ssvKCkpqdA5V69eRWpqKsLDw+Ho6Cjub9myJbp16ybe54NGjBih9blDhw64efOm+DWsiP79+2P37t3IzMxEUlISMjMzyy2VAPfnccjl938MFRcX4+bNm2Ip6I8//qjwNZVKJQYNGlShtgEBAXj77bcRFRWF3r17w9LSEl988UWFr0VEFccgg2o8lUoFALhz506F2v/999+Qy+Xw9vbW2u/q6gp7e3v8/fffWvvr1atXpg8HBwfcvn1b4ojL6tu3L9q3b4+hQ4fCxcUF/fr1w/r163UGHKXj9PHxKXOsadOm+Pfff5Gbm6u1/+F7cXBwAAC97qVHjx6ws7PD999/jzVr1uC5554r87UsVVJSgvnz56NRo0ZQKpWoVasWateujWPHjiE7O7vC16xTp45ekzznzJkDR0dHpKamYtGiRXB2dq7wuURUcQwyqMZTqVRwd3fHiRMn9Drv4YmXj2JmZlbufkEQJF+jdL5AKSsrK+zduxc7duzAW2+9hWPHjqFv377o1q1bmbaVUZl7KaVUKtG7d2/ExcVhw4YNj8xiAMAnn3yCcePGoWPHjvj222+xbds2JCYmolmzZhXO2AD3vz76OHr0KK5fvw4AOH78uF7nElHFMcigp0LPnj2Rnp6O5OTkx7b19PRESUkJzp49q7X/2rVryMrKEleKGIKDg4PWSoxSD2dLAEAul6Nr166YN28eTp06hY8//hhJSUnYtWtXuX2XjjMtLa3MsTNnzqBWrVqwsbGp3A08Qv/+/XH06FHcuXOn3MmypX788Ud06dIFX3/9Nfr164eAgAD4+/uX+ZpUNOCriNzcXAwaNAi+vr4YPnw4YmJicPjwYYP1T0T/YZBBT4VJkybBxsYGQ4cOxbVr18ocT09Px8KFCwHcT/cDKLMCZN68eQCA4OBgg42rYcOGyM7OxrFjx8R9V69exYYNG7Ta3bp1q8y5pQ+lenhZbSk3Nze0bt0acXFxWr+0T5w4ge3bt4v3aQxdunTBrFmzsGTJEri6uj6ynZmZWZksyQ8//IDLly9r7SsNhsoLyPQ1efJkXLx4EXFxcZg3bx7q16+PsLCwR34diUg6PoyLngoNGzbE2rVr0bdvXzRt2lTriZ8HDx7EDz/8gPDwcABAq1atEBYWhi+//BJZWVno1KkTfv/9d8TFxaFXr16PXB4pRb9+/TB58mS8+uqrePfdd3H37l0sW7YMjRs31pr4GBUVhb179yI4OBienp64fv06Pv/8c9StWxcvvvjiI/ufPXs2goKC4OfnhyFDhuDevXtYvHgx1Go1IiMjDXYfD5PL5Zg6depj2/Xs2RNRUVEYNGgQXnjhBRw/fhxr1qxBgwYNtNo1bNgQ9vb2WL58Oezs7GBjY4N27drBy8tLr3ElJSXh888/x4wZM8QltStXrkTnzp0xbdo0xMTE6NUfET2GiVe3ED1Rf/31lzBs2DChfv36gkKhEOzs7IT27dsLixcvFvLy8sR2hYWFwsyZMwUvLy/BwsJC8PDwEKZMmaLVRhDuL2ENDg4uc52Hl04+agmrIAjC9u3bhebNmwsKhULw8fERvv322zJLWHfu3CmEhIQI7u7ugkKhENzd3YU33nhD+Ouvv8pc4+Flnjt27BDat28vWFlZCSqVSnj55ZeFU6dOabUpvd7DS2RXrlwpABAyMjIe+TUVBO0lrI/yqCWs48ePF9zc3AQrKyuhffv2QnJycrlLT3/55RfB19dXMDc317rPTp06Cc2aNSv3mg/2o9FoBE9PT6FNmzZCYWGhVruxY8cKcrlcSE5O1nkPRKQfmSDoMaOLiIiIqII4J4OIiIiMgkEGERERGQWDDCIiIjIKBhlERERkFAwyiIiIyCgYZBAREZFR8GFc5SgpKcGVK1dgZ2dn0McZExHRkyEIAu7cuQN3d3fxTb+GlpeXh4KCAoP0pVAoYGlpaZC+qhIGGeW4cuUKPDw8TD0MIiKqpEuXLqFu3boG7zcvLw9Wdk5A0V2D9Ofq6oqMjIwaF2gwyCiHnZ0dAEDhGwaZWcVfH01UnVzcPcfUQyAymjsaDby9PMSf54ZWUFAAFN2F0jcMqOzvieICZJ6KQ0FBAYOMp0FpiURmpmCQQTWWSqUy9RCIjM7oJW9zy0r/nhBkNXd6JIMMIiIiqWQAKhvI1OCpfwwyiIiIpJLJ72+V7aOGqrl3RkRERCbFTAYREZFUMpkByiU1t17CIIOIiEgqlkt0qrl3RkRERCbFTAYREZFULJfoxCCDiIhIMgOUS2pwUaHm3hkRERGZFDMZREREUrFcohODDCIiIqm4ukSnmntnREREZFLMZBAREUnFcolODDKIiIikYrlEJwYZREREUjGToVPNDZ+IiIjIpJjJICIikorlEp0YZBAREUklkxkgyGC5hIiIiEgvzGQQERFJJZfd3yrbRw3FIIOIiEgqzsnQqebeGREREZkUMxlERERS8TkZOjHIICIikorlEp1q7p0RERGRSTGTQUREJBXLJToxyCAiIpKK5RKdGGQQERFJxUyGTjU3fCIiIiKTYiaDiIhIKpZLdGKQQUREJBXLJTrV3PCJiIiITIqZDCIiIskMUC6pwf/fZ5BBREQkFcslOtXc8ImIiIhMipkMIiIiqWQyA6wuqbmZDAYZREREUnEJq041986IiIjIpJjJICIikooTP3VikEFERCQVyyU6McggIiKSipkMnWpu+ERERFQDLVu2DC1btoRKpYJKpYKfnx+2bt0qHu/cuTNkMpnWNmLECK0+Ll68iODgYFhbW8PZ2RkTJ05EUVGRVpvdu3ejTZs2UCqV8Pb2RmxsrN5jZSaDiIhIKhOUS+rWrYtPP/0UjRo1giAIiIuLQ0hICI4ePYpmzZoBAIYNG4aoqCjxHGtra/HvxcXFCA4OhqurKw4ePIirV69i4MCBsLCwwCeffAIAyMjIQHBwMEaMGIE1a9Zg586dGDp0KNzc3BAYGFjhsTLIICIiksoE5ZKXX35Z6/PHH3+MZcuW4bfffhODDGtra7i6upZ7/vbt23Hq1Cns2LEDLi4uaN26NWbNmoXJkycjMjISCoUCy5cvh5eXF+bOnQsAaNq0Kfbv34/58+frFWSwXEJERFQFaDQarS0/P/+x5xQXF2PdunXIzc2Fn5+fuH/NmjWoVasWmjdvjilTpuDu3bviseTkZLRo0QIuLi7ivsDAQGg0Gpw8eVJs4+/vr3WtwMBAJCcn63VPzGQQERFJVDrnoZKdAAA8PDy0ds+YMQORkZHlnnL8+HH4+fkhLy8Ptra22LBhA3x9fQEA/fv3h6enJ9zd3XHs2DFMnjwZaWlp+PnnnwEAmZmZWgEGAPFzZmamzjYajQb37t2DlZVVhW6NQQYREZFEhgwyLl26BJVKJe5WKpWPPMXHxwepqanIzs7Gjz/+iLCwMOzZswe+vr4YPny42K5FixZwc3ND165dkZ6ejoYNG1ZurHpiuYSIiKgKKF0tUrrpCjIUCgW8vb3Rtm1bREdHo1WrVli4cGG5bdu1awcAOHfuHADA1dUV165d02pT+rl0Hsej2qhUqgpnMQAGGURERNLJDLRVUklJySPncKSmpgIA3NzcAAB+fn44fvw4rl+/LrZJTEyESqUSSy5+fn7YuXOnVj+JiYla8z4qguUSIiIiiQxZLqmoKVOmICgoCPXq1cOdO3ewdu1a7N69G9u2bUN6ejrWrl2LHj16wMnJCceOHcPYsWPRsWNHtGzZEgAQEBAAX19fvPXWW4iJiUFmZiamTp2KiIgIMXsyYsQILFmyBJMmTcLgwYORlJSE9evXIyEhQa+xMsggIiKqRq5fv46BAwfi6tWrUKvVaNmyJbZt24Zu3brh0qVL2LFjBxYsWIDc3Fx4eHggNDQUU6dOFc83MzNDfHw8Ro4cCT8/P9jY2CAsLEzruRpeXl5ISEjA2LFjsXDhQtStWxcrVqzQa/kqAMgEQRAMduc1hEajgVqthrLFMMjMFKYeDpFR3D68xNRDIDIajUYDFyc1srOztSZTGrJ/tVoNm1eXQWZR8TkK5REK7yF3w0ijjdWUmMkgIiKSyBTlkuqEQQYREZFEDDJ04+oSIiIiMgpmMoiIiKQyxBLUmpvIYJBBREQkFcslurFcQkREREbBTAYREZFE99/0XtlMhmHGUhUxyCAiIpJIBgOUS2pwlMFyCRERERkFMxlEREQSceKnbgwyiIiIpOISVp1YLiEiIiKjYCaDiIhIKgOUSwSWS4iIiOhhhpiTUfnVKVUXgwwiIiKJGGToxjkZREREZBTMZBAREUnF1SU6McggIiKSiOUS3VguISIiIqNgJoOIiEgiZjJ0Y5BBREQkEYMM3VguISIiIqNgJoOIiEgiZjJ0Y5BBREQkFZew6sRyCRERERkFMxlEREQSsVyiG4MMIiIiiRhk6MYgg4iISCIGGbpxTgYREREZBTMZREREUnF1iU4MMoiIiCRiuUQ3lkuIiIjIKJjJIIMYHPoiBod2gIebIwDgzPlMzP56K3YcPAUAqF+nFma99yqeb90ACgtz7Ew+jclzfsCNW3fEPtbOfRstGtdBLQc7ZN25iz2/pyFy8S/I/DdbbNPL/xmMGxSIhvWccfN2Dr5avweLv935ZG+WCMCnXybgs6+2au1r5OmC33+cBgC49q8G0xdtwO5DZ5BzNx/ens4YPzgQr7z0jNi+5SvTcenqLa0+pke8grHhAca/ATIIZjJ0M2mQER4ejri4OACAhYUF6tWrh4EDB+KDDz6AuTnjn+rkyvUszFzyC9Iv3YBMJsMbwe2wZs5wdHrzU1y8cgs/L4nAibOXETJyMQDggxHB+G7e2+g2aC4EQQAA7DvyF+at3IZr/2bDzdkes957FXGfDUHgkHkAAP8XfPHlrHBMnv0Dkg6dhk99Vyz4sD/y8gvx1Q97TXbv9PRq0sANG5eOFj+bm/+XHB4ZuQrZd+5h7by34aS2xY/bjmDQlG+wa9UktPTxENt98HYwBvZqL362tVE+mcGTQchggCCjBk/KMPlv8u7du2PlypXIz8/Hli1bEBERAQsLC0yZMsXg1yooKIBCoTB4vwT8uu+E1uePlm3G4NAX8WxzL7jVtkc9Nyd0evMz3MnNAwC8E7kaGUkx6PhcY+z5PQ0AsOy7XeL5lzJvY0FcIr6dPQzmZnIUFZegb9D/kLD7T6z8eT8A4O/LNzE/djveC+vGIINMwtxMDpdaqnKP/X7sPOa83w9tm9UHAEwY0h2ff5eE1NOXtIIMW2vLR/ZBVN2ZfE6GUqmEq6srPD09MXLkSPj7+2PTpk24ffs2Bg4cCAcHB1hbWyMoKAhnz57VOvenn35Cs2bNoFQqUb9+fcydO1freP369TFr1iwMHDgQKpUKw4cPf5K39tSSy2Xo3a0trK0UOHw8A0qFOQRBQH5Bkdgmr6AIJSUCnm/VsNw+7FXWeK37s/j9WAaKiksAAAqFuVYfAJCXX4A6Lg5imYboSTp/6QaaBn2A1iEzMGxqLC5l/lf6+F/LBtiQmILb2bkoKSnBT9uPID+/CC+2baTVx4K47WjgPwkdB3yKRat3oKio+EnfBlVCabmksltNZfJMxsOsrKxw8+ZNhIeH4+zZs9i0aRNUKhUmT56MHj164NSpU7CwsEBKSgr69OmDyMhI9O3bFwcPHsQ777wDJycnhIeHi/3NmTMH06dPx4wZM0x3U08J34bu2PbNeFgqzJF7Lx9vTfwKaRmZ+Pd2Du7mFSBydAhmLd0EmUyGGaNCYG5uBteH/gcXOSoEQ/t0hI2VEr8fy0C/ccvFY0m/ncbHY3ujY3xj7DtyFg08aiNiQFcAgGstdZnaNpExtW1WH0tnvAlvTxdc+zcbn321FT2GzcfBdR/CzsYSK6MHY/AH36CB/2SYm8lhZanA6tnD0MCjttjH2307oVUTD9irbPD7sfOIWroJ1/7NxsdjQ014Z6QXLmHVSSaUFsRNIDw8HFlZWdi4cSMEQcDOnTvRs2dPBAUFYePGjThw4ABeeOEFAMDNmzfh4eGBuLg4vP766xgwYABu3LiB7du3i/1NmjQJCQkJOHnyJID7mYxnnnkGGzZs0DmO/Px85Ofni581Gg08PDygbDEMMjOWVyrKwtwMdV0doLK1QkjXZ/BWiB96vr0QaRmZ6NKuCea+3xee7k4oKRHw0/YU+Hi54o+Tf2P8Z9+LfTiqbeCgtoGHqyMmDwuCJuce+o79L9CIHBWC4X07wcLcDHdy87B83W5MeTsY/uGzkXLyb1PcdrV1+/ASUw+hRsm+cxctXp6Oj8f2xlshL2DS7PX44+TfmPbOK3C0t8GWPcfw+dpd2PLVGDTzrlNuH99uSsbYT77DP3vnQqmweMJ3ULNoNBq4OKmRnZ0Nlcrw5SiNRgO1Wo16I9dDrrSuVF8l+XdxcVkfo43VlEyeyYiPj4etrS0KCwtRUlKC/v37o3fv3oiPj0e7du3Edk5OTvDx8cHp06cBAKdPn0ZISIhWX+3bt8eCBQtQXFwMMzMzAMCzzz772DFER0dj5syZBryrp1NhUTEy/vkXAPDnmUt4xrceRvTrjLHR67Dr0Bm0eXUmHNU2KCougSbnHs78+gkubE/R6uNWdi5uZeci/eJ1/HUhEycTPsJzLbxw+HgGACByyS+I+nwTXJxU+Pd2Djr9zwcAcOHyzSd7s0QPUdtZw7ueM85fuoGMf27gq/V7cXDdh2ja0A0A0KJxXSQfTceKH/Zi/pQ3yu2jbbP6KCouwcUrt9CovsuTHD5JxNUlupl8TkaXLl2QmpqKs2fP4t69e4iLizPoF9zGxuaxbaZMmYLs7Gxxu3TpksGu/zSTy2RQKLTj2FvZudDk3EOHZxujtoMttu47rvN8AFBYaPdRUiLg6o1sFBYVIzSgLX4/dh43s3IMfwNEesi5m4+My//CtZYad/MKANyfn/QgMzMZhJJHJ4+P//UP5HIZajvaGXWsZDick6GbyTMZNjY28Pb21trXtGlTFBUV4dChQ1rlkrS0NPj6+optDhw4oHXegQMH0LhxYzGLUVFKpRJKJZeNVcb0iFew4+BJXMq8DTtrS7zW/Vm82LYRQkd/DgDo//Lz+Ov/52f8r6UXose9hs+/24Vzf18HALRt5ok2vp5I/jMd2Zq7qF+3Nj4cEYzzl26IWQxHtQ1Cuj6D/SlnoVSaY8DLzyOk6zPo+fZCk903Pb2mLfgZ3Tu0gIebI67eyManXybATC5HaGBbqO2s0cCjNsZGf4dZ770KR7UNEnYfw65DaVg3fwSA+6tPUk78jRefbQQ7a0v8fjwDH87/CX2CnoO9qnLpd3pyZLL7W2X7qKlMHmSUp1GjRggJCcGwYcPwxRdfwM7ODu+//z7q1KkjlkjGjx+P5557DrNmzULfvn2RnJyMJUuW4PPPPzfx6J9OtRxssSxyIFxqqaDJycPJc5cROvpz7P79DACgkaczpke8AgeVNS5euYW5K7fh87VJ4vn38grRs0srvD88GNZWClz7Nxs7k09jzjffoKDwvxUl/YLbIeq9VyGTAYePZ+DlEQvxxynOxaAn7/L1LAyduhK3su+iloMt2rVqgMSV41HL4X4WYv2CkZi55Be8Me4L5N7Nh5dHbXwe+RYC2jcDACgVFvg5MQWffrUFBYVF8HR3wsg3uiBiwEumvC0ig6oyEz8fdvv2bbz33nvYtGkTCgoK0LFjRyxevBiNGv23/Ounn37C9OnTcfbsWbi5uWH06NGYMGGCeLx+/foYM2YMxowZo9e4Sif0cOIn1WSc+Ek12ZOa+Nlg9I+QKx9fltelJD8X5xe/xomfhhYbG/vIYw4ODli1apXO80NDQxEa+uilXhcuXJA4MiIiogowQLmkJi9hNfnETyIiIqq4ZcuWoWXLllCpVFCpVPDz88PWrf+9RycvLw8RERFwcnKCra0tQkNDce3aNa0+Ll68iODgYFhbW8PZ2RkTJ05EUZH2ww53796NNm3aQKlUwtvbW2di4FEYZBAREUlkitUldevWxaeffoqUlBQcOXIEL730EkJCQsRnRI0dOxabN2/GDz/8gD179uDKlSvo3bu3eH5xcTGCg4NRUFCAgwcPIi4uDrGxsZg+fbrYJiMjA8HBweIK0DFjxmDo0KHYtm2bfl8fU87JqKo4J4OeBpyTQTXZk5qT4T3mJ5hVck5GcX4uzi0IrdRYHR0dMXv2bLz22muoXbs21q5di9deew0AcObMGTRt2hTJycl4/vnnsXXrVvTs2RNXrlyBi8v957EsX74ckydPxo0bN6BQKDB58mQkJCTgxIn/3kvVr18/ZGVl4ddff63wuJjJICIiqgI0Go3W9uCTqB+luLgY69atQ25uLvz8/JCSkoLCwkL4+/uLbZo0aYJ69eohOTkZAJCcnIwWLVqIAQYABAYGQqPRiNmQ5ORkrT5K25T2UVEMMoiIiCSSy2UG2QDAw8MDarVa3KKjox953ePHj8PW1hZKpRIjRozAhg0b4Ovri8zMTCgUCtjb22u1d3FxQWZmJgAgMzNTK8AoPV56TFcbjUaDe/fuVfjrUyWfk0FERFQdGPJhXJcuXdIql+h6SKSPjw9SU1ORnZ2NH3/8EWFhYdizZ0/lBmIEDDKIiIiqgNLVIhWhUCjEp2W3bdsWhw8fxsKFC9G3b18UFBQgKytLK5tx7do1uLq6AgBcXV3x+++/a/VXuvrkwTYPr0i5du0aVCoVrKysKnxPLJcQERFJVFXeXVJSUoL8/Hy0bdsWFhYW2Llzp3gsLS0NFy9ehJ+fHwDAz88Px48fx/Xr18U2iYmJUKlU4qs7/Pz8tPoobVPaR0Uxk0FERCSRKd5dMmXKFAQFBaFevXq4c+cO1q5di927d2Pbtm1Qq9UYMmQIxo0bB0dHR6hUKowePRp+fn54/vnnAQABAQHw9fXFW2+9hZiYGGRmZmLq1KmIiIgQSzQjRozAkiVLMGnSJAwePBhJSUlYv349EhIS9BorgwwiIiKJTPGq9+vXr2PgwIG4evUq1Go1WrZsiW3btqFbt24AgPnz50MulyM0NBT5+fkIDAzUeq+XmZkZ4uPjMXLkSPj5+cHGxgZhYWGIiooS23h5eSEhIQFjx47FwoULUbduXaxYsQKBgYH63Rufk1EWn5NBTwM+J4Nqsif1nAzfSRsN8pyMUzG9+O4SIiIi+o8pMhnVCYMMIiIiiUwxJ6M64eoSIiIiMgpmMoiIiCSSwQDlkhr8rncGGURERBKxXKIbyyVERERkFMxkEBERScTVJboxyCAiIpKI5RLdWC4hIiIio2Amg4iISCKWS3RjkEFERCQRyyW6McggIiKSiJkM3Tgng4iIiIyCmQwiIiKpDFAuqcEP/GSQQUREJBXLJbqxXEJERERGwUwGERGRRFxdohuDDCIiIolYLtGN5RIiIiIyCmYyiIiIJGK5RDcGGURERBKxXKIbyyVERERkFMxkEBERScRMhm4MMoiIiCTinAzdGGQQERFJxEyGbpyTQUREREbBTAYREZFELJfoxiCDiIhIIpZLdGO5hIiIiIyCmQwiIiKJZDBAucQgI6maGGQQERFJJJfJIK9klFHZ86sylkuIiIjIKJjJICIikoirS3RjkEFERCQRV5foxiCDiIhIIrns/lbZPmoqzskgIiIio2Amg4iISCqZAcodNTiTwSCDiIhIIk781I3lEiIiIjIKZjKIiIgkkv3/n8r2UVMxyCAiIpKIq0t0Y7mEiIiIjIKZDCIiIon4MC7dKhRkbNq0qcIdvvLKK5IHQ0REVJ1wdYluFQoyevXqVaHOZDIZiouLKzMeIiIi0iE6Oho///wzzpw5AysrK7zwwgv47LPP4OPjI7bp3Lkz9uzZo3Xe22+/jeXLl4ufL168iJEjR2LXrl2wtbVFWFgYoqOjYW7+X2iwe/dujBs3DidPnoSHhwemTp2K8PDwCo+1QnMySkpKKrQxwCAioqdJ6aveK7vpY8+ePYiIiMBvv/2GxMREFBYWIiAgALm5uVrthg0bhqtXr4pbTEyMeKy4uBjBwcEoKCjAwYMHERcXh9jYWEyfPl1sk5GRgeDgYHTp0gWpqakYM2YMhg4dim3btlV4rJWak5GXlwdLS8vKdEFERFRtmaJc8uuvv2p9jo2NhbOzM1JSUtCxY0dxv7W1NVxdXcvtY/v27Th16hR27NgBFxcXtG7dGrNmzcLkyZMRGRkJhUKB5cuXw8vLC3PnzgUANG3aFPv378f8+fMRGBhYobHqvbqkuLgYs2bNQp06dWBra4vz588DAKZNm4avv/5a3+6IiIiqrdKJn5XdAECj0Wht+fn5FRpDdnY2AMDR0VFr/5o1a1CrVi00b94cU6ZMwd27d8VjycnJaNGiBVxcXMR9gYGB0Gg0OHnypNjG399fq8/AwEAkJydX+Oujd5Dx8ccfIzY2FjExMVAoFOL+5s2bY8WKFfp2R0RERAA8PDygVqvFLTo6+rHnlJSUYMyYMWjfvj2aN28u7u/fvz++/fZb7Nq1C1OmTMHq1avx5ptvisczMzO1AgwA4ufMzEydbTQaDe7du1ehe9K7XLJq1Sp8+eWX6Nq1K0aMGCHub9WqFc6cOaNvd0RERNWWIcslly5dgkqlEvcrlcrHnhsREYETJ05g//79WvuHDx8u/r1FixZwc3ND165dkZ6ejoYNG1ZuwHrQO5Nx+fJleHt7l9lfUlKCwsJCgwyKiIioOjDkxE+VSqW1PS7IGDVqFOLj47Fr1y7UrVtXZ9t27doBAM6dOwcAcHV1xbVr17TalH4uncfxqDYqlQpWVlYV+/pUqNUDfH19sW/fvjL7f/zxRzzzzDP6dkdERER6EAQBo0aNwoYNG5CUlAQvL6/HnpOamgoAcHNzAwD4+fnh+PHjuH79utgmMTERKpUKvr6+YpudO3dq9ZOYmAg/P78Kj1Xvcsn06dMRFhaGy5cvo6SkBD///DPS0tKwatUqxMfH69sdERFRtSX7/62yfegjIiICa9euxS+//AI7OztxDoVarYaVlRXS09Oxdu1a9OjRA05OTjh27BjGjh2Ljh07omXLlgCAgIAA+Pr64q233kJMTAwyMzMxdepUREREiBmUESNGYMmSJZg0aRIGDx6MpKQkrF+/HgkJCRUeq96ZjJCQEGzevBk7duyAjY0Npk+fjtOnT2Pz5s3o1q2bvt0RERFVW4ZcXVJRy5YtQ3Z2Njp37gw3Nzdx+/777wEACoUCO3bsQEBAAJo0aYLx48cjNDQUmzdvFvswMzNDfHw8zMzM4OfnhzfffBMDBw5EVFSU2MbLywsJCQlITExEq1atMHfuXKxYsaLCy1cBic/J6NChAxITE6WcSkRERJUgCILO4x4eHmWe9lkeT09PbNmyRWebzp074+jRo3qN70GSH8Z15MgRnD59GsD9eRpt27aVPAgiIqLqiK96103vIOOff/7BG2+8gQMHDsDe3h4AkJWVhRdeeAHr1q177AxXIiKimoJvYdVN7zkZQ4cORWFhIU6fPo1bt27h1q1bOH36NEpKSjB06FBjjJGIiIiqIb0zGXv27MHBgwe13vbm4+ODxYsXo0OHDgYdHBERUVVXgxMRlaZ3kOHh4VHuQ7eKi4vh7u5ukEERERFVByyX6KZ3uWT27NkYPXo0jhw5Iu47cuQI3nvvPcyZM8eggyMiIqrKSid+VnarqSqUyXBwcNCKtHJzc9GuXTuYm98/vaioCObm5hg8eDB69epllIESERFR9VKhIGPBggVGHgYREVH1w3KJbhUKMsLCwow9DiIiomrHFI8Vr04kP4wLAPLy8lBQUKC178HX1BIREdHTS+8gIzc3F5MnT8b69etx8+bNMseLi4sNMjAiIqKq7sFXtVemj5pK79UlkyZNQlJSEpYtWwalUokVK1Zg5syZcHd3x6pVq4wxRiIioipJJjPMVlPpncnYvHkzVq1ahc6dO2PQoEHo0KEDvL294enpiTVr1mDAgAHGGCcRERFVM3pnMm7duoUGDRoAuD//4tatWwCAF198EXv37jXs6IiIiKowU7zqvTrRO8ho0KABMjIyAABNmjTB+vXrAdzPcJS+MI2IiOhpwHKJbnoHGYMGDcKff/4JAHj//fexdOlSWFpaYuzYsZg4caLBB0hERETVk95zMsaOHSv+3d/fH2fOnEFKSgq8vb3RsmVLgw6OiIioKuPqEt0q9ZwMAPD09ISnp6chxkJERFStGKLcUYNjjIoFGYsWLapwh++++67kwRAREVUnfKy4bhUKMubPn1+hzmQyGYMMIiIiAlDBIKN0NcnT5uLuOXxMOtVY1zX5ph4CkdHceULf33JIWEFRTh81VaXnZBARET2tWC7RrSYHUERERGRCzGQQERFJJJMBcq4ueSQGGURERBLJDRBkVPb8qozlEiIiIjIKSUHGvn378Oabb8LPzw+XL18GAKxevRr79+836OCIiIiqMr4gTTe9g4yffvoJgYGBsLKywtGjR5Gff3+ZUHZ2Nj755BODD5CIiKiqKi2XVHarqfQOMj766CMsX74cX331FSwsLMT97du3xx9//GHQwREREVH1pffEz7S0NHTs2LHMfrVajaysLEOMiYiIqFrgu0t00zuT4erqinPnzpXZv3//fjRo0MAggyIiIqoOSt/CWtmtptI7yBg2bBjee+89HDp0CDKZDFeuXMGaNWswYcIEjBw50hhjJCIiqpLkBtpqKr3LJe+//z5KSkrQtWtX3L17Fx07doRSqcSECRMwevRoY4yRiIiIqiG9gwyZTIYPP/wQEydOxLlz55CTkwNfX1/Y2toaY3xERERVFudk6Cb5iZ8KhQK+vr6GHAsREVG1Ikfl51TIUXOjDL2DjC5duuh8cEhSUlKlBkREREQ1g95BRuvWrbU+FxYWIjU1FSdOnEBYWJihxkVERFTlsVyim95Bxvz588vdHxkZiZycnEoPiIiIqLrgC9J0M9jKmTfffBPffPONobojIiKias5gr3pPTk6GpaWlobojIiKq8mQyVHriJ8slD+jdu7fWZ0EQcPXqVRw5cgTTpk0z2MCIiIiqOs7J0E3vIEOtVmt9lsvl8PHxQVRUFAICAgw2MCIiIqre9AoyiouLMWjQILRo0QIODg7GGhMREVG1wImfuuk18dPMzAwBAQF82yoREREAmYH+1FR6ry5p3rw5zp8/b4yxEBERVSulmYzKbvqIjo7Gc889Bzs7Ozg7O6NXr15IS0vTapOXl4eIiAg4OTnB1tYWoaGhuHbtmlabixcvIjg4GNbW1nB2dsbEiRNRVFSk1Wb37t1o06YNlEolvL29ERsbq9/XR79bAz766CNMmDAB8fHxuHr1KjQajdZGRERExrNnzx5ERETgt99+Q2JiIgoLCxEQEIDc3FyxzdixY7F582b88MMP2LNnD65cuaK1cKO4uBjBwcEoKCjAwYMHERcXh9jYWEyfPl1sk5GRgeDgYHTp0gWpqakYM2YMhg4dim3btlV4rDJBEISKNIyKisL48eNhZ2f338kPTIkVBAEymQzFxcUVvnhVpdFooFarce1mNlQqlamHQ2QU1zX5ph4CkdHc0WjQ3MsZ2dnG+Tle+nti5uajsLSxe/wJOuTl3sGMl5+RPNYbN27A2dkZe/bsQceOHZGdnY3atWtj7dq1eO211wAAZ86cQdOmTZGcnIznn38eW7duRc+ePXHlyhW4uLgAAJYvX47Jkyfjxo0bUCgUmDx5MhISEnDixAnxWv369UNWVhZ+/fXXCo2twhM/Z86ciREjRmDXrl363DsREVGNJZPJdL7Pq6J9AChTDVAqlVAqlY89Pzs7GwDg6OgIAEhJSUFhYSH8/f3FNk2aNEG9evXEICM5ORktWrQQAwwACAwMxMiRI3Hy5Ek888wzSE5O1uqjtM2YMWMqfG8VDjJKEx6dOnWqcOdERERUMR4eHlqfZ8yYgcjISJ3nlJSUYMyYMWjfvj2aN28OAMjMzIRCoYC9vb1WWxcXF2RmZoptHgwwSo+XHtPVRqPR4N69e7CysnrsPem1hLWy0RoREVFNYsglrJcuXdIql1QkixEREYETJ05g//79lRuEkegVZDRu3PixgcatW7cqNSAiIqLqwpBP/FSpVHrNyRg1ahTi4+Oxd+9e1K1bV9zv6uqKgoICZGVlaWUzrl27BldXV7HN77//rtVf6eqTB9s8vCLl2rVrUKlUFcpiAHoGGTNnzizzxE8iIiJ6cgRBwOjRo7Fhwwbs3r0bXl5eWsfbtm0LCwsL7Ny5E6GhoQCAtLQ0XLx4EX5+fgAAPz8/fPzxx7h+/TqcnZ0BAImJiVCpVPD19RXbbNmyRavvxMREsY+K0CvI6NevnzgYIiKip51cJqv0C9L0PT8iIgJr167FL7/8Ajs7O3EOhVqthpWVFdRqNYYMGYJx48bB0dERKpUKo0ePhp+fH55//nkAQEBAAHx9ffHWW28hJiYGmZmZmDp1KiIiIsQyzYgRI7BkyRJMmjQJgwcPRlJSEtavX4+EhIQKj7XCQQbnYxAREWkzxWPFly1bBgDo3Lmz1v6VK1ciPDwcADB//nzI5XKEhoYiPz8fgYGB+Pzzz8W2ZmZmiI+Px8iRI+Hn5wcbGxuEhYUhKipKbOPl5YWEhASMHTsWCxcuRN26dbFixQoEBgZWeKwVfk6GXC5HZmbmU5HJ4HMy6GnA52RQTfaknpPx2a9/GuQ5GZO7tzLaWE2pwpmMkpISY46DiIio+jHAxM8a/OoS/V/1TkRERPfJIYO8klFCZc+vyhhkEBERSWTIJaw1kd4vSCMiIiKqCGYyiIiIJDLF6pLqhEEGERGRRKZ4TkZ1wnIJERERGQUzGURERBJx4qduDDKIiIgkksMA5ZIavISV5RIiIiIyCmYyiIiIJGK5RDcGGURERBLJUfmSQE0uKdTkeyMiIiITYiaDiIhIIplMBlkl6x2VPb8qY5BBREQkkQyVf4lqzQ0xGGQQERFJxid+6sY5GURERGQUzGQQERFVQs3NQ1QegwwiIiKJ+JwM3VguISIiIqNgJoOIiEgiLmHVjUEGERGRRHzip241+d6IiIjIhJjJICIikojlEt0YZBAREUnEJ37qxnIJERERGQUzGURERBKxXKIbgwwiIiKJuLpENwYZREREEjGToVtNDqCIiIjIhJjJICIikoirS3RjkEFERCQRX5CmG8slREREZBTMZBAREUkkhwzyShY8Knt+VcYgg4iISCKWS3RjuYSIiIiMgpkMIiIiiWT//6eyfdRUDDKIiIgkYrlEN5ZLiIiIyCiYySAiIpJIZoDVJSyXEBERURksl+jGIIOIiEgiBhm6cU4GERERGQUzGURERBJxCatuzGQQERFJJJcZZtPH3r178fLLL8Pd3R0ymQwbN27UOh4eHg6ZTKa1de/eXavNrVu3MGDAAKhUKtjb22PIkCHIycnRanPs2DF06NABlpaW8PDwQExMjP5fH73PICIiIpPJzc1Fq1atsHTp0ke26d69O65evSpu3333ndbxAQMG4OTJk0hMTER8fDz27t2L4cOHi8c1Gg0CAgLg6emJlJQUzJ49G5GRkfjyyy/1GivLJURERBKZolwSFBSEoKAgnW2USiVcXV3LPXb69Gn8+uuvOHz4MJ599lkAwOLFi9GjRw/MmTMH7u7uWLNmDQoKCvDNN99AoVCgWbNmSE1Nxbx587SCkcdhJoOIiEii0tUlld2A+9mDB7f8/HzJ49q9ezecnZ3h4+ODkSNH4ubNm+Kx5ORk2NvbiwEGAPj7+0Mul+PQoUNim44dO0KhUIhtAgMDkZaWhtu3b1d4HAwyiIiIqgAPDw+o1Wpxi46OltRP9+7dsWrVKuzcuROfffYZ9uzZg6CgIBQXFwMAMjMz4ezsrHWOubk5HB0dkZmZKbZxcXHRalP6ubRNRbBcQkREJJEMlV8dUnr2pUuXoFKpxP1KpVJSf/369RP/3qJFC7Rs2RINGzbE7t270bVr18oMVW/MZBAREUlkyNUlKpVKa5MaZDysQYMGqFWrFs6dOwcAcHV1xfXr17XaFBUV4datW+I8DldXV1y7dk2rTennR831KA+DDCIiohrsn3/+wc2bN+Hm5gYA8PPzQ1ZWFlJSUsQ2SUlJKCkpQbt27cQ2e/fuRWFhodgmMTERPj4+cHBwqPC1q3y55MKFC/Dy8sLRo0fRunXrx7YPDw9HVlZWmXXD9GR9+mUCPvtqq9a+Rp4u+P3Habh45SZahcwo97yV0YPRy7+N1r5bWTnoMOBTXLmehQtJMVDbWRtt3ET6yLmbh4Urf8WO/SdwM+sOfL3r4IOIXmjZpB4AYHHcNiTsOorMG9mwMDdDs8Z1MXZwEFo19RT7eKn/R7h8TXsi3fihPTD8jSeb1iZpTLG6JCcnR8xKAEBGRgZSU1Ph6OgIR0dHzJw5E6GhoXB1dUV6ejomTZoEb29vBAYGAgCaNm2K7t27Y9iwYVi+fDkKCwsxatQo9OvXD+7u7gCA/v37Y+bMmRgyZAgmT56MEydOYOHChZg/f75eYzV5kBEeHo64uDgA9yee1K1bF6+//jqioqLEB4BcvXoVtWrVMvFISV9NGrhh49LR4mdz8/uJszouDjiz9ROttnEbDmDxtzvg/0KzMv2M/mgtfL3dceV6llHHS6SvqXPX42xGJmKmvAFnJzU27UjBoElfYMvXk+BSW436dWtj+uje8HBzQl5BIWJ/3IPBk79E4qopcLS3Fft5N7w7+gS3Ez/bWBkmTU7GZ4p3lxw5cgRdunQRP48bNw4AEBYWhmXLluHYsWOIi4tDVlYW3N3dERAQgFmzZmmVX9asWYNRo0aha9eukMvlCA0NxaJFi8TjarUa27dvR0REBNq2bYtatWph+vTpei1fBapAkAHcnwm7cuVKFBYWIiUlBWFhYZDJZPjss89gZmamV/2Hqg5zMzlcaqnK7DcrZ3/87j/Ry78NbK21f7h+/eM+ZN+5i0lDg7Dj4CmjjpdIH3n5hdi+9zg+nzUIz7VsCAAYHRaIXcmnsHbzQYwdHISXu2pn5aaMDMGPW39H2vkr8GvTWNxvY61Ebcey/1ao6pMBlX4ouL7nd+7cGYIgPPL4tm3bHtuHo6Mj1q5dq7NNy5YtsW/fPj1Hp61KzMkofWiIh4cHevXqBX9/fyQmJgK4Xy6RyWRITU0V2588eRI9e/aESqWCnZ0dOnTogPT0dK0+58yZAzc3Nzg5OSEiIkKrrkRPxvlLN9A06AO0DpmBYVNjcSnzVrntUk9fxPG//sGbr/hp7T9z/ipmr9iKZTMHQq7vc3eJjKyouBjFJSVQKrT/r6ZUmuOPExll2hcUFuH7hGTY2VjCp6G71rGvvktCu17T0OvtuVjx/S4U/f9SQ6LqrkpkMh504sQJHDx4EJ6enuUev3z5Mjp27IjOnTsjKSkJKpUKBw4cQFFRkdhm165dcHNzw65du3Du3Dn07dsXrVu3xrBhw8rtMz8/X+uhJxqNxrA39RRq26w+ls54E96eLrj2bzY++2oregybj4PrPoSdjaVW29W/JMPHyxXtWjUQ9+UXFGLo1FjMfLcXPFwd8fflf5/0LRDpZGttiWd8PfH5tzvQoJ4LajnYIT7pKFJP/Y167v+Vd3cln8K4j1bjXn4hajva4ZuYt+Go/q9U8tarHeDbqA7UdtY4euoC5q3Yghs3NZjyTogpbov0JIcM8krWS+Q1+AVpVSLIiI+Ph62tLYqKipCfnw+5XI4lS5aU23bp0qVQq9VYt24dLCwsAACNGzfWauPg4IAlS5bAzMwMTZo0QXBwMHbu3PnIICM6OhozZ8407E095bq1/29uRfNGdfBs8/po8fJ0bNzxB94KeUE8di+vAD9uO4KJQ7Rf3hO1dBMa13dB3x7/e2JjJtJXzJT++GD29+jYNwpmcjl8G9VBcJdncPLsP2Kbdq0bYuOX43E7OxfrE37DmFmr8cOSd+HkYAcAGPR6J7Ftk4busDA3w4z5P2L80GAoFFXiRzTpYIpySXVSJb6Du3TpgmXLliE3Nxfz58+Hubk5QkNDy22bmpqKDh06iAFGeZo1awYzMzPxs5ubG44fP/7I9lOmTBEnzgD3MxkeHh4S7oQeRW1nDe96zjh/6YbW/l+SUnEvrwD9grWDib2H/8Kp9Cuo9fy7ACDWHxt2ex/jBwViytvBT2bgRDrUc6+Fb+dH4O69fOTczYezkwpjZq2Ch5uT2MbaSgnPOkp41qmF1r6eCBgYjR+3/o63+5e/eqRVU08UFZfgn2u30MDDudw2RNVFlQgybGxs4O3tDQD45ptv0KpVK3z99dcYMmRImbZWVlaP7e/hAEQmk6GkpOSR7ZVKpcEeekLly7mbj4zL/6JvLe1g4ttfDiKoYwvU+v//1ZVaFTMU9/L+m0dz9NTfGDVrDbZ8OQZedWs/kTETVZS1lRLWVkpk37mL/YfTMHF4z0e2LSkRUFBY9Mjjp89dhlwug9MDq0+oCmMqQ6cqEWQ8SC6X44MPPsC4cePQv3//MsdbtmyJuLg4FBYW6sxmkGlNW/AzundoAQ83R1y9kY1Pv0yAmVyO0MC2Ypvzl27g4NF0rF8wssz5DwcSt7JzAAA+Xq58TgZVGfsOn4EgAF4etXHx8r+I+TIeDeo5o3f3/+HuvXwsX7MTL73QDLWd7HA7OxdrfjmAa/9mo3unVgCAoycv4M8zF/F8a2/YWClx9NQFRC/bhFe6tuX3eTVhiudkVCdVLsgAgNdffx0TJ07E0qVL8dprr2kdGzVqFBYvXox+/fphypQpUKvV+O233/C///0PPj4+JhoxPezy9SwMnboSt7LvopaDLdq1aoDEleO1MhbfbkqGu7M9Xnq+iQlHSiTdndw8zFuxBZn/ZsHezhoBHVpi7OAgWJiboaSkBOcvXceGyMO4rcmFvcoGLXw8sGZBBBrVv78sX2Fhji27jmJJ3DYUFBahrqsTwkM7YtBrnR5zZaLqoUoGGebm5hg1ahRiYmIQFBSkdczJyQlJSUmYOHEiOnXqBDMzM7Ru3Rrt27c30WipPN98MvixbaZHvILpEa9UqL8X2zbG7cPlTwYmMpUenVujR+fW5R5TKiywZGa4zvObNa6L9UveM/zA6MkxwMO4anAiAzJB1xM9nlIajQZqtRrXbmZrvRGPqCa5rsl/fCOiauqORoPmXs7IzjbOz/HS3xNJqRdha1e5/nPuaPBS63pGG6spVYmHcREREVHNUyXLJURERNUCV5foxCCDiIhIIq4u0Y1BBhERkUSmeAtrdcI5GURERGQUzGQQERFJxCkZujHIICIikopRhk4slxAREZFRMJNBREQkEVeX6MYgg4iISCKuLtGN5RIiIiIyCmYyiIiIJOK8T90YZBAREUnFKEMnlkuIiIjIKJjJICIikoirS3RjkEFERCQRV5foxiCDiIhIIk7J0I1zMoiIiMgomMkgIiKSiqkMnRhkEBERScSJn7qxXEJERERGwUwGERGRRFxdohuDDCIiIok4JUM3lkuIiIjIKJjJICIikoqpDJ0YZBAREUnE1SW6sVxCRERERsFMBhERkURcXaIbgwwiIiKJOCVDNwYZREREUjHK0IlzMoiIiMgomMkgIiKSiKtLdGOQQUREJJUBJn7W4BiD5RIiIiIyDmYyiIiIJOK8T92YySAiIpJKZqBND3v37sXLL78Md3d3yGQybNy4Ueu4IAiYPn063NzcYGVlBX9/f5w9e1arza1btzBgwACoVCrY29tjyJAhyMnJ0Wpz7NgxdOjQAZaWlvDw8EBMTIx+AwWDDCIiomolNzcXrVq1wtKlS8s9HhMTg0WLFmH58uU4dOgQbGxsEBgYiLy8PLHNgAEDcPLkSSQmJiI+Ph579+7F8OHDxeMajQYBAQHw9PRESkoKZs+ejcjISHz55Zd6jZXlEiIiIolMsbokKCgIQUFB5R4TBAELFizA1KlTERISAgBYtWoVXFxcsHHjRvTr1w+nT5/Gr7/+isOHD+PZZ58FACxevBg9evTAnDlz4O7ujjVr1qCgoADffPMNFAoFmjVrhtTUVMybN08rGHkcZjKIiIgkKn2seGU34H724MEtPz9f7/FkZGQgMzMT/v7+4j61Wo127dohOTkZAJCcnAx7e3sxwAAAf39/yOVyHDp0SGzTsWNHKBQKsU1gYCDS0tJw+/btCo+HQQYREVEV4OHhAbVaLW7R0dF695GZmQkAcHFx0drv4uIiHsvMzISzs7PWcXNzczg6Omq1Ka+PB69RESyXEBERSWTI1SWXLl2CSqUS9yuVykr2bHrMZBAREUllwNUlKpVKa5MSZLi6ugIArl27prX/2rVr4jFXV1dcv35d63hRURFu3bql1aa8Ph68RkUwyCAiIpJIZqA/huLl5QVXV1fs3LlT3KfRaHDo0CH4+fkBAPz8/JCVlYWUlBSxTVJSEkpKStCuXTuxzd69e1FYWCi2SUxMhI+PDxwcHCo8HgYZRERE1UhOTg5SU1ORmpoK4P5kz9TUVFy8eBEymQxjxozBRx99hE2bNuH48eMYOHAg3N3d0atXLwBA06ZN0b17dwwbNgy///47Dhw4gFGjRqFfv35wd3cHAPTv3x8KhQJDhgzByZMn8f3332PhwoUYN26cXmPlnAwiIiKJZKj8u0v0Pf3IkSPo0qWL+Ln0F39YWBhiY2MxadIk5ObmYvjw4cjKysKLL76IX3/9FZaWluI5a9aswahRo9C1a1fI5XKEhoZi0aJF4nG1Wo3t27cjIiICbdu2Ra1atTB9+nS9lq8CgEwQBEHP+6vxNBoN1Go1rt3M1pqEQ1STXNfovzyOqLq4o9GguZczsrON83O89PfEyYzrsKtk/3c0GjQz4lhNieUSIiIiMgqWS4iIiCR68GFalemjpmKQQUREJBnfw6oLyyVERERkFMxkEBERScRyiW4MMoiIiCRisUQ3lkuIiIjIKJjJICIikojlEt0YZBAREUlkiHePGPLdJVUNgwwiIiKpOClDJ87JICIiIqNgJoOIiEgiJjJ0Y5BBREQkESd+6sZyCRERERkFMxlEREQScXWJbgwyiIiIpOKkDJ1YLiEiIiKjYCaDiIhIIiYydGOQQUREJBFXl+jGcgkREREZBTMZREREklV+dUlNLpgwyCAiIpKI5RLdWC4hIiIio2CQQUREREbBcgkREZFELJfoxiCDiIhIIj5WXDeWS4iIiMgomMkgIiKSiOUS3RhkEBERScTHiuvGcgkREREZBTMZREREUjGVoRODDCIiIom4ukQ3lkuIiIjIKJjJICIikoirS3RjkEFERCQRp2ToxiCDiIhIKkYZOnFOBhERERkFMxlEREQScXWJbgwyiIiIJOLET90YZJRDEAQAwB2NxsQjITKeO5p8Uw+ByGhy7twB8N/Pc2PRGOD3hCH6qKoYZJTjzv9/c3p7eZh4JEREVBl37tyBWq02eL8KhQKurq5oZKDfE66urlAoFAbpqyqRCcYO86qhkpISXLlyBXZ2dpDV5DxWFaHRaODh4YFLly5BpVKZejhEBsfv8SdPEATcuXMH7u7ukMuNs8YhLy8PBQUFBulLoVDA0tLSIH1VJcxklEMul6Nu3bqmHsZTR6VS8Qcw1Wj8Hn+yjJHBeJClpWWNDAwMiUtYiYiIyCgYZBAREZFRMMggk1MqlZgxYwaUSqWph0JkFPwep6cVJ34SERGRUTCTQUREREbBIIOIiIiMgkEGERERGQWDDCIiA7tw4QJkMhlSU1Mr1D48PBy9evUy6piITIFBBhlUeHg4ZDIZZDIZFAoFvL29ERUVhaKiIlMPjchgHvw+t7CwgJeXFyZNmoS8vDwAgIeHB65evYrmzZubeKREpsUnfpLBde/eHStXrkR+fj62bNmCiIgIWFhYYMqUKQa/VkFBQY183j9VfaXf54WFhUhJSUFYWBhkMhk+++wzmJmZwdXV1dRDJDI5ZjLI4JRKJVxdXeHp6YmRI0fC398fmzZtwu3btzFw4EA4ODjA2toaQUFBOHv2rNa5P/30E5o1awalUon69etj7ty5Wsfr16+PWbNmYeDAgVCpVBg+fPiTvDUiUen3uYeHB3r16gV/f38kJiYCKL9ccvLkSfTs2RMqlQp2dnbo0KED0tPTtfqcM2cO3Nzc4OTkhIiICBQWFj7JWyIyOAYZZHRWVlYoKChAeHg4jhw5gk2bNiE5ORmCIKBHjx7iD9KUlBT06dMH/fr1w/HjxxEZGYlp06YhNjZWq785c+agVatWOHr0KKZNm2aCOyLSduLECRw8ePCRWbXLly+jY8eOUCqVSEpKQkpKCgYPHqxVRty1axfS09Oxa9cuxMXFITY2tsz3PlF1w3IJGY0gCNi5cye2bduGoKAgbNy4EQcOHMALL7wAAFizZg08PDywceNGvP7665g3bx66du0qBg6NGzfGqVOnMHv2bISHh4v9vvTSSxg/frwpbolIFB8fD1tbWxQVFSE/Px9yuRxLliwpt+3SpUuhVquxbt06WFhYALj//f0gBwcHLFmyBGZmZmjSpAmCg4Oxc+dODBs2zOj3QmQszGSQwZX+8LW0tERQUBD69u2L8PBwmJubo127dmI7Jycn+Pj44PTp0wCA06dPo3379lp9tW/fHmfPnkVxcbG479lnn30yN0KkQ5cuXZCamopDhw4hLCwMgwYNQmhoaLltU1NT0aFDBzHAKE+zZs1gZmYmfnZzc8P169cNPm6iJ4lBBhlc6Q/fs2fP4t69e4iLi4NMJjNY/zY2Ngbri0gqGxsbeHt7o1WrVvjmm29w6NAhfP311+W2tbKyemx/DwcgMpkMJSUlBhkrkakwyCCDK/3hW69ePZib36/INW3aFEVFRTh06JDY7ubNm0hLS4Ovr6/Y5sCBA1p9HThwAI0bN9b6Hx5RVSOXy/HBBx9g6tSpuHfvXpnjLVu2xL59+ziRk546DDLoiWjUqBFCQkIwbNgw7N+/H3/++SfefPNN1KlTByEhIQCA8ePHY+fOnZg1axb++usvxMXFYcmSJZgwYYKJR0/0eK+//jrMzMywdOnSMsdGjRoFjUaDfv364ciRIzh79ixWr16NtLQ0E4yU6MlhkEFPzMqVK9G2bVv07NkTfn5+EAQBW7ZsEdPEbdq0wfr167Fu3To0b94c06dPR1RUlNakT6KqytzcHKNGjUJMTAxyc3O1jjk5OSEpKQk5OTno1KkT2rZti6+++krnHA2imoCveiciIiKjYCaDiIiIjIJBBhERERkFgwwiIiIyCgYZREREZBQMMoiIiMgoGGQQERGRUTDIICIiIqNgkEFURYWHh6NXr17i586dO2PMmDFPfBy7d++GTCZDVlbWI9vIZDJs3Lixwn1GRkaidevWlRrXhQsXIJPJkJqaWql+iMh4GGQQ6SE8PBwymQwymQwKhQLe3t6IiopCUVGR0a/9888/Y9asWRVqW5HAgIjI2MxNPQCi6qZ79+5YuXIl8vPzsWXLFkRERMDCwgJTpkwp07agoAAKhcIg13V0dDRIP0RETwozGUR6UiqVcHV1haenJ0aOHAl/f39s2rQJwH8ljo8//hju7u7w8fEBAFy6dAl9+vSBvb09HB0dERISggsXLoh9FhcXY9y4cbC3t4eTkxMmTZqEh5/4/3C5JD8/H5MnT4aHhweUSiW8vb3x9ddf48KFC+jSpQsAwMHBATKZTHz/S0lJCaKjo+Hl5QUrKyu0atUKP/74o9Z1tmzZgsaNG8PKygpdunTRGmdFTZ48GY0bN4a1tTUaNGiAadOmlfsG0i+++AIeHh6wtrZGnz59kJ2drXV8xYoVaNq0KSwtLdGkSRN8/vnneo+FiEyHQQZRJVlZWaGgoED8vHPnTqSlpSExMRHx8fEoLCxEYGAg7OzssG/fPhw4cAC2trbo3r27eN7cuXMRGxuLb775Bvv378etW7ewYcMGndcdOHAgvvvuOyxatAinT5/GF198AVtbW3h4eOCnn34CAKSlpeHq1atYuHAhACA6OhqrVq3C8uXLcfLkSYwdOxZvvvkm9uzZA+B+MNS7d2+8/PLLSE1NxdChQ/H+++/r/TWxs7NDbGwsTp06hYULF+Krr77C/PnztdqcO3cO69evx+bNm/Hrr7/i6NGjeOedd8Tja9aswfTp0/Hxxx/j9OnT+OSTTzBt2jTExcXpPR4iMhGBiCosLCxMCAkJEQRBEEpKSoTExERBqVQKEyZMEI+7uLgI+fn54jmrV68WfHx8hJKSEnFffn6+YGVlJWzbtk0QBEFwc3MTYmJixOOFhYVC3bp1xWsJgiB06tRJeO+99wRBEIS0tDQBgJCYmFjuOHft2iUAEG7fvi3uy8vLE6ytrYWDBw9qtR0yZIjwxhtvCIIgCFOmTBF8fX21jk+ePLlMXw8DIGzYsOGRx2fPni20bdtW/DxjxgzBzMxM+Oeff8R9W7duFeRyuXD16lVBEAShYcOGwtq1a7X6mTVrluDn5ycIgiBkZGQIAISjR48+8rpEZFqck0Gkp/j4eNja2qKwsBAlJSXo378/IiMjxeMtWrTQmofx559/4ty5c7Czs9PqJy8vD+np6cjOzsbVq1fRrl078Zi5uTmeffbZMiWTUqmpqTAzM0OnTp0qPO5z587h7t276Natm9b+goICPPPMMwCA06dPa40DAPz8/Cp8jVLff/89Fi1ahPT0dOTk5KCoqAgqlUqrTb169VCnTh2t65SUlCAtLQ12dnZIT0/HkCFDMGzYMLFNUVER1Gq13uMhItNgkEGkpy5dumDZsmVQKBRwd3eHubn2PyMbGxutzzk5OWjbti3WrFlTpq/atWtLGoOVlZXe5+Tk5AAAEhIStH65A/fnmRhKcnIyBgwYgJkzZyIwMBBqtRrr1q3D3Llz9R7rV199VSboMTMzM9hYici4GGQQ6cnGxgbe3t4Vbt+mTRt8//33cHZ2LvO/+VJubm44dOgQOnbsCOD+/9hTUlLQpk2bctu3aNECJSUl2LNnD/z9/cscL82kFBcXi/t8fX2hVCpx8eLFR2ZAmjZtKk5iLfXbb789/iYfcPDgQXh6euLDDz8U9/39999l2l28eBFXrlyBu7u7eB25XA4fHx+4uLjA3d0d58+fx4ABA/S6PhFVHZz4SWRkAwYMQK1atRASEoJ9+/YhIyMDu3fvxrvvvot//vkHAPDee+/h008/xcaNG3HmzBm88847Op9xUb9+fYSFhWHw4MHYuHGj2Of69esBAJ6enpDJZIiPj8eNGzeQk5MDOzs7TJgwAWPHjkVcXBzS09Pxxx9/YPHixeJkyhEjRuDs2bOYOHEi0tLSsHbtWsTGxup1v40aNcLFixexbt06pKenY9GiReVOYrW0tERYWBj+/PNP7Nu3D++++y769OkDV1dXAMDMmTMRHR2NRYsW4a+//sLx48excuVKzJs3T6/xEJHpMMggMjJra2vs3bsX9erVQ+/evdG0aVMMGTIEeXl5YmZj/PjxeOuttxAWFgY/Pz/Y2dnh1Vdf1dnvsmXL8Nprr+Gdd95BkyZNMGzYMOTm5gIA6tSpg5kzZ+L999+Hi4sLRo0aBQCYNWsWpk2bhujoaDRt2hTdu3dHQkICvLy8ANyfJ/HTTz9h48aNaNWqFZYvX45PPvlEr/t95ZVXMHbsWIwaNQqtW7fGwYMHMW3atDLtvL290bt3b/To0QMBAQFo2bKl1hLVoUOHYsWKFVi5ciVatGiBTp06ITY2VhwrEVV9MuFRM8uIiIiIKoGZDCIiIjIKBhlERERkFAwyiIiIyCgYZBAREZFRMMggIiIio2CQQUREREbBIIOIiIiMgkEGERERGQWDDCIiIjIKBhlERERkFAwyiIiIyCgYZBAREZFR/B8suKXHGyPGkwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHHCAYAAAAcbzQmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYypJREFUeJzt3Xtcjvf/B/DXXXR3vO+ETiQRKSSHzZpRvg4hc9wwIYcYy/kUGymnNufTZGSFZdgcNrGRQzm1MURzaKTJqTJ0Qufr98d0/dwrt251uZXXc4/78ei+rs/1uT7XXau39/tzfS6ZIAgCiIiIiOi109H2AIiIiIjeVgzEiIiIiLSEgRgRERGRljAQIyIiItISBmJEREREWsJAjIiIiEhLGIgRERERaQkDMSIiIiItYSBGREREpCUMxIjojXDt2jV07twZSqUSMpkMe/bsKdf+//77b8hkMoSFhZVrvxWZu7s73N3dtT0MorcaAzEiEiUkJODTTz9FvXr1oK+vD4VCgTZt2mDlypV4+vSppOf29vZGXFwcFixYgC1btqBVq1aSnu91Gjp0KGQyGRQKRYmf47Vr1yCTySCTybBkyRKN+7979y4CAgIQGxtbTiMmotelirYHQERvhn379uHjjz+GXC7HkCFD0KRJE+Tm5uLEiROYNm0aLl26hPXr10ty7qdPnyImJgZffPEFxo4dK8k5bG1t8fTpU1StWlWS/l+mSpUqePLkCfbu3Yt+/fqp7AsPD4e+vj6ys7Nfqe+7d+8iMDAQdevWhYuLS6mPO3jw4Cudj4jKDwMxIkJiYiIGDBgAW1tbHDlyBFZWVuI+X19fXL9+Hfv27ZPs/Pfv3wcAmJqaSnYOmUwGfX19yfp/GblcjjZt2uD7778vFoht3boVnp6e2Llz52sZy5MnT2BoaAg9Pb3Xcj4iejGWJokIixYtQlZWFjZu3KgShBWxt7fHhAkTxPf5+fmYN28e6tevD7lcjrp16+Lzzz9HTk6OynF169ZF9+7dceLECbz77rvQ19dHvXr1sHnzZrFNQEAAbG1tAQDTpk2DTCZD3bp1gWclvaKvnxcQEACZTKayLTIyEh988AFMTU1hbGwMBwcHfP755+L+F80RO3LkCNq2bQsjIyOYmpqiZ8+euHLlSonnu379OoYOHQpTU1MolUoMGzYMT548KfXnPHDgQPzyyy9IS0sTt505cwbXrl3DwIEDi7V/+PAhpk6diqZNm8LY2BgKhQJdu3bFhQsXxDZRUVF45513AADDhg0TS5xF1+nu7o4mTZrg7NmzaNeuHQwNDcXP5b9zxLy9vaGvr1/s+j08PFCtWjXcvXu31NdKRKXDQIyIsHfvXtSrVw/vv/9+qdr7+PjA398fLVq0wPLly+Hm5oagoCAMGDCgWNvr16/jo48+QqdOnbB06VJUq1YNQ4cOxaVLlwAAffr0wfLlywEAn3zyCbZs2YIVK1ZoNP5Lly6he/fuyMnJwdy5c7F06VL06NEDJ0+eVHvcoUOH4OHhgdTUVAQEBGDy5Mk4deoU2rRpg7///rtY+379+iEzMxNBQUHo168fwsLCEBgYWOpx9unTBzKZDLt27RK3bd26FY0aNUKLFi2Ktb9x4wb27NmD7t27Y9myZZg2bRri4uLg5uYmBkWOjo6YO3cuAGDUqFHYsmULtmzZgnbt2on9PHjwAF27doWLiwtWrFiB9u3blzi+lStXombNmvD29kZBQQEA4JtvvsHBgwexevVqWFtbl/paiaiUBCJ6q6WnpwsAhJ49e5aqfWxsrABA8PHxUdk+depUAYBw5MgRcZutra0AQDh27Ji4LTU1VZDL5cKUKVPEbYmJiQIAYfHixSp9ent7C7a2tsXGMGfOHOH5X1/Lly8XAAj3799/4biLzhEaGipuc3FxEczNzYUHDx6I2y5cuCDo6OgIQ4YMKXa+4cOHq/TZu3dvoXr16i885/PXYWRkJAiCIHz00UdChw4dBEEQhIKCAsHS0lIIDAws8TPIzs4WCgoKil2HXC4X5s6dK247c+ZMsWsr4ubmJgAQ1q1bV+I+Nzc3lW0HDhwQAAjz588Xbty4IRgbGwu9evV66TUS0athRozoLZeRkQEAMDExKVX7/fv3AwAmT56ssn3KlCnAs0n/z3NyckLbtm3F9zVr1oSDgwNu3LhR5rEXKZpb9tNPP6GwsLBUx9y7dw+xsbEYOnQozMzMxO3Ozs7o1KmTeJ3PGz16tMr7tm3b4sGDB+JnWBoDBw5EVFQUkpOTceTIESQnJ5dYlsSzeWU6Ov/+mi4oKMCDBw/Esuu5c+dKfU65XI5hw4aVqm3nzp3x6aefYu7cuejTpw/09fXxzTfflPpcRKQZBmJEbzmFQgEAyMzMLFX7mzdvQkdHB/b29irbLS0tYWpqips3b6psr1OnTrE+qlWrhkePHpVp3M/r378/2rRpAx8fH1hYWGDAgAHYsWOH2qCsaJwODg7F9jk6OuKff/7B48ePVbb/91qqVasGABpdS7du3WBiYoLt27cjPDwc77zzTrHPskhhYSGWL1+OBg0aQC6Xo0aNGqhZsyYuXryI9PT0Up+zVq1aGk3MX7JkCczMzBAbG4tVq1bB3Ny81McSkWYYiBG95RQKBaytrfHnn39qdNx/J8u/iK6ubonbBUF45XMUzV8qYmBggGPHjuHQoUMYPHgwLl68iP79+6NTp07F2pZFWa6liFwuR58+fbBp0ybs3r37hdkwAFi4cCEmT56Mdu3a4bvvvsOBAwcQGRmJxo0blzrzh2efjybOnz+P1NRUAEBcXJxGxxKRZhiIERG6d++OhIQExMTEvLStra0tCgsLce3aNZXtKSkpSEtLE++ALA/VqlVTucOwyH+zbgCgo6ODDh06YNmyZbh8+TIWLFiAI0eO4OjRoy+8DgCIj48vtu/q1auoUaMGjIyMyuU6/mvgwIE4f/48MjMzS7zBociPP/6I9u3bY+PGjRgwYAA6d+6Mjh07FvtMShsUl8bjx48xbNgwODk5YdSoUVi0aBHOnDlTbv0TkSoGYkSE6dOnw8jICD4+PkhJSSm2PyEhAStXrgSeldYAFLuzcdmyZQAAT0/PchtX/fr1kZ6ejosXL4rb7t27h927d6u0e/jwYbFjixY2/e+SGkWsrKzg4uKCTZs2qQQ2f/75Jw4ePChepxTat2+PefPmYc2aNbC0tHxhO11d3WLZth9++AF37txR2VYUMJYUtGrKz88PSUlJ2LRpE5YtW4a6devC29v7hZ8jEZUNF3QlItSvXx9bt25F//794ejoqLKy/qlTp/DDDz9g6NChAIBmzZrB29sb69evR1paGtzc3HD69Gls2rQJvXr1euHSCK9iwIAB8PPzQ+/evTF+/Hg8efIEwcHBaNiwocpk9blz5+LYsWPw9PSEra0tUlNTsXbtWtSuXRsffPDBC/tfvHgxunbtCldXV4wYMQJPnz7F6tWroVQqERAQUG7X8V86OjqYNWvWS9t1794dc+fOxbBhw/D+++8jLi4O4eHhqFevnkq7+vXrw9TUFOvWrYOJiQmMjIzQunVr2NnZaTSuI0eOYO3atZgzZ464nEZoaCjc3d0xe/ZsLFq0SMMrJaKX0vZtm0T05vjrr7+EkSNHCnXr1hX09PQEExMToU2bNsLq1auF7OxssV1eXp4QGBgo2NnZCVWrVhVsbGyEmTNnqrQRni1f4enpWew8/1024UXLVwiCIBw8eFBo0qSJoKenJzg4OAjfffddseUrDh8+LPTs2VOwtrYW9PT0BGtra+GTTz4R/vrrr2Ln+O8SD4cOHRLatGkjGBgYCAqFQvjwww+Fy5cvq7QpOt9/l8cIDQ0VAAiJiYlqP9fnl694kRctXzFlyhTByspKMDAwENq0aSPExMSUuOzETz/9JDg5OQlVqlRRuU43NzehcePGJZ7z+X4yMjIEW1tboUWLFkJeXp5Ku0mTJgk6OjpCTEyM2msgIs3JBE1mmRIRERFRueEcMSIiIiItYSBGREREpCUMxIiIiIi0hIEYERERkZYwECMiIiLSEgZiRERERFrCBV1JY4WFhbh79y5MTEzK9dEqRET0egiCgMzMTFhbW0NHR7qcTHZ2NnJzc8vcj56eHvT19ctlTG8aBmKksbt378LGxkbbwyAiojK6desWateuLUnf2dnZMDCpDuQ/KXNflpaWSExMrJTBGAMx0piJiQkAQM/JGzJdPW0Ph0gSSVFLtD0EIslkZmTA3s5G/H0uhdzcXCD/CeRO3kBZ/lYU5CL58ibk5uYyECMCIJYjZbp6DMSo0lIoFNoeApHkXsv0kir6ZfpbIcgq93R2BmJEREQkHRmAsgR8lXwqMgMxIiIiko5M599XWY6vxCr31RERERG9wZgRIyIiIunIZGUsTVbu2iQDMSIiIpIOS5NqVe6rIyIiInqDMSNGRERE0mFpUi0GYkRERCShMpYmK3nxrnJfHREREdEbjBkxIiIikg5Lk2oxECMiIiLp8K5JtSr31RERERG9wZgRIyIiIumwNKkWAzEiIiKSDkuTajEQIyIiIukwI6ZW5Q4ziYiIiN5gzIgRERGRdFiaVIuBGBEREUlHJitjIMbSJBERERFJgBkxIiIiko6O7N9XWY6vxBiIERERkXQ4R0ytyn11RERERG8wZsSIiIhIOlxHTC0GYkRERCQdlibVqtxXR0RERPQGY0aMiIiIpMPSpFoMxIiIiEg6LE2qxUCMiIiIpMOMmFqVO8wkIiIieoMxI0ZERETSYWlSLQZiREREJB2WJtWq3GEmERER0RuMGTEiIiKSUBlLk5U8Z8RAjIiIiKTD0qRalTvMJCIiInqDMSNGRERE0pHJynjXZOXOiDEQIyIiIulw+Qq1KvfVEREREb3BmBEjIiIi6XCyvloMxIiIiEg6LE2qxUCMiIiIpMOMmFqVO8wkIiKit0pwcDCcnZ2hUCigUCjg6uqKX375Rdzv7u4OmUym8ho9erRKH0lJSfD09IShoSHMzc0xbdo05Ofnq7SJiopCixYtIJfLYW9vj7CwsFcaLzNiREREJJ3XXJqsXbs2vvzySzRo0ACCIGDTpk3o2bMnzp8/j8aNGwMARo4ciblz54rHGBoail8XFBTA09MTlpaWOHXqFO7du4chQ4agatWqWLhwIQAgMTERnp6eGD16NMLDw3H48GH4+PjAysoKHh4eGo2XgRgRERFJ5zWXJj/88EOV9wsWLEBwcDB+++03MRAzNDSEpaVliccfPHgQly9fxqFDh2BhYQEXFxfMmzcPfn5+CAgIgJ6eHtatWwc7OzssXboUAODo6IgTJ05g+fLlGgdiLE0SERHRGy8jI0PllZOT89JjCgoKsG3bNjx+/Biurq7i9vDwcNSoUQNNmjTBzJkz8eTJE3FfTEwMmjZtCgsLC3Gbh4cHMjIycOnSJbFNx44dVc7l4eGBmJgYja+LGTEiIiKSTNE8rDJ0AACwsbFR2TxnzhwEBASUeEhcXBxcXV2RnZ0NY2Nj7N69G05OTgCAgQMHwtbWFtbW1rh48SL8/PwQHx+PXbt2AQCSk5NVgjAA4vvk5GS1bTIyMvD06VMYGBiU+vIYiBEREZFkyisQu3XrFhQKhbhZLpe/8BAHBwfExsYiPT0dP/74I7y9vREdHQ0nJyeMGjVKbNe0aVNYWVmhQ4cOSEhIQP369V99nK+IpUkiIiJ64xXdBVn0UheI6enpwd7eHi1btkRQUBCaNWuGlStXlti2devWAIDr168DACwtLZGSkqLSpuh90byyF7VRKBQaZcPAQIyIiIgkJSuHVxkVFha+cE5ZbGwsAMDKygoA4Orqiri4OKSmpoptIiMjoVAoxPKmq6srDh8+rNJPZGSkyjy00mJpkoiIiCRTXqXJ0po5cya6du2KOnXqIDMzE1u3bkVUVBQOHDiAhIQEbN26Fd26dUP16tVx8eJFTJo0Ce3atYOzszMAoHPnznBycsLgwYOxaNEiJCcnY9asWfD19RWzcKNHj8aaNWswffp0DB8+HEeOHMGOHTuwb98+jS+PgRgRERFVGqmpqRgyZAju3bsHpVIJZ2dnHDhwAJ06dcKtW7dw6NAhrFixAo8fP4aNjQ369u2LWbNmicfr6uoiIiICY8aMgaurK4yMjODt7a2y7pidnR327duHSZMmYeXKlahduzZCQkI0XroCAGSCIAjldvX0VsjIyIBSqYS86UjIdPW0PRwiSTw6s0bbQyCSTEZGBiyqK5Genq4yAb68z6FUKmHUOxiyqprNm3qekPcUj3ePkXSs2sSMGBEREUnmdZcmKxoGYkRERCQZBmLq8a5JIiIiIi1hRoyIiIikU9YlKCp3QoyBGBEREUmHpUn1WJokIiIi0hJmxIiIiEgyMhnKmBErz9G8eRiIERERkWRkKGNpspJHYixNEhEREWkJM2JEREQkGU7WV4+BGBEREUmHy1eoxdIkERERkZYwI0ZERETSKWNpUmBpkoiIiOjVlHWOWNnuuHzzMRAjIiIiyTAQU49zxIiIiIi0hBkxIiIikg7vmlSLgRgRERFJhqVJ9ViaJCIiItISZsSIiIhIMsyIqcdAjIiIiCTDQEw9liaJiIiItIQZMSIiIpIMM2LqMRAjIiIi6XD5CrVYmiQiIiLSEmbEiIiISDIsTarHQIyIiIgkw0BMPQZiREREJBkGYupxjhgRERGRljAjRkRERNLhXZNqMRAjIiIiybA0qR5Lk0RERERawoxYBebu7g4XFxesWLFC20Ohlxje9wMM79sWNlZmAICrN5KxeOMvOHTqMgCgbq0amDehN95zqQe9qlVwOOYK/Jb8gPsPM8U+ti79FE0b1kKNaiZIy3yC6NPxCFj9E5L/SRfb9OrYHJOHeaB+HXM8eJSFDTuisfq7w1q4Ynrbfbl+H77a8IvKtga2Fjj942wAQMo/GfBftRtRv19F1pMc2NuaY8pwD/T4X3OxvXMPf9y691ClD3/fHpg0tPNrugoqD8yIqfdGBWJDhw5FWloa9uzZo+2hVAi7du1C1apVtT0MKoW7qWkIXPMTEm7dh0wmwyeerRG+ZBTcBn2JpLsPsWuNL/68dgc9x6wGAHw+2hPfL/sUnYYthSAIAIDjf/yFZaEHkPJPOqzMTTFvQm9s+moEPEYsAwB0fN8J6+cNhd/iH3Dk9ytwqGuJFV8MRHZOHjb8cEyr109vp0b1rLDn63Hi+ypV/r8IMyZgM9Izn2Lrsk9RXWmMHw/8gWEzv8XRzdPh7GAjtvv8U08M6dVGfG9sJH+NV0DlQYYyBmKVfJLYGxWIvclyc3Ohp6f3Ws6Vl5dXqgDLzMzstYyHyu7X43+qvJ8fvBfD+36AVk3sYFXTFHWsqsNt0FfIfJwNAPgsYAsSjyxCu3caIvp0PAAg+Puj4vG3kh9hxaZIfLd4JKro6iC/oBD9u76LfVEXELrrBADg5p0HWB52EBO8OzEQI62ooqsDixqKEvedvngDS2YMQMvGdQEAU0d0wdrvjyD2yi2VQMzYUP+FfRBVBhVmjlh0dDTeffddyOVyWFlZYcaMGcjPzwcAREREwNTUFAUFBQCA2NhYyGQyzJgxQzzex8cHgwYNEt+fOHECbdu2hYGBAWxsbDB+/Hg8fvxY3F+3bl3MmzcPQ4YMgUKhwKhRo0oc161bt9CvXz+YmprCzMwMPXv2xN9//y3uP3PmDDp16oQaNWpAqVTCzc0N586dU+lDJpMhODgYPXr0gJGRERYsWICAgAC4uLhgy5YtqFu3LpRKJQYMGIDMzP8vVbm7u2PixIkqY164cCGGDx8OExMT1KlTB+vXr1c516lTp+Di4gJ9fX20atUKe/bsgUwmQ2xs7Ct9X0hzOjoy9OnUEoYGejgTlwi5XhUIgoCc3HyxTXZuPgoLBbzXrH6JfZgqDPFRl1Y4fTER+QWFAAA9vSoqfQBAdk4uallUE0uiRK/TjVv34dj1c7j0nIORs8JwK/n/y4zvOtfD7sizeJT+GIWFhdh58A/k5OTjg5YNVPpYsekg6nWcjnZeX2LVlkPIzy/QwpVQWRSVJsvyqswqRCB2584ddOvWDe+88w4uXLiA4OBgbNy4EfPnzwcAtG3bFpmZmTh//jzwLGirUaMGoqKixD6io6Ph7u4OAEhISECXLl3Qt29fXLx4Edu3b8eJEycwduxYlfMuWbIEzZo1w/nz5zF79uxi48rLy4OHhwdMTExw/PhxnDx5EsbGxujSpQtyc3MBAJmZmfD29saJEyfw22+/oUGDBujWrZtKQAUAAQEB6N27N+Li4jB8+HBxnHv27EFERAQiIiIQHR2NL7/8Uu1ntXTpUrRq1Qrnz5/HZ599hjFjxiA+/t+MSkZGBj788EM0bdoU586dw7x58+Dn5/dK3xPSnFN9a9yKXoqUkyuwbGZ/DJ62AfGJyTgT9zeeZOciYFxPGMirwlBfD/Mm9EaVKrqw/E8mIGBsT9w+thSJhxehtoUZBk79/0D7yG9X0L19M7R7pyFkMhnq1zGHr1cHAIBlDeVrv156u7VsXBdfzxmEH1b5YumM/rh59wG6jVwuZn1Dg4YjP78A9Tr6weL9iZi0cBu2LB6JejY1xT4+7e+GjQuH4efgCRjapw2WhR7AnNWculLhyMrhVYlViNLk2rVrYWNjgzVr1kAmk6FRo0a4e/cu/Pz84O/vD6VSCRcXF0RFRaFVq1aIiorCpEmTEBgYiKysLKSnp+P69etwc3MDAAQFBcHLy0vMJjVo0ACrVq2Cm5sbgoODoa+vDwD43//+hylTprxwXNu3b0dhYSFCQkLEiD00NBSmpqaIiopC586d8b///U/lmPXr18PU1BTR0dHo3r27uH3gwIEYNmyYStvCwkKEhYXBxMQEADB48GAcPnwYCxYseOGYunXrhs8++wwA4Ofnh+XLl+Po0aNwcHDA1q1bIZPJsGHDBujr68PJyQl37tzByJEj1X7+OTk5yMnJEd9nZGSobU8lu3YzBe28gqAwNkDPDs2xNmAwun+6EvGJyRg6YyOWzuiPT/u7obBQwM6DZxF7JQmFhYJKH6u2HMKWn2NgY2kGv5FdsS5gMPpPWgcA2LT7JOxq1cC2ZaNRtYouMh9nY922KMz81BOFhYVaump6W3Vq01j8ukmDWmjVpC6afuiPPYfOYXDP97FgXQTSM59iz9fjYGZqhP3RFzFs5rfYv2EiGtvXAgDxHxJFfehVrYJJC7+Hv28PyPU4P5YqhwqREbty5QpcXV1V0pNt2rRBVlYWbt++DQBwc3NDVFQUBEHA8ePH0adPHzg6OuLEiROIjo6GtbU1GjT4N+V94cIFhIWFwdjYWHx5eHigsLAQiYmJ4jlatWolfj169GiV9kX9XL9+HSYmJuJ2MzMzZGdnIyEhAQCQkpKCkSNHokGDBlAqlVAoFMjKykJSUpLKNT5/riJ169YVgzAAsLKyQmpqqtrPytnZWfxaJpPB0tJSPCY+Ph7Ozs5ioAkA77777ks//6CgICiVSvFlY2Pz0mOouLz8AiTe/gcXrt7C3K9/xp/X7mD0gH+ztEd/v4oWvQPRoPNM1O80A6PnbIaVuSn+vvOPSh8P0x8jISkVUaevYsQXoej8QRO809RO3B+w5ifUdpsC5x7+cOjyOc5dvgkA+PvOg9d8tUSqlCaGsK9jjhu37iPx9n1s2HEMq2cPgtu7DmjasDb8RnZDc8c6CFEzn7Fl47rILyhE0t2HL2xDbx6WJtWrEBmx0nB3d8e3336LCxcuoGrVqmjUqBHc3d0RFRWFR48eidkwAMjKysKnn36K8ePHF+unTp064tdGRkbi13PnzsXUqVNV2mZlZaFly5YIDw8v1k/Nmv+m1729vfHgwQOsXLkStra2kMvlcHV1FUuXJZ2ryH8n7MtkspdmNl7lmJeZOXMmJk+eLL7PyMhgMFYOdGQy6Omp/i/4MP3feYptWzVEzWrG+OV4nNrjAUCvqmofhYUC7t3/d0mLvp1b4vTFG3iQliXBFRCVXtaTHCTe+Qf9a7yLJ9n//v7T0VH9A6urK4Pwnyzw8+L+ug0dHRlqmpm8sA29ebh8hXoVIhBzdHTEzp07IQiC+A05efIkTExMULt2beC5eWLLly8Xgy53d3d8+eWXePTokUqJsUWLFrh8+TLs7e1LPQZzc3OYm5urbGvRogW2b98Oc3NzKBQl39Vz8uRJrF27Ft26dQOeTe7/559/SmwrNQcHB3z33XfIycmBXP7vLeBnzpx56XFyuVxsT6/G37cHDp26hFvJj2BiqI+PurTCBy0boO+4tQCAgR++h78Sk/HPoyy862yHoMkfYe33R3H95r/ZzJaNbdHCyRYxFxKQnvEEdWvXxBejPXHj1n2cifs3i2umNELPDs1x4uw1yOVV4PXhe+jZoTm6f7pSq9dOb6fZK3ahS9umsLEyw7376fhy/T7o6uigr0dLKE0MUc+mJiYFfY95E3rDTGmEfVEXcfT3eGxbPhp4dlfl2T9v4oNWDWBiqI/TcYn4YvlO9Ov6DkwVhtq+PNKATPbvqyzHV2ZvXCCWnp5e7A6+UaNGYcWKFRg3bhzGjh2L+Ph4zJkzB5MnT4aOzr/V1WrVqsHZ2Rnh4eFYs2YNAKBdu3bo168f8vLyVDJifn5+eO+99zB27Fj4+PjAyMgIly9fRmRkpHhsaXh5eWHx4sXo2bMn5s6di9q1a+PmzZvYtWsXpk+fjtq1a6NBgwbYsmULWrVqhYyMDEybNg0GBgbl9nlpYuDAgfjiiy8watQozJgxA0lJSViyZAnwFvyLQ9tqVDNGcMAQWNRQICMrG5eu30HfcWsRdfoqAKCBrTn8fXugmsIQSXcfYmnoAazdekQ8/ml2Hrq3b4YZozxhaKCHlH/ScTjmCpZ8+y1y8/7/TskBnq0xd0JvyGTAmbhEfDh6pVieJHqd7qSmwWdWKB6mP0GNasZo3aweIkOnoEa1f7NZO1aMQeCan/DJ5G/w+EkO7GxqYm3AYHR+NrdMrlcVuyLP4ssN+5Gblw9b6+oY80l7+Hr97yVnJqpY3rhALCoqCs2bN1fZNmLECOzfvx/Tpk1Ds2bNYGZmhhEjRmDWrFkq7dzc3BAbGyveHWlmZgYnJyekpKTAwcFBbOfs7Izo6Gh88cUXaNu2LQRBQP369dG/f3+NxmpoaIhjx47Bz88Pffr0QWZmJmrVqoUOHTqIGbKNGzdi1KhRaNGiBWxsbLBw4cJiJc7XRaFQYO/evRgzZgxcXFzQtGlT+Pv7Y+DAgSrzxqj8jZ+/Ve3+wDU/I3DNzy/cfznhLnp+tlptHw/TH8NjxNJXHiNRefp24XC1++vXMcfmRS++UahZIxtEhmrndyWVr38zYmUpTZbrcN44MqFo2W56K4WHh2PYsGFIT08vdaYuIyMDSqUS8qYjIdN9PYvcEr1uj86UPjtOVNFkZGTAoroS6enpL5xaUx7nUCqVqDf+R+jKi8+DLq2CnMe4seojSceqTRXirkkqP5s3b8aJEyeQmJiIPXv2wM/PD/369dNauZSIiKg8BQcHw9nZGQqFAgqFAq6urvjll/9/7ml2djZ8fX1RvXp1GBsbo2/fvkhJSVHpIykpCZ6enjA0NIS5uTmmTZsmLiJfJCoqCi1atIBcLoe9vT3CwsJeabwMxN4yycnJGDRoEBwdHTFp0iR8/PHHxVbfJyIiKi+ve/mK2rVr48svv8TZs2fxxx9/4H//+x969uyJS5cuAQAmTZqEvXv34ocffkB0dDTu3r2LPn36iMcXFBTA09MTubm5OHXqFDZt2oSwsDD4+/uLbRITE+Hp6Yn27dsjNjYWEydOhI+PDw4cOKD558PSJGmKpUl6G7A0SZXZ6yxN2k/cWebS5PUVfcs0VjMzMyxevBgfffQRatasia1bt+Kjjz4CAFy9ehWOjo6IiYnBe++9h19++QXdu3fH3bt3YWFhAQBYt24d/Pz8cP/+fejp6cHPzw/79u3Dn3/+/3OEBwwYgLS0NPz6668ajY0ZMSIiInrjZWRkqLyef+LLixQUFGDbtm14/PgxXF1dcfbsWeTl5aFjx45im0aNGqFOnTqIiYkBAMTExKBp06ZiEAYAHh4eyMjIELNqMTExKn0UtSnqQxMMxIiIiEgyOjqyMr8AwMbGRuUpL0FBQS88Z1xcHIyNjSGXyzF69Gjs3r0bTk5OSE5Ohp6eHkxNTVXaW1hYIDk5GXg2hef5IKxof9E+dW0yMjLw9OlTjT6fN275CiIiIqo8ymtB11u3bqmUJtUtNO7g4IDY2Fikp6fjxx9/hLe3N6Kjo199EBJiIEZERERvvKK7IEtDT09PfHpOy5YtcebMGaxcuRL9+/dHbm4u0tLSVLJiKSkpsLS0BABYWlri9OnTKv0V3VX5fJv/3mmZkpIChUKh8SoELE0SERGRZN6Eh34XFhYiJycHLVu2RNWqVXH48GFxX3x8PJKSkuDq6goAcHV1RVxcHFJTU8U2kZGRUCgUcHJyEts830dRm6I+NMGMGBEREUnmdT9rcubMmejatSvq1KmDzMxMbN26FVFRUThw4ACUSiVGjBiByZMnw8zMDAqFAuPGjYOrqyvee+89AEDnzp3h5OSEwYMHY9GiRUhOTsasWbPg6+srlkNHjx6NNWvWYPr06Rg+fDiOHDmCHTt2YN++fRpfHwMxIiIikkxZs1qaHpuamoohQ4bg3r17UCqVcHZ2xoEDB9CpUycAwPLly6Gjo4O+ffsiJycHHh4eWLt2rXi8rq4uIiIiMGbMGLi6usLIyAje3t6YO3eu2MbOzg779u3DpEmTsHLlStSuXRshISHw8PDQ/Pq4jhhpiuuI0duA64hRZfY61xFzmr6nzOuIXV7Uq9I+4ogZMSIiIpLM686IVTQMxIiIiEgyr3uOWEXDuyaJiIiItIQZMSIiIpKMDGUsTaJyp8QYiBEREZFkWJpUj6VJIiIiIi1hRoyIiIgkw7sm1WMgRkRERJJhaVI9liaJiIiItIQZMSIiIpIMS5PqMRAjIiIiybA0qR4DMSIiIpIMM2LqcY4YERERkZYwI0ZERETSKWNpspIvrM9AjIiIiKTD0qR6LE0SERERaQkzYkRERCQZ3jWpHgMxIiIikgxLk+qxNElERESkJcyIERERkWRYmlSPgRgRERFJhqVJ9ViaJCIiItISZsSIiIhIMsyIqcdAjIiIiCTDOWLqMRAjIiIiyTAjph7niBERERFpCTNiREREJBmWJtVjIEZERESSYWlSPZYmiYiIiLSEGTEiIiKSjKyM5cXKnQ9jIEZEREQS0pHJoFOGSKwsx1YELE0SERERaQkzYkRERCQZ3jWpHgMxIiIikgzvmlSPgRgRERFJRkf276ssx1dmnCNGREREpCXMiBEREZF0ZGUsL1byjBgDMSIiIpIMJ+urx9IkERERkZYwI0ZERESSkT37ryzHV2YMxIiIiEgyvGtSPZYmiYiIiLSEGTEiIiKSDBd0Va9UgdjPP/9c6g579OhRlvEQERFRJcK7JtUrVSDWq1evUnUmk8lQUFBQ1jERERERvZKgoCDs2rULV69ehYGBAd5//3189dVXcHBwENu4u7sjOjpa5bhPP/0U69atE98nJSVhzJgxOHr0KIyNjeHt7Y2goCBUqfL/oVNUVBQmT56MS5cuwcbGBrNmzcLQoUM1Gm+p5ogVFhaW6sUgjIiIiJ6nI5OV+aWJ6Oho+Pr64rfffkNkZCTy8vLQuXNnPH78WKXdyJEjce/ePfG1aNEicV9BQQE8PT2Rm5uLU6dOYdOmTQgLC4O/v7/YJjExEZ6enmjfvj1iY2MxceJE+Pj44MCBAxqNt0xzxLKzs6Gvr1+WLoiIiKgSe92lyV9//VXlfVhYGMzNzXH27Fm0a9dO3G5oaAhLS8sS+zh48CAuX76MQ4cOwcLCAi4uLpg3bx78/PwQEBAAPT09rFu3DnZ2dli6dCkAwNHRESdOnMDy5cvh4eFR6vFqfNdkQUEB5s2bh1q1asHY2Bg3btwAAMyePRsbN27UtDsiIiKqxIom65flBQAZGRkqr5ycnFKdPz09HQBgZmamsj08PBw1atRAkyZNMHPmTDx58kTcFxMTg6ZNm8LCwkLc5uHhgYyMDFy6dEls07FjR5U+PTw8EBMTo9Hno3EgtmDBAoSFhWHRokXQ09MTtzdp0gQhISGadkdERET0UjY2NlAqleIrKCjopccUFhZi4sSJaNOmDZo0aSJuHzhwIL777jscPXoUM2fOxJYtWzBo0CBxf3JyskoQBkB8n5ycrLZNRkYGnj59Wurr0rg0uXnzZqxfvx4dOnTA6NGjxe3NmjXD1atXNe2OiIiIKrHyKk3eunULCoVC3C6Xy196rK+vL/7880+cOHFCZfuoUaPEr5s2bQorKyt06NABCQkJqF+//qsP9hVonBG7c+cO7O3ti20vLCxEXl5eeY2LiIiIKoHymqyvUChUXi8LxMaOHYuIiAgcPXoUtWvXVtu2devWAIDr168DACwtLZGSkqLSpuh90byyF7VRKBQwMDAo/edT6pbPODk54fjx48W2//jjj2jevLmm3RERERGVG0EQMHbsWOzevRtHjhyBnZ3dS4+JjY0FAFhZWQEAXF1dERcXh9TUVLFNZGQkFAoFnJycxDaHDx9W6ScyMhKurq4ajVfj0qS/vz+8vb1x584dFBYWYteuXYiPj8fmzZsRERGhaXdERERUicmevcpyvCZ8fX2xdetW/PTTTzAxMRHndCmVShgYGCAhIQFbt25Ft27dUL16dVy8eBGTJk1Cu3bt4OzsDADo3LkznJycMHjwYCxatAjJycmYNWsWfH19xUzc6NGjsWbNGkyfPh3Dhw/HkSNHsGPHDuzbt0+j8WqcEevZsyf27t2LQ4cOwcjICP7+/rhy5Qr27t2LTp06adodERERVWLldddkaQUHByM9PR3u7u6wsrISX9u3bwcA6Onp4dChQ+jcuTMaNWqEKVOmoG/fvti7d6/Yh66uLiIiIqCrqwtXV1cMGjQIQ4YMwdy5c8U2dnZ22LdvHyIjI9GsWTMsXboUISEhGi1dgVddR6xt27aIjIx8lUOJiIiIJCMIgtr9NjY2xVbVL4mtrS3279+vto27uzvOnz+v8Rif98oLuv7xxx+4cuUK8GzeWMuWLcs0ECIiIqp8dGT/vspyfGWmcSB2+/ZtfPLJJzh58iRMTU0BAGlpaXj//fexbdu2l96ZQERERG+PVykv/vf4ykzjOWI+Pj7Iy8vDlStX8PDhQzx8+BBXrlxBYWEhfHx8pBklERERUSWkcUYsOjoap06dUnmKuYODA1avXo22bduW9/iIiIiogqvkSa0y0TgQs7GxKXHh1oKCAlhbW5fXuIiIiKgSYGlSPY1Lk4sXL8a4cePwxx9/iNv++OMPTJgwAUuWLCnv8REREVEFVjRZvyyvyqxUGbFq1aqpRKSPHz9G69atUaXKv4fn5+ejSpUqGD58OHr16iXdaImIiIgqkVIFYitWrJB+JERERFTpsDSpXqkCMW9vb+lHQkRERJXO637EUUXzygu6AkB2djZyc3NVtikUirKOiYiIiOitoHEg9vjxY/j5+WHHjh148OBBsf0FBQXlNTYiIiKq4HRkMuiUobxYlmMrAo3vmpw+fTqOHDmC4OBgyOVyhISEIDAwENbW1ti8ebM0oyQiIqIKSSYr+6sy0zgjtnfvXmzevBnu7u4YNmwY2rZtC3t7e9ja2iI8PBxeXl7SjJSIiIioktE4I/bw4UPUq1cPeDYf7OHDhwCADz74AMeOHSv/ERIREVGFVXTXZFlelZnGgVi9evWQmJgIAGjUqBF27NgBPMuUFT0EnIiIiAgsTb6UxoHYsGHDcOHCBQDAjBkz8PXXX0NfXx+TJk3CtGnTpBgjERERUaWk8RyxSZMmiV937NgRV69exdmzZ2Fvbw9nZ+fyHh8RERFVYLxrUr0yrSMGALa2trC1tS2f0RAREVGlUtbyYiWPw0oXiK1atarUHY4fP74s4yEiIqJKhI84Uq9Ugdjy5ctL1ZlMJmMgRkRERFRKpQrEiu6SJHpeUtQSPtKKKq3UjBxtD4FIMpmv8edb51XuDPzP8ZVZmeeIEREREb0IS5PqVfZAk4iIiOiNxYwYERERSUYmA3R41+QLMRAjIiIiyeiUMRAry7EVAUuTRERERFrySoHY8ePHMWjQILi6uuLOnTsAgC1btuDEiRPlPT4iIiKqwPjQb/U0DsR27twJDw8PGBgY4Pz588jJ+fcW2PT0dCxcuFCKMRIREVEFVVSaLMurMtM4EJs/fz7WrVuHDRs2oGrVquL2Nm3a4Ny5c+U9PiIiIqJKS+PJ+vHx8WjXrl2x7UqlEmlpaeU1LiIiIqoE+KxJ9TTOiFlaWuL69evFtp84cQL16tUrr3ERERFRJaAjk5X5VZlpHIiNHDkSEyZMwO+//w6ZTIa7d+8iPDwcU6dOxZgxY6QZJREREVVIOuXwqsw0Lk3OmDEDhYWF6NChA548eYJ27dpBLpdj6tSpGDdunDSjJCIiIqqENA7EZDIZvvjiC0ybNg3Xr19HVlYWnJycYGxsLM0IiYiIqMLiHDH1XnllfT09PTg5OZXvaIiIiKhS0UHZ5nnpoHJHYhoHYu3bt1e7uNqRI0fKOiYiIiKit4LGgZiLi4vK+7y8PMTGxuLPP/+Et7d3eY6NiIiIKjiWJtXTOBBbvnx5idsDAgKQlZVVHmMiIiKiSoIP/Vav3O4KHTRoEL799tvy6o6IiIio0nvlyfr/FRMTA319/fLqjoiIiCoBmQxlmqzP0uR/9OnTR+W9IAi4d+8e/vjjD8yePbs8x0ZEREQVHOeIqadxIKZUKlXe6+jowMHBAXPnzkXnzp3Lc2xERERElZpGgVhBQQGGDRuGpk2bolq1atKNioiIiCoFTtZXT6PJ+rq6uujcuTPS0tKkGxERERFVGrJy+K8y0/iuySZNmuDGjRvSjIaIiIgqlaKMWFlemggKCsI777wDExMTmJubo1evXoiPj1dpk52dDV9fX1SvXh3Gxsbo27cvUlJSVNokJSXB09MThoaGMDc3x7Rp05Cfn6/SJioqCi1atIBcLoe9vT3CwsI0/3w0PWD+/PmYOnUqIiIicO/ePWRkZKi8iIiIiLQlOjoavr6++O233xAZGYm8vDx07twZjx8/FttMmjQJe/fuxQ8//IDo6GjcvXtX5WbEgoICeHp6Ijc3F6dOncKmTZsQFhYGf39/sU1iYiI8PT3Rvn17xMbGYuLEifDx8cGBAwc0Gq9MEAShNA3nzp2LKVOmwMTE5P8Pfu5WBkEQIJPJUFBQoNEAqOLJyMiAUqlEyoN0KBQKbQ+HSBKpGTnaHgKRZDIzMtDEzhzp6dL9Hi/6WxG49zz0jUxKcUTJsh9nYs6HzV95rPfv34e5uTmio6PRrl07pKeno2bNmti6dSs++ugjAMDVq1fh6OiImJgYvPfee/jll1/QvXt33L17FxYWFgCAdevWwc/PD/fv34eenh78/Pywb98+/Pnnn+K5BgwYgLS0NPz666+lHl+pJ+sHBgZi9OjROHr0qGafABEREb21ZDKZ2mdUl+Z4PAvsnieXyyGXy196fHp6OgDAzMwMAHD27Fnk5eWhY8eOYptGjRqhTp06YiAWExODpk2bikEYAHh4eGDMmDG4dOkSmjdvjpiYGJU+itpMnDhRo+srdSBWlDhzc3PT6AREREREZWVjY6Pyfs6cOQgICFB7TGFhISZOnIg2bdqgSZMmAIDk5GTo6enB1NRUpa2FhQWSk5PFNs8HYUX7i/apa5ORkYGnT5/CwMCgVNel0fIVZYloiYiI6O1TXstX3Lp1S6U0WZpsmK+vL/7880+cOHHi1QcgMY0CsYYNG740GHv48GFZx0RERESVRHmtrK9QKDSaIzZ27FhERETg2LFjqF27trjd0tISubm5SEtLU8mKpaSkwNLSUmxz+vRplf6K7qp8vs1/77RMSUmBQqEodTYMmgZigYGBxVbWJyIiInpTCIKAcePGYffu3YiKioKdnZ3K/pYtW6Jq1ao4fPgw+vbtCwCIj49HUlISXF1dAQCurq5YsGABUlNTYW5uDgCIjIyEQqGAk5OT2Gb//v0qfUdGRop9lJZGgdiAAQPEARERERG9jI5MVqaHfmt6rK+vL7Zu3YqffvoJJiYm4pwupVIJAwMDKJVKjBgxApMnT4aZmRkUCgXGjRsHV1dXvPfeewCAzp07w8nJCYMHD8aiRYuQnJyMWbNmwdfXVyyJjh49GmvWrMH06dMxfPhwHDlyBDt27MC+ffs0Gm+pAzHODyMiIiJNve5HHAUHBwMA3N3dVbaHhoZi6NChAIDly5dDR0cHffv2RU5ODjw8PLB27Vqxra6uLiIiIjBmzBi4urrCyMgI3t7emDt3rtjGzs4O+/btw6RJk7By5UrUrl0bISEh8PDw0Gi8pV5HTEdHB8nJycyIEdcRo7cC1xGjyux1riP21a8XyryOmF+XZpKOVZtKnRErLCyUdiRERERU+ZRxsn4lf9SkZnPEiIiIiDShAxl0yhBNleXYioCBGBEREUmmvJavqKw0fug3EREREZUPZsSIiIhIMq/7rsmKhoEYERERSeZ1ryNW0bA0SURERKQlzIgRERGRZDhZXz0GYkRERCQZHZSxNFnJl69gaZKIiIhIS5gRIyIiIsmwNKkeAzEiIiKSjE4Zy2+VvXRX2a+PiIiI6I3FjBgRERFJRiaTQVaG+mJZjq0IGIgRERGRZGTPXmU5vjJjIEZERESS4cr66nGOGBEREZGWMCNGREREkqrcOa2yYSBGREREkuE6YuqxNElERESkJcyIERERkWS4fIV6DMSIiIhIMlxZX73Kfn1EREREbyxmxIiIiEgyLE2qx0CMiIiIJMOV9dVjaZKIiIhIS5gRIyIiIsmwNKkeAzEiIiKSDO+aVI+BGBEREUmGGTH1KnugSURERPTGYkaMiIiIJMO7JtVjIEZERESS4UO/1WNpkoiIiEhLmBEjIiIiyehABp0yFBjLcmxFwECMiIiIJMPSpHosTRIRERFpCTNiREREJBnZs//KcnxlxkCMiIiIJMPSpHosTRIRERFpCTNiREREJBlZGe+aZGmSiIiI6BWxNKkeAzEiIiKSDAMx9ThHjIiIiEhLmBEjIiIiyXD5CvWYESMiIiLJ6MjK/tLEsWPH8OGHH8La2hoymQx79uxR2T906FDIZDKVV5cuXVTaPHz4EF5eXlAoFDA1NcWIESOQlZWl0ubixYto27Yt9PX1YWNjg0WLFr3a5/NKRxERERG9gR4/foxmzZrh66+/fmGbLl264N69e+Lr+++/V9nv5eWFS5cuITIyEhERETh27BhGjRol7s/IyEDnzp1ha2uLs2fPYvHixQgICMD69es1Hi9Lk0RERCSZ112a7Nq1K7p27aq2jVwuh6WlZYn7rly5gl9//RVnzpxBq1atAACrV69Gt27dsGTJElhbWyM8PBy5ubn49ttvoaenh8aNGyM2NhbLli1TCdhKgxkxIiIikkzRXZNleeFZFur5V05OziuPKSoqCubm5nBwcMCYMWPw4MEDcV9MTAxMTU3FIAwAOnbsCB0dHfz+++9im3bt2kFPT09s4+Hhgfj4eDx69EijsTAQIyIiojeejY0NlEql+AoKCnqlfrp06YLNmzfj8OHD+OqrrxAdHY2uXbuioKAAAJCcnAxzc3OVY6pUqQIzMzMkJyeLbSwsLFTaFL0valNaLE0SERGRZGRlvPOx6Mhbt25BoVCI2+Vy+Sv1N2DAAPHrpk2bwtnZGfXr10dUVBQ6dOjwyuN8VcyIERERkWTK665JhUKh8nrVQOy/6tWrhxo1auD69esAAEtLS6Smpqq0yc/Px8OHD8V5ZZaWlkhJSVFpU/T+RXPPXoSBGBEREb21bt++jQcPHsDKygoA4OrqirS0NJw9e1Zsc+TIERQWFqJ169Zim2PHjiEvL09sExkZCQcHB1SrVk2j87/xpcmwsDBMnDgRaWlppT5m6NChSEtLK7Z2SGUTFRWF9u3b49GjRzA1NdX2cEhDX67fh682/KKyrYGtBU7/OBtJdx+gWc85JR4XGjQcvTq2UNn2MC0Lbb2+xN3UNPx9ZBGUJoaSjp2oNLKeZGNl6K84dOJPPEjLhJN9LXzu2wvOjeoAAFZvOoB9R88j+X46qlbRReOGtTFpeFc0c7QV+/jfwPm4k6I6+XmKTzeM+uT1l5Do1bzuuyazsrLE7BYAJCYmIjY2FmZmZjAzM0NgYCD69u0LS0tLJCQkYPr06bC3t4eHhwcAwNHREV26dMHIkSOxbt065OXlYezYsRgwYACsra0BAAMHDkRgYCBGjBgBPz8//Pnnn1i5ciWWL1+u8fVpNRB7UcD0fIDRv39/dOvWTWtjfJO9//77uHfvHpRKpbaHQq+oUT0r7Pl6nPi+SpV/k9S1LKrh6i8LVdpu2n0Sq787hI7vNy7Wz7j5W+Fkb427qaX/BwuR1GYt3YFriclYNPMTmFdX4udDZzFs+jfYv3E6LGoqUbd2TfiP6wMbq+rIzs1D2I/RGO63HpGbZ8LM1FjsZ/zQLujn2Vp8b2RQPiUpej1e97Mm//jjD7Rv3158P3nyZACAt7c3goODcfHiRWzatAlpaWmwtrZG586dMW/ePJVSZ3h4OMaOHYsOHTpAR0cHffv2xapVq8T9SqUSBw8ehK+vL1q2bIkaNWrA399f46UroO1ArDQMDAxgYGCg7WGgoKAAMpkMOjrSV3Nzc3NVbol9ET09PY1r0fRmqaKrA4saimLbdUvYHhF1Ab06toCxoeofoY0/Hkd65hNM9+mKQ6cuSz5motLIzsnDwWNxWDtvGN5xrg8AGOftgaMxl7F17ylMGt4VH3ZQzezOHNMTP/5yGvE37sK1RUNxu5GhHDXNiv9/QhWD7LkJ9696vCbc3d0hCMIL9x84cOClfZiZmWHr1q1q2zg7O+P48eMajq64N36OWFhYWLGy2/z582Fubg4TExP4+PhgxowZcHFxKXbskiVLYGVlherVq8PX11ellpuTk4OpU6eiVq1aMDIyQuvWrREVFVXsvD///DOcnJwgl8uRlJRU4hhDQkLg6OgIfX19NGrUCGvXrlXZ7+fnh4YNG8LQ0BD16tXD7NmzVcYSEBAAFxcXhISEwM7ODvr6+gAAmUyGkJAQ9O7dG4aGhmjQoAF+/vln8bioqCjIZDKxbFs05gMHDsDR0RHGxsbi6sFF8vPzMX78eJiamqJ69erw8/ODt7c3evXqpdH3hcrHjVv34dj1c7j0nIORs8JwK/lhie1iryQh7q/bGNTDVWX71Rv3sDjkFwQHDoGOps8BIZJQfkEBCgoLIddT/fe+XF4F5/5MLNY+Ny8f2/fFwMRIHw71rVX2bfj+CFr3mo1eny5FyPajyH+2zABRZfDGZ8T+Kzw8HAsWLMDatWvRpk0bbNu2DUuXLoWdnZ1Ku6NHj8LKygpHjx7F9evX0b9/f7i4uGDkyJEAgLFjx+Ly5cvYtm0brK2tsXv3bnTp0gVxcXFo0KABAODJkyf46quvEBISgurVqxdbV6RoPP7+/lizZg2aN2+O8+fPY+TIkTAyMoK3tzcAwMTEBGFhYbC2tkZcXBxGjhwJExMTTJ8+Xezn+vXr2LlzJ3bt2gVdXV1xe2BgIBYtWoTFixdj9erV8PLyws2bN2FmZlbi5/PkyRMsWbIEW7ZsgY6ODgYNGoSpU6ciPDwcAPDVV18hPDwcoaGhcHR0xMqVK7Fnzx6VNO5/5eTkqCycl5GRUervF71Yy8Z18fWcQbC3tUDKP+n4asMv6DZyOU5t+wImRvoqbbf8FAMHO0u0blZP3JaTmwefWWEIHN8LNpZmuHnnHy1cBVHJjA310dzJFmu/O4R6dSxQo5oJIo6cR+zlm6hjXUNsdzTmMibP34KnOXmoaWaCbxd9CjPl/5clB/duC6cGtaA0McT5y39jWch+3H+QgZmf9dTSlZGmdCCDThlqkzqV/KHfWg/EIiIiYGxsrLKtQM2/dlavXo0RI0Zg2LBhAAB/f38cPHiw2MM4q1WrhjVr1kBXVxeNGjWCp6cnDh8+jJEjRyIpKQmhoaFISkoSJ95NnToVv/76K0JDQ7Fw4b9zc/Ly8rB27Vo0a9bsheOZM2cOli5dij59+gAA7OzscPnyZXzzzTdiIDZr1iyxfd26dTF16lRs27ZNJRDLzc3F5s2bUbNmTZX+hw4dik8++QQAsHDhQqxatQqnT58u9oDSInl5eVi3bh3q1/+3FDB27FjMnTtX5fObOXMmevfuDQBYs2YN9u/f/8LrA4CgoCAEBgaqbUOa69Tm/+d6NWlQC62a1EXTD/2x59A5DO75vrjvaXYufjzwB6aNUP2ez/36ZzSsa4H+3d59reMmKq1FMwfi88Xb0a7/XOjq6MCpQS14tm+OS9dui21au9THnvVT8Cj9MXbs+w0T523BD2vGo3o1EwDAsI/dxLaN6lujahVdzFn+I6b4eEJPT+t/wqgUXndpsqLR+k9x+/btERwcrLLt999/x6BBg0psHx8fj88++0xl27vvvosjR46obGvcuLFKZsnKygpxcXEAgLi4OBQUFKBhw4Yqx+Tk5KB69eriez09PTg7OwMAkpKS4OTkJO77/PPPMWHCBCQkJGDEiBFipg3Pyn/PT6Dfvn07Vq1ahYSEBGRlZSE/P19lUToAsLW1LRaE4VkNuoiRkREUCkWx9U2eZ2hoKAZhRddd1D49PR0pKSl4993//8Otq6uLli1borCw8IV9zpw5U5zsiGcZMRsbmxe2p1ejNDGEfR1z3Lh1X2X7T0di8TQ7FwM8VQOuY2f+wuWEu6jx3ngAEOdE1O80A1OGeWDmp56vcfRExdWxroHvlvviydMcZD3JgXl1BSbO2wwbq///PWtoIIdtLTlsa9WAi5MtOg8Jwo+/nManA0u+K7KZoy3yCwpxO+Uh6tkUr1IQVTRaD8SMjIxgb2+vsu327dsvbF9aVatWVXkvk8nEYCMrKwu6uro4e/asSrAGQCU7Z2BgANmzdKq1tTViY2PFfWZmZmIWbsOGDeLaIkWK+o2JiYGXlxcCAwPh4eEBpVIpllOfZ2RkpPF1lLa9ukmLpSGXy8tt4Tx6sawnOUi88w/611ANuL776RS6tmuKGs8yBEU2L/LB0+z/n2t4/vJNjJ0Xjv3rJ8KudvGgnkhbDA3kMDSQIz3zCU6cice0Ud1f2LawUEBuXv4L91+5fgc6OjJUNzV+YRt6wzAlppbWAzFNOTg44MyZMxgyZIi47cyZMxr10bx5cxQUFCA1NRVt27Yt1TFVqlQpFjDiWYB248YNeHl5lXjcqVOnYGtriy+++ELcdvPmTY3GW16USiUsLCxw5swZtGvXDnhWBj537lyJNzuQtGav2IUubZvCxsoM9+6n48v1+6Cro4O+Hi3FNjdu3cep8wnYsWJMseP/G2w9TP/3HwYOdpZcR4zeCMfPXIUgAHY2NZF05x8sWh+BenXM0afLu3jyNAfrwg/jf+83Rs3qJniU/hjhP51Eyj/p6OL273SQ85f+xoWrSXjPxR5GBnKcv/w3goJ/Ro8OLfkzXoG87nXEKpoKF4iNGzcOI0eORKtWrfD+++9j+/btuHjxIurVq1eKo//VsGFDeHl5YciQIVi6dCmaN2+O+/fv4/Dhw3B2doanZ+lLOoGBgRg/fjyUSiW6dOmCnJwc/PHHH3j06BEmT56MBg0aICkpCdu2bcM777yDffv2Yffu3a949WU3btw4BAUFwd7eHo0aNcLq1avx6NEjMfNHr8+d1DT4zArFw/QnqFHNGK2b1UNk6BSVzNd3P8fA2twU/3uvkVbHSvQqMh9nY1nIfiT/kwZTE0N0buuMScO7omoVXRQWFuLGrVTsDjiDRxmPYaowQlMHG4Sv8EWDuv8uy6NXtQr2Hz2PNZsOIDcvH7Utq2No33YY9pHbS89NVFFUuEDMy8sLN27cwNSpU5GdnY1+/fph6NChOH36tEb9hIaGYv78+ZgyZQru3LmDGjVq4L333kP37i9OmZfEx8cHhoaGWLx4MaZNmwYjIyM0bdoUEydOBAD06NEDkyZNwtixY5GTkwNPT0/Mnj0bAQEBGp2nvPj5+SE5ORlDhgyBrq4uRo0aBQ8Pj2IlWpLetwuHv7SNv28P+Pv2KFV/H7RsiEdn1pTDyIjKRzd3F3RzLznbLterijWBQ9Ue37hhbexYM0Gi0dFrU8YFXSt5QgwyoawTiN4AnTp1gqWlJbZs2aLtoVQ4hYWFcHR0RL9+/TBv3rxSHZORkQGlUomUB+nFbjogqixSM3JK0YqoYsrMyEATO3Okp0v3e7zob8WR2CQYm7z6ObIyM/A/lzqSjlWbKlxG7MmTJ1i3bp2Yxfn+++9x6NAhREZGantoFcLNmzdx8OBBuLm5IScnB2vWrEFiYiIGDhyo7aERERG9dSpcICaTybB//34sWLAA2dnZcHBwwM6dO9GxY0dtD61C0NHRQVhYGKZOnQpBENCkSRMcOnQIjo6O2h4aERFVRrxrUq0KF4gZGBjg0KFD2h5GhWVjY4OTJ09qexhERPSW4F2T6lW4QIyIiIgqDlkZJ+tX9pv63/iHfhMRERFVVsyIERERkWQ4RUw9BmJEREQkHUZiarE0SURERKQlzIgRERGRZHjXpHoMxIiIiEgyvGtSPZYmiYiIiLSEGTEiIiKSDOfqq8dAjIiIiKTDSEwtliaJiIiItIQZMSIiIpIM75pUj4EYERERSYZ3TarHQIyIiIgkwyli6nGOGBEREZGWMCNGRERE0mFKTC0GYkRERCQZTtZXj6VJIiIiIi1hRoyIiIgkw7sm1WMgRkRERJLhFDH1WJokIiIi0hJmxIiIiEg6TImpxUCMiIiIJMO7JtVjaZKIiIhIS5gRIyIiIsnwrkn1GIgRERGRZDhFTD0GYkRERCQdRmJqcY4YERERkZYwI0ZERESS4V2T6jEQIyIiIumUcbJ+JY/DWJokIiIi0hZmxIiIiEgynKuvHjNiREREJB1ZObw0cOzYMXz44YewtraGTCbDnj17VPYLggB/f39YWVnBwMAAHTt2xLVr11TaPHz4EF5eXlAoFDA1NcWIESOQlZWl0ubixYto27Yt9PX1YWNjg0WLFr3Sx8NAjIiIiCqNx48fo1mzZvj6669L3L9o0SKsWrUK69atw++//w4jIyN4eHggOztbbOPl5YVLly4hMjISEREROHbsGEaNGiXuz8jIQOfOnWFra4uzZ89i8eLFCAgIwPr16zUeL0uTREREJJnXfddk165d0bVr1xL3CYKAFStWYNasWejZsycAYPPmzbCwsMCePXswYMAAXLlyBb/++ivOnDmDVq1aAQBWr16Nbt26YcmSJbC2tkZ4eDhyc3Px7bffQk9PD40bN0ZsbCyWLVumErCVBjNiREREJJmiRxyV5YVnWajnXzk5ORqPJTExEcnJyejYsaO4TalUonXr1oiJiQEAxMTEwNTUVAzCAKBjx47Q0dHB77//LrZp164d9PT0xDYeHh6Ij4/Ho0ePNBoTAzEiIiJ649nY2ECpVIqvoKAgjftITk4GAFhYWKhst7CwEPclJyfD3NxcZX+VKlVgZmam0qakPp4/R2mxNElERESSKa+7Jm/dugWFQiFul8vlZR7bm4AZMSIiIpJOOd01qVAoVF6vEohZWloCAFJSUlS2p6SkiPssLS2Rmpqqsj8/Px8PHz5UaVNSH8+fo7QYiBEREZFkZOXwX3mxs7ODpaUlDh8+LG7LyMjA77//DldXVwCAq6sr0tLScPbsWbHNkSNHUFhYiNatW4ttjh07hry8PLFNZGQkHBwcUK1aNY3GxECMiIiIKo2srCzExsYiNjYWeDZBPzY2FklJSZDJZJg4cSLmz5+Pn3/+GXFxcRgyZAisra3Rq1cvAICjoyO6dOmCkSNH4vTp0zh58iTGjh2LAQMGwNraGgAwcOBA6OnpYcSIEbh06RK2b9+OlStXYvLkyRqPl3PEiIiISDIylO1Zk5oe+scff6B9+/bi+6LgyNvbG2FhYZg+fToeP36MUaNGIS0tDR988AF+/fVX6Ovri8eEh4dj7Nix6NChA3R0dNC3b1+sWrVK3K9UKnHw4EH4+vqiZcuWqFGjBvz9/TVeugIAZIIgCBofRW+1jIwMKJVKpDxIV5k4SVSZpGZofms8UUWRmZGBJnbmSE+X7vd40d+KS4mpMCnDOTIzMtBY4rFqE0uTRERERFrC0iQRERFJ5vlFWV/1+MqMgRgRERFJqLxWEqucWJokIiIi0hJmxIiIiEgyLE2qx0CMiIiIJMPCpHosTRIRERFpCTNiREREJBmWJtVjIEZERESSKevzIsvzWZNvIgZiREREJB1OElOLc8SIiIiItIQZMSIiIpIME2LqMRAjIiIiyXCyvnosTRIRERFpCTNiREREJBneNakeAzEiIiKSDieJqcXSJBEREZGWMCNGREREkmFCTD0GYkRERCQZ3jWpHkuTRERERFrCjBgRERFJqGx3TVb24iQDMSIiIpIMS5PqsTRJREREpCUMxIiIiIi0hKVJIiIikgxLk+oxECMiIiLJ8BFH6rE0SURERKQlzIgRERGRZFiaVI+BGBEREUmGjzhSj6VJIiIiIi1hRoyIiIikw5SYWgzEiIiISDK8a1I9liaJiIiItIQZMSIiIpIM75pUj4EYERERSYZTxNRjIEZERETSYSSmFueIEREREWkJM2JEREQkGd41qR4DMSIiIpIMJ+urx0CMNCYIAgAgMyND20MhkkxmRo62h0AkmazMTOC53+dSyijj34qyHv+mYyBGGst89j+wvZ2NtodCRERlkJmZCaVSKUnfenp6sLS0RINy+FthaWkJPT29chnXm0YmvI5wmCqVwsJC3L17FyYmJpBV9pzxGyIjIwM2Nja4desWFAqFtodDVK748/36CYKAzMxMWFtbQ0dHuvv2srOzkZubW+Z+9PT0oK+vXy5jetMwI0Ya09HRQe3atbU9jLeSQqHgHyqqtPjz/XpJlQl7nr6+fqUNoMoLl68gIiIi0hIGYkRERERawkCMqAKQy+WYM2cO5HK5todCVO74801vM07WJyIiItISZsSIiIiItISBGBEREZGWMBAjIiIi0hIGYkRUInd3d0ycOFHbw6ByEBYWBlNTU42OGTp0KHr16iXZmN4UUVFRkMlkSEtL0/ZQ6C3Fyfr01hg6dCjS0tKwZ88ebQ+lQnj48CGqVq0KExMTbQ+F1HjRz3VUVBTat2+PR48eQS6XIzMzE+bm5mXut7LJzc3Fw4cPYWFhwSeFkFZwZX2iN0Bubu5re45aXl4eqlat+tJ2ZmZmr2U8JD0DAwMYGBhoexgoKCiATCaT9JE6RUr7/1TR8xCJtIWlSSIA0dHRePfddyGXy2FlZYUZM2YgPz8fABAREQFTU1MUFBQAAGJjYyGTyTBjxgzxeB8fHwwaNEh8f+LECbRt2xYGBgawsbHB+PHj8fjxY3F/3bp1MW/ePAwZMgQKhQKjRo0qcVy3bt1Cv379YGpqCjMzM/Ts2RN///23uP/MmTPo1KkTatSoAaVSCTc3N5w7d06lD5lMhuDgYPTo0QNGRkZYsGABAgIC4OLigi1btqBu3bpQKpUYMGCA+EB3lFCarFu3LhYuXIjhw4fDxMQEderUwfr161XOderUKbi4uEBfXx+tWrXCnj17IJPJEBsb+0rfFyofJZUm58+fD3Nzc5iYmMDHxwczZsyAi4tLsWOXLFkCKysrVK9eHb6+vsjLyxP35eTkYOrUqahVqxaMjIzQunVrREVFFTvvzz//DCcnJ8jlciQlJZU4xpCQEDg6OkJfXx+NGjXC2rVrVfb7+fmhYcOGMDQ0RL169TB79myVsRT9TIeEhMDOzk58rI5MJkNISAh69+4NQ0NDNGjQAD///LN43H9Lk0VjPnDgABwdHWFsbIwuXbrg3r174jH5+fkYP348TE1NUb16dfj5+cHb2/utKOVS+WMgRm+9O3fuoFu3bnjnnXdw4cIFBAcHY+PGjZg/fz4AoG3btsjMzMT58+eBZ0FbjRo1VP7gREdHw93dHQCQkJCALl26oG/fvrh48SK2b9+OEydOYOzYsSrnXbJkCZo1a4bz589j9uzZxcaVl5cHDw8PmJiY4Pjx4zh58qT4R6HoIbqZmZnw9vbGiRMn8Ntvv6FBgwbo1q2bSkCFZ3+kevfujbi4OAwfPlwc5549exAREYGIiAhER0fjyy+/VPtZLV26FK1atcL58+fx2WefYcyYMYiPjweePbj5ww8/RNOmTXHu3DnMmzcPfn5+r/Q9IWmFh4djwYIF+Oqrr3D27FnUqVMHwcHBxdodPXoUCQkJOHr0KDZt2oSwsDCEhYWJ+8eOHYuYmBhs27YNFy9exMcff4wuXbrg2rVrYpsnT57gq6++QkhICC5dulRieTQ8PBz+/v5YsGABrly5goULF2L27NnYtGmT2MbExARhYWG4fPkyVq5ciQ0bNmD58uUq/Vy/fh07d+7Erl27VIL/wMBA9OvXDxcvXkS3bt3g5eWFhw8fvvDzefLkCZYsWYItW7bg2LFjSEpKwtSpU8X9X331FcLDwxEaGoqTJ08iIyOj0pdwSUIC0VvC29tb6NmzZ7Htn3/+ueDg4CAUFhaK277++mvB2NhYKCgoEARBEFq0aCEsXrxYEARB6NWrl7BgwQJBT09PyMzMFG7fvi0AEP766y9BEARhxIgRwqhRo1TOcfz4cUFHR0d4+vSpIAiCYGtrK/Tq1UvteLds2VJsXDk5OYKBgYFw4MCBEo8pKCgQTExMhL1794rbAAgTJ05UaTdnzhzB0NBQyMjIELdNmzZNaN26tfjezc1NmDBhgvje1tZWGDRokPi+sLBQMDc3F4KDgwVBEITg4GChevXq4jUKgiBs2LBBACCcP39e7bXSq/P29hZ0dXUFIyMjlZe+vr4AQHj06JEQGhoqKJVK8ZjWrVsLvr6+Kv20adNGaNasmUq/tra2Qn5+vrjt448/Fvr37y8IgiDcvHlT0NXVFe7cuaPST4cOHYSZM2cKgiAIoaGhAgAhNjZW7TXUr19f2Lp1q8q2efPmCa6uri88ZvHixULLli3F93PmzBGqVq0qpKamqrQDIMyaNUt8n5WVJQAQfvnlF0EQBOHo0aPi5/T8mK9fvy4e8/XXXwsWFhbiewsLC/H3gSAIQn5+vlCnTp0Sf78QvQwzYvTWu3LlClxdXVUm6rZp0wZZWVm4ffs2AMDNzQ1RUVEQBAHHjx9Hnz594OjoiBMnTiA6OhrW1tZo0KABAODChQsICwuDsbGx+PLw8EBhYSESExPFc7Rq1Ur8evTo0Srti/q5fv06TExMxO1mZmbIzs5GQkICACAlJQUjR45EgwYNoFQqoVAokJWVVaz88/y5itStW1dlIr6VlRVSU1PVflbOzs7i1zKZDJaWluIx8fHxcHZ2FktCAPDuu++W4jtAZdW+fXvExsaqvEJCQl7YPj4+vtj3pqTvVePGjaGrqyu+f/5nJC4uDgUFBWjYsKHKz250dLT484lnc7CKfm6SkpJU2i5cuBCPHz9GQkICRowYobJv/vz5Kv1s374dbdq0gaWlJYyNjTFr1qxiP+e2traoWbNmset4/ufWyMgICoVC7c+6oaEh6tevX+J1p6enIyUlReXz0tXVRcuWLV/YH5E6nKxPVAru7u749ttvceHCBVStWhWNGjWCu7s7oqKi8OjRI7i5uYlts7Ky8Omnn2L8+PHF+qlTp474tZGRkfj13LlzVUofRf20bNkS4eHhxfop+mPj7e2NBw8eYOXKlbC1tYVcLoerq6tYuizpXEX+O2FfJpOhsLBQ7efwKseQ9IyMjGBvb6+yregfEWWh7vudlZUFXV1dnD17ViVYAyD+YwLPbhQo+keOtbW1SsnQzMwMWVlZAIANGzagdevWKv0U9RsTEwMvLy8EBgbCw8MDSqUS27Ztw9KlS1Xal/Rz/rLrKG17LjBAUmEgRm89R0dH7Ny5E4IgiH8wTp48CRMTE9SuXRt4bp7Y8uXLxaDL3d0dX375JR49eoQpU6aI/bVo0QKXL18u9odRHXNz82JzZ1q0aIHt27fD3NwcCoWixONOnjyJtWvXolu3bsCzyf3//PPPK3wKZefg4IDvvvsOOTk54sObz5w5o5WxkHoODg44c+YMhgwZIm7T9HvVvHlzFBQUIDU1FW3bti3VMVWqVCnx/wtra2vcuHEDXl5eJR536tQp2Nra4osvvhC33bx5U6PxlhelUgkLCwucOXMG7dq1A57dDXru3LkSb3YgehmWJumtkp6eXqyEM2rUKNy6dQvjxo3D1atX8dNPP2HOnDmYPHmyeJt9tWrV4OzsjPDwcHFSfrt27XDu3Dn89ddfKhkxPz8/nDp1CmPHjkVsbCyuXbuGn376qdhk/Zfx8vJCjRo10LNnTxw/fhyJiYmIiorC+PHjxWxHgwYNsGXLFly5cgW///47vLy8tLZMwcCBA1FYWIhRo0bhypUrOHDgAJYsWQI8yyjQm2PcuHHYuHEjNm3ahGvXrmH+/Pm4ePGiRt+nhg0bwsvLC0OGDMGuXbuQmJiI06dPIygoCPv27dNoPIGBgQgKCsKqVavw119/IS4uDqGhoVi2bBnw7Oc8KSkJ27ZtQ0JCAlatWoXdu3drfN3lZdy4cQgKCsJPP/2E+Ph4TJgwAY8ePeLPOb0SBmL0VomKikLz5s1VXvPmzcP+/ftx+vRpNGvWDKNHj8aIESMwa9YslWPd3NxQUFAgBmJmZmZwcnKCpaUlHBwcxHbOzs6Ijo7GX3/9hbZt26J58+bw9/eHtbW1RmM1NDTEsWPHUKdOHXFO2ogRI5CdnS1myDZu3IhHjx6hRYsWGDx4MMaPH6/Rop3lSaFQYO/evYiNjYWLiwu++OIL+Pv7A4DKvDHSPi8vL8ycORNTp05FixYtkJiYiKFDh2r8fQoNDcWQIUMwZcoUODg4oFevXjhz5oxKCb40fHx8EBISgtDQUDRt2hRubm4ICwuDnZ0dAKBHjx6YNGkSxo4dCxcXF5w6darEO41fFz8/P3zyyScYMmQIXF1dxXmg/DmnV8GV9YlIMuHh4Rg2bBjS09PfiAVF6cU6deoES0tLbNmyRdtDqXAKCwvh6OiIfv36Yd68edoeDlUwnCNGROVm8+bNqFevHmrVqoULFy7Az88P/fr1YxD2hnny5AnWrVsHDw8P6Orq4vvvv8ehQ4cQGRmp7aFVCDdv3sTBgwfh5uaGnJwcrFmzBomJiRg4cKC2h0YVEAMxIio3ycnJ8Pf3R3JyMqysrPDxxx9jwYIF2h4W/YdMJsP+/fuxYMECZGdnw8HBATt37kTHjh21PbQKQUdHB2FhYZg6dSoEQUCTJk1w6NAhODo6antoVAGxNElERESkJZysT0RERKQlDMSIiIiItISBGBEREZGWMBAjIiIi0hIGYkRUIQ0dOhS9evUS37u7u2PixImvfRxRUVGQyWRIS0t7YRuZTIY9e/aUus+AgIAyPy7n77//hkwmU3m2IxG9eRiIEVG5GTp0KGQyGWQyGfT09GBvb4+5c+ciPz9f8nPv2rWr1ItpliZ4IiJ6HbiOGBGVqy5duiA0NBQ5OTnYv38/fH19UbVqVcycObNY29zcXOjp6ZXLec3MzMqlHyKi14kZMSIqV3K5HJaWlrC1tcWYMWPQsWNH/Pzzz8Bz5cQFCxbA2tpafEbnrVu30K9fP5iamsLMzAw9e/bE33//LfZZUFCAyZMnw9TUFNWrV8f06dPx3yUQ/1uazMnJgZ+fH2xsbCCXy2Fvb4+NGzfi77//Rvv27YFnD3OXyWQYOnQo8OxRNUFBQbCzs4OBgQGaNWuGH3/8UeU8+/fvR8OGDWFgYID27durjLO0/Pz80LBhQxgaGqJevXqYPXs28vLyirX75ptvYGNjA0NDQ/Tr1w/p6ekq+0NCQuDo6Ah9fX00atQIa9eu1XgsRKRdDMSISFIGBgbIzc0V3x8+fBjx8fGIjIxEREQE8vLy4OHhARMTExw/fhwnT56EsbExunTpIh63dOlShIWF4dtvv8WJEyfw8OFD7N69W+15hwwZgu+//x6rVq3ClStX8M0338DY2Bg2NjbYuXMnACA+Ph737t3DypUrAQBBQUHYvHkz1q1bh0uXLmHSpEkYNGgQoqOjgWcBY58+ffDhhx8iNjYWPj4+mDFjhsafiYmJCcLCwnD58mWsXLkSGzZswPLly1XaXL9+HTt27MDevXvx66+/4vz58/jss8/E/eHh4fD398eCBQtw5coVLFy4ELNnz8amTZs0Hg8RaZFARFROvL29hZ49ewqCIAiFhYVCZGSkIJfLhalTp4r7LSwshJycHPGYLVu2CA4ODkJhYaG4LScnRzAwMBAOHDggCIIgWFlZCYsWLRL35+XlCbVr1xbPJQiC4ObmJkyYMEEQBEGIj48XAAiRkZEljvPo0aMCAOHRo0fituzsbMHQ0FA4deqUStsRI0YIn3zyiSAIgjBz5kzByclJZb+fn1+xvv4LgLB79+4X7l+8eLHQsmVL8f2cOXMEXV1d4fbt2+K2X375RdDR0RHu3bsnCIIg1K9fX9i6datKP/PmzRNcXV0FQRCExMREAYBw/vz5F56XiLSPc8SIqFxFRETA2NgYeXl5KCwsxMCBAxEQECDub9q0qcq8sAsXLuD69eswMTFR6Sc7OxsJCQlIT0/HvXv30Lp1a3FflSpV0KpVq2LlySKxsbHQ1dWFm5tbqcd9/fp1PHnyBJ06dVLZnpubi+bNmwMArly5ojIOAHB1dS31OYps374dq1atQkJCArKyspCfnw+FQqHSpk6dOqhVq5bKeQoLCxEfHw8TExMkJCRgxIgRGDlypNgmPz8fSqVS4/EQkfYwECOictW+fXsEBwdDT08P1tbWqFJF9deMkZGRyvusrCy0bNkS4eHhxfqqWbPmK43BwMBA42OysrIAAPv27VMJgPBs3lt5iYmJgZeXFwIDA+Hh4QGlUolt27Zh6dKlGo91w4YNxQJDXV3dchsrEUmPgRgRlSsjIyPY29uXun2LFi2wfft2mJubF8sKFbGyssLvv/+Odu3aAc8yP2fPnkWLFi1KbN+0aVMUFhYiOjoaHTt2LLa/KCNXUFAgbnNycoJcLkdSUtILM2mOjo7ijQdFfvvtt1JfKwCcOnUKtra2+OKLL8RtN2/eLNYuKSkJd+/ehbW1tXgeHR0dODg4wMLCAtbW1rhx4wa8vLw0Oj8RvVk4WZ+ItMrLyws1atRAz549cfz4cSQmJiIqKgrjx4/H7du3AQATJkzAl19+iT179uDq1av47LPP1K4BVrduXXh7e2P48OHYs2eP2OeOHTsAALa2tpDJZIiIiMD9+/eRlZUFExMTTJ06FZMmTcKmTZuQkJCAc+fOYfXq1eIE+NGjR+PatWuYNm0a4uPjsXXrVoSFhWl0vQ0aNEBSUhK2bduGhIQErFq1qsQbD/T19eHt7Y0LFy7g+PHjGD9+PPr16wdLS0sAQGBgIIKCgrBq1Sr89ddfiIuLQ2hoKJYtW6bReIhIuxiIEZFWGRoa4tixY6hTpw769OkDR0dHjBgxAtnZ2WKGbMqUKRg8eDC8vb3h6uoKExMT9O7dW22/wcHB+Oijj/DZZ5+hUaNGGDlyJB4/fgwAqFWrFgIDAzFjxgxYWFhg7NixAIB58+Zh9uzZCAoKgqOjI7p06YJ9+/bBzs4OeDZva+fOndizZw+aNWuGdevWYeHChRpdb48ePTBp0iSMHTsWLi4uOHXqFGbPnl2snb29Pfr06YNu3bqhc+fOcHZ2VlmewsfHByEhIQgNDUXTpk3h5uaGsLAwcaxEVDHIhBfNdiUiIiIiSTEjRkRERKQlDMSIiIiItISBGBEREZGWMBAjIiIi0hIGYkRERERawkCMiIiISEsYiBERERFpCQMxIiIiIi1hIEZERESkJQzEiIiIiLSEgRgRERGRljAQIyIiItKS/wPRjnthHHanMQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -40,14 +40,14 @@ "output_type": "stream", "text": [ "Classification Report:\n", - " precision recall f1-score support\n", + " precision recall f1-score support\n", "\n", - " Poor 0.87 0.87 0.87 4524\n", - " Rich 0.62 0.62 0.62 1509\n", + " Lower-earning 0.87 0.87 0.87 4524\n", + "Higher-earning 0.62 0.62 0.62 1509\n", "\n", - " accuracy 0.81 6033\n", - " macro avg 0.74 0.75 0.74 6033\n", - "weighted avg 0.81 0.81 0.81 6033\n", + " accuracy 0.81 6033\n", + " macro avg 0.74 0.75 0.74 6033\n", + " weighted avg 0.81 0.81 0.81 6033\n", "\n", "Index(['age', 'workclass', 'education.num', 'marital.status', 'occupation',\n", " 'relationship', 'race', 'sex', 'capital.gain', 'capital.loss',\n", @@ -60,13 +60,11 @@ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "from sklearn.model_selection import train_test_split, RandomizedSearchCV, KFold, StratifiedKFold, GridSearchCV\n", + "from sklearn.model_selection import train_test_split\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.tree import DecisionTreeClassifier, plot_tree\n", "from sklearn.preprocessing import LabelEncoder\n", - "from sklearn.metrics import mean_squared_error, mean_absolute_error , r2_score\n", "from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay\n", - "from scipy.stats import randint\n", "\n", "# Load dataset\n", "df = pd.read_csv('./Datasets/adult.csv', comment = '#')\n", @@ -97,7 +95,7 @@ "\n", "# Build pipeline\n", "model = Pipeline([\n", - " ('full_dt_classifier', DecisionTreeClassifier(random_state=42)) # Train Decision Tree Regressor\n", + " ('full_dt_classifier', DecisionTreeClassifier(random_state=42))\n", "])\n", "\n", "# Train the model\n", @@ -109,103 +107,43 @@ "plot_tree(\n", " model.named_steps['full_dt_classifier'],\n", " feature_names=X.columns,\n", - " class_names=[\"Poor\", \"Rich\"],\n", + " class_names=[\"Lower-earning\", \"Higher-earning\"],\n", " filled=True,\n", " rounded=True,\n", - " max_depth=5, # Keep tree shallow for readability\n", + " max_depth=4, \n", " fontsize=3,\n", - " precision=2 # Limit decimals\n", + " precision=2 \n", ")\n", "\n", "plt.savefig('decision_tree.pdf', format='pdf', dpi=300)\n", "plt.show()\n", "\n", "CM = confusion_matrix(y_val, y_pred)\n", - "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Poor\", \"Rich\"])\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Lower-earning\", \"Higher-earning\"])\n", "disp.plot(cmap=\"Blues\")\n", "plt.title(\"Confusion Matrix\")\n", "plt.show() \n", "\n", "print(\"Classification Report:\")\n", - "print(classification_report(y_val, y_pred, target_names=[\"Poor\", \"Rich\"]))\n", + "print(classification_report(y_val, y_pred, target_names=[\"Lower-earning\", \"Higher-earning\"]))\n", "\n", "print(X_train_val.columns)" ] }, - { - "cell_type": "markdown", - "id": "bfaae28c", - "metadata": {}, - "source": [ - "### Hyperparameter tuning\n", - "I think this section is pretty unecessary. It can probably be removed, but I'm going to keep it for now, just in case. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "e567e4e9", - "metadata": {}, - "outputs": [ - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[31m---------------------------------------------------------------------------\u001b[39m", - "\u001b[31mKeyboardInterrupt\u001b[39m Traceback (most recent call last)", - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[4]\u001b[39m\u001b[32m, line 8\u001b[39m\n\u001b[32m 6\u001b[39m skf = StratifiedKFold(n_splits=\u001b[32m10\u001b[39m, shuffle=\u001b[38;5;28;01mTrue\u001b[39;00m, random_state=\u001b[32m42\u001b[39m)\n\u001b[32m 7\u001b[39m grid_search = GridSearchCV(model, param_grid, scoring=\u001b[33m'\u001b[39m\u001b[33maccuracy\u001b[39m\u001b[33m'\u001b[39m, cv=skf, n_jobs=-\u001b[32m1\u001b[39m)\n\u001b[32m----> \u001b[39m\u001b[32m8\u001b[39m \u001b[43mgrid_search\u001b[49m\u001b[43m.\u001b[49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 11\u001b[39m \u001b[38;5;66;03m# Best model training\u001b[39;00m\n\u001b[32m 12\u001b[39m best_model = grid_search.best_estimator_\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/sklearn/base.py:1365\u001b[39m, in \u001b[36m_fit_context..decorator..wrapper\u001b[39m\u001b[34m(estimator, *args, **kwargs)\u001b[39m\n\u001b[32m 1358\u001b[39m estimator._validate_params()\n\u001b[32m 1360\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m config_context(\n\u001b[32m 1361\u001b[39m skip_parameter_validation=(\n\u001b[32m 1362\u001b[39m prefer_skip_nested_validation \u001b[38;5;129;01mor\u001b[39;00m global_skip_validation\n\u001b[32m 1363\u001b[39m )\n\u001b[32m 1364\u001b[39m ):\n\u001b[32m-> \u001b[39m\u001b[32m1365\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfit_method\u001b[49m\u001b[43m(\u001b[49m\u001b[43mestimator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/sklearn/model_selection/_search.py:1051\u001b[39m, in \u001b[36mBaseSearchCV.fit\u001b[39m\u001b[34m(self, X, y, **params)\u001b[39m\n\u001b[32m 1045\u001b[39m results = \u001b[38;5;28mself\u001b[39m._format_results(\n\u001b[32m 1046\u001b[39m all_candidate_params, n_splits, all_out, all_more_results\n\u001b[32m 1047\u001b[39m )\n\u001b[32m 1049\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m results\n\u001b[32m-> \u001b[39m\u001b[32m1051\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_run_search\u001b[49m\u001b[43m(\u001b[49m\u001b[43mevaluate_candidates\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1053\u001b[39m \u001b[38;5;66;03m# multimetric is determined here because in the case of a callable\u001b[39;00m\n\u001b[32m 1054\u001b[39m \u001b[38;5;66;03m# self.scoring the return type is only known after calling\u001b[39;00m\n\u001b[32m 1055\u001b[39m first_test_score = all_out[\u001b[32m0\u001b[39m][\u001b[33m\"\u001b[39m\u001b[33mtest_scores\u001b[39m\u001b[33m\"\u001b[39m]\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/sklearn/model_selection/_search.py:1605\u001b[39m, in \u001b[36mGridSearchCV._run_search\u001b[39m\u001b[34m(self, evaluate_candidates)\u001b[39m\n\u001b[32m 1603\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34m_run_search\u001b[39m(\u001b[38;5;28mself\u001b[39m, evaluate_candidates):\n\u001b[32m 1604\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Search all candidates in param_grid\"\"\"\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1605\u001b[39m \u001b[43mevaluate_candidates\u001b[49m\u001b[43m(\u001b[49m\u001b[43mParameterGrid\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mparam_grid\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/sklearn/model_selection/_search.py:997\u001b[39m, in \u001b[36mBaseSearchCV.fit..evaluate_candidates\u001b[39m\u001b[34m(candidate_params, cv, more_results)\u001b[39m\n\u001b[32m 989\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.verbose > \u001b[32m0\u001b[39m:\n\u001b[32m 990\u001b[39m \u001b[38;5;28mprint\u001b[39m(\n\u001b[32m 991\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mFitting \u001b[39m\u001b[38;5;132;01m{0}\u001b[39;00m\u001b[33m folds for each of \u001b[39m\u001b[38;5;132;01m{1}\u001b[39;00m\u001b[33m candidates,\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 992\u001b[39m \u001b[33m\"\u001b[39m\u001b[33m totalling \u001b[39m\u001b[38;5;132;01m{2}\u001b[39;00m\u001b[33m fits\u001b[39m\u001b[33m\"\u001b[39m.format(\n\u001b[32m 993\u001b[39m n_splits, n_candidates, n_candidates * n_splits\n\u001b[32m 994\u001b[39m )\n\u001b[32m 995\u001b[39m )\n\u001b[32m--> \u001b[39m\u001b[32m997\u001b[39m out = \u001b[43mparallel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 998\u001b[39m \u001b[43m \u001b[49m\u001b[43mdelayed\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_fit_and_score\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 999\u001b[39m \u001b[43m \u001b[49m\u001b[43mclone\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbase_estimator\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1000\u001b[39m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1001\u001b[39m \u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1002\u001b[39m \u001b[43m \u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1003\u001b[39m \u001b[43m \u001b[49m\u001b[43mtest\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1004\u001b[39m \u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m=\u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1005\u001b[39m \u001b[43m \u001b[49m\u001b[43msplit_progress\u001b[49m\u001b[43m=\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_splits\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1006\u001b[39m \u001b[43m \u001b[49m\u001b[43mcandidate_progress\u001b[49m\u001b[43m=\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcand_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_candidates\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1007\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mfit_and_score_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1008\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1009\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mcand_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mproduct\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1010\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43menumerate\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mcandidate_params\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1011\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43menumerate\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mcv\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mrouted_params\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplitter\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1012\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1013\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1015\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(out) < \u001b[32m1\u001b[39m:\n\u001b[32m 1016\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[32m 1017\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mNo fits were performed. \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 1018\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mWas the CV iterator empty? \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 1019\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mWere there no candidates?\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 1020\u001b[39m )\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/sklearn/utils/parallel.py:82\u001b[39m, in \u001b[36mParallel.__call__\u001b[39m\u001b[34m(self, iterable)\u001b[39m\n\u001b[32m 73\u001b[39m warning_filters = warnings.filters\n\u001b[32m 74\u001b[39m iterable_with_config_and_warning_filters = (\n\u001b[32m 75\u001b[39m (\n\u001b[32m 76\u001b[39m _with_config_and_warning_filters(delayed_func, config, warning_filters),\n\u001b[32m (...)\u001b[39m\u001b[32m 80\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m delayed_func, args, kwargs \u001b[38;5;129;01min\u001b[39;00m iterable\n\u001b[32m 81\u001b[39m )\n\u001b[32m---> \u001b[39m\u001b[32m82\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[34;43m__call__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43miterable_with_config_and_warning_filters\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/joblib/parallel.py:2072\u001b[39m, in \u001b[36mParallel.__call__\u001b[39m\u001b[34m(self, iterable)\u001b[39m\n\u001b[32m 2066\u001b[39m \u001b[38;5;66;03m# The first item from the output is blank, but it makes the interpreter\u001b[39;00m\n\u001b[32m 2067\u001b[39m \u001b[38;5;66;03m# progress until it enters the Try/Except block of the generator and\u001b[39;00m\n\u001b[32m 2068\u001b[39m \u001b[38;5;66;03m# reaches the first `yield` statement. This starts the asynchronous\u001b[39;00m\n\u001b[32m 2069\u001b[39m \u001b[38;5;66;03m# dispatch of the tasks to the workers.\u001b[39;00m\n\u001b[32m 2070\u001b[39m \u001b[38;5;28mnext\u001b[39m(output)\n\u001b[32m-> \u001b[39m\u001b[32m2072\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m output \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.return_generator \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43moutput\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/joblib/parallel.py:1682\u001b[39m, in \u001b[36mParallel._get_outputs\u001b[39m\u001b[34m(self, iterator, pre_dispatch)\u001b[39m\n\u001b[32m 1679\u001b[39m \u001b[38;5;28;01myield\u001b[39;00m\n\u001b[32m 1681\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m._backend.retrieval_context():\n\u001b[32m-> \u001b[39m\u001b[32m1682\u001b[39m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28mself\u001b[39m._retrieve()\n\u001b[32m 1684\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mGeneratorExit\u001b[39;00m:\n\u001b[32m 1685\u001b[39m \u001b[38;5;66;03m# The generator has been garbage collected before being fully\u001b[39;00m\n\u001b[32m 1686\u001b[39m \u001b[38;5;66;03m# consumed. This aborts the remaining tasks if possible and warn\u001b[39;00m\n\u001b[32m 1687\u001b[39m \u001b[38;5;66;03m# the user if necessary.\u001b[39;00m\n\u001b[32m 1688\u001b[39m \u001b[38;5;28mself\u001b[39m._exception = \u001b[38;5;28;01mTrue\u001b[39;00m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib/python3.12/site-packages/joblib/parallel.py:1800\u001b[39m, in \u001b[36mParallel._retrieve\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 1789\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.return_ordered:\n\u001b[32m 1790\u001b[39m \u001b[38;5;66;03m# Case ordered: wait for completion (or error) of the next job\u001b[39;00m\n\u001b[32m 1791\u001b[39m \u001b[38;5;66;03m# that have been dispatched and not retrieved yet. If no job\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 1795\u001b[39m \u001b[38;5;66;03m# control only have to be done on the amount of time the next\u001b[39;00m\n\u001b[32m 1796\u001b[39m \u001b[38;5;66;03m# dispatched job is pending.\u001b[39;00m\n\u001b[32m 1797\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (nb_jobs == \u001b[32m0\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[32m 1798\u001b[39m \u001b[38;5;28mself\u001b[39m._jobs[\u001b[32m0\u001b[39m].get_status(timeout=\u001b[38;5;28mself\u001b[39m.timeout) == TASK_PENDING\n\u001b[32m 1799\u001b[39m ):\n\u001b[32m-> \u001b[39m\u001b[32m1800\u001b[39m \u001b[43mtime\u001b[49m\u001b[43m.\u001b[49m\u001b[43msleep\u001b[49m\u001b[43m(\u001b[49m\u001b[32;43m0.01\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 1801\u001b[39m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[32m 1803\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m nb_jobs == \u001b[32m0\u001b[39m:\n\u001b[32m 1804\u001b[39m \u001b[38;5;66;03m# Case unordered: jobs are added to the list of jobs to\u001b[39;00m\n\u001b[32m 1805\u001b[39m \u001b[38;5;66;03m# retrieve `self._jobs` only once completed or in error, which\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 1811\u001b[39m \u001b[38;5;66;03m# timeouts before any other dispatched job has completed and\u001b[39;00m\n\u001b[32m 1812\u001b[39m \u001b[38;5;66;03m# been added to `self._jobs` to be retrieved.\u001b[39;00m\n", - "\u001b[31mKeyboardInterrupt\u001b[39m: " - ] - } - ], - "source": [ - "param_grid = {\n", - " 'full_dt_classifier__max_depth': [None, 10, 11, 12, 13, 14, 15, 16],\n", - " 'full_dt_classifier__min_samples_split': [3, 4, 5, 6, 7, 8, 9],\n", - " 'full_dt_classifier__min_samples_leaf': [1, 2, 3, 4, 5]\n", - " }\n", - "skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)\n", - "grid_search = GridSearchCV(model, param_grid, scoring='accuracy', cv=skf, n_jobs=-1)\n", - "grid_search.fit(X_train, y_train)\n", - "\n", - "\n", - "# Best model training\n", - "best_model = grid_search.best_estimator_\n", - "y_pred_best = best_model.predict(X_val)\n", - "\n", - "print(\"Classification Report:\")\n", - "print(classification_report(y_val, y_pred_best, target_names=[\"Poor\", \"Rich\"]))\n", - "\n", - "best_max_depth = best_model.named_steps['full_dt_classifier'].max_depth\n", - "best_min_samples_split = best_model.named_steps['full_dt_classifier'].min_samples_split\n", - "best_min_samples_leaf = best_model.named_steps['full_dt_classifier'].min_samples_leaf\n", - "\n", - "print(f'Best max_depth: {best_max_depth}')\n", - "print(f'Best min_samples_split: {best_min_samples_split}')\n", - "print(f'Best min_samples_leaf: {best_min_samples_leaf}')" - ] - }, { "cell_type": "markdown", "id": "a37f45b4", "metadata": {}, "source": [ "### Classifier comparison\n", - "This is taken from the ensemble lab. A lot of models are excluded, but they are easy to implement into the class, for now It's kept short to minimize the execution time. We can also tune more parameters for each model, but of course that would also increase the execution time." + "This is taken from the ensemble lab with some small adjustments. A lot of models are excluded, but they are easy to implement into the class. We can also tune more parameters for each model, but of course that would also increase the execution time.\n", + "\n", + "As you can see we have included xgboost as we thought it was an interesting model to try on this dataset. However, we couldn't include it in the report as it would become too long." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 12, "id": "e68b1ea9", "metadata": {}, "outputs": [], @@ -213,15 +151,11 @@ "from sklearn.model_selection import GridSearchCV, StratifiedKFold\n", "import time\n", "\n", - "from sklearn.preprocessing import StandardScaler\n", "from sklearn.metrics import (accuracy_score, precision_score, \n", " recall_score, f1_score, \n", " confusion_matrix, ConfusionMatrixDisplay)\n", - "from sklearn.ensemble import (RandomForestClassifier, BaggingClassifier, \n", - " AdaBoostClassifier, GradientBoostingClassifier)\n", + "from sklearn.ensemble import RandomForestClassifier\n", "from xgboost import XGBClassifier # Requires installation of the package ; Not a native function in sklearn\n", - "from lightgbm import LGBMClassifier # Requires installation of the package; Not a native function in sklearn\n", - "from catboost import CatBoostClassifier # Requires installation of the package; Not a native function in sklearn\n", "\n", "class ClassifierComparisonOpt:\n", " def __init__(self, X, y, test_size=0.25, use_bootstrap=True, random_state=42, cv_folds=10):\n", @@ -229,11 +163,6 @@ " X_train, X_test, y_train, y_test = train_test_split(\n", " X, y, test_size=test_size, stratify=y, random_state=random_state)\n", "\n", - " # Scale features\n", - " #scaler = StandardScaler()\n", - " #self.X_train = scaler.fit_transform(X_train)\n", - " #self.X_test = scaler.transform(X_test)\n", - "\n", " # Scaling not necessary for decision trees\n", " self.X_train = X_train\n", " self.X_test = X_test\n", @@ -365,21 +294,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Tuning Decision Tree ...\n", + "Tuning Decision Tree ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Tuning Random Forest ...\n", "Tuning XGBoost ...\n", "\n", "------ Results Sorted by Accuracy ------\n", " Model Accuracy Precision Recall F1 Score Best Params Training Time (s) Prediction Time (s) Total Time (s)\n", - " XGBoost 0.868059 0.863590 0.868059 0.863957 {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 100} 30.477441 0.007370 30.484811\n", - "Random Forest 0.858942 0.853479 0.858942 0.853443 {'max_depth': 20, 'min_samples_split': 10, 'n_estimators': 100} 109.089292 0.072799 109.162091\n", - "Decision Tree 0.848334 0.844900 0.848334 0.846228 {'max_depth': 10, 'min_samples_split': 5} 10.185913 0.002266 10.188179\n", + " XGBoost 0.868059 0.863590 0.868059 0.863957 {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 100} 28.797149 0.005661 28.802809\n", + "Random Forest 0.858942 0.853479 0.858942 0.853443 {'max_depth': 20, 'min_samples_split': 10, 'n_estimators': 100} 166.736673 0.098411 166.835085\n", + "Decision Tree 0.848334 0.844900 0.848334 0.846228 {'max_depth': 10, 'min_samples_split': 5} 9.839182 0.004644 9.843826\n", "\n", "------ Results Sorted by Total Time ------\n", " Model Accuracy Precision Recall F1 Score Best Params Training Time (s) Prediction Time (s) Total Time (s)\n", - "Decision Tree 0.848334 0.844900 0.848334 0.846228 {'max_depth': 10, 'min_samples_split': 5} 10.185913 0.002266 10.188179\n", - " XGBoost 0.868059 0.863590 0.868059 0.863957 {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 100} 30.477441 0.007370 30.484811\n", - "Random Forest 0.858942 0.853479 0.858942 0.853443 {'max_depth': 20, 'min_samples_split': 10, 'n_estimators': 100} 109.089292 0.072799 109.162091\n" + "Decision Tree 0.848334 0.844900 0.848334 0.846228 {'max_depth': 10, 'min_samples_split': 5} 9.839182 0.004644 9.843826\n", + " XGBoost 0.868059 0.863590 0.868059 0.863957 {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 100} 28.797149 0.005661 28.802809\n", + "Random Forest 0.858942 0.853479 0.858942 0.853443 {'max_depth': 20, 'min_samples_split': 10, 'n_estimators': 100} 166.736673 0.098411 166.835085\n" ] } ], @@ -401,10 +336,62 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "id": "4185a428", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tuning Decision Tree ...\n", + "Tuning Random Forest ...\n", + "Tuning XGBoost ...\n", + "\n", + "------ Results Sorted by Accuracy ------\n", + " Model Accuracy Precision Recall F1 Score Best Params Training Time (s) Prediction Time (s) Total Time (s)\n", + " XGBoost 0.868556 0.864049 0.868556 0.864181 {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 75} 24.887917 0.011055 24.898972\n", + "Random Forest 0.858942 0.853479 0.858942 0.853443 {'max_depth': 20, 'min_samples_split': 10, 'n_estimators': 100} 91.218867 0.037435 91.256302\n", + "Decision Tree 0.849163 0.843062 0.849163 0.839388 {'max_depth': 8, 'min_samples_split': 6} 0.872687 0.001455 0.874143\n", + "\n", + "------ Results Sorted by Total Time ------\n", + " Model Accuracy Precision Recall F1 Score Best Params Training Time (s) Prediction Time (s) Total Time (s)\n", + "Decision Tree 0.849163 0.843062 0.849163 0.839388 {'max_depth': 8, 'min_samples_split': 6} 0.872687 0.001455 0.874143\n", + " XGBoost 0.868556 0.864049 0.868556 0.864181 {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 75} 24.887917 0.011055 24.898972\n", + "Random Forest 0.858942 0.853479 0.858942 0.853443 {'max_depth': 20, 'min_samples_split': 10, 'n_estimators': 100} 91.218867 0.037435 91.256302\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAIhCAYAAACmMgXJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA6UpJREFUeJzsnXlcVFX/xz/3DpsoKIuAIsqigSKKaZp7lqZlueZWPS5PWo9lpZT+MkslLczKfCrLNsts83nKbLHIsrQFc/cRQQ1BBGVTAUEQkLnf3x8yEwMzMAdnmEN8368XL+U7Z+59n3sOd75z7jn3KkREYBiGYRiGaUaojhZgGIZhGIZpbDgBYhiGYRim2cEJEMMwDMMwzQ5OgBiGYRiGaXZwAsQwDMMwTLODEyCGYRiGYZodnAAxDMMwDNPs4ASIYRiGYZhmBydADMMwDMM0OzgBYhjJef/996EoCtLT0x2twlSRkpKCW2+9Fa1bt4aiKNi6daujlexKcHAwZs6cKfSe5cuXQ1EUuzkxzLXCCRAjHYYPfHM/TzzxhF32mZCQgOXLl6OwsNAu22/OlJaWYvny5di5c6ejVWzGjBkzkJiYiGeffRabNm1Cnz597Lav9PR0k78BZ2dn+Pr6YsCAAXjyySeRkZFht303NWbOnGnx3FH9RzSZY/6eKPwsMEY23n//fcyaNQvPPPMMQkJCTF7r3r07oqOjbb7PF198EQsXLsSpU6cQHBxs8+1fC3q9HleuXIGrq2uT/EZ9/vx5tG3bFsuWLcPy5csdrXPNXL58Ge7u7liyZAlWrlxp9/2lp6cjJCQE06ZNw+233w5N01BQUIB9+/Zhy5YtUBQF7777LqZOnWo3h/LycqiqCmdnZ6vfU1lZicrKSri5udnNqya7d+9Gamqq8fdTp05h6dKluP/++zF48GBjPCwsDP379280L0ZOnBwtwDCWuO222+z6zboxKCkpQcuWLa9pGzqdDjqdzmZOjYWmaaioqHC0hs05d+4cAKBNmzY226Y1/eT666/HvffeaxI7ffo0br31VsyYMQNdu3ZFz549beZUHVdXV+H3ODk5wcmpcT9i+vfvb5LY7N+/H0uXLkX//v1rHbvq2OLvlGl68CUwpsny3XffYfDgwWjZsiU8PDwwevRoJCUlmZQ5cuQIZs6cidDQULi5uSEgIAD//Oc/ceHCBWOZ5cuXY+HChQCAkJAQ4zB5enq68fLD+++/X2v/iqKYjGgY5jwkJyfj7rvvhpeXFwYNGmR8/cMPP0Tv3r3RokULeHt7Y+rUqcjMzKy3nubmAAUHB+OOO+7Azp070adPH7Ro0QJRUVHGy0xbtmxBVFQU3Nzc0Lt3bxw6dMhkmzNnzkSrVq2QlpaGkSNHomXLlmjfvj2eeeYZ1BwULikpwWOPPYagoCC4uroiPDwcL774Yq1yiqJg3rx5+OijjxAZGQlXV1esX78ebdu2BQDExsYaj63huFnTPtWP7cmTJzFz5ky0adMGrVu3xqxZs1BaWlrrmH344Yfo27cv3N3d4eXlhSFDhmD79u0mZazpPzVZvnw5OnXqBABYuHAhFEUxGTE8dOgQbrvtNnh6eqJVq1a45ZZb8Mcff5htz127duHBBx+En58fOnToUOd+LdGpUye8//77qKiowOrVq01eKywsxPz5843t1rlzZzz//PPQNM2knKZp+Pe//23sL23btsWoUaOwf/9+Y5mac4CuXLmC2NhYdOnSBW5ubvDx8cGgQYPwww8/mByrmiOWlZWVWLFiBcLCwuDq6org4GA8+eSTKC8vNyln6N+//fYb+vbtCzc3N4SGhuKDDz5o0HGqTn3H39p+cfz4cdx1113w9vaGm5sb+vTpg6+++uqa/ZjGg0eAGGm5ePEizp8/bxLz9fUFAGzatAkzZszAyJEj8fzzz6O0tBRvvPEGBg0ahEOHDhk/lH744QekpaVh1qxZCAgIQFJSEt566y0kJSXhjz/+gKIomDBhAv7880988sknePnll437aNu2rfHbvgiTJk1Cly5d8NxzzxmThGeffRZPP/00Jk+ejNmzZ+PcuXN49dVXMWTIEBw6dKhBowknT57E3XffjQceeAD33nsvXnzxRdx5551Yv349nnzySTz44IMAgLi4OEyePBknTpyAqv71nUev12PUqFG48cYbsXr1asTHx2PZsmWorKzEM888AwAgIowZMwY///wz7rvvPkRHR+P777/HwoULcfbsWbz88ssmTj/99BP+85//YN68efD19UXPnj3xxhtvYO7cuRg/fjwmTJgAAOjRo4fV7VOdyZMnIyQkBHFxcTh48CDeeecd+Pn54fnnnzeWiY2NxfLlyzFgwAA888wzcHFxwZ49e/DTTz/h1ltvBQT6T00mTJiANm3aYMGCBcZLUq1atQIAJCUlYfDgwfD09MSiRYvg7OyMN998EzfddBN27dqFfv36mWzrwQcfRNu2bbF06VKUlJQIt7+B/v37IywszCT5KC0txdChQ3H27Fk88MAD6NixIxISErB48WJkZ2dj7dq1xrL33Xcf3n//fdx2222YPXs2Kisr8euvv+KPP/6wOAK7fPlyxMXFYfbs2ejbty+Kioqwf/9+HDx4ECNGjLDoOnv2bGzcuBF33XUXHnvsMezZswdxcXE4duwYvvjiC5OyJ0+exF133YX77rsPM2bMwIYNGzBz5kz07t0bkZGRDT5eBswdf2v7RVJSEgYOHIjAwEA88cQTaNmyJf7zn/9g3Lhx+PzzzzF+/Phr9mMaAWIYyXjvvfcIgNkfIqLi4mJq06YNzZkzx+R9OTk51Lp1a5N4aWlpre1/8sknBIB++eUXY+yFF14gAHTq1CmTsqdOnSIA9N5779XaDgBatmyZ8fdly5YRAJo2bZpJufT0dNLpdPTss8+axBMTE8nJyalW3NLxqO7WqVMnAkAJCQnG2Pfff08AqEWLFnT69Glj/M033yQA9PPPPxtjM2bMIAD08MMPG2OaptHo0aPJxcWFzp07R0REW7duJQC0cuVKE6e77rqLFEWhkydPmhwPVVUpKSnJpOy5c+dqHSsD1raP4dj+85//NCk7fvx48vHxMf6ekpJCqqrS+PHjSa/Xm5TVNI1IsP+Yw9AnXnjhBZP4uHHjyMXFhVJTU42xrKws8vDwoCFDhhhjhvYcNGgQVVZW1rmvuvZXnbFjxxIAunjxIhERrVixglq2bEl//vmnSbknnniCdDodZWRkEBHRTz/9RADokUceqbVNw/Giqv42Y8YM4+89e/ak0aNH1+ltaDMDhw8fJgA0e/Zsk3KPP/44AaCffvrJZH81+0BeXh65urrSY489Vud+q7Nv375af7+Wjr9Iv7jlllsoKiqKysrKjDFN02jAgAHUpUsXq/0Yx8KXwBhpWbduHX744QeTH1SNGhQWFmLatGk4f/688Uen06Ffv374+eefjdto0aKF8f9lZWU4f/48brzxRgDAwYMH7eL9r3/9y+T3LVu2QNM0TJ482cQ3ICAAXbp0MfEVoVu3bibzHQwjDDfffDM6duxYK56WllZrG/PmzTP+33AJq6KiAj/++CMA4Ntvv4VOp8Mjjzxi8r7HHnsMRITvvvvOJD506FB069bN6jqItk/NYzt48GBcuHABRUVFAICtW7dC0zQsXbrUZLTLUD8I9h9r0ev12L59O8aNG4fQ0FBjvF27drj77rvx22+/GR0NzJkzx2ZzuwyjUMXFxQCA//73vxg8eDC8vLxM6jh8+HDo9Xr88ssvAIDPP/8ciqJg2bJltbZZ14T7Nm3aICkpCSkpKVY7fvvttwCAmJgYk/hjjz0GANi2bZtJvFu3biYTl9u2bYvw8HCz/bgh1Dz+1vaL/Px8/PTTT5g8eTKKi4uN5S5cuICRI0ciJSUFZ8+etYkjY1/4EhgjLX379jU7BG846d58881m3+fp6Wn8f35+PmJjY/Hpp58iLy/PpNzFixdt7oyqeUQ1fYkIXbp0MVteZGVNdaonOQDQunVrAEBQUJDZeEFBgUlcVVWTD2sAuO6664CqlUeommTbvn17eHh4mJTr2rWr8fXq1Kx7fYi2T806e3l5Gevm6emJ1NRUqKpaZxIm0n+s5dy5cygtLUV4eHit17p27QpN05CZmWly6Ub0WNXFpUuXAMDYTikpKThy5Ihx/lVNDMc6NTUV7du3h7e3t9D+nnnmGYwdOxbXXXcdunfvjlGjRuEf//iH8dKmOU6fPg1VVdG5c2eTeEBAANq0aVOrL9Vsa1S1d81+3FDM/Z3Cin5x8uRJEBGefvppPP3002bL5uXlITAw0CaejP3gBIhpchgmcW7atAkBAQG1Xq++8mTy5MlISEjAwoULER0djVatWkHTNIwaNarWZFBzWPoWrNfrLb6n+qiGwVdRFHz33Xdmv/Ebvr2LYmn0wFK8Me54UbPu9SHaPraom0j/sSeix6oujh49Cj8/P+OHtKZpGDFiBBYtWmS2vCHRbShDhgxBamoqvvzyS2zfvh3vvPMOXn75Zaxfvx6zZ8+u873W3srB3v3Y3N8prOgXhnKPP/44Ro4caXbbNZM8Rk44AWKaHGFhYQAAPz8/DB8+3GK5goIC7NixA7GxsVi6dKkxbm7Y3tJJ2TDCUPMGiTW/rdbnS0QICQm55g8eW6JpGtLS0kyc/vzzT6BqFQ6qVhn9+OOPKC4uNhkFOn78uPH1+rB0bEXax1rCwsKgaRqSk5Mt3i/K2v4jQtu2beHu7o4TJ07Ueu348eNQVbXWyJytMNz7pvoy77CwMFy6dKne+oWFheH7779Hfn6+8CiQt7c3Zs2ahVmzZuHSpUsYMmQIli9fbjEB6tSpEzRNQ0pKinEEEQByc3NRWFhoVV+yJ9b2C8OoqbOzs836D+MYeA4Q0+QYOXIkPD098dxzz+HKlSu1Xjes3DJ8g6z5jbH6ChgDhnuA1Ex0PD094evra5wzYeD111+32nfChAnQ6XSIjY2t5UJEtZZ8Nyavvfaaictrr70GZ2dn3HLLLQCA22+/HXq93qQcALz88stQFAW33XZbvftwd3cHzBxbkfaxlnHjxkFVVTzzzDO1RpAM+7G2/4ig0+lw66234ssvvzS5XUFubi4+/vhjDBo0qEGX1urj9OnTmDlzJlxcXIy3ckDVyNru3bvx/fff13pPYWEhKisrAQATJ04EESE2NrZWubpGWmr22VatWqFz5861lrNX5/bbbwfMtO+aNWsAAKNHj66jpvbH2n7h5+eHm266CW+++Says7MtlmPkh0eAmCaHp6cn3njjDfzjH//A9ddfj6lTp6Jt27bIyMjAtm3bMHDgQLz22mvw9PTEkCFDsHr1aly5cgWBgYHYvn07Tp06VWubvXv3BgAsWbIEU6dOhbOzM+688060bNkSs2fPxqpVqzB79mz06dMHv/zyi3GkxBrCwsKwcuVKLF68GOnp6Rg3bhw8PDxw6tQpfPHFF7j//vvx+OOP2/QYWYObmxvi4+MxY8YM9OvXD9999x22bduGJ5980jh35M4778SwYcOwZMkSpKeno2fPnti+fTu+/PJLzJ8/3/ituS5atGiBbt26YfPmzbjuuuvg7e2N7t27o3v37la3j7V07twZS5YswYoVKzB48GBMmDABrq6u2LdvH9q3b4+4uDir+48oK1euxA8//IBBgwbhwQcfhJOTE958802Ul5fXukdPQzh48CA+/PBDaJqGwsJC7Nu3zziJedOmTSbzbxYuXIivvvoKd9xxh3HpeElJCRITE/HZZ58hPT0dvr6+GDZsGP7xj3/glVdeQUpKivHS46+//ophw4aZTJKvTrdu3XDTTTehd+/e8Pb2xv79+/HZZ59ZLA8APXv2xIwZM/DWW2+hsLAQQ4cOxd69e7Fx40aMGzcOw4YNu+ZjdC2I9It169Zh0KBBiIqKwpw5cxAaGorc3Fzs3r0bZ86cwf/+9z+H1oWxEkcvQ2OYmhiWqe7bt6/Ocj///DONHDmSWrduTW5ubhQWFkYzZ86k/fv3G8ucOXOGxo8fT23atKHWrVvTpEmTKCsry+yy7BUrVlBgYCCpqmqy7Ly0tJTuu+8+at26NXl4eNDkyZMpLy/P4jJ4wxLymnz++ec0aNAgatmyJbVs2ZIiIiLooYceohMnTlh1PGougze3DBkAPfTQQyYxc8uoZ8yYQS1btqTU1FS69dZbyd3dnfz9/WnZsmW1lo8XFxfTggULqH379uTs7ExdunShF154wWSZtKV9G0hISKDevXuTi4uLyXGztn0sHVtzx4aIaMOGDdSrVy9ydXUlLy8vGjp0KP3www8mZazpP+aoa1n6wYMHaeTIkdSqVStyd3enYcOGmdyqgAT6d839GX6cnJzI29ub+vXrR4sXLza55UF1iouLafHixdS5c2dycXEhX19fGjBgAL344otUUVFhLFdZWUkvvPACRUREkIuLC7Vt25Zuu+02OnDggLFMzWXwK1eupL59+1KbNm2oRYsWFBERQc8++6zJdmsugyciunLlCsXGxlJISAg5OztTUFAQLV682GQ5OdXRv4cOHUpDhw616rhRPcvgLR1/a/tFamoqTZ8+nQICAsjZ2ZkCAwPpjjvuoM8++8xqP8ax8LPAGKYZMnPmTHz22WfG1UMMwzDNDZ4DxDAMwzBMs4MTIIZhGIZhmh2cADEMwzAM0+zgOUAMwzAMwzQ7eASIYRiGYZhmBydADMMwDMM0O/hGiGbQNA1ZWVnw8PCw+rk1DMMwDMM4FiJCcXEx2rdvD1Wte4yHEyAzZGVl2e25PQzDMAzD2JfMzEx06NChzjKcAJnB8NDHzMxMuzy/p6Ho9XokJSUhMjLS4pOSHQF7iSGrFyR2Yy8xZPWCxG7sJYasXkVFRQgKCjJ5eLMlOAEyg+Gyl6enp3QJUKtWreDp6SlVh2MvMWT1gsRu7CWGrF6Q2I29xJDVy4A101d4EjTDMAzDMM0OToCaEIqiICgoSLqJ2ewlhqxekNiNvcSQ1QsSu7GXGLJ6icA3QjRDUVERWrdujYsXL0p1CYxhGIZhGMuIfH7zCFATQq/X4/jx49Dr9Y5WMYG9xJDVCxK7sZcYsnpBYjf2EkNWLxE4AWpilJWVOVrBLOwlhqxekNiNvcSQ1QsSu7GXGLJ6WQsnQAzDMAzDNDs4AWIYhmEYptnBk6DNIOskaMMtvmV7RAd7iSGrFyR2Yy8xZPWCxG7sJYasXiKf35wAmUHWBIhhGIZhGMvwKrC/KXq9HomJidLNumcvMWT1gsRu7CWGrF6Q2I29xJDVSwROgJoYsnY29hJDVi9I7MZeYsjqBYnd2EsMWb2shRMghmEYhmGaHZwAMQzDMAzT7OBJ0GaQdRI0EaGsrAxubm5SzbpnLzFk9YLEbuwlhqxekNiNvcSQ1Uvk89up0awYI8FPbGvgOwlOClBJACDe4dJXjW7gfuvHxcXFbtu+FthLHFnd2EsMWb0gsRt7iSGrl7XwJbAmhJMCTAjR4CRPsg0A0DQNiYmJ0DTN0SomsJc4srqxlxiyekFiN/YSQ1YvETgBYhiGYRim2cEJEMMwDMMwzQ5OgBiGYRiGaXbwKjAz2HsV2N9tEjQRQdM0qKoq1WoA9hJHVjf2EkNWL0jsxl5iyOrFj8L4m6IAcHdqSOpjfyoqKhytYBb2EkdWN/YSQ1YvSOzGXmLI6mUtnAA1IXQKMCpIg06yDEjTNJw4cUK61QDsJY6sbuwlhqxekNiNvcSQ1UsEKRKgdevWITg4GG5ubujXrx/27t1r1fs+/fRTKIqCcePGmcSJCEuXLkW7du3QokULDB8+HCkpKXayZxiGYRimqeHwBGjz5s2IiYnBsmXLcPDgQfTs2RMjR45EXl5ene9LT0/H448/jsGDB9d6bfXq1XjllVewfv167NmzBy1btsTIkSNRVlZmx5owDMMwDNNUcHgCtGbNGsyZMwezZs1Ct27dsH79eri7u2PDhg0W36PX63HPPfcgNjYWoaGhJq8REdauXYunnnoKY8eORY8ePfDBBx8gKysLW7dubYQa2ZdKSUcbdTqdoxXMwl7iyOrGXmLI6gWJ3dhLDFm9rMWhj8KoqKjAgQMHsHjxYmNMVVUMHz4cu3fvtvi+Z555Bn5+frjvvvvw66+/mrx26tQp5OTkYPjw4cZY69at0a9fP+zevRtTp06ttb3y8nKUl5cbfy8qKgKqEi29Xg8AUBQFqqpC0zRUXzhniBvK1RdX1as5p5NiuvhOTwBV3e25OpV0ddKzYd7PV6f/ylkVkMl8IAKgJwUqCKqZuCV3W9QpKirK5HhVr2vNa8SW4jqdzriyoGa8pqOlePU6AUC3bt2M+xKtk6IoFtvvWusUFRUFTdNqbb++Ol1rO1lTJ8MxM+zL3u1kbZ0s9TF7tlN9dYKZPtZY7VRfPCoqCkRkVR+zFLdX36uvjzXWOaJm3Fwfc9Q5wlwf0+v1UpwjDHTv3t3oJVKnxux7deHQBOj8+fPQ6/Xw9/c3ifv7++P48eNm3/Pbb7/h3XffxeHDh82+npOTY9xGzW0aXqtJXFwcYmNja8WTkpLQqlUrAIC3tzc6duyIM2fOID8/31gmICAAAQEBSE9PR3FxsTEeFBQEHx8fpKSkmFx6M4xYjemkwana+Ft8porSyquPuqjOllMq3J2uTn5WALTQAUVXgC3pOvi3AIa0+6t8UQUQf0aHYA+gT9u/4rmlCnblKMjLyzM5BraqU0hICBRFQXp6ukmHDw8Ph4uLCxITE03qFBUVhYqKCpw4ccIY0+l0iIqKQnFxMdLS0oxxNzc3REREoKCgAJmZmca4h4cHwsLC6q3TlStX4Ozs3KB28vT0RHJysskflC3q5OrqisDAQFRUVODMmTPCdWpoO1lbJ8Mxa8x2qq9OHTp0gIuLC86ePWvyZcWe7WRtnQzHq7Hbqa46qaqK4OBgEBFOnTrVaO1kbZ0Mx0yGc4QBf39/tGzZEufOnXP4OaJmnQzHS5ZzhIFOnTrBzc1NinOEoU6pqamwFofeBygrKwuBgYFISEhA//79jfFFixZh165d2LNnj0n54uJi9OjRA6+//jpuu+02AMDMmTNRWFhovLyVkJCAgQMHIisrC+3atTO+d/LkyVAUBZs3b67lYW4EKCgoCPn5+cb7CNgyww5Z/G2DRoCcFMLYYA1fpqso01ThEaC0526zS4ZNRDh69Ci6detmMiTq6BGgyspKJCUlITIyEk5OTtKMAOn1eiQnJyMyMtL4PmvrZO9vd3q93njMnJ2dra6TJXdb1UnTNCQlJZntY44cATLXx2QYATL0se7du9e6R4ujR4Cs6WOOGAGy1MccPQJUvY/pdDqHnyMMGNoxKirKbB9z1AhQQUEBvL295X8avK+vL3Q6HXJzc03iubm5CAgIqFU+NTUV6enpuPPOO40xwwF2cnLCiRMnjO/Lzc01SYByc3MRHR1t1sPV1RWurq614obOVp2aH1jVy4rEK8n8WvZKM+koVYsTFON7r/6/dnkNCjQzcUvu11onQ0c0d7xEtoOqTmwuLuquqip0Op1xe4Zyou1ki3hddbJFXW3tbvA1nNTs3U6ijtfaxyzFG1Inc32ssdrJmrgj26muuDV9zFK8Mepkrz5mKV7fOcLwuqGMo88R1b0tucvW98xu2+qSdsDFxQW9e/fGjh07jDFN07Bjxw6TESEDERERSExMxOHDh40/Y8aMwbBhw3D48GEEBQUhJCQEAQEBJtssKirCnj17zG6TYRiGYZjmh0NHgAAgJiYGM2bMQJ8+fdC3b1+sXbsWJSUlmDVrFgBg+vTpCAwMRFxcHNzc3IyTrgy0adMGqDYZCwDmz5+PlStXokuXLggJCcHTTz+N9u3b17pfUFODqub5yPjsEjc3N0crmIW9xJHVjb3EkNULEruxlxiyelmLwxOgKVOm4Ny5c1i6dClycnIQHR2N+Ph44yTmjIwMi0Nglli0aBFKSkpw//33o7CwEIMGDUJ8fHyTbyw9KYg/I9+yQ51Oh4iICEdr1IK9xJHVjb3EkNULEruxlxiyeonAD0M1g6wPQ1VBCPYA0ouvzvMRxV4PQ9U0DQUFBfDy8hJOVu0Je4kjqxt7iSGrFyR2Yy8xZPXih6H+TVGVq8vbVcmeBUZEyMzMrDWz39GwlziyurGXGLJ6QWI39hJDVi8ROAFiGIZhGKbZwQkQwzAMwzDNDk6AmhBUdVdnGQccPTw8HK1gFvYSR1Y39hJDVi9I7MZeYsjqZS08CdoMsk6CvlbsNQmaYRiGYWSAJ0H/TVFBiPTSoEo2BqRpGnJycmrd9tzRsJc4srqxlxiyekFiN/YSQ1YvETgBakKoChDpRVKuAsvJyZFuNQB7iSOrG3uJIasXJHZjLzFk9RKBEyCGYRiGYZodnAAxDMMwDNPs4ASoCaEBOFWkQLYrroqiwNvb2/hkZ1lgL3FkdWMvMWT1gsRu7CWGrF4i8CowM/AqMIZhGIZpevAqsL8pqkK4wVeDqsiVs2qahoyMDOlWA7CXOLK6sZcYsnpBYjf2EkNWLxE4AWpCqABCPEm6RiMi5OfnS7cagL3EkdWNvcSQ1QsSu7GXGLJ6iSDbZynDMAzDMIzd4QSIYRiGYZhmBydATQiNgKQCBZpkI46KoiAgIEC61QDsJY6sbuwlhqxekNiNvcSQ1UsEXgVmBl4FxjAMwzBND14F9jdFpxCGBmjQSbYKTK/XIzU1FXq93tEqJrCXOLK6sZcYsnpBYjf2EkNWLxE4AWpCKAD83QkyDjgWFxc7WsEs7CWOrG7sJYasXpDYjb3EkNXLWjgBYhiGYRim2cEJEMMwDMMwzQ5OgJoQGgH7z6lSrgILCgqSbjUAe4kjqxt7iSGrFyR2Yy8xZPUSwcnRAoz1aFCQJuElV1VV4ePj42iNWrCXOLK6sZcYsnpBYjf2EkNWLxF4BKgJoVMIozropVwFdvz4celWA7CXOLK6sZcYsnpBYjf2EkNWLxE4AWpCKAA8XSDlKrCysjJHK5iFvcSR1Y29xJDVCxK7sZcYsnpZCydADMMwDMM0OzgBYhiGYRim2cEJUBNCT8Av2Sr0ck0BgqqqCA0NharK1Z3YSxxZ3dhLDFm9ILEbe4khq5cIvAqsCUFQkHPZ0Ra1URTFLs9Mu1bYSxxZ3dhLDFm9ILEbe4khq5cITTd1a4Y4KYQJwXo4SbgKLDExUbrVAOwljqxu7CWGrF6Q2I29xJDVSwROgJoYTpK2mKx/BOwljqxu7CWGrF6Q2I29xJDVy1ok/ThlGIZhGIaxH1IkQOvWrUNwcDDc3NzQr18/7N2712LZLVu2oE+fPmjTpg1atmyJ6OhobNq0yaTMzJkzoSiKyc+oUaMaoSYMwzAMwzQFHD4JevPmzYiJicH69evRr18/rF27FiNHjsSJEyfg5+dXq7y3tzeWLFmCiIgIuLi44JtvvsGsWbPg5+eHkSNHGsuNGjUK7733nvF3V1fXRquTvdATEJ8p5yqw8PBw6VYDsJc4srqxlxiyekFiN/YSQ1YvERxuvmbNGsyZMwezZs1Ct27dsH79eri7u2PDhg1my990000YP348unbtirCwMDz66KPo0aMHfvvtN5Nyrq6uCAgIMP54eXk1Uo3sBwEorbz6r2y4uLg4WsEs7CWOrG7sJYasXpDYjb3EkNXLWhw6AlRRUYEDBw5g8eLFxpiqqhg+fDh2795d7/uJCD/99BNOnDiB559/3uS1nTt3ws/PD15eXrj55puxcuVKiw9uKy8vR3l5ufH3oqIioGqCl2GSl6IoUFUVmqaB6K8UxBCvORnMUtyQLddcyaWnq4mNU43nXFTS1Udf6JSr7xkbrOHLdBVlmgIFBF218gRATwpUEFQzcUvu11onIsLRo0fRrVs36HS6WnXVNM3sMagZ1+l0ICKz8ZqOluLV61RZWYmkpCRERkbCyclJuJ0URbHYftdSJ71ej+TkZERGRtb69lRfna6179VXJ71ebzxmzs7OVtfJkrut6qRpGpKSksz2MXu1kzV1MtfHGqOd6osb+lj37t1rPa3bnu1kTZ2s6WONdY6oHrfUxxxxjoCFPqbT6Rx+jjBgaMeoqCizfayxzxGW4nXh0ATo/Pnz0Ov18Pf3N4n7+/vj+PHjFt938eJFBAYGory8HDqdDq+//jpGjBhhfH3UqFGYMGECQkJCkJqaiieffBK33XYbdu/ebdKxDcTFxSE2NrZWPCkpCa1atQKqLr117NgRZ86cQX5+vrGMYYQpPT0dxcV/Pao9KCgIPj4+SElJMXleSmhoKABgTCfNZEVXfKaK0kpgQohph9lySoW7EzAqSIMKIMQDGN2R8Hk64N8CGNLur/JFFUD8GR2CPYA+bf+K55Yq2JWjIC8vDzk5Oca4reoUHBwMADh27JhJRw0PD4eLiwsSExNN6hQVFYWKigqcOHHCGNPpdIiKikJxcTHS0tKMcTc3N0RERKCgoACZmZnGuIeHB8LCwuqs04ULF5Cfn4+kpCS0a9dOuJ08PT2RnJxs8gdlizoZvjUVFhbi7NmzQnW61r5XX52IyHjMevTo0SjtZE2dAgMDAQAnT55ERUVFo7STNXXKzs42Hi8fH59Ga6f66mT4QLp06RLS09MbrZ2sqVNlZaXxmBmmMjjqHFG9ToYpF6dPn0ZJSUmjtJM1dcrIyDAeL09PT4efIwwYzvXl5eVISUlptHaqr06pqamwFoVqpmKNSFZWFgIDA5GQkID+/fsb44sWLcKuXbuwZ88es+/TNA1paWm4dOkSduzYgRUrVmDr1q246aabzJZPS0tDWFgYfvzxR9xyyy21Xjc3AhQUFIT8/HzjjZ5smWGHLP7WBiNAqvAIUNpzt/EIEI8A8QgQjwDxCBCPAP1tR4AKCgrg7e2Nixcv1nujRoeOAPn6+kKn0yE3N9cknpubi4CAAIvvU1UVnTt3BgBER0fj2LFjiIuLs5gAhYaGwtfXFydPnjSbALm6upqdJG3obDX3bQ5zI0t1xSvJ/DPdK82ko1QtTlCM7736/9rlNSjQzMQtuV9rnQwd0dzxEtkOqjqxubiou6qq0Ol0xu0Zyom2ky3iddXJFnW1tbvB13BSs3c7iTpeax+zFG9Incz1scZqJ2vijmynuuLW9DFL8caok736mKV4fecIw+uGMo4+R1T3tuQuW98zu22rS9oBFxcX9O7dGzt27DDGNE3Djh07TEaE6kPTNJMRnJoYLoe0a9fump0dSSVdvSRmLulxJKqqIioqymJHdRTsJY6sbuwlhqxekNiNvcSQ1UsEh5vHxMTg7bffxsaNG3Hs2DHMnTsXJSUlmDVrFgBg+vTpJpOk4+Li8MMPPyAtLQ3Hjh3DSy+9hE2bNuHee+8Fqq55L1y4EH/88QfS09OxY8cOjB07Fp07dzZZJt8UUQC4O139Vzaqz8uQCfYSR1Y39hJDVi9I7MZeYsjqZS0OT4CmTJmCF198EUuXLkV0dDQOHz6M+Ph448TojIwMZGdnG8uXlJTgwQcfRGRkJAYOHIjPP/8cH374IWbPng1UDX8dOXIEY8aMwXXXXYf77rsPvXv3xq+//trk7wWkU65OhtZJlgFpmoYTJ07Uut7raNhLHFnd2EsMWb0gsRt7iSGrlwgOvxEiAMybNw/z5s0z+9rOnTtNfl+5ciVWrlxpcVstWrTA999/b3NHhmEYhmH+Pjh8BIhhGIZhGKax4QSoiVEp6WijyMz7xoS9xJHVjb3EkNULEruxlxiyelmLQ+8DJCtFRUVo3bq1VfcRaAjBT2yz+TatIX3VaIfsl2EYhmEaA5HPbx4BakIoIAS0ICiSPQ2MiFBUVFTr5laOhr3EkdWNvcSQ1QsSu7GXGLJ6icAJUBNCp1x99IWMq8DS0tKkWw3AXuLI6sZeYsjqBYnd2EsMWb1E4ASIYRiGYZhmBydADMMwDMM0OzgBakJQ1RPfZbzi6ubm5mgFs7CXOLK6sZcYsnpBYjf2EkNWL2vhVWBm4FVgDMMwDNP04FVgf1NUEEI9CKpkY0CapuHChQvSTYZjL3FkdWMvMWT1gsRu7CWGrF4icALUhFAVoE9bDapkq8CICJmZmdIth2QvcWR1Yy8xZPWCxG7sJYasXiJwAsQwDMMwTLODEyCGYRiGYZodnAA1IQhAbqls94G+ioeHh6MVzMJe4sjqxl5iyOoFid3YSwxZvayFV4GZgVeBMQzDMEzTg1eB/U1RQYj00qRcBZaTkyPdagD2EkdWN/YSQ1YvSOzGXmLI6iUCJ0BNCFUBIr1IylVgOTk50q0GYC9xZHVjLzFk9YLEbuwlhqxeInACxDAMwzBMs4MTIIZhGIZhmh2cADUhNACnihTIdsVVURR4e3tDUeS6Nsde4sjqxl5iyOoFid3YSwxZvUTgVWBm4FVgDMMwDNP04FVgf1NUhXCDrwZVkStn1TQNGRkZ0q0GYC9xZHVjLzFk9YLEbuwlhqxeInAC1IRQAYR4knSNRkTIz8+XbjUAe4kjqxt7iSGrFyR2Yy8xZPUSQbbPUoZhGIZhGLvDCRDDMAzDMM0OToCaEBoBSQUKNMlGHBVFQUBAgHSrAdhLHFnd2EsMWb0gsRt7iSGrlwi8CswMvAqMYRiGYZoevArsb4pOIQwN0KCTbBWYXq9Hamoq9Hq9o1VMYC9xZHVjLzFk9YLEbuwlhqxeInAC1IRQAPi7E2QccCwuLna0glnYSxxZ3dhLDFm9ILEbe4khq5e1cALEMAzDMEyzgxMghmEYhmGaHVIkQOvWrUNwcDDc3NzQr18/7N2712LZLVu2oE+fPmjTpg1atmyJ6OhobNq0yaQMEWHp0qVo164dWrRogeHDhyMlJaURamJfNAL2n1OlXAUWFBQk3WoA9hJHVjf2EkNWL0jsxl5iyOolgsMToM2bNyMmJgbLli3DwYMH0bNnT4wcORJ5eXlmy3t7e2PJkiXYvXs3jhw5glmzZmHWrFn4/vvvjWVWr16NV155BevXr8eePXvQsmVLjBw5EmVlZY1YM9ujQUFasQJNsllAqqrCx8cHqurw7mQCe4kjqxt7iSGrFyR2Yy8xZPUSweHma9aswZw5czBr1ix069YN69evh7u7OzZs2GC2/E033YTx48eja9euCAsLw6OPPooePXrgt99+A6pGf9auXYunnnoKY8eORY8ePfDBBx8gKysLW7dubeTa2RadQhjVQS/lKrDjx49LtxqAvcSR1Y29xJDVCxK7sZcYsnqJ4OTInVdUVODAgQNYvHixMaaqKoYPH47du3fX+34iwk8//YQTJ07g+eefBwCcOnUKOTk5GD58uLFc69at0a9fP+zevRtTp06ttZ3y8nKUl5cbfy8qKgKqGtjQuIqiQFVVaJpm8uwTQ7xmJ7AUN2TLTjWSGD0BBMCpxuBOJV1d/aVTrr6ntQvBWSHoSYECgq5aeQKgJwUqCKqZuCX3a60TEaGsrMxiXWs+LM9SXKfTgYjMxms6WopXr5Ner8fly5eh1+sb1E6KotilTnq9HmVlZWYfIlhfna6179VXp+rHrLHayZo6aZpmsY/Zq52sqZO5PtYY7VRf3NDHiKjWduzZTtbUyZo+5oi+Z6mPOeIcAQt9TLRO9ux7Bi9LfayxzxGW4nXh0ATo/Pnz0Ov18Pf3N4n7+/vj+PHjFt938eJFBAYGory8HDqdDq+//jpGjBgBAMjJyTFuo+Y2Da/VJC4uDrGxsbXiSUlJaNWqFVB16a1jx444c+YM8vPzjWUCAgIQEBCA9PR0kyWBQUFB8PHxQUpKismlt9DQUADAmE4anKqNv8VnqiitBCaEmHaYLadUuDsBo4K0qw9D9QBGdyR8ng74twCGtPurfFEFEH9Gh2APoE/bv+K5pQp25SjIy8szOQa2qlNwcDAA4NixYyYdNTw8HC4uLkhMTDSpU1RUFCoqKnDixAljTKfTISoqCsXFxUhLSzPG3dzcEBERgYKCAmRmZhrjHh4eCAsLq7NOFy5cQH5+PpKSktCuXTvhdvL09ERycrLJH5Qt6uTi4gIAKCwsxNmzZ4XqdK19r746GR5wmJSUhB49ejRKO1lTp8DAQADAyZMnUVFR0SjtZE2dsrOzjcfLx8en0dqpvjoZ5mVcunQJ6enpjdZO1tSpsrLSeMwiIiIceo6oXic/Pz8AwOnTp1FSUtIo7WRNnTIyMozHy9PT0+HnCAOGc315ebnJHFtHnSMMdUpNTYW1OPRO0FlZWQgMDERCQgL69+9vjC9atAi7du3Cnj17zL5P0zSkpaXh0qVL2LFjB1asWIGtW7fipptuQkJCAgYOHIisrCy0a9fO+J7JkydDURRs3ry51vbMjQAFBQUhPz/feCdJW2bYIYu/bfAI0NhgDV+mqyjTVOERoLTnbrPbCNDRo0fRrVs36HQ6k7rCgd/uKisrkZSUhMjISDg5OUk1ApScnIzIyMha188d/e1Or9cbj5mzs7PVdbLkbqs6aZqGpKQks33MkSNA5vqYLCNAycnJ6N69e61JqjKMANXXxxw1AmSujzl6BKh6H9PpdA4/RxgwtGNUVJTZPuaoEaCCggJ4e3tbdSdoh44A+fr6QqfTITc31ySem5uLgIAAi+9TVRWdO3cGAERHR+PYsWOIi4vDTTfdZHxfbm6uSQKUm5uL6Ohos9tzdXWFq6trrbihs9XctzlqlqsvXknmJzJXmklHqSquJ2BXtg7lmiGumC2vwfzzwiy5X2udiAihoaFwdnY2uyJA5NgoimI2LuquqiqcnZ0RFhZm4iXaTraI16yTqqoIDQ2Fk5OT2eNlr3ayJq6qqlXHzJbtZI2j4ZjZoo9ZijekTub6WGO0U31xw/HS6XQ26WO2rJO1fcxS3F59rzH6mKV4XXUS6WON2fcM7WipjzX2OaK+uNltW13SDri4uKB3797YsWOHMaZpGnbs2GEyIlQfmqYZR3BCQkIQEBBgss2ioiLs2bNHaJsyQlCQc1mBbPeCVhQFnp6e0i2HZC9xZHVjLzFk9YLEbuwlhqxeIjh8FVhMTAzefvttbNy4EceOHcPcuXNRUlKCWbNmAQCmT59uMkk6Li4OP/zwA9LS0nDs2DG89NJL2LRpE+69916gqlHmz5+PlStX4quvvkJiYiKmT5+O9u3bY9y4cQ6rpy1wUggTgvW1Lp85Gr1ej8TEROlWA7CXOLK6sZcYsnpBYjf2EkNWLxEcegkMAKZMmYJz585h6dKlyMnJQXR0NOLj442TmDMyMkyGwEpKSvDggw/izJkzaNGiBSIiIvDhhx9iypQpxjKLFi1CSUkJ7r//fhQWFmLQoEGIj4+Hm5ubQ+poS5wcnrKaR9Y/AvYSR1Y39hJDVi9I7MZeYsjqZS0OT4AAYN68eZg3b57Z13bu3Gny+8qVK7Fy5co6t6coCp555hk888wzNvVkGIZhGObvgaTjCQzDMAzDMPbDocvgZaWoqAitW7e2ahldQwh+YluD3qeA4OEMFF9BgyZCp68a3aD91ofhRohubm5STYhjL3FkdWMvMWT1gsRu7CWGrF4in988AtSEIACllVf/lQ3Dzf1kg73EkdWNvcSQ1QsSu7GXGLJ6WQsnQE0IJ+XqnaJr3izR0WiahsTERLOPdnAk7CWOrG7sJYasXpDYjb3EkNVLBE6AGIZhGIZpdjQoASosLMQ777yDxYsXG5/RcfDgQZPnGjEMwzAMw8iK8DL4I0eOYPjw4WjdujXS09MxZ84ceHt7Y8uWLcjIyMAHH3xgH1OGYRiGYRgbIbwKbPjw4bj++uuxevVqeHh44H//+x9CQ0ORkJCAu+++2+TJw00VWVeBAQQnxfC8MLlWgWmaZnyQniywlziyurGXGLJ6QWI39hJDVi+7rgLbt28fHnjggVrxwMBAk0fZM7ZHAeDu1JDUx/5UVFQ4WsEs7CWOrG7sJYasXpDYjb3EkNXLWoQTIFdXVxQVFdWK//nnn2jbtq2tvBgz6BRgVJAGnWQZkKZpOHHihHSrAdhLHFnd2EsMWb0gsRt7iSGrlwjCCdCYMWPwzDPP4MqVK0DVYycyMjLwf//3f5g4caI9HBmGYRiGYWyKcAL00ksv4dKlS/Dz88Ply5cxdOhQdO7cGR4eHnj22WftY8kwDMMwDGNDhFeBtW7dGj/88AN+//13/O9//8OlS5dw/fXXY/jw4fYxZEyolHS0UafTOVrBLOwljqxu7CWGrF6Q2I29xJDVy1qEVoFduXIFLVq0wOHDh9G9e3f7mjkQeVeBXRv2WgXGMAzDMDJgt1Vgzs7O6NixI/R6/bU6Mg1AASGgBUGR7GlgRISioiLI9lxd9hJHVjf2EkNWL0jsxl5iyOolgvAcoCVLluDJJ5803gGaaTx0CjCknZyrwNLS0qRbDcBe4sjqxl5iyOoFid3YSwxZvUQQngP02muv4eTJk2jfvj06deqEli1bmrx+8OBBW/oxDMMwDMPYHOEEaNy4cfYxYRiGYRiGaSSEE6Bly5bZx4SpFwJQVAHJZgBdxc3NzdEKZmEvcWR1Yy8xZPWCxG7sJYasXtYi/CwwAwcOHMCxY8cAAJGRkejVq5et3RwGrwJjGIZhmKaHXZ8FlpeXh5tvvhk33HADHnnkETzyyCPo3bs3brnlFpw7d+5avJl6UEEI9SCoko0BaZqGCxcuSDcZjr3EkdWNvcSQ1QsSu7GXGLJ6iSCcAD388MMoLi5GUlIS8vPzkZ+fj6NHj6KoqAiPPPKIfSwZAICqAH3aalAlWwVGRMjMzJRuOSR7iSOrG3uJIasXJHZjLzFk9RJBeA5QfHw8fvzxR3Tt2tUY69atG9atW4dbb73V1n4MwzAMwzA2R3gESNM0ODs714o7Ozs36aEwhmEYhmGaD8IJ0M0334xHH30UWVlZxtjZs2exYMEC3HLLLbb2Y6pBAHJLZbsP9FU8PDwcrWAW9hJHVjf2EkNWL0jsxl5iyOplLcKrwDIzMzFmzBgkJSUhKCjIGOvevTu++uordOjQwV6ujQavAmMYhmGYpoddV4EFBQXh4MGD2LZtG+bPn4/58+fj22+/xcGDB/8WyY/MqCBEemlSrgLLycmR7hIoe4kjqxt7iSGrFyR2Yy8xZPUSQTgBAgBFUTBixAg8/PDDePjhhzF8+HDbmzG1UBUg0oukXAWWk5Mj3WoA9hJHVjf2EkNWL0jsxl5iyOolgnAC9Mgjj+CVV16pFX/ttdcwf/58W3kxDMMwDMPYDeEE6PPPP8fAgQNrxQcMGIDPPvvMVl4MwzAMwzB2QzgBunDhAlq3bl0r7unpifPnz9vKizGDBuBUkQLZrrgqigJvb28oilzX5thLHFnd2EsMWb0gsRt7iSGrlwjCCVDnzp0RHx9fK/7dd98hNDTUVl6MGTRSsO+8Co3k6nCqqqJjx45Q1QZNKbMb7CWOrG7sJYasXpDYjb3EkNVLBGHzmJgYLFq0CMuWLcOuXbuwa9cuLF26FE888QQWLFjQIIl169YhODgYbm5u6NevH/bu3Wux7Ntvv43BgwfDy8sLXl5eGD58eK3yM2fOhKIoJj+jRo1qkJtMqArhBl8NqiLXpDNN05CRkSHdagD2EkdWN/YSQ1YvSOzGXmLI6iWCcAL0z3/+Ey+99BLeffddDBs2DMOGDcOHH36IN954A3PmzBEW2Lx5M2JiYrBs2TIcPHgQPXv2xMiRI5GXl2e2/M6dOzFt2jT8/PPP2L17N4KCgnDrrbfi7NmzJuVGjRqF7Oxs488nn3wi7CYbKoAQT2rY0j07QkTIz8+XbjUAe4kjqxt7iSGrFyR2Yy8xZPUSoUGfpXPnzsWZM2eQm5uLoqIipKWlYfr06Q0SWLNmDebMmYNZs2ahW7duWL9+Pdzd3bFhwwaz5T/66CM8+OCDiI6ORkREBN555x1omoYdO3aYlHN1dUVAQIDxx8vLq0F+DMMwDMP8/RB+GOrly5dBRHB3d0fbtm1x+vRpvPPOO+jWrZvww1ArKipw4MABLF682BhTVRXDhw/H7t27rdpGaWkprly5Am9vb5P4zp074efnBy8vL9x8881YuXIlfHx8zG6jvLwc5eXlxt+LiooAAHq9Hnq9Hqia8KWqKjRNM8l4DXFDufrihuulTjUuY+np6qMunGpM76kkQAGgU66+RwHBSSFUkgIFBF218gRATwpUmN4ryBC35H6tdTK811Jdaw6RWorrdDoQkdl4TUdL8ep10uv1ICLo9foGtZOiKHapk2Gb5oaO66vTtfa9+upU/Zg1VjtZUyfDvhqznaypk7k+1hjtVF/c8F6Dm0id7N33rOljjuh7lvqYI84RsNDHROtkz75n8LLUxxr7HGEpXhfCCdDYsWMxYcIE/Otf/0JhYSH69u0LFxcXnD9/HmvWrMHcuXOt3tb58+eh1+vh7+9vEvf398fx48et2sb//d//oX379iY3Yxw1ahQmTJiAkJAQpKam4sknn8Rtt92G3bt3Q6fT1dpGXFwcYmNja8WTkpLQqlUrAIC3tzc6duyIM2fOID8/31jGMMKUnp6O4uJiYzwoKAg+Pj5ISUlBWVmZMW6YKD6mkwanauNv8ZkqSiuBCSGmHWbLKRXuTsCoIA0KAC8XYHRHwufpgH8LYEi7v8oXVQDxZ3QI9gD6tP0rnluqYFeOgry8POTk5BjjtqpTSEgIAgICcPz4cZMOHx4eDhcXFyQmJprUKSoqChUVFThx4oQxptPpEBUVheLiYqSlpRnjbm5uiIiIQEFBATIzM41xDw8PhIWF1VmnCxcuoKysDElJSWjXrp1wO3l6eiI5OdnkD8oWdTKMThYWFppcurWmTtfa9+qrExEZj1mPHj0apZ2sqVNgYCACAgKQmppq8mXFnu1kTZ2ys7ONx8vHx6fR2qm+OqmqioCAAJSUlODUqVON1k7W1KmystJ4zCIiIhx6jqheJz8/PwQEBCAjIwOXLl1qlHaypk4ZGRnG4+Xp6enwc4QBIoK/vz8qKirw559/Nlo71Ven1NRUWIvws8B8fX2xa9cuREZG4p133sGrr76KQ4cO4fPPP8fSpUtx7Ngxq7eVlZWFwMBAJCQkoH///sb4okWLsGvXLuzZs6fO969atQqrV6/Gzp070aNHD4vl0tLSEBYWhh9//NHsA1vNjQAFBQUhPz/f+CwRW2bYIYu/bdAIkGlcfAQo7bnbHP6toa64TN8auE5cJ64T14nr1PTqVFBQAG9vb6ueBSY8AlRaWmp8Auz27dsxYcIEqKqKG2+8EadPnxbalq+vL3Q6HXJzc03iubm5CAgIqPO9L774IlatWoUff/yxzuQHVVmtr68vTp48aTYBcnV1haura624TqerNWJkacmfuZGluuKVFpayV5pJR6kqrlMIg/wJv+UqVXHFbHkNCjQzcUvu11onvV6P9PR0BAcHm32PyLFRFMVsXNTd8Adi8DKUE20nW8Rr1kmv1yM1NdXi8bJXO1kTr37MDPf3sHc7WeNY3zGzRztZ426ujzVGO9UXt3Ufs2WdrO1jluL26nuN0ccsxeuqk7nzqyPPEQb0ej3S0tIsHq/GPkfUFze7batLVtG5c2ds3boVmZmZ+P77743zfvLy8oSfnO7i4oLevXubTGA2TGiuPiJUk9WrV2PFihWIj49Hnz596t2P4XJIu3bthPxkQwHg706Q6y5AV6k+FCkT7CWOrG7sJYasXpDYjb3EkNXLWoQToKVLl+Lxxx9HcHAw+vXrZ0xUtm/fjl69egkLxMTE4O2338bGjRtx7NgxzJ07FyUlJZg1axYAYPr06SaTpJ9//nk8/fTT2LBhA4KDg5GTk4OcnBzjNdtLly5h4cKF+OOPP5Ceno4dO3Zg7Nix6Ny5M0aOHCnsxzAMwzDM3w/hS2B33XUXBg0ahOzsbPTs2dMYv+WWWzB+/HhhgSlTpuDcuXNYunQpcnJyEB0djfj4eOPE6IyMDJMhsDfeeAMVFRW46667TLazbNkyLF++HDqdDkeOHMHGjRtRWFiI9u3b49Zbb8WKFSvMXuZiGIZhGKb5ITwJujlQVFSE1q1bWzWJqiEEP7GtQe9TQQj2ANKLr87zESV91egG7bc+NE1DQUEBvLy8LF6vdQTsJY6sbuwlhqxekNiNvcSQ1Uvk81t4BIhxHBoUpEl4yVVVVYv3WHIk7CWOrG7sJYasXpDYjb3EkNVLBHnSNqZedAphVAc9dJI9C0yv1+P48eNCN6BqDNhLHFnd2EsMWb0gsRt7iSGrlwicADUhFACeLpByFVj1m2nJBHuJI6sbe4khqxckdmMvMWT1shZOgBiGYRiGaXY0KAHatGkTBg4ciPbt2xtvfrh27Vp8+eWXtvZjGIZhGIaxOcIJ0BtvvIGYmBjcfvvtKCwsNF7/a9OmDdauXWsPR6YKPQG/ZKvQyzUFCKqqIjQ0VKqVAGCvBiGrG3uJIasXJHZjLzFk9RJB2PzVV1/F22+/jSVLlpjccrpPnz61Hv7G2BaCgpzLCmS7F7SiKPD09DTe1l4W2EscWd3YSwxZvSCxG3uJIauXCMIJ0KlTp8ze8dnV1RUlJSW28mLM4KQQJgTraz1I1dHo9XokJiZKtxqAvcSR1Y29xJDVCxK7sZcYsnqJIJwAhYSE4PDhw7Xi8fHx6Nq1q628GAs4STraKOsfAXuJI6sbe4khqxckdmMvMWT1shbhGyHGxMTgoYceQllZGYgIe/fuxSeffIK4uDi888479rFkGIZhGIaxIcIJ0OzZs9GiRQs89dRTKC0txd1334327dvj3//+N6ZOnWofS4ZhGIZhGBtyTc8CKy0txaVLl+Dn52dbKwcj67PAFBA8nIHiK2jQRGh7PQuMiFBWVgY3NzepJsSxlziyurGXGLJ6QWI39hJDVi+7Pgvs1KlTqKysRJcuXeDu7g53d3cAQEpKCpydnREcHNxwc6ZOCEBp5dV/ZcPFxcXRCmZhL3FkdWMvMWT1gsRu7CWGrF7WIjyldubMmUhISKgV37NnD2bOnGkrL8YMTgowIUSDkzzJNlD1VODExERomuZoFRPYSxxZ3dhLDFm9ILEbe4khq5cIwgnQoUOHMHDgwFrxG2+80ezqMIZhGIZhGNkQToAURUFxcXGt+MWLF5v8kjiGYRiGYZoHwgnQkCFDEBcXZ5Ls6PV6xMXFYdCgQbb2YxiGYRiGsTnCq8CSk5MxZMgQtGnTBoMHDwYA/PrrrygqKsJPP/2E7t2728u10ZB1FRhAcFKASgIg2SowTdOgqqpUqwHYSxxZ3dhLDFm9ILEbe4khq5fI57fwCFC3bt1w5MgRTJ48GXl5eSguLsb06dNx/Pjxv0XyIzMKAHenhqQ+9qeiosLRCmZhL3FkdWMvMWT1gsRu7CWGrF7WIrwMHgDat2+P5557zvY2TJ3oFGBUkIYtp9SqUSDb0tCRKSeFMCHE4CXPyJSmaThx4gSioqJMHtzraGT1gsRu7CWGrF6Q2I29xJDVS4QGJUCFhYXYu3cv8vLyai2Bmz59uq3cGIZhGIZh7IJwAvT111/jnnvuwaVLl+Dp6Wly7U9RFE6AGIZhGIaRHuE5QI899hj++c9/4tKlSygsLERBQYHxJz8/3z6WjJFKSe85JauXrEOzsnpBYjf2EkNWL0jsxl5iyOplLcKrwFq2bInExESEhobaz8rByLsK7Nqob66NrF4MwzAMYw12XQU2cuRI7N+//1r8mAaigBDQgqBI9jQwWb2ICEVFRbiG5/3aBVm9ILEbe4khqxckdmMvMWT1EkE4ARo9ejQWLlyI5cuX4/PPP8dXX31l8sPYD50CDGmnQSfZOnhZvTRNQ1pamnTPqpHVCxK7sZcYsnpBYjf2EkNWLxGEJ0HPmTMHAPDMM8/Uek1RFH4cBsMwDMMw0iOcADXlbI9hGIZhGAYNuQTGOA4CUFQByWbayOsFAG5ubo5WMIusXpDYjb3EkNULEruxlxiyelmL8CowACgpKcGuXbuQkZFR61bYjzzyiC39HAKvAmtceBUYwzAMYwtEPr+FL4EdOnQIt99+O0pLS1FSUgJvb2+cP38e7u7u8PPz+1skQLKighDsAaQXA5pETwST1UvTNBQUFMDLywuqKs9gp6xekNiNvcSQ1QsSu7GXGLJ6iSBsvWDBAtx5550oKChAixYt8Mcff+D06dPo3bs3XnzxxQZJrFu3DsHBwXBzc0O/fv2wd+9ei2XffvttDB48GF5eXvDy8sLw4cNrlSciLF26FO3atUOLFi0wfPhwpKSkNMhNJlQF6NNWgypPjgFI7EVEyMzMlG6ZpqxekNiNvcSQ1QsSu7GXGLJ6iSCcAB0+fBiPPfYYVFWFTqdDeXk5goKCsHr1ajz55JPCAps3b0ZMTAyWLVuGgwcPomfPnhg5ciTy8vLMlt+5cyemTZuGn3/+Gbt370ZQUBBuvfVWnD171lhm9erVeOWVV7B+/Xrs2bMHLVu2xMiRI1FWVibsxzAMwzDM3w/hBMjZ2dk43OXn54eMjAwAQOvWrZGZmSkssGbNGsyZMwezZs1Ct27dsH79eri7u2PDhg1my3/00Ud48MEHER0djYiICLzzzjvQNA07duwAqrLStWvX4qmnnsLYsWPRo0cPfPDBB8jKysLWrVuF/RiGYRiG+fshPAeoV69e2LdvH7p06YKhQ4di6dKlOH/+PDZt2oTu3bsLbauiogIHDhzA4sWLjTFVVTF8+HDs3r3bqm2UlpbiypUr8Pb2BgCcOnUKOTk5GD58uLFM69at0a9fP+zevRtTp06ttY3y8nKUl5cbfy8qKgIA6PV6432NFEWBqqrQNM1kyM8Qr3n/I0txQ/LopJgOG+rp6ioqpxqXkSoJUKpuNqhTCOcuX/23khQoIJObDxIAPSlQQSaXowxxS+6GuMFJo6tzeXQKmczosRQHCLmlV+OidTIcZ1Q9V4aIat1qIWxJvMU61YxrADRSoCoEZ4UwwJ+Q8J9MXNEUoTpddVeQ+uwoExdD+9V0tBQ3Vye9Xg8PDw+zt5TQ6XT1tlPNuEjfM3evruruer0eLVu2hF6vF6qTJXdb1UnTNHh4eDSoTtbEG1qn6serMdupvrihjxFRre3Ys52sqZM1fcwRfc9SH7NnO1lTp+rHS7RO9ux7er0erVq1stjHGvscYSleF8IJ0HPPPYfi4mIAwLPPPovp06dj7ty56NKlC959912hbZ0/fx56vR7+/v4mcX9/fxw/ftyqbfzf//0f2rdvb0x4cnJyjNuouU3DazWJi4tDbGxsrXhSUhJatWoFAPD29kbHjh1x5swZk4e+BgQEICAgAOnp6cbjAgBBQUHw8fFBSkqKyaU3wzPUxnTS4FRt/C0+U0VpJTAhxLTDbDmlwt0JGBX0V3x0R8KWdMC/xdU7MBsoqgDiz+gQ7HF1To6B3FIFu3IU5OXlmRyDmnUy7DupQEFSgYJB/gR/97863v5zKtKKgRGBGjxd/nL8JVvFrhwFE4L1cFL/Km9tnRITE6HT6RAVFYXi4mKkpaUZyxqWWVqqU1cvQqTXX/s8VaRg33kFvX0IIZ5X42ODCUkFEK5TzmUgOTnZ5A8qPDwcLi4uSExMNKlTVFQUKioqcOLECWOsrjpFRETgwoULJqOmHh4eCAsLq7edDDSk73l6elpVp+Tk5AbVqaCgwG51CgsLw/Hjxxtcp4a2kzV1Sk5Odkg71VenoqKiRm8na+uUnJzc6O1UX53CwsKQmpra6O1kTZ2Sk5OlOkc4sp3qqlNqaiqspUHL4G1FVlYWAgMDkZCQgP79+xvjixYtwq5du7Bnz546379q1SqsXr0aO3fuRI8ePQAACQkJGDhwILKystCuXTtj2cmTJ0NRFGzevLnWdsyNAAUFBSE/P9+4jM6WGXbI4m8bNAKkghDhRTheoKCCVOERoLTnbqszww5/6jugASNARIQILyCl0HQVmLUjQCdW3gbYYQTIqdrxqiR5RoA0TcOFCxfg6+sLRVFqlXfktztN03Du3Dm0bdsWTk5OVtfJkrut6kREOH/+PHx8fExWnMgwAmQ4XjqdTpoRIEMfa9u2LWri6BEga/qYI0aALPUxGUaADMfLMPdWhhEgTdNw/vx5+Pn5oSaOHAEqKCiAt7e3fZbB33zzzdiyZQvatGljEi8qKsK4cePw008/Wb0tX19f6HQ65ObmmsRzc3MREBBQ53tffPFFrFq1Cj/++KMx+UFVdmjYRvUEKDc3F9HR0Wa35erqCldX11pxnU4HnU5nErO03K9mufrilWR+yVSlmXSUquJOChDRhpBcoFTFFbPlNSjQzMQtuRviNZ30Fhxrxp0UINJLw4lC1Wy96qoTahwjRVHMHjNLdbIYJwVateNlSMysrZMB0XY1FzdXp5ycHOOHZk3qayd7OFaP5+Xlwd/f35icWVunhrhbWye9Xl/nMbNXO9XnTkTG42Uo11jtVF/cln3M1nWypo9Zitur7zVGH7MUr6tO1fuYoYyjzxEGcnNz4efnJ8U5or642W1bXbKKnTt31rr5IQCUlZXh119/FdqWi4sLevfubZzAjKqscseOHSYjQjVZvXo1VqxYgfj4ePTp08fktZCQEAQEBJhss6ioCHv27KlzmwzDMAzDNB+sHgE6cuSI8f/Jyckm1+r0ej3i4+MRGBgoLBATE4MZM2agT58+6Nu3L9auXYuSkhLMmjULADB9+nQEBgYiLi4OAPD8889j6dKl+PjjjxEcHGz0aNWqFVq1agVFUTB//nysXLkSXbp0QUhICJ5++mm0b98e48aNE/ZjGIZhGObvh9UJUHR0NBRFgaIouPnmm2u93qJFC7z66qvCAlOmTMG5c+ewdOlS5OTkIDo6GvHx8cZJzBkZGSZDYG+88QYqKipw1113mWxn2bJlWL58OVA1h6ikpAT3338/CgsLMWjQIMTHxzf555ZoVZN8ZXscLXuJoSgKvL29a83/kQFZ3dhLDFm9ILEbe4khq5cIVk+CPn36NIgIoaGh2Lt3r8nkOhcXF4vXAZsi/CywxkVWL/BzyhiGYZoUIp/fVs8B6tSpEwIDAzFjxgz4+PigU6dOxp927dr9bZIfmVEVwg2+GlTFqpy10WAvMTRNQ0ZGhtn7ADkaWd3YSwxZvSCxG3uJIauXCEKToJ2dnfHFF1/Yz4apExVAiCeJz1y3M+wlBhEhPz9fymfoyOrGXmLI6gWJ3dhLDFm9RBD+bBg7diw/UoJhGIZhmCaN8H2AunTpgmeeeQa///47evfujZYtW5q8/sgjj9jSj2EYhmEYxuYIJ0Dvvvsu2rRpgwMHDuDAgQMmrymKwgmQHdHo6uMczN34z5GwlxiKoiAgIEDK1ROyurGXGLJ6QWI39hJDVi8RhBOgU6dO2ceEqRcNV5/RJRvsJYaqqvXe6dxRyOrGXmLI6gWJ3dhLDFm9RLim+aFE1KQnQDU1dAphaIBW66nrjoa9xNDr9UhNTRV6anFjIasbe4khqxckdmMvMWT1EqFBCdAHH3yAqKgotGjRAi1atECPHj2wadMm29sxJigA/N1NH9opA+wlTvWnGMuGrG7sJYasXpDYjb3EkNXLWoQvga1ZswZPP/005s2bh4EDBwIAfvvtN/zrX//C+fPnsWDBAnt4MgzDMAzD2AzhBOjVV1/FG2+8genTpxtjY8aMQWRkJJYvX84JEMMwDMMw0iN8CSw7OxsDBgyoFR8wYACys7Nt5cWYQSNg/zlVulVN7CWGoigICgqScvWErG7sJYasXpDYjb3EkNVLBOEEqHPnzvjPf/5TK75582Z06dLFVl6MGTQoSCtWoEk2q4W9xFBVFT4+PiYP+ZUFWd3YSwxZvSCxG3uJIauXCMLmsbGxWLp0KUaNGoUVK1ZgxYoVGDVqFGJjY/HMM8/Yx5IBqlY1jeqgl25VE3uJodfrcfz4cSlXT8jqxl5iyOoFid3YSwxZvUQQToAmTpyIPXv2wNfXF1u3bsXWrVvh6+uLvXv3Yvz48faxZICqVU2eLpBsPIO9GkJZWZmjFSwiqxt7iSGrFyR2Yy8xZPWyFuFJ0ADQu3dvfPjhh7a3YRiGYRiGaQQalADp9Xp88cUXOHbsGACgW7duGDt2LJycGrQ5hmEYhmGYRkU4Y0lKSsKYMWOQk5OD8PBwAMDzzz+Ptm3b4uuvv0b37t3t4ckA0BPwS7YKvVxTWthLEFVVERoaKuXkQVnd2EsMWb0gsRt7iSGrlwjC5rNnz0ZkZCTOnDmDgwcP4uDBg8jMzESPHj1w//3328eSAQAQFORcViDbvY3ZSwxFUeDp6Snl8lFZ3dhLDFm9ILEbe4khq5cIwgnQ4cOHERcXBy8vL2PMy8sLzz77LA4dOmRrP6YaTgphQrAeTpKtamIvMfR6PRITE6VcPSGrG3uJIasXJHZjLzFk9RJBOAG67rrrkJubWyuel5eHzp0728qLsYCTpKON7CWGzCcNWd3YSwxZvSCxG3uJIauXtQh/PMTFxeGRRx7BZ599hjNnzuDMmTP47LPPMH/+fDz//PMoKioy/jAMwzAMw8iI8CToO+64AwAwefJk47U/oquXGO68807j74qiNPnskGEYhmGYvyfCCdDPP/9sHxOmXvQExGfKt6qJvcRQVRXh4eFSrp6Q1Y29xJDVCxK7sZcYsnqJIJwADR061D4mTL0QgNLKq//KBHuJ4+Li4mgFi8jqxl5iyOoFid3YSwxZvaylQalbWVkZ9u7di2+++QZfffWVyQ9jP5wUYEKIBifJVh2ylxiapiExMRGapjlapRayurGXGLJ6QWI39hJDVi8RhEeA4uPjMX36dJw/f77Wazzvh2EYhmGYpoDwCNDDDz+MSZMmITs7G5qmmfxw8sMwDMMwTFNAOAHKzc1FTEwM/P397WPEMAzDMAxjZ4QToLvuugs7d+60jw1TJ5UEbDmlolKyWb3sJYaqqoiKipJy9YSsbuwlhqxekNiNvcSQ1UsE4TlAr732GiZNmoRff/0VUVFRcHZ2Nnn9kUcesaUfUw0FgLsTUHxFrpVN7CVORUUF3NzcHK1hFlnd2EsMWb0gsRt7iSGrl7UIp26ffPIJtm/fjs8//xyvvvoqXn75ZePP2rVr7WPJAAB0CjAqSINOslVN7CWGpmk4ceKElKsnZHVjLzFk9YLEbuwlhqxeIgiPAC1ZsgSxsbF44oknmvTQF8MwDMMwzRfhDKaiogJTpkyxWfKzbt06BAcHw83NDf369cPevXstlk1KSsLEiRMRHBwMRVHMjjgtX74ciqKY/ERERNjElWEYhmGYvwfCWcyMGTOwefNmm+x88+bNiImJwbJly3Dw4EH07NkTI0eORF5entnypaWlCA0NxapVqxAQEGBxu5GRkcjOzjb+/PbbbzbxlYFKSUcb2UsMnU7naAWLyOrGXmLI6gWJ3dhLDFm9rEX4Epher8fq1avx/fffo0ePHrUmQa9Zs8bqba1ZswZz5szBrFmzAADr16/Htm3bsGHDBjzxxBO1yt9www244YYbAMDs6wacnJzqTJCaKpWkYEu6fB2OvcTQ6XSIiopytIZZZHVjLzFk9YLEbuwlhqxeIggnQImJiejVqxcA4OjRoyavGZ4Obw0VFRU4cOAAFi9ebIypqorhw4dj9+7dolompKSkoH379nBzc0P//v0RFxeHjh07WixfXl6O8vJy4+9FRUVAVbJnuLmjoihQVRWapoHorzVFhnjNm0BaihsuHToppuuS9HR1pVLNxzZU0tXVTDoFUEDwawHkXQaukAoFZDLBlwDoSYEKgmombsndEDc4aQRoUKBTCNV1LMcJfi0UXCgjVH/FmjoZjjOq/qCIyOykOkt1qhnXAGikQFUIumrHS0+KUJ2uute+s7mh/Wo6WoqbqxMRobS0FC1btqxVT51OV2871YyL9D1zd2uv7k5EKC4uhoeHh/HbnTV1suRuqzoBQElJCdzd3U3OM9bUyZp4Q+ukaZrxeKmq2mjtVF/c0MdatWplVXtYituj71nTx2zdTtbUCRb6mD3byZo6Ve9jiqI4/BxhgIhQUlICDw8Ps8e9sc8RdZ07LOGwp8GfP38eer2+1g0V/f39cfz48QZvt1+/fnj//fcRHh6O7OxsxMbGYvDgwTh69Cg8PDzMvicuLg6xsbG14klJSWjVqhUAwNvbGx07dsSZM2eQn59vLBMQEICAgACkp6ejuLjYGA8KCoKPjw9SUlJQVlZmjIeGhgIAxnTS4FTtAmR8porSyqvPrqrOllMq3J2urmZSAYR4EP68qODzdMC/BTCk3V/liyqA+DM6BHsAfdr+Fc8tVbArR0FeXh5ycnKM8Zp1Muw7qUBBUoGCQf4Ef/e/Ot7+cyrSioERgRo8qz0D7/ccBQMDNOg1QKf+Vd6aOqEqqTZ8myguLkZaWpqxrGGJpaU6dfUiRHr9tc9TRQr2nVfQ24cQ5kkI8SCcKlaQWAChOv2SrSLnMpCcnGzyBxUeHg4XFxckJiaa1CkqKgoVFRU4ceKEMWapTi4uLqioqEBgYCDOnj1rjHt4eCAsLKzedjLQkL7n6elZZ52ICPn5+fD29kaPHj2srpObmxsiIiJQUFCAzMxMm9fJcKwMx06kTg1tJ2vqlJ2dbTxePj4+jdZO9dVJURQQEYKDg5Gent5o7WRNnSorK43HLCIiolHayZo6+fn5IS8vDy1btkRJSUmjtJM1dcrIyDAeL09PT4efIwwYkpLrrrsOKSkpjdZO9dUpNTUV1qJQzVSskcjKykJgYCASEhLQv39/Y3zRokXYtWsX9uzZU+f7g4ODMX/+fMyfP7/OcoWFhejUqRPWrFmD++67z2wZcyNAQUFByM/Ph6enJ2DjDDtk8bcNGgFyUghjgzV8ma6iTBMfAUp77rY6M+zwp74DGjACpIAwPoTwVbqCShIfATqx8jagjm8NYUviGzQC5FLteFVoDRsBSn12lImLLb7d6fV6JCcnIzIystZiAkd/u9Pr9UhKSkJkZKTx8rYMI0CapiEpKQndunUzmXfg6BGgyspK4/FycnKSZgTI0Me6d+9ea2Te0SNA1vQxR4wAWepjjh4Bqt7HdDqdw88RBgztGBUVZbaPOWoEqKCgAN7e3rh48aLx89sSVo8ATZgwwapyW7Zssaqcr68vdDodcnNzTeK5ubk2nb/Tpk0bXHfddTh58qTFMq6urnB1da0VN3S26lha/WZpMpilePVEwTReO0bV4oS/koyr/69dXoMCzUzckrshXtNJb8GxZvxqgkOoJMVsveqrU82TjbljZqlOFuOkoLLa8dKq0htr62RAtF3NxS3VSVVVi3Fz2Krv1Rc3+BpOaqJ1EnFvSJ3MvWbvdjKHof0M7zOUa6x2sibuyHaqK25NH7MUb4w62auPWYrXd44wvG4o4+hzRHVvS+6y9T2z27a2YOvWra36sRYXFxf07t0bO3bsMMY0TcOOHTtMRoSulUuXLiE1NRXt2rWz2TYdBVVd5pLtrsbsJY7Md0+V1Y29xJDVCxK7sZcYsnpZi9UjQO+9957Ndx4TE4MZM2agT58+6Nu3L9auXYuSkhLjqrDp06cjMDAQcXFxQNXE6eTkZOP/z549i8OHD6NVq1bo3LkzAODxxx/HnXfeiU6dOiErKwvLli2DTqfDtGnTbO7f2OhJQfwZ+VY1sZcYOp1O2ntTyerGXmLI6gWJ3dhLDFm9RHDorZynTJmCF198EUuXLkV0dDQOHz6M+Ph448TojIwMZGdnG8tnZWWhV69e6NWrF7Kzs/Hiiy+iV69emD17trHMmTNnMG3aNISHh2Py5Mnw8fHBH3/8gbZt2zqkjrZEBSHUg6BKNqbBXmJomoYLFy5IeQt5Wd3YSwxZvSCxG3uJIauXCMKrwGzNvHnzMG/ePLOv1XzqfHBwcK3JUzX59NNPbeonE6pydSVUxiXV7LwXR8FeYhARMjMz0aZNG0er1EJWN/YSQ1YvSOzGXmLI6iUCP8yLYRiGYZhmBydADMMwDMM0OzgBakJQ1Q0AJbqaA7BXg7B0U04ZkNWNvcSQ1QsSu7GXGLJ6WYvD5wAx1qOnq3c/lg32EkOn0yEsLMzRGmaR1Y29xJDVCxK7sZcYsnqJwCNATQgVhEgvTbpVTewlhqZpyMnJkXL1hKxu7CWGrF6Q2I29xJDVSwROgJoQqgJEepk++kEG2EsMIkJOTk69Kxodgaxu7CWGrF6Q2I29xJDVSwROgBiGYRiGaXZwAsQwDMMwTLODE6AmhAbgVJEC2a64spcYiqLA29u71hOUZUBWN/YSQ1YvSOzGXmLI6iUCrwJrQmikYN95+Tobe4mhqio6duzoaA2zyOrGXmLI6gWJ3dhLDFm9ROARoCaEqhBu8NWgKnJNOmMvMTRNQ0ZGhpSrJ2R1Yy8xZPWCxG7sJYasXiJwAtSEUAGEeJJ0jcZeYhAR8vPzpVw9Iasbe4khqxckdmMvMWT1EkG2zwaGYRiGYRi7wwkQwzAMwzDNDk6AmhAaAUkFCjTJRhzZSwxFURAQECDl6glZ3dhLDFm9ILEbe4khq5cIvAqsCaFBQVKBfJ2NvcRQVRUBAQGO1jCLrG7sJYasXpDYjb3EkNVLBB4BakLoFMLQAA06yVY1sZcYer0eqamp0Ov1jlaphaxu7CWGrF6Q2I29xJDVSwROgJoQCgB/d4JsYxrsJU5xcbGjFSwiqxt7iSGrFyR2Yy8xZPWyFk6AGIZhGIZpdnACxDAMwzBMs4MToCaERsD+c6p0q5rYSwxFURAUFCTl6glZ3dhLDFm9ILEbe4khq5cIvAqsCaFBQZqEl1zZSwxVVeHj4+NoDbPI6sZeYsjqBYnd2EsMWb1E4BGgJoROIYzqoJduVRN7iaHX63H8+HEpV0/I6sZeYsjqBYnd2EsMWb1E4ASoCaEA8HSBdKua2EucsrIyRytYRFY39hJDVi9I7MZeYsjqZS2cADEMwzAM0+zgBIhhGIZhmGYHJ0BNCD0Bv2Sr0Ms1pYW9BFFVFaGhoVBV+f78ZHVjLzFk9YLEbuwlhqxeIvAqsCYEQUHOZUdb1Ia9xFAUBZ6eno7WMIusbuwlhqxekNiNvcSQ1UuEppu6NUOcFMKEYD2cJFvVxF5i6PV6JCYmSrl6QlY39hJDVi9I7MZeYsjqJQInQE0MJ0lbjL3EkPmkIasbe4khqxckdmMvMWT1shZJPx4YhmEYhmHsh8MToHXr1iE4OBhubm7o168f9u7da7FsUlISJk6ciODgYCiKgrVr117zNhmGYRiGaX44NAHavHkzYmJisGzZMhw8eBA9e/bEyJEjkZeXZ7Z8aWkpQkNDsWrVKgQEBNhkm00JPQHxmfKtamIvMVRVRXh4uJSrJ2R1Yy8xZPWCxG7sJYasXiI41HzNmjWYM2cOZs2ahW7dumH9+vVwd3fHhg0bzJa/4YYb8MILL2Dq1KlwdXW1yTabEgSgtPLqvzLBXuK4uLg4WsEisrqxlxiyekFiN/YSQ1Yva3HYMviKigocOHAAixcvNsZUVcXw4cOxe/fuRt1meXk5ysvLjb8XFRUBVRO8DJO8FEWBqqrQNA1Ef32kGuI1J4NZihuy5Zork/R09YPaqcZzGyrp6qMcdMrV94wN1vBluooyTYECgq5aeQKgJwUqCKqZuCV3Q9zgpNHVB4nqFDJ5jISluALC+BDCV+kKKqtVy5o6odpEOp1OByKCpmmoiaU61YxrADRSoCoEl2rHq0ITq9NVd8Vi+9V0tBQ3Vye9Xo/k5GRERkbW+vak0+nqbaeacZG+pyh110mv1yMpKQmRkZFwdna2uk6W3G1VJ03TkJSUhG7dukGn0wnVyZp4Q+tUWVlpPF5OTk6N1k71xQ19rHv37rWe1m3PdrKmTtb0MVu3kzV1stTH7NlO1tSpeh/T6XQOP0cYMLRjVFSU2T7W2OcIS/G6cFgCdP78eej1evj7+5vE/f39cfz48UbdZlxcHGJjY2vFk5KS0KpVKwCAt7c3OnbsiDNnziA/P99YJiAgAAEBAUhPT0dx8V+PHg8KCoKPjw9SUlJMnpcSGhoKABjTSTNZoRSfqaK0EpgQYtphtpxS4e4EjArSoAII8QBGdyR8ng74twCGtPurfFEFEH9Gh2APoE/bv+K5pQp25SjIy8tDTk6OMV6zToZ9JxUoSCpQMMif4O/+V8fbf05FWjEwIlCDZ7XE//ecq51/dEeCTv2rvDV1AoDExETodDpERUWhuLgYaWlpxrJubm4AYLFOXb0IkV5/7fNUkYJ95xX09iGEeRJCPIBxwYTEAgjV6ZdsFTmXgeTkZJM/qPDwcLi4uCAxMdGkTlFRUaioqMCJEyeMMUt1MnxrKiwsxNmzZ41xDw8PhIWF1dtOBhrS9zw9PeusExEhPz8fSUlJ6NGjh9V1cnNzQ0REBAoKCpCZmWnzOgUGBgIATp48iYqKCqE6NbSdrKlTdna28Xj5+Pg0WjvVVyfDB9KlS5eQnp7eaO1kTZ0qKyuNxywiIqJR2smaOvn5+QEATp8+jZKSkkZpJ2vqlJGRYTxenp6eDj9HGDAkJeXl5UhJSWm0dqqvTqmpqbAWhWqmYo1EVlYWAgMDkZCQgP79+xvjixYtwq5du7Bnz5463x8cHIz58+dj/vz517xNcyNAQUFByM/PN97oyZYZdsjib20wAqQKjwClPXdbnRl2+FPfAdc8AvTXK9aOAJ1YeRtQx7eGsCXxNhgBUho0ApT67CgTFx4B4hEg8AgQjwDxCJC0I0AFBQXw9vbGxYsX671Ro8NGgHx9faHT6ZCbm2sSz83NtTjB2V7bdHV1NTunyNDZqmNpwlfNcvXFqycKpvHaMaoWJ/yVZFz9f+3yGhRoZuKW3A3xmk56C44141cTHEIlKWbrVV+dap5szB0zS3WyGCcFldWOl1aV3lhbJwOi7WoubqlOqqpajJvDVn2vvrjB13BSE62TiHtD6mTuNXu3kzkM7Wd4n6FcY7WTNXFHtlNdcWv6mKV4Y9TJXn3MUry+c4ThdUMZR58jqntbcpet75ndttUlbYyLiwt69+6NHTt2GGOapmHHjh0mozeO3qZMVNLVy0fmEgpHwl5iqKqKqKgoKVdPyOrGXmLI6gWJ3dhLDFm9RHCoeUxMDN5++21s3LgRx44dw9y5c1FSUoJZs2YBAKZPn24yobmiogKHDx/G4cOHUVFRgbNnz+Lw4cM4efKk1dtsyigA3J0A82MVjoO9xKk+j0U2ZHVjLzFk9YLEbuwlhqxe1uLQBGjKlCl48cUXsXTpUkRHR+Pw4cOIj483TmLOyMhAdna2sXxWVhZ69eqFXr16ITs7Gy+++CJ69eqF2bNnW73NpoxOuTpxWCfZJzp7iaFpGk6cOGF2tZujkdWNvcSQ1QsSu7GXGLJ6ieDwp8HPmzcP8+bNM/vazp07TX4PDg6uNXlKdJsMwzAMwzBN9+IdwzAMwzBMA+EEqIlRKeloI3uJIbJSobGR1Y29xJDVCxK7sZcYsnpZi8MvgTHWU0kKtqTL1+HYSwzDjcJkRFY39hJDVi9I7MZeYsjqJQKPADUhFBACWhAUyZ5uxV5iEBGKioqsms/W2Mjqxl5iyOoFid3YSwxZvUTgBKgJoVOuPvpCtlVN7CWGpmlIS0uTcvWErG7sJYasXpDYjb3EkNVLBE6AGIZhGIZpdnACxDAMwzBMs4MToCYEVT3xXbYrruwljuEp9zIiqxt7iSGrFyR2Yy8xZPWyFl4F1oTQk4L4M/KtamIvMXQ6HSIiIhytYRZZ3dhLDFm9ILEbe4khq5cIPALUhFBBCPUgqJKNabCXGJqm4cKFC1JOHpTVjb3EkNULEruxlxiyeonACVATQlWAPm01qJKtamIvMYgImZmZUi4fldWNvcSQ1QsSu7GXGLJ6icAJEMMwDMMwzQ5OgBiGYRiGaXZwAtSEIAC5pbLd15i9GoKHh4ejFSwiqxt7iSGrFyR2Yy8xZPWyFl4F1oTQk4JdOZJNaGEvYXQ6HcLCwhytYRZZ3dhLDFm9ILEbe4khq5cIPALUhFBBiPTSpFvVxF5iaJqGnJwcKVdPyOrGXmLI6gWJ3dhLDFm9ROAEqAmhKkCkF0m3qom9xCAi5OTkSLl6QlY39hJDVi9I7MZeYsjqJQInQAzDMAzDNDs4AWIYhmEYptnBCVATQgNwqkiBbFdc2UsMRVHg7e0NRZHs2pzEbuwlhqxekNiNvcSQ1UsEXgXWhNBIwb7z8nW25uoV/MS2a9xCYoPfmb5q9DXu2zyqqqJjx4522fa1wF5iyOoFid3YSwxZvUTgEaAmhKoQbvDVoCpyTTpjLzFk9ULVyo6MjAzpVnawlxiyekFiN/YSQ1YvETgBakKoAEI8SbpGYy8xZPVC1cqO/Px86VZ2sJcYsnpBYjf2EkNWLxFkPAczDMMwDMPYFU6AGIZhGIZpdnAC1ITQCEgqUKBJNuLIXmLI6oWqlR0BAQHSrexgLzFk9YLEbuwlhqxeIvAqsCaEBgVJBfJ1NvYSQ1YvVK3sCAgIcLRGLdhLDFm9ILEbe4khq5cIPALUhNAphKEBGnSSrR5iLzFk9QIAvV6P1NRU6PV6R6uYwF5iyOoFid3YSwxZvUTgBKgJoQDwdyfINnbAXmLI6mWguLjY0QpmYS8xZPWCxG7sJYasXtbCCRDDMAzDMM0OToAYhmEYhml2cALUhNAI2H9OlW71EHuJIasXqlZ2BAUFSbeyg73EkNULEruxlxiyeokgRQK0bt06BAcHw83NDf369cPevXvrLP/f//4XERERcHNzQ1RUFL799luT12fOnAlFUUx+Ro0aZeda2B8NCtKKFWiSzR5hLzFk9ULVyg4fHx+oqhSnBiPsJYasXpDYjb3EkNVLBIebb968GTExMVi2bBkOHjyInj17YuTIkcjLyzNbPiEhAdOmTcN9992HQ4cOYdy4cRg3bhyOHj1qUm7UqFHIzs42/nzyySeNVCP7oVMIozropVs9xF5iyOqFqpUdx48fl25lB3uJIasXJHZjLzFk9RLB4QnQmjVrMGfOHMyaNQvdunXD+vXr4e7ujg0bNpgt/+9//xujRo3CwoUL0bVrV6xYsQLXX389XnvtNZNyrq6uCAgIMP54eXk1Uo3shwLA0wXSjRuwlxiyehkoKytztIJZ2EsMWb0gsRt7iSGrl7U49EaIFRUVOHDgABYvXmyMqaqK4cOHY/fu3Wbfs3v3bsTExJjERo4cia1bt5rEdu7cCT8/P3h5eeHmm2/GypUr4ePjY3ab5eXlKC8vN/5eVFQEVGW4huxWURSoqgpN00we/maI18yCLcUNw4VONb796wkgAE41PhUr6eoHpU65+h4FBCeFUEkKFBB01coTAD0pUEFQzcQtuRviBieNrl6m0SmmS7UtxRVQg+tkOM4AoNPpQERmny5sqU414xoAjRSoCpkcL9E6XXVXLLafpmkm9a1Zp7/itdvJMPKjgkyOjTV1Mnxj0ev1Dep7ilJ3nfR6PYgIer3eJF4dS+2k0+lq9TFLcdG/J8O+GlIna+INrVP142XLc8S11snwXoObSJ2upZ2sqZM1fcwRfc9SH7NnO1lTp+rHS7RO9ux7Bi9LfayxzxGW4nXh0ATo/Pnz0Ov18Pf3N4n7+/vj+PHjZt+Tk5NjtnxOTo7x91GjRmHChAkICQlBamoqnnzySdx2223YvXs3dDpdrW3GxcUhNja2VjwpKQmtWrUCAHh7e6Njx444c+YM8vPzjWUMI0zp6ekm90QICgqCj48PUlJSTLLk0NBQAMCYThqcqo2/xWeqKK0EJoSYdpgtp1S4OwGjgrSrTxH3AEZ3JHyeDvi3AIa0+6t8UQUQf0aHYA+gT9u/4rmlCnblKMjLyzM5TjXrZNh3UsHVOxUP8if4u//V8fafU5FWDIwI1ODp8pfj7zlXP61HdyTo1L/KW1MnAEhMTIROp0NUVBSKi4uRlpZmLOvm5gYAFuvU1YsQ6fXXPk8VKdh3XkFvH0KYJyHEAxgXTEgsgFCdfslWkXMZSE5ONvmDCg8Ph4uLCxITE03qVbNOAFCpAVvSdbXa6dKVq/928gB6+YrVKcSTjMesIX3P09OzzjoZnvCclJSEHj16oKKiAidOnDCWraudIiIiUFBQgMzMTGPcw8MDYWFh9fY9A5bqFBgYCAA4efIkKioqhOpUnaioKJvWKTs723i8fHx8bHaOuNY6GSamXrp0Cenp6Y3WTtbUqbKy0njMIiIiGqWdrKmTn58fAOD06dMoKSlplHaypk4ZGRnG4+Xp6dlo7VRfnQxJSXl5OVJSUhqtneqrU2pqKqxFIQc+yz4rKwuBgYFISEhA//79jfFFixZh165d2LNnT633uLi4YOPGjZg2bZox9vrrryM2Nha5ublm95OWloawsDD8+OOPuOWWW2q9bm4EKCgoCPn5+fD09ARsnGGHLP62QaMlCgh+LYC8y8AVUoVHgNKeu63ODDv8qe+ABowAaUTwa6HgQhmh+ivWjgCdWHkbUMe3hrAl8Q0aAdJVO156Uho0ApT6rOnk+erfhAzHy1yd/orXHgECCL5uCs5dJpMVFCIjQCdW3maXb3dEhOLiYnh4eBi/LMgwAgQAJSUlcHd3Nzlmjh4B0jTNeLxUVZVmBIiIUFpailatWlnVHpbi9hhZsKaPOWIECBb6mKNHgKr3MUVRpBkBIiKUlJTAw8PD7HF31AhQQUEBvL29cfHiRePntyUcOgLk6+sLnU5XK3HJzc21+IyRgIAAofKoymp9fX1x8uRJswmQq6srXF1da8V1Ol2tESNLM97NjSzVFa8k8zNAKs2ko2SMKzhbWj2umC2vwfyDNi25G+I1nfQWHGvHFeRcBizNaqm7TqbHyPAHXhNLdbIYr0p4qh8vsTrVdqsZr3m8yGJda7ZTteMlXKfaXqJ9r754zfly5spbaqf6+pi1cXPbrutkZotj0JA6qapa63jZ6hxxrfG6jpc928mauDV9zFLcnn3P3n3MUryuOon0scbue61btzZbDg46R9QVN7ttq0vaARcXF/Tu3Rs7duwwxjRNw44dO0xGhKrTv39/k/IA8MMPP1gsDwBnzpzBhQsX0K5dOxvaNz5OCmFCsL7W6JGjYS8xZPVC1XX9xMRE6VZ2sJcYsnpBYjf2EkNWLxEc/jT4mJgYzJgxA3369EHfvn2xdu1alJSUYNasWQCA6dOnIzAwEHFxcQCARx99FEOHDsVLL72E0aNH49NPP8X+/fvx1ltvAVXXvGNjYzFx4kQEBAQgNTUVixYtQufOnTFy5EiH1tUWODk0ZbUMe4lhT6/gJ7Y1+L1OCmFCiIYtH5+2OEpZF+mrRjd43/Uh64mWvcSR1Y29xJDVy1ocngBNmTIF586dw9KlS5GTk4Po6GjEx8cbJzpnZGSYDIENGDAAH3/8MZ566ik8+eST6NKlC7Zu3Yru3bsDVcNfR44cwcaNG1FYWIj27dvj1ltvxYoVK8xe5mIYhmEYpvnh8AQIAObNm4d58+aZfW3nzp21YpMmTcKkSZPMlm/RogW+//57mzsyDMMwDPP3QdILBIw59HR1ablesqkj7CWGrF6Q2E1VVYSHh0t32332EkdWN/YSQ1YvEZqueTOEAJRWml045FDYSwxZvSC5m4uLixWlGh/2EkdWN/YSQ1Yva+EEqAnhpFy9qWDN++o4GvYSQ1YvSOymaRoSExPN3iXckbCXOLK6sZcYsnqJwAkQwzAMwzDNDk6AGIZhGIZpdnACxDAMwzBMs0OKZfCMdVTS1YdumnvcgiNhLzFk9UIjuDX8Jo0EJwWo/PSMxUeu1IW9btCoqiqioqKkWwkjqxckdmMvMWT1EqHpmjdDFADuTg05/dsX9hJDVi9I7CarFwCTp9PLhKxekNiNvcSQ1ctaOAFqQugUYFSQVuuJ446GvcSQ1QsSu8nqpWkaTpw4Id1KGFm9ILEbe4khq5cInAAxDMMwDNPs4ASIYRiGYZhmBydATYxKSUcb2UsMWb0gsZusXjqdztEKZpHVCxK7sZcYsnpZC68Ca0JUkoIt6fJ1OPYSQ1YvSOwmq5dOp0NUVJSjNWohqxckdmMvMWT1EoFHgJoQCggBLQiKZE9qYi8xZPWCxG6yehERioqKQMRe1iKrG3uJIauXCJwANSF0CjCknXwrYdhLDFm9ILGbrF6apiEtLU26lTCyekFiN/YSQ1YvETgBYhiGYRim2cEJEMMwDMMwzQ5OgJoQBKCoApLNgmAvUWT1gsRusnoBgJubm6MVzCKrFyR2Yy8xZPWyFl4F1oTQk4L4M/KthGEvMWT1gsRusnrpdDpEREQ4WqMWsnpBYjf2EkNWLxF4BKgJoYIQ6kFQJfsezF5iyOoFid1k9dI0DRcuXJBuIqisXpDYjb3EkNVLBE6AmhCqAvRpq0GVbCUMe4khqxckdpPVi4iQmZkp3VJgWb0gsRt7iSGrlwicADEMwzAM0+zgBIhhGIZhmGYHJ0BNCAKQWyrbvXDZSxRZvSCxm6xeAODh4eFoBbPI6gWJ3dhLDFm9rIVXgTUh9KRgV45kkyDYSxhZvSCxm6xeOp0OYWFhjtaohaxekNiNvcSQ1UsEHgFqQqggRHpp0q2EYS8xZPWCxG6yemmahpycHOlWwsjqBYnd2EsMWb1E4BGgJoSqAJFehBOFCjSJPgfYSwxZvSCxm729gp/Y1qD3OSmECSEatpxSUUniI1Tpq0Y3aL/1QUTIyclB27Zt7bL9a0FWN/YSQ1YvEXgEiGEYhmGYZgcnQAzDMAzDNDs4AWpCaABOFSmQ7Yore4khqxckdmMvMRRFgbe3NxRFvonjsrqxlxiyeonAc4CaEBop2Hdevs7GXmLI6gWJ3dhLDFVV0bFjR0drmEVWN/YSQ1YvEaQYAVq3bh2Cg4Ph5uaGfv36Ye/evXWW/+9//4uIiAi4ubkhKioK3377rcnrRISlS5eiXbt2aNGiBYYPH46UlBQ718L+qArhBl8NqiLR7FT2EkZWL0jsxl5iaJqGjIwMKVfoyOrGXmLI6iWCwxOgzZs3IyYmBsuWLcPBgwfRs2dPjBw5Enl5eWbLJyQkYNq0abjvvvtw6NAhjBs3DuPGjcPRo0eNZVavXo1XXnkF69evx549e9CyZUuMHDkSZWVljVgz26MCCPEkxzdaDdhLDFm9ILEbe4lBRMjPz5fyOU2yurGXGLJ6ieDwS2Br1qzBnDlzMGvWLADA+vXrsW3bNmzYsAFPPPFErfL//ve/MWrUKCxcuBAAsGLFCvzwww947bXXsH79ehAR1q5di6eeegpjx44FAHzwwQfw9/fH1q1bMXXq1EauIcMwTMO45uX5m880aHk+6lmi31AvW7jZ69YBTPPDoQlQRUUFDhw4gMWLFxtjqqpi+PDh2L17t9n37N69GzExMSaxkSNHYuvWrQCAU6dOIScnB8OHDze+3rp1a/Tr1w+7d+82mwCVl5ejvLzc+PvFixcBAAUFBdDr9UDVhC9VVaFpmknGa4gbytUXV1UVWnkpnGoMmevp6u3+nWqcDyoJUADoFEBRCBWXNSgVKjRNhQKCrlp5qrpjrgoyeWq2IV5YWGjW3VAntaIEAKARoEGBTiFU17EUJxDKLxOUCgVqtROaNXUyHGdU3VmUiGoNqWrlpRbrVDOuVc3LUBUyOV7QFKE6XXVXjG4GVPXqd31N04zHy1yd/oortdoJytXjReUK1Gp7taZOhpGGgoICi30M5SV11qmuvmfaxxSr62Spj6GqXWv1MTN1ghV9DGb7WN11QrU+Vr39qqOVlwr/PakgKGq1PkaKUJ00AoqKisyeIxRFgV6vN+lj1v49AVfbUaSPmYtX72M1z3uW+lh9f09ONf4uSVOsrhOq+t7FixdrtZ+hj13/zPZ662qp7ykg3NGJsG3TCWjV+pg1dQKAA0+PAOroY5bils57hjpVVlaiuLgYBQUF0Ol0Jn9PRncbfj4Z+l597nq9HsXFxbh48WKtidD11amuc8S11snwt27VyBQ5kLNnzxIASkhIMIkvXLiQ+vbta/Y9zs7O9PHHH5vE1q1bR35+fkRE9PvvvxMAysrKMikzadIkmjx5stltLlu2jKr+XviHf/iHf/iHf/inif9kZmbWm4M4/BKYDCxevNhkVEnTNOTn58PHx0eqJX5FRUUICgpCZmYmPD09Ha1jhL3EkNULEruxlxiyekFiN/YSQ1YvIkJxcTHat29fb1mHJkC+vr7Q6XTIzc01iefm5iIgIMDsewICAuosb/g3NzcX7dq1MykTHR1tdpuurq5wdXU1ibVp06aBtbI/np6eUnU4A+wlhqxekNiNvcSQ1QsSu7GXGDJ6tW7d2qpyDl284OLigt69e2PHjh3GmKZp2LFjB/r372/2Pf379zcpDwA//PCDsXxISAgCAgJMyhQVFWHPnj0Wt8kwDMMwTPPC4ZfAYmJiMGPGDPTp0wd9+/bF2rVrUVJSYlwVNn36dAQGBiIuLg4A8Oijj2Lo0KF46aWXMHr0aHz66afYv38/3nrrLaBqItT8+fOxcuVKdOnSBSEhIXj66afRvn17jBs3zqF1ZRiGYRhGDhyeAE2ZMgXnzp3D0qVLkZOTg+joaMTHx8Pf3x8AkJGRYZyBDgADBgzAxx9/jKeeegpPPvkkunTpgq1bt6J79+7GMosWLUJJSQnuv/9+FBYWYtCgQYiPj4ebm5tD6mgrXF1dsWzZslqX6xwNe4khqxckdmMvMWT1gsRu7CWGrF4iKNSU72LEMAzDMAzTAGS7gSnDMAzDMIzd4QSIYRiGYZhmBydADMMwDMM0OzgBYhiGYRim2cEJEMMwDMMwzQ5OgBiGYRhp4IXJTGPBCRDDVMEn3qvwcWi+GJ7eXfNJ241FRUWFVM9fZKynKZ43OAFqJmiaJk0HNXhcunQJX331Ffbu3Yvi4mKHOlVWVkJRFJSVlTnUw/ABlJWVhdTUVIc4KIqCixcvQq/X49KlSw5xsCWZmZkO3X9aWhp+//13/PLLLzh27BgqKioc6mMOQ8KzefNm5OXlQafTNdq+DeeDvLw8TJgwAd9++63J65cvX7a7Q0VFBTZv3mz3/dgTw3EsKSlBaWmpyWuG84o9aYqJKydAfyMMfwB6vR5ZWVn44Ycf8NNPPwEAVFWVooMSERRFwfnz5zFmzBj861//wqBBg9CpUyfMmDED27dvb7RkyHDS//XXX3HPPfegc+fOuP/++/HBBx/g6NGjDknKDG349NNP44knnkBycjIAoKysDIWFhbh48aJd93/48GHExMQgMjIS/v7+WL9+faOcPG2N4TgeOnQIU6ZMMVvGnvWqrKwEAGzbtg3Tpk3D4MGDce+992L+/PlYvnw5vvzyS6Snp9tt/6LodDro9XosXrwYt956K/744w+gkb44Gf4OX3vtNRQVFSE8PByoars5c+bgiSeewPHjx+3qsG3bNjzxxBPIz88HGilhsDUG59deew2rV6/GqVOnjK9Vf5qCrblw4QIOHjyI//znP8jOzrbbfuwCMX87lixZQm3atKHIyEgKDQ2lLl260NNPP00XLlxwtBpVVlYSEdHy5cupV69e9Ouvv9KZM2fonXfeoYEDB5KTkxN16tSJHnvsMdLr9Y3i1K5dOxo/fjw9/fTTNGTIEPL09KTw8HB65JFH6JNPPqFz5841ioeB0tJS8vT0pD/++IOIiIqLi2nkyJHk5+dHEydOpLy8PLvte8CAAXTnnXfS0aNHqX379vT4448TEdG+ffvo8OHDdtuvrdE0jYiIjh49SpGRkXT06FEiolp96tKlS3bdf2RkJD344IN0+vRp2rVrF82dO5d69OhBPXv2pBEjRtDGjRvtsv+GkpeXR3fddRfdfvvtlJSU1Kj77tSpE3300UdERJSQkECDBg2i66+/ntq1a0djx46l0tJSu+xX0zTKz8+nG264gR599NFar+fm5lJJSYld9m1rysvLycvLi7755htjX3/uuedo7Nix9Omnn9p8f1999RUNHDiQunXrRh06dKBp06YZPa5cuWLz/dkaToD+JhgSi88++4x8fHzovffeoz179tC3335LS5YsoV69etGzzz7raE0jDz30EL322mu14mlpabR48WJ64IEH7Lp/wwfU9u3bKTw83OQEl5OTQ6tWraKePXuSoih0/Phxu7oYMJyw3n77bYqMjCQiorNnz9KCBQuoV69e9Nlnn1H79u3prbfessv+f//9d/L19aUrV67Q5cuXycvLiw4dOkRERO+++y7dcsstlJGRYZd925MxY8bQ8uXLTWJ5eXkUExND77//vt32m5+fT0OGDKGTJ0+axC9dukSbN2+m4cOH0+eff05kJjFzBIYPrCNHjtCwYcPI09OT1q9fT5cvXyZN0+zqePbsWerevbsx6Z84cSLNmDGDiIhOnDhBffr0sfvf4c6dO8nFxYXee+89On78OMXHx9PMmTOpS5cu9Mknn9h139eK4fz/5ptvGs8dBQUF9MILL5C3tzdNmjSJ3N3dae/evTbdb4cOHeill16is2fPUnBwML300ktERPTLL7/Qhg0bqKioyKb7szWcAP1NMHyg33///TR//nyT1yoqKmj16tXUunVr2r17t4MMTUlKSqJHH33UrqMZdWE4Xrt27aIHH3yQiouLTeIGGiv5qc769evppptuIiKiuLg4uu2222jbtm1ERPT444/T3XffbZf9rlq1ikaNGkVERGvXrqXo6Gjjh94333xjPLHKzPfff0/vvvsuJScnG0d3duzYQSEhIVRRUUHJycm0dOlS8vf3pz59+tC+ffuIzLT7tWD4MEpOTqZ//OMftGHDBpttuzFZsWIFDRs2jL766iu776u0tJQmT55M/v7+NHHiRAoPD6cjR44QVf2Nenl52X3/27dvp/Hjx5ObmxuFh4eTl5cXTZo0iVauXEkVFRV23b+tePjhh+mee+4hIqL33nuPbr/9dnrnnXeIiGj8+PH01FNP2WxfX375JXXs2JGIiM6dO0ceHh506tQpIiL6+uuv6ZZbbqGzZ8/abH/2gBOgvxGaptHKlStrJUBUdVLu0aMHvfnmm8ayjY3hg2H//v00Z84cUhSFZs+eTb/99hudO3fO+Lq9MXyol5WV0YgRI6h169a0bt06KiwsNHtcGvtY/fnnnxQaGkre3t7k6upKn3/+ufHY9O7dm/79738TVTuetmL//v3UtWtXOnfuHA0YMIDWrl1rfG3atGk0ffp0u+zXlowfP57atGlDN910Ey1ZsoS2bdtGiYmJdPPNN1N4eDj17t2b+vXrR5999pndR12GDh1KiqJQREQEbdy4kU6cOEHl5eV23acohrZMSUmh1NRUys7Opp9//pnS0tIoISGBbrjhBlIUhf7v//6P8vPziez495CTk0MPPvggTZo0iXbt2kVEROfPn6d7773XeGnFHkycOJGCg4PJz8+P7rzzTgoKCqIpU6ZQYWGh3fZpL77++msKCgqi6dOnk7u7O61du9b4RaBv377Gc4ctWLdunfEL05NPPknDhg0zvrZx40bq3r27zfZlLzgB+htgOIlt3bqVOnbsSC1atKCXX37ZmI1T1bC2h4cHpaSkEDkoATIQFBREw4YNo+nTp1P79u3JycmJBg4cSK+88grt37+fLl++3Cge2dnZdOutt5K3tzc5OTnRhAkT6NNPP6XU1NRGc7DEqVOn6NNPP6X4+HiiqmTt/fffJz8/P7vNWykuLqYpU6bQ4MGDydnZmb744gu6fPkyvfjiixQUFEQHDhwgkuRyTV3s27ePHn74YQoPD6egoCC65557KDIykiIjI+njjz9utLkJiYmJFBcXR9HR0RQYGEjDhw+n2NhY2r59O6WnpzeKg7Xcd9995ObmRh06dKA+ffpQixYtKDo6msaMGUPe3t7k6+tLCxYssOk+Df3o7NmzdOLECbNl1q9fT7169aKDBw/adN8GMjMzadq0afTRRx9Rbm4ulZWV0XfffUc+Pj60ZcsWu+zTnmiaRs899xzNmDHDONqj1+vpp59+Ig8PD5smdceOHaOuXbtSUlISde3alTZt2kRUdSl12LBh9Nhjj9lsX/aCE6C/EX/88Qfde++91KVLF/Lz86Px48fT448/Tvfffz9NnDiRFi5c6DA3Q8K1c+dO6ty5s8nE4oSEBJo2bRp5eHiQoij0559/2s1jx44dZoezP/roIxo4cCApikKdOnWimTNn0p49e+zmYYl169bRTz/9VCt+7NgxiomJMc5lsdcozNmzZ+nBBx+kbt26Ua9evcjLy4vCwsLo7bfftsv+bIm5pH7Lli00adIkCgoKovDwcPrHP/5Bb7/9Nu3evbtRvwT8+OOPNHPmTOrcuTN16NCB7r333kbbtyUM9U9OTqY5c+bQsWPH6LfffqNffvmFzp07R7///jsdOXKELl68SF9++SW1b9+eFi9ebLPjZujD9913H02cONE46bqkpIQKCgro3LlzlJSUZLfL9oZ6mEuIn376afL39zfOgWsKHD58mC5evEhUo0779u2j6dOn05w5c2y6P03T6IknniAnJydSFIU+++wz+vHHH+muu+6iqKgoyszMtOn+7AEnQE2YgwcP0tatW2vFy8rK6MMPP6Tbb7+dAgICSFEUuuWWW2jTpk10/PhxhwztGk4227Zto/vvv9/iio5vv/3Wbg5fffUV9e/fn6hqIuquXbsoJyfHpIxh4qCnp6dx7oa9PygN34T37dtHXbp0MWnT+Ph42rlzJ5WXl1NWVpbFuUrXQkVFBR05csQ4sqTX6+mXX36hV199leLj4+nYsWM221djYO4DraioiN5++2269dZbqVWrVvSPf/zD7h4pKSn0yy+/mMTKy8vp/fffp/Xr1xM5+HKiYd9z5syhhx56qN4+9dFHH1FoaKjxUpgtuHz5Mnl6ehqTnOLiYho1ahT5+/vT5MmT6fz58zbblzmuXLlC//vf/+iLL76oVa8bb7yRVq1aZdf924pjx45Ry5YtaerUqbRx40ZKSkoyTkA+e/Ysff3113T69Gm77Pubb76h0aNHk6Io1K5dO7rzzjuNlzBlhxOgJsz9999PL7/8MlHVRMHNmzfXmnSWlZVF69ato379+lFgYCANGDCAHnzwQSooKGh03ytXrtC0adPI19eXVq9ebXECtD0SDk3TqKysjPbv309ERP/+97/J39+f5s6dSx988AEdPHjQYdf8DR9Ed999N02dOpWo6gM7NjaWWrVqRYqi0N133223D8vPPvuMFEWhcePG0bp165rEN7e6qKyspOTkZIqJiaHp06fTf//7X5PXT5w4YbykYstjakhkT548SQ888ACFhIRQhw4dqFWrVjR58mRj35ONu+66y7hEury83Pj3V/PfLVu2kLe3t032aThW77zzDnXr1o2o6ly1YMECio6Ops8++4zatWtnnLNoD44dO2Zc5dWtWzcKDAw0GZn+7bffKDU11W77txWaplFlZSW9/vrrdMstt5CHhwddd9119OCDD9KXX35JZ86csek5NTc3l+bNm0e//PKLcbuXLl2iixcvUnJyssOnD4jACVATJj8/3zgiMH78eOrevTvdc889tHr1avr5559rfaAfOXKEHnnkERoxYoRDfNPT02nYsGEUFBREAQEBdO+999I777xDBw8eNA7dNhY5OTn07LPP0oABA4yJ4aJFi2jr1q109OhRqqioaPR5UhEREfT1118TEdFLL71EQ4cOpS+++IJ27NhB/fr1o8TERLvs98CBAxQVFUUBAQHk4eFBLVq0oDFjxtAXX3xBubm5xnKOnDdmDYZkZuPGjRQdHU133XUXhYWFUadOnejy5ctUWlpq135m2P/YsWNp1KhR9Morr9CuXbvo7bffpsGDB1OfPn2MK5scjSEBOX36NM2YMaPW/W80TavV3pcuXTLOIbQVb731Fg0dOpSo2irEb775hoiIFi5caPxCYA/uuOMOuueee+jQoUM0a9Ysuv3224mqzlMvvPCCQ74k2oKzZ8/Ss88+S506daI2bdpQjx496Msvv7TZ9pcsWUKDBw+Wpi9fC5wA/U04efIkvfLKKzRmzBjq1asXDR48mGbPnk1vvvkm/fHHH1J9eOXn59Nrr71GQ4cOpfbt21O/fv1ozpw59MMPPzjE58CBAzR//nzq2rUrhYaG0g033NDo3/wuXrxIkyZNottvv52+/PJL6tSpE7311ltUWVlJBQUFFBAQQP/73/+IbJyInDx5ksLCwujDDz+kkydPUlZWFm3atIl69+5tnA+1ePFiu1x6sxfBwcG0bt06IiKaPHkyPfLII0RVc82mTJli15GY0tJSatGihcnckStXrlBKSgp1796dZsyYIdWS6sWLF1Pr1q2pZcuW9Nhjj9Hvv/9utxsOmiMtLY06d+5sXPH43//+12TF45o1a+yy35KSEnJ3dzd+iIeFhRnvCZWSkkJ33HGHcQFCU6L632dpaSlFRUXRoEGDbHoT06CgINq8ebPxd0My/eeff9Krr74q3QT/uuAE6G/Inj176KmnnqIRI0ZQZGQkjRs3jqjaUGljYviDLC4upv/+97+15twY7svSrl074yqCxqK0tLTW8fjmm29sPlnQWn755Rfq27cvBQcH06xZs4zxTZs2UYcOHeyyz8WLFxu/gVO19kpISKBevXrR4sWLqUOHDjR69Gip7+xq8D5y5Aj5+vpSYWEhXb58mTw8PIw3f8vMzKQbbriBEhISTN5jS/bt20fdunUz++14y5Yt1LNnT6mWV589e5Zef/11GjduHEVGRtLQoUPpX//6F73//vuNdufv1NRU+vjjj+m7774jqroMt3HjRvLz8zMm3rZm7969dMMNN9ClS5fowIED5OPjY5xvlJqaSn5+fnTmzBm77NtWGM5d27dvp0OHDpk9Vi+//DL95z//sdk+z5w5Q5GRkSZzNQ2jhbm5udS5c+cmM/+HiMjJ0Y/iYK6d8vJy/P7773B2dsbgwYPRt29f9O3bF1euXME333yDK1euAFXPimnMhxyi2gPyvvnmGzz11FO4/vrrERUVhYEDB+LGG29E165dERsbi9jY2EZ7/s7evXuxatUqeHt7o127dujevTtuuOEGhIaGYvTo0Rg9ejRQ7blljcWgQYPw+eefo2XLlnB2dgYA7N69G++88w7mzJkDVD1jysnJdn+2rq6uqKysNG5XURQQEfr3748bb7wRkZGRePXVV/HQQw9h9+7dGDx4sM32bUsM7aTT6dC1a1dUVFRg+/bt6NSpE3r37g0ASE1NRVpaGvr372/ynmulej+57rrr4Orqivnz5+Ptt99GUFCQsS1TUlJQWVmJ1q1bN3rfqs6VK1fg7OyM7777Dnq9HnPnzsXcuXOxZ88efPXVV0hISMDevXvh7u6Ob775Bq1bt7arT2hoKEJDQ42/p6am4n//+x/mzp2LVq1a2WWfnTt3hqIo+Pjjj7F3716MGDECPj4+AIBPPvkEbdu2RWBgoF32bSsMz2+bMGECiAijR4/GxIkT0adPH/j7+8PFxQU//PADunTpgkmTJtlkn+3atUOnTp3w6quv4tZbb4VOpzP248TERJw7dw5Dhgyxyb4aA4VkeUQ4I4Rer4dOp8OePXvw+OOPIyMjw3iyGD58OO69917ccMMNjtY0kp6ejq1bt2Lfvn04deoUnJyc0KlTJwwePBi9evXCDTfcAE3T7PbQPsPx2r59O2JiYtClSxeoqopvv/0WYWFhaNeuHYYMGYJu3bph7NixNk0yLFH9QzA3NxenTp1Cfn4+Bg4caPzQ+fTTT3Hq1Cn861//gpeXl80/OA8dOoQbb7wRkydPRkxMDHr16gUAOH36NAYMGIC3334bt99+O2688UbMnTsXM2bMsNm+7UFlZSVGjBiB0NBQ/PHHHxg7diyee+45nDt3Dg888ADc3Nzw8ccf2zyRrM6+ffvw8MMPw9/fH0OGDIGPjw8SExOxbds2LFiwAA888IBd928tEREReOihh/Dwww+bxMvKyvDTTz8hJSUFjz76qE37nGFbFRUV2LlzJ7755ht4eXmhY8eO6NWrF6KiouDs7IwLFy7A1dXVbgkQqh6AunDhQhw/fhxLly7F6NGj8eGHH+K3337Dww8/jJkzZ9pt39eK4Tga/v3444/x+uuvIyEhAUFBQRgyZAiOHTuGrKws/PbbbyYJ5rXy7bffYsGCBRg8eDBuv/12hISE4Pjx43jllVfQo0cPvPnmmzbbl91x9BAU0zAM8wiGDRtGU6dOpf/+97+0ZcsWeuKJJ2jgwIHUsWNHioyMpNdff93RqrXYs2cPxcbGUlhYGPn5+dH1119vnN9iLwzDxSNGjKC5c+cSVT3uoV+/fvT+++9Tp06dyMfHx3gb+cbAcO38rbfeotDQUOrUqZPx5n3//Oc/jdfS7XUZwHAJ6Pvvv6fBgwfToEGDaOTIkTRp0iTq2bMnRUdHE1VdOnJ3d7fbMlpbk5WVRbfffju5urrSpEmT6P7776fw8HAaMWKExYeiNpQHHnjAeINIA3q9nrZt20aTJk2iHj16UO/evalz5860YcMGh99F+48//qD+/fvTm2++SaqqGo+DpmlUXl5uPK8cO3bMLje8NNQ/NjaWoqOj6eabb6awsDAKCgqiAQMG0MMPP0yffPKJXefgfffdd/T1119TRUUFfffddzR+/HjS6XR03XXXUffu3emTTz6R/mafhuP40EMPmdwkMj8/n1544QW64447aMGCBbRz506b77u8vJzWrl1LPXr0oMjISOratSupqkqLFy+m7Oxsm+/PnnAC1MTIzc01uWvqwIEDjSd1qlqpcfToUfr4449p6tSpxhvYyfgHnZycTD179qSHH364UfZ3+fJl6tChg/GEER4eTu+99x4REb322ms0btw4+vXXX4ka4f4shuQjPT2d2rRpQ2vXrqU9e/bQzz//TGvXrqUBAwbQnDlz7DphVtM0On36NBUWFtJ3331HK1asoAceeIAmTpxIy5Yto9zcXCovL6f/+7//M94/qalQWFhIr7/+Og0bNowmT55MCxYsMFnRZgsqKytp6tSplJaWRkRE8+bNqzVxNjs7m5KTkx2e+BjYvXs33XHHHeTi4kKurq40e/ZsY583kJmZScHBwXadDO3r62uc8zdgwACaMWMGzZw5k9zd3alDhw70xhtv2G3f3bt3pwULFhhvw3Hy5En64IMPaN26dXThwgW77fdaMZwzDPf3KS8vJ0VRKDs7m8rKyux+rqiJXq+n77//nr788kvKysqS8jOmPjgBamKsWrWKfHx8aMKECfTWW2/RggULjDdVq8mFCxekWHGyevVq2rZtm8k9NqjqD2ju3LnGB33am+TkZJo8eTIdOnSITp8+TV27djUuLU9JSaGbb7650Z5ebPhAXLJkickkZANffPEFtWzZ0m4Pojx27Bg9+uij1KZNG/L19aV58+bRxo0ba60YTExMpGeffbbWDf1kJCUlhZYuXUpPPvkkPf/888a4Pf8GDNs+f/489e7dm9zc3MjPz48eeughqZcJR0RE0D333EODBg0inU5HQUFB9PTTT1NCQgL985//pBtvvJHITvdJio+Ppy5duhBVLcNv06aNMTm94447aObMmXYbbfz999+pbdu2VFJSQpqm0c6dO6lly5YUGBhIN954I508edIu+7UFhr/LRx55hHx8fGjo0KG1vpiUl5fTlStXKD8/nz766CObTfTXNI2OHj1KS5YsoVmzZtH27dttsl1HwwlQE+P333+n1atX05QpU6hPnz7Uvn176ty5M3399ddSrtI5evQohYSE0MCBA+nuu++mNWvW0O+//07FxcWUnZ1Nbdq0abQP1/Lycjpy5Ajl5eXR2bNnqXfv3vT000/T6dOnafny5RQeHk7UyEu9n3zySRozZozZD5qJEyfSokWL7LLf8ePH09ChQykxMZEmTpxIrq6u9P/tnXlcTfv3/1+nUlEqUkQTDRqUBkNFCimUj1nmJGNcY/i5pmvMHDdTGSJkzDxkjgwVyVhSQlGGNKk0nbN+f3zs/ZXc+7lDp3PS+/l43Md19t6d9+vsce211nstOTk5MjIyouHDh9OFCxfEMm5Vw+23Y8eOUadOncjGxoY6dOhALVq04A3up0+fiq0JKfdQLy8vp+LiYnr06BGtWLGCLC0tSSAQkKmpKS1fvrzKvU//lpycHCorK6PCwkK6d+8ezZs3j0xNTUkgEJCDgwPdvHmTqAoNoG+vqR07dtDQoUNJKBTSzp07ydnZmfc2bd68mebOnVslY/4IPz8/6tWrF9HXWZd9+/alX375hd69e0f29vZim3ZflURERNDcuXNJIBCQoqIi2dvb882cORYuXEg9evSosjGPHTtG5ubm1LVrV75lkKqqKo0dO1ZqC3z+FZgBVENJT0+n06dP06JFi6hjx45kYGBAbdu2JT8/P7p7966k5VUgMTGRAgICyMPDg6ytrcnJyYmvTO3s7FztejhDce7cuWRmZkYWFhakq6tL+/btq7BenONzD4Tr16+TkpISrV69mjIzM/mx8/LyqFmzZhQeHk5UxSHM/Px8ql+/Pt9zzdDQkM6ePUuZmZmkq6tLAoGAVq9ezWuVZrj9Ym1tTb/++isREfn6+tKgQYOIvnqFZs+ezU+FFxeOjo58/oNIJKLs7Gy6ceMGTZ8+neTl5Wny5MliHf/vwOX70Ne2ORwlJSX09u1bsXlfhEIhlZeX08ePH+n69etUXl5OBw8eJBMTE4qMjKS8vDzq1q0bX7dJHOzdu5datWpFMTEx5OTkROPGjeOvgwEDBlR5w1dxkZqaSq6urhQaGkqjRo0ifX19UlVVJQ8PD/L396fmzZtXaVkRKysrWrJkCdHX3m0eHh60dOlSkpGRIYFAQL17966ysaoTZgDVML5/IxMKhZSSkkIHDhygadOmkaOjIxkYGJCzs7PU5B18y+3bt2nZsmU0b9482rlzp9gLDn7rIfjebVtQUEA7duyghQsX0qNHjyRS5K+8vJz8/f1JW1ubevfuTevWraPZs2eTk5MTWVtbi2XMQ4cOUfv27YmI6N69e6Sjo0MZGRlERLRmzRo6efJkpTYI0kxmZiY1btyYbwOjoaHB1ynJyMigtm3b8pVwq+L3fNtE9N27d3Tw4EGqX7/+D7ctLy+nDx8+8BWopSFPYvPmzWRkZERGRkY0btw4OnLkCKWkpIgt5+fcuXOViuNx7RI+fvxIHTp0oK5du5KlpSXp6OiINdn+/fv31LVrV6pbty61bt2ar/Xz6dMnUldXF1vj1aqmvLycCgsLib7+prt379LWrVupb9++ZGRkVKUGNxem5K4vLS0tOnfuHIlEIho3bhxNmTKFEhISqmy86oQZQDWUjRs30q1btyoYOVzF2cDAQL4SriRuuNyYeXl5FBkZSQsXLqTjx4//cJvqYvz48SQQCMjMzIxmz579wwtW3AZjeno6WVlZUXBwMH/z4jh9+jS5u7uTgYEBdenShXx9ffn8pKreVzdu3KDly5fTly9fKCQkhDp06MD3/1q3bh117ty5SscTN8+ePaM2bdrwSeTa2tp8LtfTp0+pfv36YplJN3jwYOrRowfp6enRwIEDfzhGfHw8Xbt2rcrH/rtw5/bx48dJTU2Nfv31V1qxYgXZ2NhQ/fr1qXXr1jR37lw6depUledMtW/fnuTl5cnR0ZG2b99eydC6desWTZgwgRYuXFhhRpM4effuHR8iTUtLI19fX2rTpk21jF1VfN9LsaysjHJzc6v8+EVFRdGIESOoqKiIrl+/TsbGxpSWlkb0tQhjjx49pPJl+6/ADKAaBPcgjImJoSZNmvB9o0pLSykiIoJ27NjBW+ncRSCJN3hO54gRI0hbW5usrKyoQYMGVLduXRo8eDDdunWrWnWkpaXRrFmzyMjIiDp16kRmZmakrKxMbdu2pW3btom94zTH48ePycPDgwwMDKhBgwbUu3fvSj16iouLK1XLrmrKysp4t//Tp09JT0+PtmzZQgcPHqRmzZrxM3Bq0k1t2rRp5O3tTV27duVDYW/evCFfX1/q0qULkRgSeo8ePUpeXl4kEAjIwsKCPD09yd/fv0Ifvg4dOtD48eOJJOxN48YePnx4pbyypKQkmjNnDjVu3LjKvY5CoZAePnxIYWFhNGzYMNLW1qYGDRpQ3759K01+kJR37NmzZ7Rhwwapb33B7Z/09HRatWoVdejQgfT19WnGjBli9Vz5+fnR2rVreU+TtbU1P/N44sSJEustWRUwA6gGwd3Ahw0bRl5eXkRfkxkXLFhAderUIUNDQxo5cqSEVf6XtLQ0UlRUpGvXrtGLFy8oPj6eNmzYQB06dCBFRUUSCAQUHR0tVg1c/oqPjw+NHDmSUlJSqLCwkJ48eUJbtmwhbW1tEggEpKWlRTNnzqw0S00cfPr0ie7du0ebNm0id3d3atSoEWlpaZGPj49E3O/FxcU0depUkpeXp/r169OYMWOkYubg3yUxMZE6duxIioqKZGJiQrNmzSIrKyvq2LFjlSf0fsvdu3fJ29ubdu7cSf369SMbGxvq2LEjjRgxggYPHkzq6up8SEfS4S+RSEQbN26kgICACsu+hdMqjn2Vk5ND8fHxFBgYSD169KBGjRpR06ZNady4cWLP0fpf1ARjn9Po4+NDtra2tHnzZnJ1dSWBQEAyMjJkbm5OS5YsqdIQ4p07d0hXV5f3WOfm5lKbNm1IVVWVWrduTXp6etU2i1ccMAOoBmJqakp79uwh+jrFvGvXrnT+/Hk6f/48tW7dulJdD0lw9+5dGjp0aIVlXAJkVFQUzZ07t1IYSFw0atSIjh07Vml5cHAwDRo0iNavX0/NmzendevWVYse+rovMjMzKTIykpYsWUL29vakoqJCrVq1opkzZ1J+fn61egxKSkoqzJaS9twfzrg9efIk7/UkIjpy5Ah5eXmRvb09TZ06Vaz5JJyh+O0Ms/v379OyZcuoT58+NHz4cAoODiaSsPHDjX3o0CHS1tYmHR0dioyMpIKCgmoZnzuXcnJyqKSkhIRCIWVkZFBkZCQtXryYOnbsSAKBgCZNmlQtemoyxcXFpKyszBffNDExocDAQDpx4gTVrVuXBAIBLV68uMrGO3DgAI0cOZJEIhF/Hn348IHWrFlDEyZM4KMQNRVmANUwSktLydfXlzw8POjUqVPUqFEjvotxSUmJ2LqG/102bdpEzs7OFWakfaunut64cnJyqFu3bjRhwoRK69LT06l9+/aUlpZG06ZNoy5dulSLF+h7iouL6eXLl3T69GmaOnUqNW/enE9KZvw59vb2pKamRmvXruVDmd97sMRpfJSXl9OnT5/o6dOnldbl5OSIbdx/wtWrV6lz586koKBADRo0IB8fHzpz5gy9efNG7GUCEhMTady4cXzDU44vX77Qmzdv6MiRIz/ch4z/wt07Dx8+zOcqPXr0iLS0tPh71ty5c2nLli1VeiyXLVtG7dq1q1TTqiZ4zP4KzACqgVy9epU0NTWpWbNmNGPGDH75vn37xNY1/O/w9u1batasGdWrV48sLS0pLCxMosbYzp07qWnTprRgwQK6c+cO5eXlUWlpKa1du5YaN25MRERXrlwhPT09fnZKdfCjfZKdnc3PjJN2L4w0UFpaSitXriRHR0eaMWNGtRgd3M0/Li6OBg0aRBYWFtS1a1caNmwYBQYGVqjULo0UFRXRxo0bydzcnAQCAZmbm5Ovr69YahVxnroRI0ZQnz59+Ic1tw/LysqkuvqytHHkyBHy9fWl0tJS2rJlC3Xq1IlP+A8ICKjS6eiPHj0iXV1dUlBQIEtLS9q4cSPFx8dLfWmMvwMzgGowGRkZ/MyTkydPUtu2bWnFihVEEq7f8uXLF4qNjaWQkBD6z3/+Q5qamqShoUEjRoyQyIwYoVBIS5cuJTMzM3JwcKD//Oc/pKWlRS1btuQTfufMmfPDisxVreOPSsoz/jmlpaV09uxZatWqFamrq9P27dvF1j/tW6ysrGjEiBEUHh5OhoaGZGJiQgYGBmRra0uenp5i6cP0d+EMjdjYWDp//nylmUMvX76kGTNmUJMmTcQaktbQ0KCrV69WWp6amkrLly+nxMREsY39MyESiejhw4ckEono5s2bpK2tTZcvX6YXL16QoaEhrVmzpkrHy8vLo/Pnz5OHhwdZWVmRi4sLzZgxg0JDQ/mZYDUZZgDVALgHZFlZGT1+/Jj27t1b6eS7fv06rVq1irKzs4mkxHsgEono48ePdPv2bVqzZg2fsMfN0qlunj9/TitXrqTJkyfTxo0b+aTjU6dOkZGREZ04cUJs437P98ZQbm4uOTs715hCbJKmpKSEFi9eTAcPHqSQkBC6evUqZWRk0IwZM0hXV5cmTpwolsaM3LV4584dUldX5w0tVVVVunz5Mu3cuZMaNWpENjY2fJ6GNFyLrq6u1KpVKxo/fjwFBwdTTEzMD41EcWhNSUmhVq1a8UU9vy0E+ubNG9LR0ZHqtiGShgvpnjt3rkKyeH5+Pnl6elKdOnWoTp065OrqKlYjNiMjgzZv3kydO3cmHR0dOnLkiNjGqi4ERESS7kjP+HNEIhFkZGQwefJkREREQCgUIiMjAy1btsSECRMwevRoKCoqSlrmn1JWVoaMjAw8evQINjY2aNasWbWNTUQQCAR/uD4hIQFRUVEYP358lY9dXFyMzp07Q1dXF05OTnBxcYGxsXElbS9fvsSiRYvQuHFjrFmzhj/mjB9z+vRp9O7dG8bGxhg0aBAePnyIS5cuwdjYGB8+fMC7d+/w9u1baGlpVem43PGaN28ekpOTcfjwYQQHB2Pr1q2Ij48HAPj4+MDS0hJTp06t0rH/DUlJSThx4gTOnTuH9+/fo0mTJrC2toaDgwOMjIxgZWX1P6+TfwL3nX369IGsrCzCw8MrrD9w4AD8/Pzw9u3bKh33Z0RFRQUhISHo378/v18LCwvx6NEjlJaWwtzcHI0aNRK7DpFIhKSkJGhra6N+/fpiH0+cMANIyvn2AWlpaYktW7agZcuW+PDhA44fP46zZ88iNzcXpqamOHnyJHR1dSUtuQKSeJCLRCIIBIJKN3OhUAhZWdlq1fL+/XsEBATg5cuXSEtLQ506dWBiYoLOnTujS5cuaNy4Mb9tdnY2ZGVloaqqKpaH0c9EWloa1qxZg/3796Nz585YtGgRWrZsidjYWOTl5aF+/fpwcnIS234MDQ1FcnIyli5dilmzZiEnJwc7duwAAHh5ecHAwAALFy6UyuN4584d7Nu3D7t374aGhgY6dOiA/fv3i3XMEydOwNvbG7q6uhg6dCh69OiBY8eO4fDhwxg2bBjmzZsn1vFrGtx5c+XKFaxduxYdOnTAqlWr8PnzZ36b8vJyyMnJAV8NXCMjI/bS9HeRtAuK8dc4ceIE9e3bt8KywsJCev78OYWEhJCHh0e1JvD+Gd+60bmQwcGDB2nPnj0kEonEFhL4O6GmmTNnVtIoTrKysujUqVM0a9Ys6tGjB7Vv355cXFzIz8+PLly4UG1Tkn82YmNjydfXl2bMmFHtycdcPs3evXtJQ0ODtm/fTrt376YGDRrw4VVpzu9as2YNOTg48LNIxdH5PSMjgw/hREVFkY+PD9nY2JCCggIZGBhQYGBgteRr1VQOHTpEffr0IWVlZVJTU6PJkydXalR87949srGxkZjGmgzzANUQzpw5g9DQUKxZswZ6enoV3iyJCMXFxahbt65UvXEKhULIyMhAIBBgwoQJOHjwIBISEtC0adMqH0taQ00/+v4XL14gKioK0dHReP78OUpLSyEQCDB//ny4ubmJTUtNh/PgJSQk4Pnz5zA2NoaZmRkiIyMREBCAhIQE+Pr6YuTIkVBXVxebju+vscLCQkyYMAGPHz9Gfn4+unTpwnuDJAW3rx49eoQrV66gU6dOMDAwgJqaGr9NcnIyli1bho0bN0JNTa1K7x3cd3Xt2hXz5s1Dly5dgK9ezk+fPkFJSQmysrIVPKCMH/PmzRv06NEDVlZW+PTpE16+fAlVVVW4ubnB1dUVwcHByMrKwtmzZyUttcbBDKAaQEpKCkxMTEBEGDp0KBYsWPDDh7s0kJCQgLKyMrRu3ZpfRkRISEhARkYGunXrJpZxa2qoKS4uDrdu3cK1a9ewdu1aGBgYSFyTtNOjRw/k5OQgIyMDBQUF6NKlC5o0aYKjR4/iw4cPWLp0qVhDKkVFRUhJSUFBQQEEAgEsLCwgKyuL69evQ1dXF8bGxpCTk5OKPK6lS5di+fLlsLCwQNu2beHo6IjWrVujYcOGOH/+PObMmYMPHz6IZeyysjKMHj0a9erVQ1BQUKX1paWlkJWVrfawdE3h2/tAXFwcrKyskJSUhPv37yMmJgbx8fF4/PgxdHV1ERYWBgsLC0lLrnEwA6gGkJOTg8jISNy/fx+HDx/GmzdvYGZmhpEjR2LEiBEV3uqqG+4izc7OxuTJk3H37l0oKipCTk4O3bt3x/Dhw2Fubl5tej59+oTbt28jKioKT548QXZ2NurXrw8rKyt069YNHTp0gJKSUrXp4fZPRkYGLl68iBcvXqBu3bro3r07bGxs+O2+fPmCunXrVpuumszz58+RmZkJRUVFfPr0CVFRUSgtLYWSkhJu3LiBefPmoVu3blWa88V917Vr1xAQEIBz585BWVkZ5ubmsLS0xKRJk9CqVasqGauqSU1Nxf79+3Hq1ClkZmbCwMAAHz9+RH5+Pvz8/DBt2rQK+SRVyaVLl/DLL78gMjISjRs3hkAgwJcvXxAXF4dly5bhzJkzYhn3Z4A7506fPg0NDQ3Y2tqiTp06wFeP97t375Cbmwttbe1qSX7+GWEGUA2itLQU79+/R0xMDM6dO4ebN28iJSUFmzdvxsSJEyWiibtIf/31V0RERMDb2xsNGzZEfHw8bt68iTdv3kBXVxf9+/fHzJkzxaZDmkNNX758waBBg3Dv3j24uLjg9OnTaNiwIVq0aIEBAwagc+fOaNmypVR4DGoyZWVl/AOiquGOjZWVFQwMDDBv3jwoKSnh5MmT2LdvHz58+IAjR47A0dFRLOP/XTjD+3tvYmxsLM6dOweBQIBu3brB1tYWCgoKVeJ1LC4uxu+//46+ffvCwMCAn4jg4OCAUaNGYdy4cQgKCsLhw4eRnJyMIUOGYNWqVVXwa39eiouLoa+vj4ULF/KzfePj4/Hq1StYWVmhefPmkpZYs5FwDhLjL5CTk0NZWVmUkJDAdwovKiqiuLg4CgwMpJcvXxJJOOGyZ8+edODAAf5zfn4+PXjwgEJDQ2nQoEE0efJkiWmjr4mCGzdupD59+lBKSgpRNdRn4ZJKAwICyMLCgoqLi+nmzZukoqJCy5Yto5YtW5KsrCw1b96cVcP9h4hEIr7oZ2lpqVhL9GdmZpKGhgZ/DX6Lk5MTjR07VqqSnj98+EAHDx4kb29vWrFihdiLDUZHR5NAICAlJSXq2rUr7dq1i7Kysmjnzp1kZmZGTZs2JXNzc1q2bBklJyeLVUtNhzuPAwMDydramujr+X348GGSk5MjExMT6t27t9RMfKmpMANISuFupGfOnCFXV1e+23v//v1p69at/E1fkkXWOI2fPn2iNWvW0JIlS3643YcPH8TeooDbD2/fvqWQkBCaP38+LV++nC9Gx1FUVCRWHT/S1KFDB74D9/jx42nYsGFERHT06FFycHCggwcPVtieURHuYXDv3j0KDw+v1mP47fgfP34kPz8/vp9VSUkJv27Xrl2ko6NTqQ9ZdcOdQ+/evaNu3bqRpqYm9ezZk/T19UlWVpbc3Nz42XLiMNaKi4spIiKCvLy8SFVVlRo1akSOjo6kqalJy5Yt4wu1Mv4c7jh2796d/Pz8iL7eL9zc3Mjf358iIyPJ3Nz8pyhGKEmYv11KkZGRQWFhIcaOHQttbW3cunULCxYsQJ06dTB37lz4+PigqKhIosmy3Ni7d+/Gb7/9hp07d+LChQv4PqqqoaEh9jwlLrdg/PjxmDt3Ll69eoXVq1djwIABcHFxwbZt25CUlIS6detCJBKJVcu3mvLy8lCnTh0+CfvOnTvo0aMHAMDZ2Rnq6urQ19evFj01Fe48mz59OmJjY/lcKe48i4+PR5MmTcQWTuHyiBwcHLBu3Tps2LABb9++hby8PGRlZVFeXo6nT5/CwMAAderUgVAoFIuOvwI39tq1a1FaWorr16/jxIkTSExMxLlz55CdnY3Vq1cDX+8xVQkRQUFBAW5ubpg5cyZSUlKwatUqqKmpIT8/H9u3b8f69etx8+ZNlJaWVunYPxtc+NLBwQHx8fF48OAB5syZAzs7O4wfPx5OTk5QUFBAUVGRpKXWbCRtgTEqw71Vbty4kXd/fsu1a9dIXV1dKnoNERGdPXuW5syZQw4ODtSsWTOys7OjefPm0YMHD6plfGkNNXFvcbGxsXT79m0qKSkhNzc3mjNnDhERxcfHk7y8PHNj/wWEQiGNGDGCTp8+XWnd8+fPaeTIkbR582YiMXWqLisro7CwMJowYQI1atSIlJSUaODAgRQQEEDu7u40a9Ysun//PtFXz5CkadWqFQUGBvKfuX0SGhpK+vr6dOvWrSofkxsjPDycOnXqRLm5ufy6V69e0fLly6lVq1YkEAjo2bNnVT7+z0hcXBw1adKEVFVVqUePHrz38/Hjx1S3bl2+ESrjn8EMICnGz8+P3NzcqLCwkIRCIRUVFZFIJKLy8nJyd3enqVOnSloiT0lJCSUnJ9OBAwdo8uTJ5ODgQKamptS2bVuxdJn+FmkMNXHhhe/zRdauXUv6+vrk4OBALVq04DWKM3elJsPtl+joaBo1ahT179+f8vLyKm1XUFBQLfuwuLiYkpOTacuWLeTk5ETKysokEAho4sSJUtMFvqSkhEaNGkVeXl4/XKenp8c3Ja7Ka4H7rilTptC0adOIvhqO34fanjx5UmVj1hZevHhBHz9+JPoaCu7Tpw/1799f0rJqPGz+oZTx7WyMfv36Yf/+/YiMjETPnj1517+srCxfHAsSavHwLUVFRahXrx709fVhaGiI3r1748mTJ7h9+zbevHkDTU1NsY7/R6Gm2bNnA19DTXv27Km2UBMRQUZGBjdv3oSnpydSU1OhoKAAAPD29oasrCySkpIwZMgQ9OnTh/8NjMpw5/WePXuwZ88e4GtPpPHjx8PKyorfr+IubXDo0CHY29tDW1sbhoaGMDQ0hJeXF549e4aLFy8iNDQUO3bsQNOmTbFq1Sp4enqKVc+fIS8vDxcXF4waNQpqamoYPHgw7OzsAAB79+5FTk4OnJ2dgSo+7wQCAUQiEfT09JCcnAwAFaa4cy1qqrMsRk2Hu7e3aNGCXyYSiWBhYYG+fftKVNtPgaQtMMb/8f2bUn5+Po0aNYoEAgF1796dDh06RBEREdS/f3/S1dWt9mTQ7xEKhbx3RUNDg7p27UorV66kjIwMfhtxdifmkJZQE3f89u7dS3FxcdS7d28aMWJEpfVUzcnYPwsvX76kVatWkYmJCcnIyJCVlRWtW7dO7LOb7t69SwKBgJo0aUKjRo2iiIgIysrKqrDNp0+f6Nq1azRkyJAKsyElydatW8nBwYG6detGXbt2pRYtWpClpSWtWLGC6Kt3pqrgrsEjR46QqqoqycrK0m+//UaPHz+m4uLiKhvnZ+ePPHJsgoR4YHWApISioiIsWLAAS5cuRb169SqsO3nyJHbs2IGoqCjIyMjAxcUFPj4+cHNzk0jtGK5o2p49e7B48WJ06dIFLi4uOH/+PF8gbufOnXz5e3HC/f73799XqPa8bt06bNq0CU2bNsW7d+9gb2+Pffv2id1b9vnzZ3Ts2BHKysqIjo7GtGnTMHLkSBgbG1codLhw4ULY2NjwHiDGj/mj+jRxcXEIDQ1FWFgY8vPz8fnzZ8jLy4tNR35+Pg4dOoTg4GDExcXBwMAAw4cPR7du3WBlZcVfs5LyxnLXwdu3b5GUlARLS0s0atQIt2/fxuXLl5GdnQ0VFRW4urrCzs4OcnJyYqk4npaWhh07duDy5ctISUmBubk5nJycYG9vDxMTE+jq6jJv5w/40X382+PDrY+MjERSUhL69+/Pih9WAcwAkhIuXbqE0NBQ7N27FykpKQgKCkLnzp3Rpk0baGpqgohQUlKCT58+QU1NrVqrGX8PdzFaWFjA29sbM2bM4NeVlpZi4MCBEAqFOHPmjFh1cDeIH4WasrOzERoaiqSkJJibm6NPnz7Q1tauFoPx9evXWLp0KQ4cOAATExOoqKjAzMwM7du3R9u2baGlpYVGjRrh6tWr6NSpE2t98T9IS0vD2bNn8ejRI6ipqWH27Nlo0KAB8NXgePjwIWxsbMRmfHx/fFJTUxEQEIDNmzcDAHbt2oVRo0ZV+bh/B+63e3t7Q0VFBZMnT4aRkRG/XhIvStevX8e+ffsQGRkJgUCAJk2aYNu2bTAzM6tWHTWBY8eOISUlBU5OTjAyMkLDhg0rrOfOQV9fX5w4cQLXr1+vcHwZ/wxmAEkRJSUlUFBQwN69e7FgwQJoa2tDR0cH7dq1g4ODA8zNzaGsrCxpmQCA3NxctG3bFv7+/hgwYABKSkoAAAoKCrh06RImTpyIgwcPok2bNlU+Nncz37dvH8zMzLBkyRKoqKggNDS0wnpUc4uJ6OhoPtfixo0byMrKgra2No4cOYLY2Fg+VyorKwsqKiq4c+dOteiqiXDHMCEhAdOmTcPr16/h5OSEHTt24P79+7CyssLTp09hbGwslurPPzJKuVulQCBAbm4uRo8ejZ49e8LT0xP169eXeCXvwsJCNGrUCJGRkWjfvj3wTXXsR48egYhgYWEhVo0lJSV4+fIlTExM+GVCoRDHjh3DwYMHsX//figqKopt/JrK2LFjER4eDj09Pb5nm5WVFVq0aFHhZTczMxO3bt3CgAEDJKr3Z4EZQFLC9zfPV69e4cyZM7h06RLS0tKgrKwMCwsLGBsbw9PTE1paWhLVS0QYPXo0Pnz4UKkL8cuXL2Fubo6PHz+KzVMlbaGm+Ph4zJw5E1evXuVblujo6PDrCwoKcOnSJURHR8PQ0BCOjo4wMTGReAK7tMKFWYcPH47S0lIcPnwYmzdvRkhICO7du4e8vDz4+/ujQ4cO6NWrV5WPz12Ps2bNgpWVFdzc3CqFHPz9/VFUVISlS5dW+fh/B05rWFgYVq9ejfj4+ErGW0REBI4cOYLAwMBKIfaq4vjx49i8eTM+fPiAN2/ewNHRETNmzICTk5NYxvvZyMzMRFhYGMLDw5GWlgYdHR04OjrCwcEBFhYW0NHREWuYt1Yi4Rwkxle4BNlTp07RuHHjKqy7e/cuLVy4kFxcXEhXV5devHghIZUVOX/+PKmpqVHr1q1p48aN9ObNG7pw4QK5urpS9+7dxT7+q1evyMfHh+rVq0c2Njbk7OxMvr6+tGfPHkpISKCcnBySlZWl69evE4k5kfDZs2d05swZIiI6fvw4GRoako+PD+3cuZNevXpVYVtpapcg7ejq6lJERAQREbVp04b8/f2Jvk5779evH61atYpITMe2qKiIOnfuTIqKiqShoUFjxoyha9eu0YcPHyg6OprMzMzo999/J5KSMgbHjh0jY2NjunfvHtHXKfscq1evprZt2xJV8b7izuXY2Fhq3rw5DRkyhPbs2UNbt24lV1dXatasGe3atavKxvsZEYlEle4JDx48oBkzZpCZmRnp6uqSm5sbrVixgs6dO8fuH1UI8wBJGM7V/vHjR2hoaMDOzg5dunTBihUr+JAYh1AoxNOnT2FpaVntOq9fv46ysjK4uLhUWH7//n1s27YNMTExSExMhIKCAgYOHIgZM2aIrTu2tIeaoqOjcejQIaSmpuLdu3dQUlJCq1at0LVrVzg5OYm9KvbPQk5ODkaOHIk+ffqgZ8+eMDY2xtOnT6Grq4v8/HwYGhri3LlzaNOmjVjDTx8/fkR4eDhCQkJw9+5dqKuro169etDV1cWVK1ek5q28sLAQ7du3h52dHTZt2sSHmp4/f46BAwfCx8cHU6ZMqVKvI/ddw4cPh0gkQlhYGPDVg5eTk4Ply5fjxIkTiIyMZBXP/wdf6/JVOo8jIiJw8OBBnD59Gl26dMGRI0ckpvFngxlAUkBqaioMDQ3RqVMn3LlzBw8fPuRj6Fzys6KiInbu3InOnTtXqAlRXbi7u6NPnz4YO3YsIiIiUFpaChsbG2hra6OoqAivXr1CaWkpiAhWVlZiS+qV1lDTj3JG0tLSEB0djaioKCQmJqK4uBjl5eUICgpC69atxablZ2LDhg24desW1NXV8eLFC1y6dAlfvnzB1q1bsXHjRrx+/VpsYx8/fhzGxsYV6tZkZGTgwoULUFBQQM+ePaGmpiYVSeycAXjy5En4+voiPz8fnTp1gqGhIU6dOgVDQ0OcOXOmwgtVVeLi4oKuXbti7ty5FZa/f/8eHh4emDlzJgYPHiyWsX8mcnNzUVBQgPT0dDRu3LjCvb6wsBCZmZkwNDSUqMafCkm7oBhE2dnZdPHiRWrZsiUJBAJSVlYmT09PvlorfW0oWq9ePXrz5o3EdHJufhsbG2rWrBn179+fAgMDKS4urtpKsteEUFNubi59/vy5wrLHjx/Tpk2byNvbW+INM2sS7969ox49epBAIKAWLVrQ0qVLycbGhuzs7Gj37t1EVVzP5tuQTqtWrWjPnj1V9t3VRXJyMv3+++80cOBAcnZ2po0bN/K1ucQVBvb39ycVFRWKjY2tEA7MysoiVVVVio2NFcu4PwPc/rpy5Qq5u7tT3bp1ycrKinr37k2LFi2iCxcuVKitxqg6mAdIili6dCkUFRXRuHFj7Nq1C7du3UKTJk3g4uKCgoICvHr1Cnfv3q322Sbfv+GWlZUhPDwcYWFhuH//PlRVVWFnZwcnJyeYm5vDxsamWt6IpTHUdODAAYSFheH27dto2LAhPDw88Msvv/BvcpwnShq8BtLKj/ZNbGws1q9fj4SEBDg7O2PkyJGwsbGp8uuAOz6enp6oW7cudu/eDXzjYcnNzcXdu3dhZ2eH+vXrV+nYVcn/qitTlWO8evUKKioqGDt2LLKystC7d28YGRmhtLQUZ86cQXR0NBITE6ts3J8VMzMzODk5YdGiRXB1dUVxcTEKCgpQr149mJqawtvbG/369ZO0zJ8KZgBJIUKhEF++fEFycjLOnTuHU6dOoXnz5vDz80ObNm0kMnOIm07722+/oWfPnmjXrh0A4N27dzhw4ACOHz+OR48ewdnZGSdOnBCbDmkMNXEPgujoaHh4eKBr164YOnQoHj58iNDQUKSnp2P9+vWYOHGiRKdJ1yTKyspw8eJFvHjxApaWlmjVqhU/C6u0tFTseTcmJiZYsmQJBg0aVGH6e3Z2NsaOHYt+/fph2LBhYtXwT+GukfLycsjIyIh92ru7uztGjBgBS0tLhISE4PLly5CRkUFGRgYcHR0xZ84cODg4iE1DTYa7d9y7dw/u7u54/fo1FBUVoa6uzhe+7d69O2+Mc+UNGFWEpF1QjP/j48ePUtki4dvu1gKBgBISEqisrKxS6OHp06d048aNatMlLaEmLqzg5eX1wwaUc+fOJUtLy0qNURkV4fbju3fvqFu3btS0aVNq3rw5CQQC0tbWpuXLl1faVhwUFBTQwIEDaeTIkZXW5eXlUaNGjfjO79LUooCbTcSFVE6ePEkbNmwQa/jkw4cPNH78eGrSpAl5e3tTVlYWFRQU0I0bNygjI0Ps7WdqOtz5s3z5curVqxcREYWEhJCVlRXfRmjWrFkUEhIiUZ0/K+x1VErYt28fBg8eDA0NDTg7O2P9+vVISkpCWVmZxDRxb76rVq2Cjo4O+vXrB1NTU5iamkJOTg5ycnIoLS1FaWkpiouL8f79e3Ts2LFatB04cADDhw+Hnp4ejIyMMH36dKSmpqJVq1aYNGkStm/fjjp16qA6HJycR6pTp04wMDAAvvHiAYCPjw8KCwtx7tw5sWupyYhEIgDAypUrkZeXh7179+LFixf4+PEjJkyYgPXr12PatGmAmJvHKikpwc3NDdevX8f+/fuRl5cHkUiET58+ITAwEEpKSrC2tha7jr+LQCCAjIwM7x0+f/48pk+fjpycHLGNqaGhgW3btuHkyZN4/fo1XFxcEBYWxlc8Z0UP/xzu/GnXrh1cXV0hEomQmZkJbW1tlJeXAwCysrJw9+5dCSv9SZG0BVab+TbhUl9fn/z8/CgiIoIEAgE1bNiQFBQUaPDgwbRly5YKXpjq5uzZszR16lQSCASkqKhI3bp1o71791bwsHCNF8UJt7/u3LlD6urqNGjQIDpx4gQtXryYDAwMSF5enjZt2lStyc/cG1xUVBQZGhqSnp4epaenV9imsLCQ6tatyyeCsjoef46npyeFhoYSfedh+f3338nAwIAePnwodg25ubnk5eVFAoGAzMzMyMvLi1q0aEE2Nja0f/9+oipOvv67cPuloKCATpw4QRs3bqSFCxdSWlpahe1ycnLENnZRURHdu3ePHyMpKYlmz55Nzs7ONH/+fMrOzq7ysX8mvr8PcB7iqKgo0tXVpTVr1tD8+fNJVVWVbt26JSGVPzfMAJIgnKt6yJAhfOgkKCiI2rRpQ9nZ2TRmzBgSCASkr68vYaVE6enpZG9vT7///jt5enqSlpYWqaur09ChQ2n79u1kYWHBF6UTF9IcagoPD6cePXpQ06ZNSU1NjUaNGkVnzpyhM2fO0NixY2n06NFERFRaWipVYRNpgXsYZGZm0qxZs/j9Rd8YGnl5eaSpqcnPjhRHQb/09PQKhUafPn1KCxYsoJ49e9KqVavo0aNHUmPAfvnyhby8vPiXARkZGTp16hTR15lgeXl5RGIwuLnvW7FiBdWrV4+0tbXJxsaG/Pz86JdffqEmTZqQQCCgZs2aSdRIrCkMHz6cLly4wH/Oz8+nKVOmkIGBAdna2tK8efMkqu9nhhlAUkDr1q3pxIkTRETk6OhIK1euJCKi6Oho8vX1pczMTCIJV5stLy/n3+jevn1Lt27dovXr15Orqys1btyYhg4dWqHyrDjZuXMnLVmyhNfF5U2lpKSQgYGBxCrPvnjxgk6fPk2//vordenSherWrUtycnLUpk0bunTpkkQ01RQ4Y2b9+vWkoqJCKioqtG7dOsrKyiL6agQdOXKE6tevL9bxPTw8yM/PT6qnHXP3gYCAALK0tKSCggKKioqiRo0aUXZ2NolEIlq3bh2Fh4eL1VgLDg4mQ0NDGjt2LP3++++0bt06WrduHa1du5a6du1KM2bMENvYNZ2ioiLKycmh3NxcEggElJKSQvSdUZ+eni4WDx7j/2CzwCTEtxWgAwIC4OLignbt2qFTp06YNWsWhgwZgoKCApiZmeHChQswNTWVtGTk5+dDRUWF/1xaWorPnz9DQUEBioqKkJOTE9vY33Z+9/b2RllZGW7evAltbW1+m6KiIjRq1AjXr19H27ZtJdacsqSkBM+fP8eTJ09w584dJCQk4O3bt9DT00OnTp0wc+ZMsRWkq+ncvHkTt2/fxq1bt/DgwQPIy8ujefPmEAqFUFNTg5+fH+zt7SEUCvmcl38Ld26lpKTAxsYG0dHRfMdy7hxKTU2Fqqoq1NXVq+BXVo1eBwcH9O3bF7NmzeLzzA4ePIjS0lLMmDEDQqEQW7duFZuOsrIyREREIDg4GEpKSvj1118rVKlnfe4qwx27+fPnIzw8HCYmJnj69CmePn1aIX8LX8+9o0ePYuDAgVKVa/YzIb4nFuMP4aaU42sS4cSJEyESiaCsrAxjY2OEhYWhXbt22LRpE4hIYsYPd7Hm5OTg2LFjOHr0KNLT0zFo0CD069cPrVq1qrYHAncD+PDhA4yMjPDw4UNYWFigT58+fGfkkydPYsiQIWjbti3KysrEapB9S2lpKWJjY/H8+XO++q6FhQUsLCzQvXt3JCQk4PHjx4iKisKlS5fw66+/VouumkjHjh3RsWNHvHv3DvHx8YiJicHly5eRnp4OVVVVhIeHQ15eHra2tlU2JneeHz58GDY2NjAzM+ObscrIyEAkEuHixYtITEzEhg0bJP4wEggEKCkpQfPmzZGfnw98Pff3798PAJCXl8ft27cxceJEoIoNkW9fKurUqYNevXrB2dkZmzdvxqhRo+Du7o4xY8ZAT0+PGT8/gDt3+vfvj/fv32P37t2QlZXFwIED0adPH9jb20NXVxd169bFjh074O/vj0GDBkla9s+LpF1QtY3ExEQaPXo07d+/n5KTkyutP3XqFGlra5NAIKA2bdpQWFgYkYQSLjlX+9y5c8nc3JwWLVpE7u7uJBAIeH2BgYH0/v37atUlDaEmzlX94cMHGjZsGDVt2pScnJxIUVGRbG1taf369ZWSQDMzMykpKala9NVUvs/rKS8vp+TkZNq/fz/NmDGDnJycyMjIiJycnKr8mggKCiI7O7sKU7e5MaZOnUr9+/cnkoIkdm78sLAwcnNzo6CgIDIyMiL6ur8uXLhA9erVE2tJDVtbW+rduzctWLCAli9fTrt27aJly5ZR+/btqW/fvhKtWC/NFBUVVTh/TE1Nac+ePeTi4kKysrKkqalJY8eOpVWrVpGenh5t2LBBonp/dlgIrJo5cuQIFi1ahPr160NTUxOWlpZo3749P20UX3u+vHjxAvXq1YOBgYHE3zjV1dWxf/9+dO/eHQ4ODnBxcYGVlRVGjBiBL1++YOLEidi8eXO165JkqInzEMyZMwexsbHYsGEDbt68iWXLlsHJyQnh4eGQlZVFx44dERERUW3eqJ+Fb4sPchQUFCAlJYUvEDdp0qQqHTMxMRFWVlYYM2YMpk6dCmNjYwDA48eP0b17d2zZsgW9e/eWmtDOp0+fMGrUKJw9exaamppYuHAhoqOj8fDhQ/To0QMrV64Ui9acnBxs2rQJKSkpeP/+PZSVlZGamopnz54BAIqLixEfH8/63f2AOXPmwMPDA46OjpXWFRcXY+fOnQgJCUF+fj769u2LJUuWsHC5GGEGkATIz8/H5cuXcebMGTx9+hREBH19fdjY2MDOzg42NjYVcm0kARcWuHr1KiZNmoTExERkZGTAysoKMTExaN68OebOnQsNDQ2MHz8eSkpKYtf0o1ATR05OToVQU0ZGBq5duyZ2Tfr6+vD398eQIUPg4eEBIyMjrFixAlOmTMH9+/cxceJEjBkzRmoemtLMj3K2hEIhIiIi0L59e74SNL4xQKsK7nw/cOAANm3ahGbNmkFZWRllZWWIj4+HtrY2IiIiqmy8fwK3f16/fo3ExER0794dAHDt2jUEBQUhKioKrVu3ho+PD9zc3KCsrFwteXCcESQvL4+HDx8iJycH3bp1E+uYNRGhUIiBAwdi/fr10NfXx/Tp02Fqagpra2sYGBigYcOG/La5ublQVFRkdZTEDDOAqpnvb0ivXr3ChQsXcOnSJaSmpqJu3bowMzODsbExfHx8KlwUkuDkyZM4c+YMAgMDER4ejt9//x1nz55Fo0aNEBoaiv379+PChQtiG//bZPHp06fj2rVrMDIyQkxMDMzNzTFs2DCMGjUKDRo04P/m3bt3yM/P59/gxUVycjIGDx6M8PBwaGpqwsTEBGFhYejYsSPu3r2LNWvWICAgAM2aNWO9v/4m3HVy9+5deHp6ws3NDVu3bhXbA51rPfPixQtERETgw4cPUFRUREFBAezs7DBhwgSoq6tLLLH+W1atWoW5c+di9erVGDduHFRUVPjzq6ioCPXq1ZOoPsb/Jj8/H25ubnj79i2aNGmCDh06wN7eHubm5mjevDk7htUE88tXMzIyMrw3QCQSQV9fH+PHj8f48ePx6NEjnDlzBleuXEF8fDymT58uablwdXWFhoYGBAIBjI2NkZWVhSdPnsDKygqbN28We+VnoVAIOTk5rF27Fm/fvsW5c+dw8+ZNJCUlwdDQELNnz8bcuXMrhJqaNGmCJk2aiFUXvoYGhw0bhnfv3oGIoKWlxRs52dnZuHPnDpo1awZIWcVgaYF7aGdnZ2P//v3o1q0bTExMQES8kaGjo4MpU6bwveeq8n2Nuw4fPnyItWvXYv/+/dDX14elpSXU1NTg6OgIHx+fCn8jaeMHX8MoCgoKOHDgAIRCIebMmcOfX/Xq1WPGtpQiEokgEokgJyeHxMRE3LlzB8+fP8fevXtx+vRpHD16FC1btoS9vT2cnJzg4uIiack/P5JOQqqtPHz4kEaPHk02NjY0ZsyYCsmxQqGQHj16xP+7uuESUb/vpZWfn0/9+/cnOTk5UlBQIHt7+2pLdtTT0+MTwt3d3WnatGlUVFREY8aMIRsbG9q+fTtRNddKevr0KV/Y8MuXL+To6EjGxsY0ffp0/riShCsGSzPcflm0aBG5urrSvXv3iL72xDt//jw9fvxYrONz54qLiwt5eHhQbGwsJSUl0ZYtW8jNzY10dXXp7NmzYtXwd/m2AvT69etJSUmJ3Nzc6MGDB0QSrhXG+OsIBAI6ffp0hWXXr1+nCRMmkIqKCi1cuFBi2moTzACqRjhj5v79+2RhYUGDBw+mRYsWkUAg4A2exMRECav8v5vs4sWLac2aNRWKcRUUFNClS5fo0KFDP5zFJg6eP39ONjY29PLlSyosLCQdHR2Kiooi+tpGZODAgbwhJu4qy9wD5vz589StWzc6fvw4vy4hIYF8fHzIzs6OJk+ezGuS9KwhaUdLS4s3btPT08nd3Z1UVFRIIBBQYGCgWMfOz88nJSUlev78eaV1Hh4e5OnpKdVGRUJCAvXs2ZO8vLwoNTVV0nIYfwJ3b0pKSqIePXpQdnY2lZSUVGpzVFZWRrm5uRJSWbuQvD+3FsG57/39/WFra4sDBw7A2NgY1tbWsLCwQHZ2NubMmYONGzdKVKNAIMDr16+xZcsWmJqaQlVVlV+npKQEFxcXDBo0qEISsjj5NtT0/v17qQg1rVixAq1bt0avXr2Ar0m5pqammDVrFgICAhAYGMhrkoawibTBXQuPHz+GjIwM+vfvDwBYt24d8vLy8OTJE8ybNw9RUVEoKCgQm46UlBQ0a9YMCQkJwNfjKBQKAQDjx49HTEwMPn/+LLbx/wrcvhIKhfxMq7S0NCQlJcHU1BRjx47FpUuXYG1tjfj4eIlqZfwx3HG8d+8eCgsLERMTA3l5ecjLywNfJ3lw9cu4ey5DvLAcoGqEmwUUHx+PVatWAV+NoVGjRgEAGjZsiLp16/I3XEkkXIpEIsjKyiI4OBimpqZwd3fn13EF2IKCgqCjo4O+fftWi6Z3797hl19+gZycHEpKSqCgoIDRo0fD3d0d169f52fDVPXMoB8hKyuLwsJCJCYmYuPGjfwx5f6voKCArVu3ok6dOlVarO9ngzNU5eXl0aBBAyxfvhz16tVDZGQkVq5cCR0dHdja2iIsLAzKyspi0UBEsLa2ho2NDbZs2QI7Ozs0btyYX5+YmIj69etDTU1NosnP3L46c+YMJk2ahLy8PBgbG6O8vBxpaWmwt7eHnp4eoqOjoampKRGNjP+NjIwMysrKsGvXLjx58gS+vr7w8/ODu7s79PT0eEOIUX0wA0gC9O7dG6mpqSgqKkJaWhoGDx4MIkJ+fj4uXryIWbNmSUwb9yB/8+ZNpToeIpEICgoKSE5ORnJyslgNIC5BNSIiAuvXr4evry/69OkDRUVFBAUFYd26dbhz5w4cHBzw//7f/wOq0dPy/v17NG/eHHFxcbC2tq7wcCQinDlzhjdwGX8MV/5h4sSJ2LZtG7KysuDv7w83Nzfga82sDh06AGJqq8AZFr6+vhg2bBiMjY3Rv39/ODg44NSpU3j27BkWLVrEa5UECQkJMDU1hUAggIaGBtavX4+mTZsiKSkJmpqakJeX571YmpqaaNasmVTMVGP8MVOmTMGjR49w48YNhISE4OjRo2jVqhW6du0KJycnqKmpSVpi7UHSMbjaApcHsnHjRpoyZQqZmJhQhw4dqG3btkRfcxFmzZpFJiYmElb6X7Zv304NGzak+Pj4Csu5HJyjR4+KdXwu78LR0ZH8/Pz4z1zi7LNnz+jOnTti1fAjuDi+t7c3dezYkdLT0/l1xcXFtGDBAmrdujURy/35Q7hjefjwYXJ1daU3b95QXFxchcrZR44coebNm1NcXBxRNexLoVBI27ZtI2dnZ9LS0qJ+/frR8ePHJXoMjx49Sn369CH6em59+vSJnVM/Eenp6RQWFka//PILde/enUxNTVkD2WqG1QGqRj5//oymTZsiISEBJ06cwK5du0BEaNiwIRISEmBubo4pU6ZIRbXZt2/fYvDgwQCA6dOnw9LSEi9fvsSpU6dw5swZvHz5UuwaCgsLoa+vj4sXL8La2hr4Jkfp1atXWLRoEaZMmSKRUFNMTAwGDx6M7Oxs9O/fHzY2Njh06BDy8vKwaNEi9O/fX+LHUFrhjuHYsWOhrq6OlStXVlifnZ2NsLAwEBF++eUXiWiUhno6SUlJSElJgbu7O9atW4d9+/Zh6NChsLa2hqmpKZ9jxqhZZGVloX79+hUqPCckJOD8+fNo37692EuLMP4PZgBVA9wNPyYmBv7+/ti9ezeUlZVx+/ZtnD17FiKRCI0bN8awYcP4dhjSwP379zF37lxcuXIFampqqF+/PnR1dfHrr7/yYQpxkpqaisGDB2PcuHEYM2ZMBdf+y5cv0aZNGzx9+rRaav78iLKyMmzbtg3Hjx9HamoqunTpglGjRsHR0ZHVYfkfCIVCLFmyBCUlJRUMIO4Yl5WVQSgUQlFRkdW1ARAbG4u1a9ciLi4OcnJysLGxgZOTE9q0aYMWLVpIvGAq44/hXoSSkpIQFBSE1NRUfPnyBVZWVujRowecnZ0lLbHWwgygaoC7gW/fvh3BwcHw8/ODp6cnv746knf/F9yD58GDB0hISMDgwYN5Y6OgoAAXL16Euro62rVrh7p164pdD7fPRo8ejeTkZBw4cADa2trA1x5gy5cvx6lTp/DgwQOpyXkoLS2FvLw8e2D/CdyxioiIwKxZs/Dx40esXr0a3bt3Zwm838GdT2/evMHnz59hamqKgoICHD16FAcPHsSTJ0/QpEkTGBkZISAgQGIvAoy/RufOnSEjIwMXFxfs2rULZWVlAABDQ0O0b98e48aNg56enqRl1iqYAVRN5ObmolOnTnj58iUaNGiAUaNGoUuXLrC2tpaqKY8rV66Ev78/mjZtCkdHR4wYMeKHjfuqCxZq+jk5ceIEQkND8ezZM5SXl6Ndu3Zo27Yt7O3t0apVK4mHn6SJQYMGQV9fH6tXr66wPC0tDfv27cONGzck3qeM8WM4g//OnTvo2bMnXr16BVVVVdSvXx/btm3Dw4cPsWHDBmhra2Pv3r180j+jemAGUDVSWlqKx48fIygoCPfu3YOSkhJMTExga2sLe3t7qeienJaWhqdPnyImJgbXr19HSkoKNDU1+WafXKuC6vRwsFDTz8vz589x6tQpXLt2DZmZmWjYsCE0NDSwbNkyGBgYSFqexMjNzcWKFSswYcIEGBsbIzExEUZGRnxoUE5OrpLXmHkepQ/OAJo9ezbevXuH0NBQBAcHY9u2bbh//z5KS0vh5eWFDh06YPLkyZKWW+tgBpCE+Pz5M65evYqQkBA8ePAAY8aMwfz58yUti6e4uBivXr3CvXv3sGXLFkRHR6NBgwZ49uwZNDQ0JKqNhZpqJpyn7vz58ygsLMR//vOfCrVPbt26hZMnTyIuLg4RERGoU6eORPVKkqioKIwYMQKfPn0CEWHVqlUYMmRIhVyf8vJy9OrVC8HBwdDR0ZGoXsaf89tvvyErKwubNm3C2LFjoaioiMDAQACAl5cXLC0tMXPmTEnLrHUwA0gKePv2LQBIbQ2Py5cvY82aNZg8eTJf+ZjB+Kd4eXkhJiYGOjo6aN++PTw8PGBnZ8evZwbuf2ehff78GV27dkVZWRlEIhE+fvwIe3t7jBs3Dv/5z38QFhaGSZMmIT8/X9JyGX+B1NRUtGjRAgEBAQgICMCePXugrKyMLl264OLFi7C3t5e0xFoHM4BqOdxD5v379/D19cXQoUPh7u4ORUVFfpvy8nL069cPM2bMYDMWGP+a+Ph43L9/HzExMUhKSkJ+fj709PTg7u6ODh06wMzMTCpfBCRBZGQkdHR08PnzZ8TGxuLcuXOIiYnB+/fvoaenh+nTp2PKlClSMZGC8WOEQiFkZGR4Yz4tLQ2TJ0/G69evkZ6eDmdnZxw7dkzSMmslzACq5XAPmtu3b2POnDn4/PkzBAIBOnbsCE9PT9jb2+P06dMYMGAA8vLyoKSkJGnJjJ+EwsJCPHjwAFeuXEFwcDDy8vLg4OCACxcuSFqaxPlRYn95eTk+fvyI9PR0pKenQ1VVFR07dmSlAqSYsrIyBAYGYvPmzVBTU0OXLl3Qo0cPCIVCvH79Gubm5jA1NWXVnyUEM4BqKUKhEEVFRahfvz7w1RP0/PlzPHnyBLGxsYiLi0NqairS09Ohra2NAQMGYM2aNZKWzfhJ2bx5M06dOoVZs2bBxcWFzewD+NY4SUlJ6NWrFywtLSUtifEX4c7fwMBArFixAmPGjIFQKERYWBjevHmDTp06oVevXnBycoKNjY2k5dZamAFUS9m3bx9GjhyJ3r17Y/To0RVye758+YKkpCS8fv0aZWVlaNiwIdq3b8+8P4x/BOdljI2Nxc6dOzFgwAB06NChwlT31NRUTJ06FcHBwVJVDLS64Tw57969g4+PD5KSkqClpYVbt25BT08PQ4YMwdixY9G8eXNJS2X8Bdzd3dGtWzdMmzaNX/bgwQNs3rwZO3fuRKdOnRAZGSlRjbUZZgDVUt6/f4+zZ8/i+PHjuH79OurVq4fhw4dj8ODBaNOmjaTlMX5Ctm7dih07dkBRURHq6uqws7ODm5sbWrZsiV27dsHf3x+ZmZmSlilRuFyeWbNmIT4+Hrt27cLt27cxa9Ys9O/fH0FBQSgpKYGVlRXu3bvH8qSknMOHDyMrKwu+vr4/XP/27VvW0kSCMAOollNSUoLz589jyJAh/GwTPT09eHt7w9vbm02vZVQpcXFxuHPnDmJiYvDy5Uve26ilpQU/Pz+MHz+eJfQCaNGiBZYvX44hQ4bA3d0dxsbGCAgIwK+//opbt25h/PjxGDp0KAsVSiGcx/PLly/Ys2cPdu3ahZkzZ8LR0RFNmzaVtDzGNzADqJbCPWTOnz+PFStWYMiQIbC1tcXnz59x/Phx7Nq1C6WlpWjZsiWioqKgrq4uacmMn4iysjLEx8fjyZMnkJWVRcuWLWFra4s6derU+oTe169fY9SoUdi6dSv09PRgbm6OkJAQODk5ITk5GTNmzMDWrVv51jAM6WTgwIGIi4vDq1evoKWlBWdnZzg6OsLW1hYGBgasf5sUULtfs2oxnOt8zZo1aNOmDe+iFYlE6NixI3R1dREcHIz+/fsz44fxr/n48SN27dqFx48fw8TEBO3bt0fXrl3Rrl27StvWZuMHAJSUlDB48GDk5+fj06dP0NTUREFBAfC1Q3xsbCwzfqQUzni/c+cOTp06hYsXL8LW1hbh4eE4cOAAli1bhiZNmqBly5ZYt24d698mYZgBVEuRkZGBUChEvXr1KuQRyMjIQFFREePHj0dMTAw8PDwkqpNRc+EeBm/fvsWAAQPw6dMntGzZEjt27MCGDRvQsWNHbNmyBU2bNmV1f76hUaNGGD9+PP9ZW1sbnp6ecHd3x5MnT9C/f39ASpooM37Mq1evMHbsWDg5OQFfi396eXkhPT0doaGhiIyMZMaPFMBCYLWcoKAgTJw4EYGBgejbty8fo05MTES7du2QkJDA8oAY/wjuAT1lyhQkJCQgKCiI7+915coVzJgxA1paWjh//nyt9/pwBuCnT59w9epVvHnzBnJycrC1tYWuri727duHqKgoODg4YNy4cdDQ0GBGoxSzfPlyXLhwAUFBQTA1NZW0HMYfwAwgBlatWoVr165BU1MTGhoa+PLlC+Li4lC3bl02RZPxr7G2tsa4ceMwceJElJaWok6dOhAIBLh48SJ8fX2xe/dudOzYUdIyJQqXzDxu3DhcvHgRZWVl0NbWhpycHJo3b47WrVujS5cusLW1lbRUxv/g8ePH8PDwwPv372Fra4thw4ahQ4cOMDc3Zx47KYMZQLWYlJQU3L9/Hzdv3kRqaiqUlZWRnZ2N4uJidO7cGaNHj4aenp6kZTJqMGVlZZgwYQJycnL4cv9ExP+nr6+PvXv3wtnZudYnP+fn56NRo0aIjIyEg4MD4uPjceHCBURHRyMnJwdZWVkICAiAq6urpKUy/gf5+fm4ffs2Nm/ejLdv30JdXR2WlpawsrKCk5MTdHV1JS2RwXKAah/cm+ahQ4ewadMmfPjwAQ0bNkSDBg2wf/9+vHnzBsrKyizxmVEl1KlTB+7u7vD09ISPjw+mTJmC1q1bo7i4GDt37kRhYSHfX662Gj+c4ZeUlIQBAwbAwsIC+Oo5s7a2RnFxMaKionD+/Hm0bdtW0nIZfwEVFRV0794d3bt3R2ZmJo4fP46jR4/iyJEjWL9+PTOApATmAaql6OvrY9q0aZg2bRo6duyIdu3aYf369Xj8+DGOHTsGb29vdpEyqozTp09j69atSE1NRVlZGWRlZVGnTh2MGzcOU6dOrdUJvZwBtHPnTuzcuROzZ89Gnz59JC2LUcWIRCIkJSVBW1ubb0HEkCzMAKpFcDfauLg49OzZE2/evIFIJIKmpiauXbsGGxsb3L9/H+PHj0dwcDCsra0lLZlRA/k2offatWtIS0uDjIwMP8OwpKQEX758Qe/evWFoaAhZWdlaH/7Kzc1Fp06d8PLlSzRr1gwjRoyAk5MTWrduzR6WDIaYqJ2vXLUU7gGTl5cHbW1tFBUV4cCBA9DT0+Mb8uXk5ODt27fM+GH8I4gI5eXlkJeXx9y5c/mEXn19fSgrK0NTUxN2dnbw9PSErq4uf07WZuMHANTU1HDv3j08fvwY27ZtQ3h4OCIiImBiYgJbW1vY29ujdevWkpbJYPxUMA9QLaSkpAR9+vTBoEGDEBQUhKFDh2LKlCnIz8/H6NGjoaioiH379klaJqMG8/nzZ6irq/MJvXFxcbhw4QJiY2Px8eNH5OTkYMOGDSyh9w/4/Pkzrl69ipCQEDx48ABjxozB/PnzJS2LwfipYAZQLeX48eMYMWIEioqKMGbMGNjZ2WHbtm2oU6cOgoKC0KpVK0lLZNQwDh06hKKiIri5uSEjIwPr1q1DcHBwhRBOcXExbt68iXPnzmHBggVo0KCBRDXXBN6+fQsAaNasGav9w2BUIcwAqsXk5eVh27Zt2LNnD4qLi+Hm5oZJkyYx44fxj3B1dcX79++hq6uLNm3a4OrVq5g+fTpL6GUwGFIJM4AYAIDS0lLIyMhATk6u1iekMv4ZIpEIKSkpCA0NxeXLl/HkyRNoa2uzhF4GgyGVMAOIwWBUOaWlpXj06BGCgoIQFxcHJSUlltDLYDCkCmYAMRgMscISehkMhjTCDCAGg1FtsIReBoMhLTADiMFgMBgMRq2DvX4xGAwGg8GodTADiMFgMBgMRq2DGUAMBoPBYDBqHcwAYjAYDAaDUetgBhCDwWAwGIxaBzOAGAwG409wdnbGtGnT/tV3vHr1CgKBAA8ePKgyXQwG49/BDCAGg/GPGTVqFAQCQaX/UlJSquT7d+/eDTU1tSr5rn/KsWPHsHTpUolqYDAYVY+cpAUwGIyaTffu3RESElJhmYaGhsT0/BFlZWWoU6fO3/67hg0bikUPg8GQLMwDxGAw/hUKCgpo0qRJhf9kZWUBACdPnoSNjQ0UFRXRokULLF68GOXl5fzfrl+/HhYWFlBSUoKOjg58fX1RUFAAAIiMjIS3tzfy8vJ4z9Jvv/0GABAIBDhx4kQFHWpqati9ezfwTcjp0KFDcHJygqKiIvbv3w8A2LFjB0xNTaGoqAgTExNs2bLlT3/f9yEwfX19rFixAqNHj0b9+vWhq6uL4ODgCn8TGxsLa2trKCoqok2bNoiPj6/0vU+ePEGPHj2grKyMxo0bY8SIEcjKyuJ/u7y8PKKiovjtV69eDU1NTbx///4vHxsGg/EnEIPBYPxDvLy8qHfv3j9cd+PGDVJRUaHdu3fTixcv6OLFi6Svr0+//fYbv01AQABdvXqVXr58SVeuXKGWLVvSxIkTiYiopKSENmzYQCoqKpSZmUmZmZn0+fNnov9Wr6fjx49XGE9VVZVCQkKIiOjly5cEgPT19Sk8PJxSU1MpIyOD9u3bR1paWvyy8PBwatiwIe3evfsPf6OTkxNNnTqV/6ynp0cNGzakzZs3U3JyMvn7+5OMjAw9e/aMiIg+f/5MGhoaNHToUHry5AmdPn2aWrRoQQAoPj6eiIhycnJIQ0OD5s6dS4mJiXT//n3q1q0bde7cmR9n1qxZpKenR7m5uXT//n2Sl5enkydP/qPjxGAwKsMMIAaD8Y/x8vIiWVlZUlJS4v8bMGAAERF17dqVVqxYUWH7vXv3kpaW1h9+35EjR0hdXZ3/HBISQqqqqpW2+6sG0IYNGypsY2BgQGFhYRWWLV26lOzt7f9Q048MoOHDh/OfRSIRaWpq0tatW4mIKCgoiNTV1enLly/8Nlu3bq1gAC1dupRcXV0rjJOenk4AKCkpieirAWhlZUWDBg0iMzMzGjt27B9qZDAYfx+WA8RgMP4VnTt3xtatW/nPSkpKAICHDx/i1q1bWL58Ob9OKBSiuLgYRUVFqFevHi5fvgx/f388e/YM+fn5KC8vr7D+39KmTRv+34WFhXjx4gV8fHwwduxYfnl5eTlUVVX/1vdaWlry/xYIBGjSpAk+fPgAAEhMTISlpSUUFRX5bezt7Sv8/cOHD3Ht2jUoKytX+u4XL17A2NgY8vLy2L9/PywtLaGnp4eAgIC/pZHBYPw5zABiMBj/CiUlJRgaGlZaXlBQgMWLF6Nfv36V1ikqKuLVq1fw8PDAxIkTsXz5cjRs2BA3b96Ej48PSktL/9QAEggE+L6Pc1lZ2Q+1fasHALZv34727dtX2I7LWfqrfJ9MLRAIIBKJ/vLfFxQUoFevXli1alWldVpaWvy/b9++DQDIzs5GdnZ2hd/DYDD+HcwAYjAYYsHGxgZJSUk/NI4AIC4uDiKRCOvWrYOMzH/nYxw+fLjCNvLy8hAKhZX+VkNDA5mZmfzn5ORkFBUV/amexo0bo2nTpkhNTcWwYcP+4a/635iammLv3r0oLi7mvUDR0dEVtrGxsUF4eDj09fUhJ/fj2/CLFy8wffp0bN++HYcOHYKXlxcuX77M7ysGg/HvYFcSg8EQCwsXLkRoaCgWL16Mp0+fIjExEQcPHsT8+fMBAIaGhigrK0NgYCBSU1Oxd+9ebNu2rcJ36Ovro6CgAFeuXEFWVhZv5HTp0gWbNm1CfHw87t27hwkTJvylKe6LFy+Gv78/fv/9dzx//hyPHz9GSEgI1q9fX2W/e+jQoRAIBBg7diwSEhJw7tw5rF27tsI2kyZNQnZ2NoYMGYK7d+/ixYsXuHDhAry9vSEUCiEUCjF8+HC4ubnB29sbISEhePToEdatW1dlOhmM2g4zgBgMhlhwc3PDmTNncPHiRbRt2xZ2dnYICAiAnp4eAKB169ZYv349Vq1ahVatWmH//v3w9/ev8B0ODg6YMGECPD09oaGhgdWrVwMA1q1bBx0dHTg6OmLo0KHw8/P7SzlDY8aMwY4dOxASEgILCws4OTlh9+7daN68eZX9bmVlZZw+fRqPHz+GtbU15s2bVynU1bRpU9y6dQtCoRCurq6wsLDAtGnToKamBhkZGSxfvhyvX79GUFAQ8DUsFhwcjPnz5+Phw4dVppXBqM0I6PtAOoPBYDAYDMZPDvMAMRgMBoPBqHUwA4jBYDAYDEatgxlADAaDwWAwah3MAGIwGAwGg1HrYAYQg8FgMBiMWgczgBgMBoPBYNQ6mAHEYDAYDAaj1sEMIAaDwWAwGLUOZgAxGAwGg8GodTADiMFgMBgMRq2DGUAMBoPBYDBqHf8fzDXICwd/ty8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAIhCAYAAAC15UU9AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8AxJREFUeJzsnXlcVFX/xz/3DgIioIICiiiLhoqkhkuWS6blVuaSptXj8pg+LWZKTz2apdKmbWalZZvtpk9mtpg8maZWmrs/CZQQRFAEVBAQZJv7/f0BMzIbzMEZ5kjf9+s1L+XMmTvv77ln7nzn3HPuVYiIwDAMwzAMwxhRXS3AMAzDMAwjG5wgMQzDMAzDmMEJEsMwDMMwjBmcIDEMwzAMw5jBCRLDMAzDMIwZnCAxDMMwDMOYwQkSwzAMwzCMGZwgMQzDMAzDmMEJEsMwDMMwjBmcIDHMNcLHH38MRVGQnp7uahWmmpSUFNx+++1o3rw5FEXBpk2bXK3U4HC/ZBornCAx0mI48Fp7zJ8/3ynvuXv3bixZsgQXL150yvb/zpSUlGDJkiXYsWOHq1UcxtSpU5GQkIAXXngBn332GXr16uW090pPTzf5DKiqCj8/P4wYMQJ79uxx2vtea5i3U83HjTfe6Go9q6xduxYrVqxwtQZjhpurBRimLp599lmEhYWZlHXr1s0p77V7927ExcVh2rRpaNGihVPeo7784x//wKRJk+Dh4eFqlXpRUlKCuLg4AMAtt9ziap2r5vLly9izZw8WLlyI2bNnN9j7Tp48GSNHjoRer8dff/2Ft99+G4MHD8b+/fsRHR3dYB6yY2inmrRu3dplPrWxdu1a/Pnnn5g7d66rVZgacILESM+IESOc+su8ISguLkazZs2uahs6nQ46nc5hTg2FpmkoLy93tYbDOXfuHAA4NJG2p5/ccMMNuP/++41/DxgwACNGjMA777yDt99+22Eu1zrm7eQoSktL4e7uDlXlEzCNHd7DzDXPli1bMGDAADRr1gw+Pj4YNWoUEhMTTeocPXoU06ZNQ3h4ODw9PREUFIR//vOfuHDhgrHOkiVL8MQTTwAAwsLCjMPy6enpxmH7jz/+2OL9FUXBkiVLTLajKAqSkpJw7733omXLlujfv7/x+c8//xwxMTFo2rQp/Pz8MGnSJGRmZtYZp7W5HqGhobjjjjuwY8cO9OrVC02bNkV0dLTxNNbGjRsRHR0NT09PxMTE4PDhwybbnDZtGry9vZGWloZhw4ahWbNmaNu2LZ599lkQkUnd4uJiPP744wgJCYGHhwciIyPx6quvWtRTFAWzZ8/GF198gaioKHh4eGD16tXGX+9xcXHGtjW0mz37p2bbnjhxwjjK17x5c0yfPh0lJSUWbfb555+jT58+8PLyQsuWLTFw4ED89NNPJnXs6T/mLFmyBB06dAAAPPHEE1AUBaGhocbnDx8+jBEjRsDX1xfe3t4YMmQI/vjjD6v7c+fOnXj44YcREBCAdu3a1fq+1hgwYAAAIDU11aT8o48+wq233oqAgAB4eHiga9eueOeddyxeb+hDv/32G/r06QNPT0+Eh4fj008/taibmJiIW2+9FU2bNkW7du3w/PPPQ9M0q15vv/22cf+3bdsWjzzyiMWp61tuuQXdunXD0aNHMWjQIHh5eaFjx47YsGEDAGDnzp3o27cvmjZtisjISPz888/C7WOLtLQ0TJgwAX5+fvDy8sKNN96IzZs3m9TZsWMHFEXBunXr8PTTTyM4OBheXl4oLCwEAOzduxfDhw9H8+bN4eXlhUGDBuH333832UZRURHmzp2L0NBQeHh4ICAgALfddhsOHTpkbIPNmzfj1KlTxs9Fzb7EuA4eQWKkp6CgAOfPnzcpa9WqFQDgs88+w9SpUzFs2DC89NJLKCkpwTvvvIP+/fvj8OHDxgPN1q1bkZaWhunTpyMoKAiJiYl47733kJiYiD/++AOKomDcuHH466+/8OWXX+L11183vkfr1q2NowUiTJgwAZ06dcKLL75oTCJeeOEFPPPMM5g4cSIeeOABnDt3Dm+99RYGDhyIw4cP12s04sSJE7j33nvxr3/9C/fffz9effVV3HnnnVi9ejWeeuopPPzwwwCApUuXYuLEiUhOTjb59avX6zF8+HDceOONePnllxEfH4/FixejsrISzz77LACAiDB69Gj88ssvmDFjBnr06IH//e9/eOKJJ3DmzBm8/vrrJk7bt2/Hf//7X8yePRutWrVC9+7d8c477+Chhx7C2LFjMW7cOADA9ddfb/f+qcnEiRMRFhaGpUuX4tChQ/jggw8QEBCAl156yVgnLi4OS5YswU033YRnn30W7u7u2Lt3L7Zv347bb78dEOg/5owbNw4tWrTAvHnzjKdyvL29geokYsCAAfD19cWTTz6JJk2a4N1338Utt9xi/MKvycMPP4zWrVtj0aJFKC4uFt7/hoS5ZcuWJuXvvPMOoqKiMHr0aLi5ueH777/Hww8/DE3T8Mgjj5jUPXHiBO6++27MmDEDU6dOxZo1azBt2jTExMQgKioKAJCdnY3BgwejsrIS8+fPR7NmzfDee++hadOmFk5LlixBXFwchg4dioceegjJycl45513sH//fvz+++9o0qSJsW5+fj7uuOMOTJo0CRMmTMA777yDSZMm4YsvvsDcuXPx4IMP4t5778Urr7yCu+++G5mZmfDx8amzXUpKSiyOG82bN0eTJk2Qk5ODm266CSUlJZgzZw78/f3xySefYPTo0diwYQPGjh1r8rrnnnsO7u7u+Pe//42ysjK4u7tj+/btGDFiBGJiYrB48WKoqmpMSn/99Vf06dMHAPDggw9iw4YNmD17Nrp27YoLFy7gt99+w7Fjx3DDDTdg4cKFKCgowOnTp42fI0NfYlwMMYykfPTRRwTA6oOIqKioiFq0aEEzZ840eV12djY1b97cpLykpMRi+19++SUBoF27dhnLXnnlFQJAJ0+eNKl78uRJAkAfffSRxXYA0OLFi41/L168mADQ5MmTTeqlp6eTTqejF154waQ8ISGB3NzcLMpttUdNtw4dOhAA2r17t7Hsf//7HwGgpk2b0qlTp4zl7777LgGgX375xVg2depUAkCPPvqosUzTNBo1ahS5u7vTuXPniIho06ZNBICef/55E6e7776bFEWhEydOmLSHqqqUmJhoUvfcuXMWbWXA3v1jaNt//vOfJnXHjh1L/v7+xr9TUlJIVVUaO3Ys6fV6k7qaphEJ9h9rGPrEK6+8YlI+ZswYcnd3p9TUVGNZVlYW+fj40MCBA41lhv3Zv39/qqysrPW9ar5fXFwcnTt3jrKzs+nXX3+l3r17EwD66quvTOpba9Nhw4ZReHi4SZmhD9Vs59zcXPLw8KDHH3/cWDZ37lwCQHv37jWp17x5c5N+mZubS+7u7nT77bebtP3KlSsJAK1Zs8ZYNmjQIAJAa9euNZYdP37c2If++OMPY7mhX1v7DFprJ2sPQ983xPLrr78aX1dUVERhYWEUGhpq9P7ll18IAIWHh5u0p6Zp1KlTJxo2bJixPxnaPCwsjG677TZjWfPmzemRRx6p1XnUqFHUoUOHWuswDQ+fYmOkZ9WqVdi6davJA9WjDhcvXsTkyZNx/vx540On06Fv37745ZdfjNuo+Su3tLQU58+fN65oMQx1O5oHH3zQ5O+NGzdC0zRMnDjRxDcoKAidOnUy8RWha9eu6Nevn/FvwwjFrbfeivbt21uUp6WlWWyj5iRjwymy8vJy4ymNH3/8ETqdDnPmzDF53eOPPw4iwpYtW0zKBw0ahK5du9odg+j+MW/bAQMG4MKFC8ZTH5s2bYKmaVi0aJHFXBHDaJRI/7EXvV6Pn376CWPGjEF4eLixvE2bNrj33nvx22+/GR0NzJw5U2hu2eLFi9G6dWsEBQVhwIABOHbsGF577TXcfffdJvVqtqlhFHbQoEFIS0tDQUGBSd2uXbsaT9WhetQ0MjLSpK/8+OOPuPHGG40jI4Z69913n8m2fv75Z5SXl2Pu3LkmbT9z5kz4+vpanMby9vbGpEmTjH9HRkaiRYsW6NKli8loW2391xqzZs2yOG50797dGEufPn1MTn17e3tj1qxZSE9PR1JSksm2pk6datKeR44cQUpKCu69915cuHDB2HeKi4sxZMgQ7Nq1y3jqsUWLFti7dy+ysrLs8mbkgU+xMdLTp08fq5O0U1JSgOpEwBq+vr7G/+fl5SEuLg7r1q1Dbm6uST3zLwtHYb7yLiUlBUSETp06Wa1f87SDCDWTIFSfRgCAkJAQq+X5+fkm5aqqmnyZA8B1110H1Dh9c+rUKbRt29bi1EaXLl2Mz9fEPPa6EN0/5jEbTi/l5+fD19cXqampUFW11iRNpP/Yy7lz51BSUoLIyEiL57p06QJN05CZmWk8bYV6tNWsWbMwYcIElJaWYvv27XjzzTeh1+st6v3+++9YvHgx9uzZYzE/q6CgwNgfYKU9Ud2mNfvKqVOnLE4PojqhqYmhL5iXu7u7Izw83KKvtGvXzuIUavPmze3uv7bo1KkThg4davU5W7HU7M81V8pa+yyjOnGyRUFBAVq2bImXX34ZU6dORUhICGJiYjBy5EhMmTLF4jPHyAcnSMw1i+EX2meffYagoCCL593crnTviRMnYvfu3XjiiSfQo0cPeHt7Q9M0DB8+3OYk05qYH8ANWPtiMmA+N0PTNCiKgi1btlgdMajvvANbow+2ys0nVTsDa/NSakN0/zgiNpH+40xE26rmF/8dd9wBnU6H+fPnY/DgwcYfEqmpqRgyZAg6d+6M5cuXIyQkBO7u7vjxxx/x+uuvW7SpK/uKjP3XHGufZQB45ZVX0KNHD6uvMXyeJ06ciAEDBuCbb77BTz/9hFdeeQUvvfQSNm7ciBEjRjSAPVNfOEFirlkiIiIAAAEBATZ/KaL6F+e2bdsQFxeHRYsWGcsNvwJrYisRMoxQmK/CMf81XJcvESEsLMw4QiMDmqYhLS3NxOmvv/4Cqlc4AUCHDh3w888/o6ioyGQU6fjx48bn68JW24rsH3uJiIiApmlISkqy+QVmb/8RoXXr1vDy8kJycrLFc8ePH4eqqhYjI1fLwoUL8f777+Ppp59GfHw8AOD7779HWVkZvvvuO5PRofqexkX1Pra2T8xjNfSF5ORkk1GS8vJynDx50mFtfTV06NDB5j6CHf3Z0Hd8fX3tiqdNmzZ4+OGH8fDDDyM3Nxc33HADXnjhBWOCZOuzwbgWnoPEXLMMGzYMvr6+ePHFF1FRUWHxvGHlmeGXqPkvT2tXrjVcg8Y8EfL19UWrVq2wa9cuk3KR686MGzcOOp0OcXFxFi5EZLGkvSFZuXKlicvKlSvRpEkTDBkyBACMFyasWQ8AXn/9dSiKYtcvYS8vL8BK24rsH3sZM2YMVFXFs88+azFaYngfe/uPCDqdDrfffju+/fZbk8sx5OTkYO3atejfv3+9Tt3VRosWLfCvf/0L//vf/3DkyBGjB8zatKCgAB999FG932fkyJH4448/sG/fPmPZuXPn8MUXX5jUGzp0KNzd3fHmm2+avP+HH36IgoICjBo1qt4OjmLkyJHYt2+fyRXIi4uL8d577yE0NLTO+XMxMTGIiIjAq6++ikuXLlk8b+g7er3e4hRxQEAA2rZti7KyMmNZs2bNnHaqn6k/PILEXLP4+vrinXfewT/+8Q/ccMMNmDRpElq3bo2MjAxs3rwZN998M1auXAlfX18MHDgQL7/8MioqKhAcHIyffvoJJ0+etNhmTEwMUP2rfNKkSWjSpAnuvPNONGvWDA888ACWLVuGBx54AL169cKuXbuMIy32EBERgeeffx4LFixAeno6xowZAx8fH5w8eRLffPMNZs2ahX//+98ObSN78PT0RHx8PKZOnYq+fftiy5Yt2Lx5M5566injtYvuvPNODB48GAsXLkR6ejq6d++On376Cd9++y3mzp1r/EVdG02bNkXXrl2xfv16XHfddfDz80O3bt3QrVs3u/ePvXTs2BELFy7Ec889hwEDBmDcuHHw8PDA/v370bZtWyxdutTu/iPK888/j61bt6J///54+OGH4ebmhnfffRdlZWV4+eWX6x1TbTz22GNYsWIFli1bhnXr1uH222+Hu7s77rzzTvzrX//CpUuX8P777yMgIABnz56t13s8+eST+OyzzzB8+HA89thjxmX+HTp0wNGjR431WrdujQULFiAuLg7Dhw/H6NGjkZycjLfffhu9e/d2ysUbRZk/fz6+/PJLjBgxAnPmzIGfnx8++eQTnDx5El9//XWdF4FUVRUffPABRowYgaioKEyfPh3BwcE4c+YMfvnlF/j6+uL7779HUVER2rVrh7vvvhvdu3eHt7c3fv75Z+zfvx+vvfaacXsxMTFYv349YmNj0bt3b3h7e+POO+9sgJZgasXVy+gYxhaGZdD79++vtd4vv/xCw4YNo+bNm5OnpydFRETQtGnT6MCBA8Y6p0+fprFjx1KLFi2oefPmNGHCBMrKyrK67Py5556j4OBgUlXVZPlySUkJzZgxg5o3b04+Pj40ceJEys3NtbnM37BE3pyvv/6a+vfvT82aNaNmzZpR586d6ZFHHqHk5GS72sN8mf+oUaMs6gKwWFpsbVn61KlTqVmzZpSamkq33347eXl5UWBgIC1evNhieXxRURHNmzeP2rZtS02aNKFOnTrRK6+8YrLM2dZ7G9i9ezfFxMSQu7u7SbvZu39sta21tiEiWrNmDfXs2ZM8PDyoZcuWNGjQINq6datJHXv6jzVsLfMnIjp06BANGzaMvL29ycvLiwYPHmxyKQYS6N/2vB8R0bRp00in0xkvufDdd9/R9ddfT56enhQaGkovvfQSrVmzxu4+NGjQIBo0aJBJ2dGjR2nQoEHk6elJwcHB9Nxzz9GHH35ote1XrlxJnTt3piZNmlBgYCA99NBDlJ+fb/EeUVFRFu8t0q9F28lAamoq3X333dSiRQvy9PSkPn360A8//GBSx7DM3/wSCgYOHz5M48aNI39/f/Lw8KAOHTrQxIkTadu2bUREVFZWRk888QR1796dfHx8qFmzZtS9e3d6++23TbZz6dIluvfee6lFixYEgJf8S4JCrpjxxjCMFEybNg0bNmywepqAYRjm7wzPQWIYhmEYhjGDEySGYRiGYRgzOEFiGIZhGIYxg+cgMQzDMAzDmMEjSAzDMAzDMGZwgsQwDMMwDGMGXyiynmiahqysLPj4+PBl4hmGYRjmGoGIUFRUhLZt29Z6UVBOkOpJVlaWw++pxDAMwzBMw5CZmYl27drZfJ4TpHpiuGFnZmamw++tdDXo9XokJiYiKirK5t2wXQF7icFe4sjqxl5iyOoFid3YS4zCwkKEhISY3HjbGpwg1RPDaTVfX1/pEiRvb2/4+vpK1SHZSwz2EkdWN/YSQ1YvSOzGXvWjrukxPEmbYRiGYRjGDE6QGhmKoiAkJES6iePsJQZ7iSOrG3uJIasXJHZjL+fAF4qsJ4WFhWjevDkKCgqkOsXGMAzDMIxt7P3+5hGkRoZer8fx48eh1+tdrWICe4nBXuLI6sZeYsjqBYnd2Ms5cILUCCktLXW1glXYSwz2EkdWN/YSQ1YvSOzGXo6HEySGYRiGYRgzOEFiGIZhGIYxgydp1xNZJ2kbLqEu2y1Q2EsM9hJHVjf2EkNWL0jsxl5i2Pv9zQlSPZE1QWIYhmEYxja8iu1vil6vR0JCgnSrBthLDPYSR1Y39hJDVi9I7MZezoETpEaIrJ2RvcRgL3FkdWMvMWT1gsRu7OV4OEFiGIZhGIYxgxMkhmEYhmEYM3iSdj2RdZI2EaG0tBSenp5SrRpgLzHYSxxZ3dhLDFm9ILEbe4lh7/e3W4NaMXYROn/zVbya4KYAlQQA4h0yfdmoq3jv2nF3d3fatq8G9hJDVi9I7MZeYsjqBYnd2Mvx8Cm2RoabAowL0+AmT7IOANA0DQkJCdA0zdUqJrCXGLJ6QWI39hJDVi9I7MZezoETJIZhGIZhGDM4QWIYhmEYhjGDEySGYRiGYRgzeBVbPXHmKrbGOEmbiKBpGlRVlWo1A3uJIasXJHZjLzFk9YLEbuwlBt9q5G+KAsDLrT6pkfMpLy93tYJV2EsMWb0gsRt7iSGrFyR2Yy/H4/IEadWqVQgNDYWnpyf69u2Lffv22aybmJiI8ePHIzQ0FIqiYMWKFRZ1DM+ZPx555BFjnVtuucXi+QcffNBpMTYkOgUYHqJBJ1mGpGkakpOTpVvNwF5iyOoFid3YSwxZvSCxG3s5B5cmSOvXr0dsbCwWL16MQ4cOoXv37hg2bBhyc3Ot1i8pKUF4eDiWLVuGoKAgq3X279+Ps2fPGh9bt24FAEyYMMGk3syZM03qvfzyy06IkGEYhmGYaxGXJkjLly/HzJkzMX36dHTt2hWrV6+Gl5cX1qxZY7V+79698corr2DSpEnw8PCwWqd169YICgoyPn744QdERERg0KBBJvW8vLxM6sl0NWyGYRiGYVyLy66kXV5ejoMHD2LBggXGMlVVMXToUOzZs8dh7/H5558jNjbWYoLYF198gc8//xxBQUG488478cwzz8DLy8vmtsrKylBWVmb8u7CwEKi+U7HhbsWKokBVVWiahppz3w3l5nc1tlkOAkGBm2I6f15PAFVfDLImlVQ150inAG4KQa8R3BRCJSlQQCan2wiAnhSoIKhWym25X21MRASdTmdRrqpVObr5EKytcp1OZ5z4Z15u7mirvGZMer0eiqIY/xWJyTDx0Bkx6fV6o7s5dcV0NfuprphqtpdoTLbcHRWTpmk2+5iz9pM9MVnrY87eT/bEZOhjRGSxHWfuJ3tisqePuaLv2epjrjhGwEYfE43JmX1Pr9dDVVWbfayhjxG2ym3hsgTp/Pnz0Ov1CAwMNCkPDAzE8ePHHfIemzZtwsWLFzFt2jST8nvvvRcdOnRA27ZtcfToUfznP/9BcnIyNm7caHNbS5cuRVxcnEV5YmIivL29AQB+fn5o3749Tp8+jby8PGMdwyhVeno6ioqKjOUhISHw9/dHSkoKSktLjeWBTYHsy8DoDhrcaozxxWeqKKmsulJ2TTaeVOHlVjX3qAoFI9sTNqZXbWtgmyv1C8uB+NM6hPoAvVpfKc8pUbAzW0Fubi6ys7ON5Y6KKTw8HNHR0UhISDDpnJGRkXB3d0dCQoJJTNHR0SgvL0dycrKxTKfTITo6GkVFRUhLSzOWe3p6onPnzsjPz0dmZqax3MfHBxEREXbFlJSUVK+YfH19kZSU5JSYoqOjceHChXrHVN/9VFtMSUlJxvZyxX6qK6bo6GgcP368QfeTvTElJSU12H4SiamwsLDB91NtMSUnJ4OIjH1MlmOEIabo6GikpqZKcYwwjykpKcnlxwhZ9lNtMaWmpsIeXLbMPysrC8HBwdi9ezf69etnLH/yySexc+dO7N27t9bXh4aGYu7cuZg7d67NOsOGDYO7uzu+//77Wre1fft2DBkyBCdOnEBERITVOtZGkEJCQpCXl2c8PeeobLbjwi31HkFSQAhoCuReBipIFR5BSntxhFMydEVRcOnSJXh5eZmM5rn616GmaSgqKoKPjw9UVZVmBImIUFJSgmbNmsEcV48gGdrLsA17Y7Ll7qiYAKC4uNhqH3PlCJK1PibDCJKhj3l7e9u1P2yVO7rvVVZW2tXHXNH3YKOPuXoEqWYfUxRFmhEkIkJxcTF8fHystrurRpDy8/Ph5+cn781qW7VqBZ1Oh5ycHJPynJwcmxOwRTh16hR+/vnnWkeFDPTt2xcAak2QPDw8rM570ul00Ol0JmWGjmKtrj3lVL1Iv5KsL0WrtJLSUnW5mwLcHKRh40nVuC1r9TUo0KyU23K/2pj0ej3S0tIQHR1t9TX2bgfVndxauai7Yej31KlTiI6ONtYTcXFUuXlMdbWXs/ZTXeWKohjbq2YdZ+8nexwd2cdsldcnJmt9zNn7yZ5yR/cxR8Uk0sdslTur7zVEH7NVXltMNfuYoY6rjhHmfezkyZM226uhjxF1lVts165aTsDd3R0xMTHYtm2bsUzTNGzbts1kRKm+fPTRRwgICMCoUXVf+PDIkSMAgDZt2lz1+zIMwzAMc+3jshEkAIiNjcXUqVPRq1cv9OnTBytWrEBxcTGmT58OAJgyZQqCg4OxdOlSoHrSteG8dHl5Oc6cOYMjR47A29sbHTt2NG5X0zR89NFHmDp1KtzcTENMTU3F2rVrMXLkSPj7++Po0aOYN28eBg4ciOuvv75B42cYhmEYRk5cmiDdc889OHfuHBYtWoTs7Gz06NED8fHxxonbGRkZJkNnWVlZ6Nmzp/HvV199Fa+++ioGDRqEHTt2GMt//vlnZGRk4J///KfFe7q7u+Pnn382JmMhISEYP348nn76aafH2xBQ9URsGe8f4+np6WoFq7CXGLJ6QWI39hJDVi9I7MZejofvxVZP5L0X29XhrHuxMQzDMIwM8L3Y/qaoIIT7EFTJxpA0TcOFCxeku+Q8e4khqxckdmMvMWT1gsRu7OUcOEFqZKhK1fWNVMnuxUZEyMzMtFi66WrYSwxZvSCxG3uJIasXJHZjL+fACRLDMAzDMIwZnCAxDMMwDMOY4dJVbIzjoerbhjhrQLO+E8h1CqF/IOG39aeht3EBzNpw5uRxHx8fp237amAvcWR1Yy8xZPWCxG7s5Xh4FVs9+buuYnOVG6+uYxiGYRwBr2L7m6KCENVSk24Vm6xemqYhOztbulUW7CWOrG7sJYasXpDYjb2cAydIjQxVAaJaknSr2GT1IiJkZ2dLt8qCvcSR1Y29xJDVCxK7sZdz4ASJYRiGYRjGDE6QGIZhGIZhzOAEqZGhAThZqEC2M76yeimKAj8/PyiKXOf+2EscWd3YSwxZvSCxG3s5B17m38jQSMH+8/J1Rlm9VFVF+/btXa1hAXuJI6sbe4khqxckdmMv58AjSI0MVSH0bqVBVeSaFCerl6ZpyMjIkG6VBXuJI6sbe4khqxckdmMv58AJUiNDBRDmS9LtWFm9iAh5eXnSrbJgL3FkdWMvMWT1gsRu7OUcZPu+YhiGYRiGcTmcIDEMwzAMw5jBCVIjQyMgMV+BJtmIpqxeiqIgKChIulUW7CWOrG7sJYasXpDYjb2cA69ia2RoUJCYL19nlNVLVVUEBQW5WsMC9hJHVjf2EkNWL0jsxl7OgUeQGhk6hTAoSINOstVisnrp9XqkpqZCr9e7WsUE9hJHVjf2EkNWL0jsxl7OgROkRoYCINCLINtYjaxeAFBUVORqBauwlziyurGXGLJ6QWI39nI8nCAxDMMwDMOYwQkSwzAMwzCMGZwgNTI0Ag6cU6VbLSarl6IoCAkJkW6VBXuJI6sbe4khqxckdmMv58Cr2BoZGhSkSXjKV1YvVVXh7+/vag0L2EscWd3YSwxZvSCxG3s5B06QGhk6hXBbsIatZ1ToSZ6s3dleofM3u8Qrfdmoer1vXej1eqSkpKBTp07Q6XROeY/6IKsXJHZjLzFk9YLEbuzlHPgUWyNDAeDrDulWi7GXOKWlpa5WsIqsXpDYjb3EkNULEruxl+PhBIlhGIZhGMYMTpAYhmEYhmHM4ASpkaEnYNdZFXrJVouxlxiqqiI8PByqKtdHVFYvSOzGXmLI6gWJ3djLOfAk7UYGQUH2ZVdbWMJeYiiKAl9fX1drWCCrFyR2Yy8xZPWCxG7s5RyuzbSOsYmbQhgXqoebZPc8Yy8x9Ho9EhISpLuHkaxekNiNvcSQ1QsSu7GXc+AEqRHiJuleZS8xZD2oyOoFid3YSwxZvSCxG3s5Hkm/GhiGYRiGYVwHJ0gMwzAMwzBmcILUyNATEJ8p36os9hJDVVVERkZKt/pDVi9I7MZeYsjqBYnd2Ms5XJvWjE0IQEll1b8ywV7iuLu7u1rBKrJ6QWI39hJDVi9I7MZejocTpEaGmwKMC9PgJtm9M9hLDE3TkJCQAE3TXK1igqxekNiNvcSQ1QsSu7GXc+AEiWEYhmEYxgyXJ0irVq1CaGgoPD090bdvX+zbt89m3cTERIwfPx6hoaFQFAUrVqywqLNkyRIoimLy6Ny5s0md0tJSPPLII/D394e3tzfGjx+PnJwcp8THMAzDMMy1h0sTpPXr1yM2NhaLFy/GoUOH0L17dwwbNgy5ublW65eUlCA8PBzLli1DUFCQze1GRUXh7Nmzxsdvv/1m8vy8efPw/fff46uvvsLOnTuRlZWFcePGOTw+hmEYhmGuTRQictn81L59+6J3795YuXIlUH2+MiQkBI8++ijmz59f62tDQ0Mxd+5czJ0716R8yZIl2LRpE44cOWL1dQUFBWjdujXWrl2Lu+++GwBw/PhxdOnSBXv27MGNN95ol3thYSGaN2+OgoICh19KPXT+5qt4NcFNASoJAMQn1qQvG1Xr8/V3+3t61RcigqZpUFUViiLPBClZvSCxG3uJIasXJHZjLzHs/f522b3YysvLcfDgQSxYsMBYpqoqhg4dij179lzVtlNSUtC2bVt4enqiX79+WLp0Kdq3bw8AOHjwICoqKjB06FBj/c6dO6N9+/a1JkhlZWUoKysz/l1YWAhUXyXUcKVQRVGgqio0TUPNvNNQbn5FUZvlIBAUi9tf6KlqtZX5hOJKqvpq1ylVr/VpAhRVABWkQAFBV6M+AdCTAhUE1Uq5LXdDucFJI0CDAp1CJmmF7XKCl5uCy5VksmLMnphQ42qsOp3O+KEzx1ZM5uUaAI0UqApBV6O99IIxGS4NYL7/DEtazR1tlVuLiYhQUVFhdQWITqercz+Zl9vb9wwHMlsx6fV6lJaWwtPT07gNe2Oy5e6omFB9XGnSpInJwbiumK5mP9kTk6ZpxjZTVbVB9pM9MRn6mIeHR4PuJ3tisqePuaLvwUYfc+Z+siemmn1MURSXHiPM+1h5eTk8PT2lOEbUduywhssSpPPnz0Ov1yMwMNCkPDAwEMePH6/3dvv27YuPP/4YkZGROHv2LOLi4jBgwAD8+eef8PHxQXZ2Ntzd3dGiRQuL983Ozra53aVLlyIuLs6iPDExEd7e3gAAPz8/tG/fHqdPn0ZeXp6xTlBQEIKCgpCeno6ioiJjeUhICPz9/ZGSkoLS0tIrLk2B7MvA6A6ayW0w4jNVlFRWrbqqycaTKrzcgOEhGlQAYT6EvwoUfJ1eta2Bba7ULywH4k/rEOoD9Gp9pTynRMHObAW5ubkm7WAek+G9E/MVJOYr6B9ICPS60jEPnFORVgTcFqzBt8Z3++/ZCm4O0qDXAJ16pb49MQFAQkICdDodoqOjUVRUhLS0NGNdT09PALAZU5eWhKiWV97zZKGC/ecVxPgTInwJYT6Ek0UKEvIhFNOus1U7JykpyeQDFxkZCXd3dyQkJJjEFB0djfLyciQnJxvLbMXk7u6O8vJyBAcH48yZM8ZyHx8fRERE1LmfDIj2vfDwcPj6+tYaU15eHvz8/KAoilBMnp6e6Ny5M/Lz85GZmenwmAxtZWg7kZjqu5/siens2bPGNvP392+w/VRXTIqigIgQGhqK9PT0BttPdcWUmJiI8+fPG/tYQ+0ne2IKCAhAbm4umjVrhuLi4gbZT/bElJGRYexjvr6+Lj9GGDAkLddddx1SUlIabD/VFVNqairswWWn2LKyshAcHIzdu3ejX79+xvInn3wSO3fuxN69e2t9va1TbOZcvHgRHTp0wPLlyzFjxgysXbsW06dPNxkNAoA+ffpg8ODBeOmll6xux9oIUkhICPLy8oxDdI7KZjsu3FLvESQ3hXBXqIZv01WUaqrwCFLaiyNqzdAjn94C1GMESQFhbBjhu3QFlXTlGXtHkJKfHwHU8qsjYmF8vUaQ3Gu0V7mmCI8gnVx2h1N+Her1eiQlJSEqKsriImuu/HVYUVGBxMREREVFQafTSTWCpGkaEhMT0bVrV+h0OrtjcvbIRGVlpbHN3NzcpBlBMvSxbt26WZz+cOUIUnl5uV19zBV9z1Yfc/UIUs0+ptPppBlB0uv1SExMRHR0tNU+5qoRpPz8fPj5+cl7iq1Vq1bQ6XQWq8dycnJqnYAtSosWLXDdddfhxIkTQHVmWV5ejosXL5qMItX1vh4eHvDw8LAoN3TGmti6aqh5PVvlhq/hmolETSqtpLRUo5xwJQmp+r9lfQ0KNCvlttwN5eZOehuO5uVVCRChkhSrcdUVk/nByFpb2orJZjkpqKzRXlp1u9sbkwF792tt5bZiUlXVZrk1rrbv2VNucK1ZRzQmEff6xGTtOWfvJ2sY9p/hdYZ6DbGf7C135X6yVW5vH7NV3hAxOauP2Sqv6xhh3mauPEaYe9tyl63vWWzXrlpOwN3dHTExMdi2bZuxTNM0bNu2zWRE6Wq5dOkSUlNT0aZNGwBATEwMmjRpYvK+ycnJyMjIcOj7upJKSa/JxV5i2Pshbmhk9YLEbuwlhqxekNiNvRyPy0aQACA2NhZTp05Fr1690KdPH6xYsQLFxcWYPn06AGDKlCkIDg7G0qVLgerJcUlJScb/nzlzBkeOHIG3tzc6duwIAPj3v/+NO++8Ex06dEBWVhYWL14MnU6HyZMnAwCaN2+OGTNmIDY21ni+9tFHH0W/fv3sXsEmM5WkYGO6fB2SvcQwnKOXDVm9ILEbe4khqxckdmMv5+DSBOmee+7BuXPnsGjRImRnZ6NHjx6Ij483TtzOyMgwGTrLyspCz549jX+/+uqrePXVVzFo0CDs2LEDAHD69GlMnjwZFy5cQOvWrdG/f3/88ccfaN26tfF1r7/+OlRVxfjx41FWVoZhw4bh7bffbtDYnYUCQmBTIOfylVN1MsBeYhARioqK4OPjI9XyWFm9ILEbe4khqxckdmMv5+DyK2nPnj0bp06dQllZGfbu3Yu+ffsan9uxYwc+/vhj49+hoaEgIouHITkCgHXr1iErKwtlZWU4ffo01q1bh4iICJP39PT0xKpVq5CXl4fi4mJs3LjRofOeXIlOqVq1ppOsL7KXGJqmIS0tTbp7GMnqBYnd2EsMWb0gsRt7OQeXJ0gMwzAMwzCywQkSwzAMwzCMGZwgNTKo+mKQLrt/jA3YSxzDBTBlQ1YvSOzGXmLI6gWJ3djL8bh0kjbjePSkIP60fKuy2EsMnU6Hzp07u1rDAlm9ILEbe4khqxckdmMv58AjSI0MFYRwH4Iq2ZgIe4mhaRouXLgg3eRGWb0gsRt7iSGrFyR2Yy/nwAlSI0NVqu5Hpkq2Kou9xCAiZGZmWlxu39XI6gWJ3dhLDFm9ILEbezkHTpAYhmEYhmHM4ASJYRiGYRjGDE6QGhkEIKdEkWxGDXvVBx8fH1crWEVWL0jsxl5iyOoFid3Yy/HwKrZGhp4U7MyWbEINewmj0+ksrgAvA7J6QWI39hJDVi9I7MZezoFHkBoZKghRLTXpVmWxlxiapiE7O1u61R+yekFiN/YSQ1YvSOzGXs6BE6RGhqoAUS1JulVZ7CUGESE7O1u61R+yekFiN/YSQ1YvSOzGXs6BEySGYRiGYRgzOEFiGIZhGIYxgxOkRoYG4GShAtnO+LKXGIqiwM/PD4oi17k/Wb0gsRt7iSGrFyR2Yy/nwKvYGhkaKdh/Xr7OyF5iqKqK9u3bu1rDAlm9ILEbe4khqxckdmMv58AjSI0MVSH0bqVBVeSaFMdeYmiahoyMDOlWf8jqBYnd2EsMWb0gsRt7OQdOkBoZKoAwX5Jux7KXGESEvLw86VZ/yOoFid3YSwxZvSCxG3s5B9m+FxiGYRiGYVwOJ0gMwzAMwzBmcILUyNAISMxXoEk2osleYiiKgqCgIOlWf8jqBYnd2EsMWb0gsRt7OQdexdbI0KAgMV++zsheYqiqiqCgIFdrWCCrFyR2Yy8xZPWCxG7s5Rx4BKmRoVMIg4I06CRblcVeYuj1eqSmpkKv17taxQRZvSCxG3uJIasXJHZjL+fACVIjQwEQ6EWQbUyEvcQpKipytYJVZPWCxG7sJYasXpDYjb0cDydIDMMwDMMwZnCCxDAMwzAMYwYnSI0MjYAD51TpVmWxlxiKoiAkJES61R+yekFiN/YSQ1YvSOzGXs6BV7E1MjQoSJPwlC97iaGqKvz9/V2tYYGsXpDYjb3EkNULEruxl3PgEaRGhk4hDG+nl25VFnuJodfrcfz4celWf8jqBYnd2EsMWb0gsRt7OQdOkBoZCgBfd0i3Kou9xCktLXW1glVk9YLEbuwlhqxekNiNvRwPJ0gMwzAMwzBmcILEMAzDMAxjBidIjQw9AbvOqtDLNaWGvQRRVRXh4eFQVbk+orJ6QWI39hJDVi9I7MZezoFXsTUyCAqyL7vawhL2EkNRFPj6+rpawwJZvSCxG3uJIasXJHZjL+dwbaZ1jE3cFMK4UD3cJFuVxV5i6PV6JCQkSLf6Q1YvSOzGXmLI6gWJ3djLOXCC1Ahxk3SvspcYsh5UZPWCxG7sJYasXpDYjb0cj6RfDQzDMAzDMK7D5QnSqlWrEBoaCk9PT/Tt2xf79u2zWTcxMRHjx49HaGgoFEXBihUrLOosXboUvXv3ho+PDwICAjBmzBgkJyeb1LnlllugKIrJ48EHH3RKfAzDMAzDXHu4NEFav349YmNjsXjxYhw6dAjdu3fHsGHDkJuba7V+SUkJwsPDsWzZMgQFBVmts3PnTjzyyCP4448/sHXrVlRUVOD2229HcXGxSb2ZM2fi7NmzxsfLL7/slBgbGj0B8ZnyrcpiLzFUVUVkZKR0qz9k9YLEbuwlhqxekNiNvZyDS1exLV++HDNnzsT06dMBAKtXr8bmzZuxZs0azJ8/36J+79690bt3bwCw+jwAxMfHm/z98ccfIyAgAAcPHsTAgQON5V5eXjaTrGsZAlBSWfWvTLCXOO7u7q5WsIqsXpDYjb3EkNULEruxl+NxWVpXXl6OgwcPYujQoVdkVBVDhw7Fnj17HPY+BQUFAAA/Pz+T8i+++AKtWrVCt27dsGDBApSUlNS6nbKyMhQWFpo8UD0BzfDQNA0AoGma1fKaZbWVK9Vf124KmTyqysmivGqxetX/PVXC+DA9PNWqbShm9Q33HFNtlNtyN5Qb6qvVjjozF1vlTRTCuDANnqp4TG4KGX0AgIgs2qy2mMzLVUO5WXuJxmTYT+YuRGTV0Va5tZgqKiqQkJCAyspKq/Xr2k/17XtEtcdUUVGBo0ePoqKiQjgmW+6OiqmyshIJCQlGN3tjupr9ZE9MNdusofaTPeWGPmZe19n7qa6Y7O1jruh7tvqYM/eTPTGZt5krjxHmfezo0aM2+1hDHyNqltuDy0aQzp8/D71ej8DAQJPywMBAHD9+3CHvoWka5s6di5tvvhndunUzlt97773o0KED2rZti6NHj+I///kPkpOTsXHjRpvbWrp0KeLi4izKExMT4e3tDVQnYe3bt8fp06eRl5dnrBMUFISgoCCkp6ejqOjKreNDQkLg7++PlJQUk/vVBDYFsi8DoztoJius4jNVlFQC48I0E4eNJ1V4uQHDQzSoAMJ8gFHtCV+nV21rYJsr9QvLgfjTOoT6AL1aXynPKVGwM1tBbm4usrOzjeXmMRneOzFfQWK+gv6BhECvK+MvB86pSCsCbgvW4Fvjh8Pv2VV3OxvVnqBTr9S3JyYASEhIgE6nQ3R0NIqKipCWlmas6+npCQA2Y+rSkhDV8sp7nixUsP+8ghh/QoQvIcwHGBNKSMiHUEy7zlbtnKSkJJMPXGRkJNzd3ZGQkGASU3R0NMrLy03mxNmKyfCr6+LFizhz5oyx3MfHBxEREXXuJwOifS88PBy+vr42Y0pMTEReXh4SExOhKIpQTJ6enujcuTPy8/ORmZnp8JiCg4MBACdOnEB5ebndMV3NfrInprNnzxrbzN/fv0H2kz0xKUrVZ/LSpUtIT09vsP1UV0zHjh0z6WMNtZ/siSkgIAAAcOrUKZNpG87cT/bElJGRYWwzX19flx4jasZkSKbKysqQkpLSYPuprphSU1NhDwoZIhDg4sWL2LBhA1JTU/HEE0/Az88Phw4dQmBgoPEgVRdZWVkIDg7G7t270a9fP2P5k08+iZ07d2Lv3r21vj40NBRz587F3LlzbdZ56KGHsGXLFvz2229o166dzXrbt2/HkCFDcOLECURERFitU1ZWhrKyMuPfhYWFCAkJQV5envFCWIqiQFVVaJqGms1qKDfPWm2Vd1y4BQTF4to8eqo6FeRmdmfVSqq62apOqRp1uitUw7fpKko1FQoIuhr1CYCeFKggqFbK014cYdXdEFPk01sAABoBGhToFDK50autcgWEsWGE79IVVNKVZ+yJCQCSnx8BVH+wiMj4S8BAxMJ4mzGZl2sANFKgKgT3Gu1VrilCMekJOLnsDov9Zzjfbu5oq9xaTHq9HklJSYiKirI4f6/T6Wz2savte6qqQlEUmzFVVFQgMTERUVFR0Ol0QjHZcndUTJqmITExEV27doVOp7M7pqvZT/bEVFlZaWwzNze3BtlP9sRk6GPdunUzJkv2xuTMvldeXm5XH3NF37PVx5y5n+yJqWYf0+l0Lj1GmPexxMREREdHW+1jDX2MMJTn5+fDz88PBQUFtV7IUngE6ejRoxg6dCiaN2+O9PR0zJw5E35+fti4cSMyMjLw6aef2rWdVq1aQafTIScnx6Q8JyfHIXODZs+ejR9++AG7du2qNTkCgL59+wLVvzxtJUgeHh7w8PCwKDd0xprYmpBmXs9WueFruGYiUZNKKykt1SgnXElCqv5vWV+DAs1KuS13Q7m5k96Go3l5VQJEqCTFalx1xWR+MLLWlrZisllOCiprtJdW3e72xmTA3v1aW7mtmFRVtVlujavte/aUG1xr1hGNScS9PjFZe87Z+8kahv1neJ2hXkPsJ3vLXbmfbJXb28dslTdETM7qY7bK6zpGmLeZK48R5t623GXrexbbtatWDWJjYzFt2jSkpKQYT20AwMiRI7Fr1y67t+Pu7o6YmBhs27bNWKZpGrZt22YyoiQKEWH27Nn45ptvsH37doSFhdX5miNHjgAA2rRpU+/3lYVKqjo9ZS3hcCXsJYaqqoiOjpZu9YesXpDYjb3EkNULEruxl3MQHkHav38/3n33XYvy4OBgk3OD9hAbG4upU6eiV69e6NOnD1asWIHi4mLjqrYpU6YgODgYS5cuBaondiclJRn/f+bMGRw5cgTe3t7o2LEjAOCRRx7B2rVr8e2338LHx8fo1Lx5czRt2hSpqalYu3YtRo4cCX9/fxw9ehTz5s3DwIEDcf3114s2h3QoALzcgKIKuVZm/V29QudvrtfrFBB8mhi8rI9c1UX6slH1el1dlJeXm/w4kglZ3dhLDFm9ILEbezke4bTOw8PDuIKrJn/99Rdat24ttK177rkHr776KhYtWoQePXrgyJEjiI+PN07czsjIwNmzZ431s7Ky0LNnT/Ts2RNnz57Fq6++ip49e+KBBx4w1nnnnXdQUFCAW265BW3atDE+1q9fD1SPXP3888+4/fbb0blzZzz++OMYP348vv/+e9GmkBKdUjWxWVe/71SnwV5iyOqlaRqSk5Mt5g3IgKxu7CWGrF6Q2I29nIPwCNLo0aPx7LPP4r///S9QfQ4xIyMD//nPfzB+/HhhgdmzZ2P27NlWn9uxY4fJ36GhoRYTt8yp6/mQkBDs3LlT2JNhGIZhmL8PwiNIr732Gi5duoSAgABcvnwZgwYNQseOHeHj44MXXnjBOZYMwzAMwzANiPAIUvPmzbF161b8/vvv+L//+z9cunQJN9xwg8kFHxnXUinpaCZ7iSGrl70rQFyBrG7sJYasXpDYjb0cj1CCVFFRgaZNm+LIkSO4+eabcfPNNzvPjKkXlaRgY7p8HZK9xJDVy3CBNxmR1Y29xJDVCxK7sZdzEDrF1qRJE7Rv397uy3QzDY8CQlDTK7fBkAX2EkNWLyJCYWFhnXP9XIGsbuwlhqxekNiNvZyD8BykhQsX4qmnnjK5rDcjDzql6tYisq1+Yi8xZPXSNA1paWlSrkqR1Y29xJDVCxK7sZdzEJ6DtHLlSpw4cQJt27ZFhw4d0KxZM5PnDx065Eg/hmEYhmGYBkc4QRozZoxzTBiGYRiGYSRBOEFavHixc0wYh0AACsvlulo12EsYWb1QfcdtWZHVjb3EkNULEruxl+MRTpAMHDx4EMeOHQMAREVFoWfPno70YuqJnhTEn5Zv9RN7iSGrl06nQ+fOnV2tYRVZ3dhLDFm9ILEbezkH4Unaubm5uPXWW9G7d2/MmTMHc+bMQUxMDIYMGYJz5845x5KxGxWEcB+CKtnYA3uJIauXpmm4cOGClJMuZXVjLzFk9YLEbuzlHIQTpEcffRRFRUVITExEXl4e8vLy8Oeff6KwsBBz5sxxjiVjN6oC9GqtQZVs9RN7iSGrFxEhMzNTymW7srqxlxiyekFiN/ZyDsKn2OLj4/Hzzz+jS5cuxrKuXbti1apVuP322x3txzAMwzAM0+AIjyBpmoYmTZpYlDdp0uSaHUZjGIZhGIapiXCCdOutt+Kxxx5DVlaWsezMmTOYN28ehgwZ4mg/RhACkFMi2/WX2UsUWb0AwMfHx9UKNpHVjb3EkNULEruxl+MRTpBWrlyJwsJChIaGIiIiAhEREQgLC0NhYSHeeust51gydqMnBTuzVehJrskr7CWGrF46nQ4RERFS3oBSVjf2EkNWL0jsxl7OQThBCgkJwaFDh7B582bMnTsXc+fOxY8//ohDhw6hXbt2zrFk7EYFIaqlJt3qJ/YSQ1YvTdOQnZ0t5el0Wd3YSwxZvSCxG3s5B+EECQAURcFtt92GRx99FI8++iiGDh3qeDOmXqgKENWSpFv9xF5iyOpFRMjOzpZyVYqsbuwlhqxekNiNvZyDcII0Z84cvPnmmxblK1euxNy5cx3lxTAMwzAM4zKEE6Svv/4aN998s0X5TTfdhA0bNjjKi2EYhmEYxmUIJ0gXLlxA8+bNLcp9fX1x/vx5R3kx9UQDcLJQgWxnfNlLDFm9FEWBn58fFEWyc38Su7GXGLJ6QWI39nIOwglSx44dER8fb1G+ZcsWhIeHO8qLqScaKdh/XoUm2eon9hJDVi9VVdG+fXuoar2mLzoVWd3YSwxZvSCxG3s5B2Hr2NhYPPnkk1i8eDF27tyJnTt3YtGiRZg/fz7mzZvnHEvGblSF0LuVBlWRa1Ice4khq5emacjIyJByVYqsbuwlhqxekNiNvZyDcIL0z3/+E6+99ho+/PBDDB48GIMHD8bnn3+Od955BzNnznSOJWM3KoAwX6rf8kQnwl5iyOpFRMjLy5NyVYqsbuwlhqxekNiNvZyD8L3YAOChhx7CQw89hHPnzqFp06bw9vZ2vBnDMAzDMIyLEP6BevnyZZSUlAAAWrdujQsXLmDFihX46aefnOHHMAzDMAzT4AgnSHfddRc+/fRTAMDFixfRp08fvPbaa7jrrrvwzjvvOMOREUAjIDFfgSbZiCZ7iSGrl6IoCAoKknJViqxu7CWGrF6Q2I29nINwgnTo0CEMGDAAALBhwwYEBQXh1KlT+PTTT61eQJJpWDQoSMxXoUGuDsleYsjqpaoqgoKCpFyVIqsbe4khqxckdmMv5yBsXVJSYrw7708//YRx48ZBVVXceOONOHXqlDMcGQF0CmFQkAadZKuf2EsMWb30ej1SU1Oh1+tdrWKBrG7sJYasXpDYjb2cQ72ug7Rp0yZkZmbif//7H26//XYAQG5uLnx9fZ3hyAigAAj0IsnGHdhLFFm9AKCoqMjVCjaR1Y29xJDVCxK7sZfjEU6QFi1ahH//+98IDQ1F37590a9fP6B6NKlnz57OcGQYhmEYhmlQhJf533333ejfvz/Onj2L7t27G8uHDBmCsWPHOtqPYRiGYRimwanXdZCCgoIQFBRkUtanTx9HOTFXgUbAgXOqdKuf2EsMWb0URUFISIiUq1JkdWMvMWT1gsRu7OUc6pUgMfKiQUGahKd82UsMWb1UVYW/v7+rNawiqxt7iSGrFyR2Yy/ncG2uvWNsolMIw9vppVv9xF5iyOql1+tx/PhxKVelyOrGXmLI6gWJ3djLOXCC1MhQAPi6Q7rVT+wlhqxeAFBaWupqBZvI6sZeYsjqBYnd2MvxcILEMAzDMAxjRr0SpM8++ww333wz2rZta7w45IoVK/Dtt9862o9hGIZhGKbBEU6Q3nnnHcTGxmLkyJG4ePGi8dxiixYtsGLFCmc4MgLoCdh1VoVerqkr7CWIrF6qqiI8PFzKWwfI6sZeYsjqBYnd2Ms5CFu/9dZbeP/997Fw4ULodDpjea9evZCQkCAssGrVKoSGhsLT0xN9+/bFvn37bNZNTEzE+PHjERoaCkVRbCZkdW2ztLQUjzzyCPz9/eHt7Y3x48cjJydH2F1GCAqyLyuQ7RrM7CWGrF6KosDX11fKZbuyurGXGLJ6QWI39nIOwgnSyZMnrV4x28PDA8XFxULbWr9+PWJjY7F48WIcOnQI3bt3x7Bhw5Cbm2u1fklJCcLDw7Fs2TKL6zCJbHPevHn4/vvv8dVXX2Hnzp3IysrCuHHjhNxlxU0hjAvVw02y1U/sJYasXnq9HgkJCVKuSpHVjb3EkNULEruxl3MQTpDCwsJw5MgRi/L4+Hh06dJFaFvLly/HzJkzMX36dHTt2hWrV6+Gl5cX1qxZY7V+79698corr2DSpEnw8PCo1zYLCgrw4YcfYvny5bj11lsRExODjz76CLt378Yff/wh5C8rbpKOZrKXGLJ6yXywk9WNvcSQ1QsSu7GX4xG+UGRsbCweeeQRlJaWgoiwb98+fPnll1i6dCk++OADu7dTXl6OgwcPYsGCBcYyVVUxdOhQ7NmzR1TL7m0ePHgQFRUVGDp0qLFO586d0b59e+zZswc33nij1W2XlZWhrKzM+HdhYSFQvfMNHUBRFKiqCk3TQHTll7+h3Lyj2CwHgaBYjB7oCSAAbmajlZVUtRxcp1SNPCgguCmESlKggKCrUZ8A6EmBCoJqpdyWu6Hc4KRR1cUMdYrpSSBb5QqqXlefmFDjQ6bT6UBE0DQN5tiKybxcA6CRAlUhk/YSjckwP8h8/xnOt2uaZhKveUxXyi33k+H6RyrIpG3sicmQV+n1euG+p6oqFEWxGZNerwcRGZ+vGWtNbO0nnU5n0cdslYt+ngzvJRqTuaOjY6rZZo46RjgiJsNra+5Pe2O6mv1kT0z29DFX9D1bfcyZ+8memMzbrKH2U13uBi9bfayhjxG2ym0hnCA98MADaNq0KZ5++mmUlJTg3nvvRdu2bfHGG29g0qRJdm/n/Pnz0Ov1CAwMNCkPDAzE8ePHRbXs3mZ2djbc3d3RokULizrZ2dk2t7106VLExcVZlCcmJsLb2xsA4Ofnh/bt2+P06dPIy8sz1jHcmiU9Pd3kzsYhISHw9/dHSkqKybUiApsC2ZeB0R00k1GE+EwVJZXAuDDTDrXxpAovN2B4iAYVQJgPMKo94ev0qm0NbHOlfmE5EH9ah1AfoFfrK+U5JQp2ZivIzc01aQfzmAzvnZivIDFfQf9AQqDXlY554JyKtCLgtmANvu5XHH/Prvo2H9WeoFOv1LcnJgBISEiATqdDdHQ0ioqKkJaWZqzr6ekJADZj6tKSENXyynueLFSw/7yCGH9ChC8hzAcYE0pIyIdQTLvOVu2cpKQkkw9cZGQk3N3dkZCQYBKXeUwAUKkBG9N1FvvpUkXVvx18gJ6txGIK8yVjm4n2vfDwcPj6+tqMKTExEXl5eUhMTISiKIiOjkZ5eTmSk5ONdWvbT507d0Z+fj4yMzON5T4+PoiIiKiz7xmwFVNwcDAA4MSJEygvL7c7JvO5k46O6ezZs8Y28/f3d8gxwhExGeaFXLp0Cenp6Q22n+qK6dixYyZ9rKH2kz0xBQQEAABOnTplMqXEmfvJnpgyMjKMbebr69sg+8memAxJS1lZGVJSUhpsP9UVU2pqKuxBIfM0TYCSkhJcunTJ2GlEyMrKQnBwMHbv3o1+/foZy5988kns3LkTe/furfX1oaGhmDt3LubOnSu0zbVr12L69Okmo0Govpfc4MGD8dJLL1l9P2sjSCEhIcjLy4Ovry/gwGy248It9R5BUkDwaQIUVQAVpAqPIKW9OKLWDD3y6S1APUaQNCJ4N1FwuZJMJh7bO4KU/PwIoJZfHREL4+s1gqSr0V56UoRHkE4uu6PWX1KG9rIW05VyyxEkgODlpqC4gkwmOIqMICU/P8IpI0ilpaXw9PQ0bgOSjCChehS5SZMmJm3m6hEkTdOMbaaqqjQjSESEiooKeHh42LU/bJU7emSisrLSrj7mir4HG33M1SNINfuYoijSjCAREcrLy+Hp6Wm13V01gpSfnw8/Pz8UFBQYv7+tITyCdPLkSVRWVqJTp07w8vKCl5cXACAlJQVNmjRBaGioXdtp1aoVdDqdxeqxnJwcmxOwHbHNoKAglJeX4+LFiyajSHW9r4eHh9V5TzqdzmQ1H2p0FGt17Sk3fA1XkvWZ/5VWUlqqUV5YceX/BMVqfQ2K1Ruh2nI3lJs76W04WisvqTS83vK5umKq2UaGA4A5tmKyWU4KNJP2UoRjMnczLzdvL7IZq+V+KqkE9FAAK+9bV0zmXvb2PXvKmzZtajxI1lbf1n6qq4/ZW27xuSGCu7u7hVttjqLl9YlJURSLNrvaY4Qjyomqku+aSYi5uzWudj/ZU25vH7NV7qy+1xB9zFZ5bTGJ9LGG7HtEBA8PD5t9rKGPEXWVW2zXrlo1mDZtGnbv3m1RvnfvXkybNs3u7bi7uyMmJgbbtm0zlmmahm3btpmM/ohgzzZjYmLQpEkTkzrJycnIyMio9/vKhJtSdbrKfETG1bCXGLJ6aZqGhIQEq3PAXI2sbuwlhqxekNiNvZyD8AjS4cOHcfPNN1uU33jjjZg9e7bQtmJjYzF16lT06tULffr0wYoVK1BcXIzp06cDAKZMmYLg4GAsXboUqB7aTEpKMv7/zJkzOHLkCLy9vdGxY0e7ttm8eXPMmDEDsbGx8PPzg6+vLx599FH069fP5gRthmEYhmH+XggnSIqimEx6MlBQUCC8nO+ee+7BuXPnsGjRImRnZ6NHjx6Ij483TrLOyMgwGTrLysoyuQbTq6++ildffRWDBg3Cjh077NomALz++utQVRXjx49HWVkZhg0bhrffflu0KRiGYRiGaaQIJ0gDBw7E0qVL8eWXXxrP4+n1eixduhT9+/cXFpg9e7bNkSdD0mMgNDTUYuKW6DZRPVN+1apVWLVqlbAvwzAMwzCNH+EE6aWXXsLAgQMRGRmJAQMGAAB+/fVXFBYWYvv27c5wZASopKrl5NYmArsS9hJDVi9VVREdHS3lvZVkdWMvMWT1gsRu7OUchK27du2Ko0ePYuLEicjNzUVRURGmTJmC48ePo1u3bs6xZOxGAeDlZm2dmGthLzFk9UL1/D9ZkdWNvcSQ1QsSu7GX46lXWte2bVu8+OKL2Lx5MzZs2IBFixbBz8/P8XaMMDql6kKE5tfacTXsJYasXpqmITk5WcpVKbK6sZcYsnpBYjf2cg7Cp9gA4OLFi9i3bx9yc3MtAp8yZYqj3BiGYRiGYVyCcIL0/fff47777sOlS5fg6+trcTVRTpAYhmEYhrnWET7F9vjjj+Of//wnLl26hIsXLyI/P9/4qHkvFMZ1VEo6msleYsjqZe9VaF2BrG7sJYasXpDYjb0cj/AI0pkzZzBnzhzjLUYYuagkBRvT5euQ7CWGrF6Gm0zKiKxu7CWGrF6Q2I29nIPwCNKwYcNw4MAB59gwV40CQlBTggK51oezlxiyehERCgsL7boeWUMjqxt7iSGrFyR2Yy/nIJwgjRo1Ck888QSWLFmCr7/+Gt99953Jg3EtOgUY2Ea+1U/sJYasXpqmIS0tTcpVKbK6sZcYsnpBYjf2cg7Cp9hmzpwJAHj22WctnlMURfh2IwzDMAzDMLIhnCBdq5kgwzAMwzCMvVyb1/9mbEIACssh2cwV9hJFVi9U38tQVmR1Yy8xZPWCxG7s5XjqdaHI4uJi7Ny5ExkZGRaXEZ8zZ46j3Jh6oCcF8aflW/3EXmLI6qXT6dC5c2dXa1hFVjf2EkNWL0jsxl7OQThBOnz4MEaOHImSkhIUFxfDz88P58+fh5eXFwICAjhBcjEqCKE+QHoRoEl0Jy/2EkNWL03TkJ+fj5YtW0p3A0pZ3dhLDFm9ILEbezkHYeN58+bhzjvvRH5+Ppo2bYo//vgDp06dQkxMDF599VXnWDJ2oypAr9YaVHm+UwH2EkZWLyJCZmamlMt2ZXVjLzFk9YLEbuzlHIQTpCNHjuDxxx+HqqrQ6XQoKytDSEgIXn75ZTz11FPOsWQYhmEYhmlAhBOkJk2aGIfKAgICkJGRAQBo3rw5MjMzHW/IMAzDMAzTwAjPQerZsyf279+PTp06YdCgQVi0aBHOnz+Pzz77DN26dXOOJWM3BCCnRLbrL7OXKLJ6AYCPj4+rFWwiqxt7iSGrFyR2Yy/HIzyC9OKLL6JNmzYAgBdeeAEtW7bEQw89hHPnzuHdd991hiMjgJ4U7MxWoSe5Jq+wlxiyeul0OkREREh5A0pZ3dhLDFm9ILEbezkH4QSpV69eGDx4MFB9ii0+Ph6FhYU4ePAgevTo4QxHRgAVhKiWGlTJxh7YSwxZvTRNQ3Z2tpQXjJXVjb3EkNULEruxl3MQPsV26623YuPGjWjRooVJeWFhIcaMGYPt27c70o8RRFWAqJaE5IsKNIm+W9lLDGd7hc7fXK/XuSmEcWEaNp5UUVnP0a30ZaPq9bq6ICJkZ2ejdevWTtl+fWEvMWT1gsRu7OUchEeQduzYYXFxSAAoLS3Fr7/+6igvhmEYhmEYl2H3CNLRo0eN/09KSkJ2drbxb71ej/j4eAQHBzvekGEYhmEYpoGxO0Hq0aMHFEWBoii49dZbLZ5v2rQp3nrrLUf7MYJoAE4WKpDtjC97icFe4iiKAj8/PyiKXBPb2UsMWb0gsRt7OQe7E6STJ0+CiBAeHo59+/aZnFN0d3dHQEDANTtTvTGhkYL95+XrjOwlBnuJo6oq2rdv72oNC9hLDFm9ILEbezkHu+cgdejQAcHBwZg6dSr8/f3RoUMH46NNmzacHEmCqhB6t9KgKhLNOGYvYdhLHE3TkJGRId2KGfYSQ1YvSOzGXs5BaJJ2kyZN8M033zjPhrlqVABhviQ++97JsJcY7CUOESEvL0+6+z6xlxiyekFiN/ZyDsLHubvuugubNm1yjg3DMAzDMIwECF8HqVOnTnj22Wfx+++/IyYmBs2aNTN5fs6cOY70YxiGYRiGaXCEE6QPP/wQLVq0wMGDB3Hw4EGT5xRF4QTJxWgEJObLddFDsJcw7CWOoigICgqSbsUMe4khqxckdmMv5yCcIJ08edI5JoxD0KAgMV++zsheYrCXOKqqIigoyNUaFrCXGLJ6QWI39nIOVzXXkoiu2clXjRWdQhgUpEEn2Soj9hKDvcTR6/VITU2FXq93tYoJ7CWGrF6Q2I29nEO9EqRPP/0U0dHRaNq0KZo2bYrrr78en332mePtGGEUAIFeBNl+47OXGOxVP4qKilytYBX2EkNWL0jsxl6OR/gU2/Lly/HMM89g9uzZuPnmmwEAv/32Gx588EGcP38e8+bNc4YnwzAMwzBMgyGcIL311lt45513MGXKFGPZ6NGjERUVhSVLlnCCxDAMwzDMNY9wgnT27FncdNNNFuU33XQTzp496ygvpp5oBBw4p0q3yoi9xPi7eoXO31zv16oghPoA6etOQ6vHScD0ZaPq/d61oSgKQkJCpFvJw17iyOrGXs5BeA5Sx44d8d///teifP369ejUqZOjvJh6okFBWpFSry8IZ8JeYrCXOLK6qaoKf39/qKpc1x9nL3FkdWMv5yBsHRcXh0WLFmH48OF47rnn8Nxzz2H48OGIi4vDs88+6xxLxm50CmF4O710q4zYSwz2EkdWN71ej+PHj0u3koe9xJHVjb2cg3CCNH78eOzduxetWrXCpk2bsGnTJrRq1Qr79u3D2LFj6yWxatUqhIaGwtPTE3379sW+fftqrf/VV1+hc+fO8PT0RHR0NH788UeT5xVFsfp45ZVXjHVCQ0Mtnl+2bFm9/GVCAeDrDsl+Q7OXKOwljsxupaWlrlawCnuJI6sbezke4TlIABATE4PPP//cIQLr169HbGwsVq9ejb59+2LFihUYNmwYkpOTERAQYFF/9+7dmDx5MpYuXYo77rgDa9euxZgxY3Do0CF069YNqJ4nVZMtW7ZgxowZGD9+vEn5s88+i5kzZxr/9vHxcUhMDMMwDMNc29QrQdLr9fjmm29w7NgxAEDXrl1x1113wc1NfHPLly/HzJkzMX36dADA6tWrsXnzZqxZswbz58+3qP/GG29g+PDheOKJJwAAzz33HLZu3YqVK1di9erVAGBx5c5vv/0WgwcPRnh4uEm5j4/PNX2VT4ZhGIZhnINwRpOYmIjRo0cjOzsbkZGRAICXXnoJrVu3xvfff28cxbGH8vJyHDx4EAsWLDCWqaqKoUOHYs+ePVZfs2fPHsTGxpqUDRs2DJs2bbJaPycnB5s3b8Ynn3xi8dyyZcvw3HPPoX379rj33nsxb948m0leWVkZysrKjH8XFhYC1cmi4fyqoihQVRWapplcYdxQbn4e1mY5CAQFbmZzKfQEEAA3s3MIlVR1WkGnVL3292wFCghA1b+6GvUJgJ4UqCCoVsptuRvKDU4aVU2K1SmmFw20XU7YdVaFAjLxtycmQzsDgE6nAxFB0zSYYysm83INgEYKVIVM2kuFWEx6MnUzelRPSNQ0zWQfmsd0pdxyPwFV7VXV5mIxGc6b6/V6m31MBdmMqba+V7O93BSxmGz1MVTvV/P2shYTatkfVN3HYLWP1f15MrRRzf1n7mit7xncbcVEROjQoYPxtY44RqiqCkVRau17dZUTEcLDw61ux56YzB0dFVPN9tLr9UIx4Sr3U10xAUB4eLjRzd6YrmY/2RtTzTZriP1kT0xEhLCwMJt9zFn7STQmWwgnSA888ACioqJw4MABtGzZEgCQn5+PadOmYdasWdi9e7fd2zp//jz0ej0CAwNNygMDA3H8+HGrr8nOzrZaPzs722r9Tz75BD4+Phg3bpxJ+Zw5c3DDDTfAz88Pu3fvxoIFC3D27FksX77c6naWLl2KuLg4i/LExER4e3sDAPz8/NC+fXucPn0aeXl5xjpBQUEICgpCenq6yVVFQ0JC4O/vj5SUFJPztIFNgezLwOgOGtxqfDPEZ6ooqQTGhZl2qI0nVXi5AcNDrpRXasDG9KptDWxzpbywHIg/rUOoD9Cr9ZXynBIFO7MV5ObmmrSleUyG907Mr7onV/9AQqDXlY554JyKtCLgtmANvu5XHHedVZF9WcG4UA1u6pX69saUkJAAnU6H6OhoFBUVIS0tzVjX09MTAGzG1KUlIarllfc8Wahg/3kFMf6EMN8r5Yn5EI4JAJKSkkw+cJGRkXB3d0dCQoJJXLb3k87GflIRfhUxJSQk2Ox7oT6oZT/Z7ntjw2oetKgeMemQn5+PzMxMY7mPjw8iIiKQm5tr0l6291NtfU/B8HYafN2vlNcVk+E9ExISAADR0dEoLy9HcnKysW5tfa9z5861xlTb58mA6DEiPDwcvr6+tfa9mtQWU2FhoVQxHTt27KpjcvZ+Sk1NbfD9dC33vbKyMqliSk1NhT0oJHgztaZNm+LAgQOIiooyKf/zzz/Ru3dvXL582e5tZWVlITg4GLt370a/fv2M5U8++SR27tyJvXv3WrzG3d0dn3zyCSZPnmwse/vttxEXF4ecnByL+p07d8Ztt92Gt956q1aXNWvW4F//+hcuXboEDw8Pi+etjSCFhIQgLy8Pvr6+gAOz2Y4Lt9R7BMlNIYxqr2FzhopSTRUeQUp7cUStGXrk01uAeowgKSDc2YHwY4aCSrryjL0jSMnPjwBq+dURsTC+XiNI7jXaq1xThEeQTi67o9ZfUob2shbTlXLL0RadQhjVnvDDKdNl6yIjSMnPj7DZxzot3FKvESRP9Up7VZJSrxEk8z6GGr8Or1t4ZcGF6AiSCsIdHQibMxToLfpY3Z8nQx9z9MhEZWUljh07hi5dusDNzU2aESS9Xo/k5GR06dLF4jo1rhxBKi8vN7aXTqeTagRJ0zQcP34ckZGR0Ol0dsfk7BGkmn1Mp9NJM4JkWMXWtWtXq33MVSNI+fn58PPzQ0FBgfH72xrCI0jXXXcdcnJyLBKk3NxcdOzYUWhbrVq1gk6ns0hscnJybM4NCgoKsrv+r7/+iuTkZKxfv75Ol759+6KyshLp6enGU4c18fDwsJo4GTpjTWxd88G8nq1yw2G/ZiJRk0orKS3VKNepV5IQgmK1vgbF6sX+bLkbys2d9DYczcvdFMBNpeovVcvX1BmT2cHIWlvaislmOSmorNFehkTE3pgM1LZfzWMlm7Fa7ic3teo0mLX2qi0mw+Gmppe5Y12x1tb3DO11pY/ZHxPq6GNWY60RU01s9TG9zT5W++fJvI2s7Vdbfa+2mAxfBDW/7K/2GOGocsNpWNGYRMrr42hor9r6cG3lzozJcArL2vaduf9qi8lamzXEfrKnXNM0m+6y9T2L7dpVqwZLly7FnDlzsGHDBpw+fRqnT5/Ghg0bMHfuXLz00ksoLCw0PurC3d0dMTEx2LZtm7FM0zRs27bNZESpJv369TOpDwBbt261Wv/DDz9ETEwMunfvXqfLkSNHoKqq1ZVzDMMwDMP8vRAeQbrjjjsAABMnTjQOmRmGtu68807j39aG4KwRGxuLqVOnolevXujTpw9WrFiB4uJi46q2KVOmIDg4GEuXLgUAPPbYYxg0aBBee+01jBo1CuvWrcOBAwfw3nvvmWy3sLAQX331FV577TWL99yzZw/27t2LwYMHw8fHB3v27MG8efNw//33G+dVMQzDMAzz90U4Qfrll18cKnDPPffg3LlzWLRoEbKzs9GjRw/Ex8cbJ2JnZGSYDJ/ddNNNWLt2LZ5++mk89dRT6NSpEzZt2mSxem7dunUgIpO5SgY8PDywbt06LFmyBGVlZQgLC8O8efMsVsddi+ipavKp3sqpDVfCXmKwlziyuqmqisjISOlut8Be4sjqxl7OQThBGjRokMMlZs+ejdmzZ1t9bseOHRZlEyZMwIQJE2rd5qxZszBr1iyrz91www34448/6mkrNwSgpLLqX5lgLzHYSxyZ3dzd3e2o1fCwlziyurGX46lXWldaWop9+/bhhx9+wHfffWfyYFyLm1K1bNl8VZirYS8x2EscWd00TUNCQoLVa3e5EvYSR1Y39nIOwiNI8fHxmDJlCs6fP2/xnL3zjhiGYRiGYWRGeATp0UcfxYQJE3D27Flommby4OSIYRiGYZjGgHCClJOTg9jYWIurWTMMwzAMwzQWhBOku+++2+rEaUYOKqnqlhbWLtDnSthLDPYSR1Y3VVURHR0t3Uoe9hJHVjf2cg7Cc5BWrlyJCRMm4Ndff0V0dDSaNGli8vycOXMc6ccIogDwcgOKKuRazcNeYrCXODK7lZeXG+8ZKBPsJY6sbuzleITTui+//BI//fQTvv76a7z11lt4/fXXjY8VK1Y4x5KxG51SdeNQ83tjuRr2EoO9xJHVTdM0JCcnS7eSh73EkdWNvZyD8AjSwoULERcXh/nz51+zw2YMwzAMwzC1IZzhlJeX45577uHkiGEYhmGYRotwljN16lSsX7/eOTaMQ6iUdDSTvcRgL3FkdbP37uENDXuJI6sbezke4VNser0eL7/8Mv73v//h+uuvt5ikvXz5ckf6MYJUkoKN6fJ1SPYSg73EkdVNp9MhOjra1RoWsJc4srqxl3MQTpASEhLQs2dPAMCff/5p8pyiSDY78m+IAkJgUyDnMkCQZ3+wlxjsJY6sbkSEoqIi+Pj4SHWMZC9xZHVjL+cgfIrtl19+sfnYvn27cywZu9EpwMA28q3kYS8x2EscWd00TUNaWpp0K3nYSxxZ3djLOfBMa4ZhGIZhGDPsPsU2btw4u+pt3LjxanwYhmGkJHT+5nq9zk0hjAvTsHH9aVSS+PBW+rJR9XpfhmGuDrsTpObNmzvXhHEIBKCwXL4rCbOXGOwljqxusnoBkPYKx7J6QWI39nI8didIH330kXNNGIegJwXxp+VbycNeYrCXOLK6yeql0+nQuXNnV2tYIKsXJHZjL+fAc5AaGSoI4T4EVbLfq+wlBnuJI6ubrF6apuHChQvSTaCV1QsSu7GXc+AEqZGhKkCv1hpUyVbysJcY7CWOrG6yehERMjMzQSRX4iarFyR2Yy/nwAkSwzAMwzCMGZwgMQzDMAzDmMEJUiODAOSUKJLNdmAvUdhLHFndZPUCAB8fH1crWEVWL0jsxl6OR/hWI4zc6EnBzmzJJjuwlzDsJY6sbrJ66XQ6REREuFrDAlm9ILEbezkHHkFqZKggRLXUpFsxw15isJc4srrJ6qVpGrKzs6VbYSSrFyR2Yy/nwAlSI0NVgKiWJN2KGfYSg73EkdVNVi8iQnZ2tnQrjGT1gsRu7OUcOEFiGIZhGIYxgxMkhmEYhmEYMzhBamRoAE4WKpDtjC97icFe4sjqJquXoijw8/ODosh17k9WL0jsxl7OgVexNTI0UrD/vHydkb3EYC9xZHWT1UtVVbRv397VGhbI6gWJ3djLOXCC1MhQFUKMP+HgBQUayXNQZi8x2EscWd2c7RU6f7NLvNKXjarX+9aFpmk4ffo02rVrB1WV6ySHrG7s5RyuPWOmVlQAYb4k3Y5lLzHYSxxZ3dhLDCJCXl6elCufZHVjL+cg22eDYRiGYRjG5XCCxDAMwzAMYwYnSI0MjYDEfAWaZCOa7CUGe4kjqxt7iaEoCoKCgqRc+SSrG3s5B56k3cjQoCAxX77OyF5isJc4srqxlxiqqiIoKMjVGlaR1Y29nAOPIDUydAphUJAGnSLXz0L2EoO9xJHVjb3E0Ov1SE1NhV6vd7WKBbK6sZdz4ASpkaEACPQiyPa7kL3EYC9xZHVjL3GKiopcrWATWd3Yy/FwgsQwDMMwDGOGFAnSqlWrEBoaCk9PT/Tt2xf79u2rtf5XX32Fzp07w9PTE9HR0fjxxx9Nnp82bRoURTF5DB8+3KROXl4e7rvvPvj6+qJFixaYMWMGLl265JT4GIZhGIa5tnB5grR+/XrExsZi8eLFOHToELp3745hw4YhNzfXav3du3dj8uTJmDFjBg4fPowxY8ZgzJgx+PPPP03qDR8+HGfPnjU+vvzyS5Pn77vvPiQmJmLr1q344YcfsGvXLsyaNcupsTYEGgEHzqnSrUxhLzHYSxxZ3dhLDEVREBISIuXKJ1nd2Ms5uDxBWr58OWbOnInp06eja9euWL16Nby8vLBmzRqr9d944w0MHz4cTzzxBLp06YLnnnsON9xwA1auXGlSz8PDA0FBQcZHy5Ytjc8dO3YM8fHx+OCDD9C3b1/0798fb731FtatW4esrCynx+xMNChIK1KgSTazgL3EYC9xZHVjLzFUVYW/v7+Ut6aQ1Y29nINLrcvLy3Hw4EEMHTr0ipCqYujQodizZ4/V1+zZs8ekPgAMGzbMov6OHTsQEBCAyMhIPPTQQ7hw4YLJNlq0aIFevXoZy4YOHQpVVbF3716r71tWVobCwkKTB6pn6RsemlZ1v25N06yW1yyrrVxB1U86N4VMHlXlZFEOVD3nphA8VA0j21XCQ63atmJW37BiRbVRbsvdUG6or1Y76sxcbJW7KRqGt9PDQ9WEY3JTyOiD6svXm7dZbTGZl6uGcrP2Eo3JsJ/MXYjI6FhbTFfKLfeTu1rVXk0UTTimmm1mq4/VFZOtvlezvURjstXHDPtP07Q6Y6ptfzSp7mPuVvtY3Z8na/vP3FH086SatZloTGotfcxQXp/Pk+FYMbydHm529jHzckcf9wwxlZeXIykpCeXl5bXuj9r2k63y2vqePcfyiooKHD9+3Ohmb0z2utc3JvM2E4mpvvvJHvfy8nIcO3YMlZWVDbqf7InJHlx6HaTz589Dr9cjMDDQpDwwMBDHjx+3+prs7Gyr9bOzs41/Dx8+HOPGjUNYWBhSU1Px1FNPYcSIEdizZw90Oh2ys7MREBBgsg03Nzf4+fmZbKcmS5cuRVxcnEV5YmIivL29AQB+fn5o3749Tp8+jby8PGMdwyhWenq6yYz+kJAQ+Pv7IyUlBaWlpVfiaQpkXwZGd9DgViOFjc9UUVIJjAvTTBw2nlTh5QYMD9Gq7q/kAzR1I3ydXrWtgW2u1C8sB+JP6xDqA/RqfaU8p0TBzmwFubm5Jm1gHpPhvRPzq66h0j+QEOh1ZYz+wDkVaUXAbcEafN2vOP6ercDXHbijPUGnXqlvT0wAkJCQAJ1Oh+joaBQVFSEtLc1Y19PTEwBsxtSlJSGq5ZX3PFlYdXf1GH9ChC8hzAfwdSck5EMopl1nq3ZOUlKSyQcuMjIS7u7uSEhIMInLPCYAqNSAjek6i/10qQLwblIVU89WYjGF+ZKxzWz1vVAf2Iyptr43NvRKe2kgoZgMfS8/Px+ZmZnGch8fH0RERCA3N9ekvazFhFr63uHzVX1saDDBu8mV8rpiMrxnQkICACA6Ohrl5eVITk421tXpdADEP09dWhKiW15ps9RCCMV04FyVsPkxIjw8HL6+vkhKSjJpM3s/TwCg1wCdWhXTzUFiMUW1JGN7Oeq4Z4jp2LFjOH/+PMrKyqAoisnnqSa29pOtY0Tnzp1r7Xu1HfcMBAQEoLS0FKdOnUJxcbHdMdV2jHBETBkZGcjLy0NZWRl8fX2FYqrvfrInJkMyVVZWhpSUlAbbT3XFlJqaCntQyIV3kcvKykJwcDB2796Nfv36GcuffPJJ7Ny50+pojru7Oz755BNMnjzZWPb2228jLi4OOTk5Vt8nLS0NERER+PnnnzFkyBC8+OKL+OSTT0w6Iao7f1xcHB566CGLbZSVlaGsrMz4d2FhIUJCQpCXlwdfX1+g+nyrqqrQNM3k5nyGcvOs1VZ5x4VbQFCMv8QN6AkgAG5mI+KVVLVkV6dU/Uq+K1TDt+kqSjUVCgi6GvUJgJ4UqCCoVsrTXhxh1d0QU+TTW4Dq+QsaFOgU02XCtsoVEMaGEb5LV1BZ487h9sQEAMnPjwCqP1hEZPwlYCBiYbzNmMzLNQAaKVAVgnuN9irXFKGY9AScXHaHxf4zDCdrmmZsL2sxXSlXLPaTTiHcFUrYdNL0FIg9MRlygOTnR9jsY50WbrEZU219z1O90l6VpAjFZKuPoXq/apqG6xZeWXBhLSbUsj9UEMaEEb5NV6C36GN1f54Mfazm/qtJxMJ44c+TCoJ7jTYrJ0UoJo2ANBt9TFEU6PV6kz5m7+cJ1SNqo0MJ35xUQHb0MfNyQ3s56rhniKm8vByJiYmIioqCTqezuT9slds6Rhj6mK2+V9txz4CmaUhMTETXrl2NSbM9MdV2jHBETJWVlSZtJhJTffeTPTHp9XokJiYiOjraYh6SM/dTXTHl5+fDz88PBQUFxu9va7h0BKlVq1bQ6XQWiU1OTo7Nq28GBQUJ1Ud1xtuqVSucOHECQ4YMQVBQkMUk8MrKSuTl5dncjoeHBzw8PCzKDZ2xJrbOt5rXs1VuOFjVTCRMXK2ktFSjnHAlCan6v2V9DdZvMWDL3VBu7qS34WheXnXApuovVcvX1BWT+cHIWlvaislmOSmorNFehkTE3pgM1LZfzWMlm7Fa208EDdbbq7aYDIebml7mjnXFWlvfM7TXlT4mElPtfcxqrDViqomtPqa32cdq/zyZt5G1/Sr6edKq6xv7WLWDvTHV5gIbfQx2fJ5qlpJoH6sud/Rxr2a54TNeWx+urdzWMaKu45u95daO+6KOouW1xWStzeoTkzPKDSvJXbWfRMottmtXLSfh7u6OmJgYbNu2zVimaRq2bdtmMqJUk379+pnUB4CtW7farA8Ap0+fxoULF9CmTRvjNi5evIiDBw8a62zfvh2apqFv374OiMx16KnqlIJespUp7CUGe4kjqxt7iaGqKsLDw6Wc2CurG3s5B5ffiy02NhZTp05Fr1690KdPH6xYsQLFxcWYPn06AGDKlCkIDg7G0qVLAQCPPfYYBg0ahNdeew2jRo3CunXrcODAAbz33nsAgEuXLiEuLg7jx49HUFAQUlNT8eSTT6Jjx44YNmwYAKBLly4YPnw4Zs6cidWrV6OiogKzZ8/GpEmT0LZtWxe2xtVDUJB92dUWlrCXGOwljqxu7CWGoii1nvZwJbK6sZdzcHlad8899+DVV1/FokWL0KNHDxw5cgTx8fHGidgZGRk4e/assf5NN92EtWvX4r333kP37t2xYcMGbNq0Cd26dQOqh86OHj2K0aNH47rrrsOMGTMQExODX3/91eQU2RdffIHOnTtjyJAhGDlyJPr3729Msq5l3BTCuFC9xXwLV8NeYrCXOLK6sZcYer0eCQkJdq80akhkdWMv5+DyESQAmD17NmbPnm31uR07dliUTZgwARMmTLBav2nTpvjf//5X53v6+flh7dq19bCVHzeXp73WYS8x2EscWd3YSwyZv1BldWMvxyPpx4NhGIZhGMZ1cILEMAzDMAxjBidIjQw9VV0sTraVKewlBnuJI6sbe4mhqioiIyOlXPkkqxt7OYdr05qxCQEoqQQkO+axlyDsJY6sbuwljru7ux21XIOsbuzleDhBamS4KVW3GTC/kq6rYS8x2EscWd3YSwxN05CQkGBxhWUZkNWNvZwDJ0gMwzAMwzBmcILEMAzDMAxjBidIDMMwDMMwZnCC1MioJGDjSdXqzSpdCXuJwV7iyOrGXmKoqoro6GgpVz7J6sZezuHatGZsogDwcgMkm3fJXoKwlziyurGXOOXl5a5WsImsbuzleDhBamToFGB4iAadZEc99hKDvcSR1Y29xNA0DcnJyVKufJLVjb2cAydIDMMwDMMwZnCCxDAMwzAMYwYnSI2QSklHM9lLDPYSR1Y39hJDp9O5WsEmsrqxl+Nxc7UA41gqScHGdPk6JHuJwV7iyOrGXmLodDpER0e7WsMqsrqxl3PgEaRGhgJCUFOCItkdlthLDPYSR1Y39hKDiFBYWAgiubwgsRt7OQdOkBoZOgUY2Ea+lSnsJQZ7iSOrG3uJoWka0tLSpFz5JKsbezkHTpAYhmEYhmHM4ASJYRiGYRjGDJ6k3cggAIXlkGxWAXuJwl7iyOr2d/UKnb+5Xq/TKYTbgjVsXX8aeqrf+b/0ZaPq9Tp78PT0dNq2rwb2cjycIDUy9KQg/rR8K1PYSwz2EkdWN/YSQ1YvVK/K6ty5s6s1LGAv58Cn2BoZKgjhPgRVst+r7CUGe4kjqxt7iSGrF6onHV+4cEG6Scfs5Rw4QWpkqArQq7UGVbKVKewlBnuJI6sbe4khqxeql61nZmZKt2ydvZwDJ0gMwzAMwzBmcILEMAzDMAxjBidIjQwCkFMi27Vx2UsU9hJHVjf2EkNWLwM+Pj6uVrAKezkeXsXWyNCTgp3Z8p28Zy8x2EscWd3YSwxZvVC9KisiIsLVGhawl3PgEaRGhgpCVEtNuhUg7CUGe4kjqxt7iSGrF6pXZWVnZ0u3Kou9nAMnSI0MVQGiWpJ0K0DYSwz2EkdWN/YSQ1YvVK/Kys7Olm5VFns5B06QGIZhGIZhzOAEiWEYhmEYxgxOkBoZGoCThQpkO+PLXmKwlziyurGXGLJ6AYCiKPDz84OiyHX+j72cA69ia2RopGD/efk6I3uJwV7iyOrGXmLI6gUAqqqiffv2rtawgL2cA48gNTJUhdC7lQZVkWtSHHuJwV7iyOrGXmLI6oXqVVkZGRnSrcpiL+fACVIjQwUQ5kvS7Vj2EoO9xJHVjb3EkNUL1auy8vLypFuVxV7OQcY+yDAMwzAM41I4QWIYhmEYhjGDE6RGhkZAYr4CTbIRTfYSg73EkdWNvcSQ1QvVq7KCgoKkW5XFXs5BigRp1apVCA0NhaenJ/r27Yt9+/bVWv+rr75C586d4enpiejoaPz444/G5yoqKvCf//wH0dHRaNasGdq2bYspU6YgKyvLZBuhoaFQFMXksWzZMqfF2FBoUJCYr0KDXB2SvcRgL3FkdWMvMWT1QvWqrKCgIKiqFF+dRtjLObjcev369YiNjcXixYtx6NAhdO/eHcOGDUNubq7V+rt378bkyZMxY8YMHD58GGPGjMGYMWPw559/AgBKSkpw6NAhPPPMMzh06BA2btyI5ORkjB492mJbzz77LM6ePWt8PProo06P19noFMKgIA06yVaAsJcY7CWOrG7sJYasXgCg1+uRmpoKvV7vahUT2Ms5uDxBWr58OWbOnInp06eja9euWL16Nby8vLBmzRqr9d944w0MHz4cTzzxBLp06YLnnnsON9xwA1auXAkAaN68ObZu3YqJEyciMjISN954I1auXImDBw8iIyPDZFs+Pj4ICgoyPpo1a9YgMTsTBUCgF0n324u9xGAvcWR1Yy8xZPUyUFRU5GoFq7CX43HphSLLy8tx8OBBLFiwwFimqiqGDh2KPXv2WH3Nnj17EBsba1I2bNgwbNq0yeb7FBQUQFEUtGjRwqR82bJleO6559C+fXvce++9mDdvHtzcrDdJWVkZysrKjH8XFhYC1RmyITtWFAWqqkLTNJNljYZy8yzaZjkIBAVuZr+g9AQQADezI0clVR1UdArgphAUENwUQiUpUEDQ1ahPAPSkQIXpzSAN5bbcDeUGJ42qhsJ1iumBzFa5Un1n7vrEZGhnANDpdCAiq9fVsBWTeblWfTE6VSGT9hKNSU+mbkaP6uFkTdNM4jWP6Uq55X4y/HpWQSZtY09Mhl89er3eZh9TQTZjqr3vXWkv0Zhs9TFU71fz9rIWE2rZH4a7v5uPPNQd05X2gtn+M0f086TCrI8JxqTV0scURYFerzeJy97PE2p8FhU7+5h5eV3HPVt9rLbPk2E/1exjIjGhuu9ZO0YY+pitvlfbcc/oXr1Ne4/lNfeTeTms9DFb5baOewZ3vV4PIjI5Ttobk+j3k0hMBq+abvbGdDX7STQmW7g0QTp//jz0ej0CAwNNygMDA3H8+HGrr8nOzrZaPzs722r90tJS/Oc//8HkyZPh6+trLJ8zZw5uuOEG+Pn5Yffu3ViwYAHOnj2L5cuXW93O0qVLERcXZ1GemJgIb29vAICfnx/at2+P06dPIy8vz1jHMEKVnp5ukk2HhITA398fKSkpKC0tvRJPUyD7MjC6gwa3GkfR+EwVJZXAuDDTDrXxpAovN2B4iFZ1DREfYFR7wtfpVdsa2OZK/cJyIP60DqE+QK/WV8pzShTszFaQm5tr0pbmMRneOzFfQWK+gv6BhECvKx3zwDkVaUXAbcEafN2vOP6eXXUUG9WeoFOv1LcnJgBISEiATqdDdHQ0ioqKkJaWZqzr6ekJADZj6tKSENXyynueLKy6Um+MPyHClxDmA4wJJSTkQyimXWerdk5SUpLJBy4yMhLu7u5ISEgwics8JgCo1ICN6TqL/XSpourfDj5Az1ZiMYX5krHNbPW9UB/YjKm2vjcm9Ep7aSChmAx9Lz8/H5mZmcZyHx8fREREIDc316S9rMWEWvre4eqrLw8JJng3uVJeV0yG90xISAAAREdHo7y8HMnJyca6Op0OgPjnqUtLQnTLK22WWgihmA6cqxI2P0aEh4fD19cXSUlJJm1m7+cJAPTV/w1oCtwcJBZTVEsytpet416XliT8ecq+XHWMCK/Rx0RiMvQ9a8eIzp0719r3ajvuGQgICAAAnDp1CsXFxcZyW8fymvvJ1jGiJrb6nq3jniGmjIwM5OXlITExEb6+vkIxiX4/icRkSFrKysqQkpIiFNPV7Ke6YkpNTYU9KOTCKzhlZWUhODgYu3fvRr9+/YzlTz75JHbu3Im9e/davMbd3R2ffPIJJk+ebCx7++23ERcXh5ycHJO6FRUVGD9+PE6fPo0dO3aYJEjmrFmzBv/6179w6dIleHh4WDxvbQQpJCQEeXl5xu06KpvtuHBLvUeQVBA6+ACnioByUoV/8aa9OKLWDD3y6S1APUaQiAgdfBScvkQmky/t/XWY/PwIoJZfHREL4+s3glSjvSpJEf7Fe3LZHbX+kjK0l7WYrpRbjrYoIIR4K8goIqDGChCREaTk50fY7GOdFm6p1wiSu3KlvTQo9RpBMu9jqPHr8LqFVxZciI62gAjtfRRkXqoagbU3JjezPmbrV3zEwvh6jyAZ+xgU4RGkNBt9zPArvmYfExltUUFo563gVBGZrDKydwTJ0F62jnu2+lhdI0juimbSx+ozgnRy6UinjEwQEQoKCuDr62sy8ViGEaSLFy+iRYsWUFVVmhEkTdNQUFCAli1bwhxXjiDl5+fDz8/PuC9t4dIRpFatWkGn01kkNjk5OQgKCrL6mqCgILvqV1RUYOLEiTh16hS2b99eayMAQN++fVFZWYn09HRERkZaPO/h4WE1cdLpdMZflwZszdg3r2er3HDYqCTrZ+ErraS0ZCxXkFJoui1r9TVYX0Zry91Qbu6kt+FoWa4grQjVMwwsqT0m0zZSFMVqW9qKyWY5KSg3ay+xmCzdzMvN24tsxmq+n2q0l2BMhsNNTS9zR0OSaismW32vnCzby/6Yqqitj1l735ox1US8j9Xe98zbyNp+Ff08aVCstpn9Mdl2gY0+Bjs+T1XUs49Vl9d13Kurj9kqLyfVor3sj6kKW8eIuo5v9pT7+/tbrQuBY3x9ymuLSVVVtG7duk732sqd4a7T6dCqVSur9eDk/WSvY224dJK2u7s7YmJisG3bNmOZpmnYtm2byYhSTfr162dSHwC2bt1qUt+QHKWkpODnn3+utUMbOHLkCFRVNQ6hXqvoFMLwdnrpVoCwlxjsJY6sbuwlhqxeqJ5Tc/z4celWZbGXc3DpCBIAxMbGYurUqejVqxf69OmDFStWoLi4GNOnTwcATJkyBcHBwVi6dCkA4LHHHsOgQYPw2muvYdSoUVi3bh0OHDiA9957D6hOju6++24cOnQIP/zwA/R6vfGcpZ+fH9zd3bFnzx7s3bsXgwcPho+PD/bs2YN58+bh/vvvtzoUeC2hAPB1t/Ub2nWwlxjsJY6sbuwlhqxeBmrOx5EJ9nI8Lk+Q7rnnHpw7dw6LFi1CdnY2evTogfj4eONE7IyMDJPhs5tuuglr167F008/jaeeegqdOnXCpk2b0K1bNwDAmTNn8N133wEAevToYfJev/zyC2655RZ4eHhg3bp1WLJkCcrKyhAWFoZ58+ZZrI5jGIZhGObvicsTJACYPXs2Zs+ebfW5HTt2WJRNmDABEyZMsFo/NDS0zjsH33DDDfjjjz/qacswDMMwTGPH5ReKZByLnqqWy+olO33PXmKwlziyurGXGLJ6oXoycHh4uHS3zmAv5yDFCBLjOAgKsi+72sIS9hKDvcSR1Y29xJDVC9WrrupaEe0K2Ms5XJtpHWMTN4UwLlRvcc0XV8NeYrCXOLK6sZcYsnqhelVWQkKCdKuy2Ms5cILUCHGTdK+ylxjsJY6sbuwlhqxesHKbEVlgL8cjcTdkGIZhGIZxDZwgMQzDMAzDmMEJUiNDT1U3rJRtBQh7icFe4sjqxl5iyOqF6lVZkZGR0q3KYi/nwKvYGhkEoKTS6q2VXAp7icFe4sjqxl5iONsrdP7mq3g1wU25ct9LUdKXjbqK964dd3d3p237apDVyx6uzbSOsYmbAowL0yzufO1q2EsM9hJHVjf2EkNWL0jspmkaEhISoGnWboHsOmT1shdOkBiGYRiGYczgBIlhGIZhGMYMTpAYhmEYhmHM4EnajYxKAjaeVKsnEcoDe4nBXuLI6sZeYsjqBSe7OWTy+LrTUk0eV1UV0dHR1+wqtmvTmrGJAsDLrT4fEefCXmKwlziyurGXGLJ6QWI3Wb0AoLy83NUK9YYTpEaGTgGGh2jQSfZJYS8x2EscWd3YSwxZvSCxm6xemqYhOTn5ml3FxqfYGIZhGIaxSX1P/7kphHFhGjauP41KkufUn73wCBLDMAzDMIwZnCA1QiolHc1kLzHYSxxZ3dhLDFm9ILEbezkePsXWyKgkBRvTda7WsIC9xGAvcWR1Yy8xZPWCxG7s5Rx4BKmRoYAQ1JSgSHaHJfYSg73EkdWNvcSQ1QsSu7GXc+AEqZGhU4CBbeRbzcBeYrCXOLK6sZcYsnpBYjf2cg6cIDEMwzAMw5jBCRLDMAzDMIwZnCA1MghAYTmkO+PLXmKwlziyurGXGLJ6QWI39nIOvIqtkaEnBfGn5Vs1wF5isJc4srqxlxiyekFiN/ZyDjyC1MhQQQj3IaiS5ezsJQZ7iSOrG3uJIasXJHZjL+fACVIjQ1WAXq01qJKtGmAvMdhLHFnd2EsMWb0gsRt7OQdOkBiGYRiGYczgBIlhGIZhGMYMTpAaGQQgp0S+65aylxjsJY6sbuwlhqxekNiNvZwDr2JrZOhJwc5s+U74spcY7CWOrG7sJYasXpDYjb2cA48gNTJUEKJaatKtGmAvMdhLHFnd2EsMWb0gsRt7OQdOkBoZqgJEtSTpVg2wlxjsJY6sbuwlhqxekNiNvZwDJ0gMwzAMwzBmcILEMAzDMAxjBidIjQwNwMlCBZqrRcxgLzHYSxxZ3dhLDFm9ILEbezkHXsXWyNBIwf7z8p3wZS8x2EscWd3YSwxZvSCxG3s5BylGkFatWoXQ0FB4enqib9++2LdvX631v/rqK3Tu3Bmenp6Ijo7Gjz/+aPI8EWHRokVo06YNmjZtiqFDhyIlJcWkTl5eHu677z74+vqiRYsWmDFjBi5duuSU+BoSVSH0bqVBVeRaNcBeYrCXOLK6sZcYsnpBYjf2cg4uT5DWr1+P2NhYLF68GIcOHUL37t0xbNgw5ObmWq2/e/duTJ48GTNmzMDhw4cxZswYjBkzBn/++aexzssvv4w333wTq1evxt69e9GsWTMMGzYMpaWlxjr33XcfEhMTsXXrVvzwww/YtWsXZs2a1SAxOxMVQJgvuX7HmsFeYrCXOLK6sZcYsnpBYjf2cg4u916+fDlmzpyJ6dOno2vXrli9ejW8vLywZs0aq/XfeOMNDB8+HE888QS6dOmC5557DjfccANWrlwJVI8erVixAk8//TTuuusuXH/99fj000+RlZWFTZs2AQCOHTuG+Ph4fPDBB+jbty/69++Pt956C+vWrUNWVlaDxs8wDMMwjHy4dA5SeXk5Dh48iAULFhjLVFXF0KFDsWfPHquv2bNnD2JjY03Khg0bZkx+Tp48iezsbAwdOtT4fPPmzdG3b1/s2bMHkyZNwp49e9CiRQv06tXLWGfo0KFQVRV79+7F2LFjLd63rKwMZWVlxr8LCgoAAPn5+dDr9QAARVGgqio0TQPRlSFFQ7mhXl3lVFYMggI3s2FJPVVdut3N7JRuJQEKAJ0CKAqh/LIGpVyFpqlQQNDVqE/VVzdVYXptCkP5xYsXrbobYlLLiwEAGgEaFOgUQk0dW+UEQtllglKuQKUrz9gTk6GdAUCn04GIoGmm0/60shKbMZmXa9XnxlWFTNoLmiIUk56AwsJCi/2nqlW/OzRNM7aXtZiulCsW+wlKVXtRmQK1xrvaE5PhV09+fr7NPoayYpsx1db3FPVKe6mkCMVkq4+her+at5e1mGBHH4PVPlb358nQx2ruv5poZSXCnycVZNJmIEUoJq2WPqYoCvR6vUmb2ft5AqqOFSJ9zLzc0F62jnu2+lhtnyeCAkXVTPqYSEyo7nsFBQUW+89aHxP5PKGWPlZXTIa+V1sfU8uL6/V5Mu9jCilCMdnqYzWPHZZ9zL7vp6o+poHKVJM+Zk9MNfsYauy/2r6frLlbi8mwXfPjkAXkQs6cOUMAaPfu3SblTzzxBPXp08fqa5o0aUJr1641KVu1ahUFBAQQEdHvv/9OACgrK8ukzoQJE2jixIlERPTCCy/QddddZ7Ht1q1b09tvv231fRcvXkzV+48f/OAHP/jBD35c44/MzMxacxRexWYnCxYsMBm50jQNeXl58Pf3h6LIM0u/sLAQISEhyMzMhK+vr6t1jLCXGOwljqxu7CWGrF6Q2I29xCAiFBUVoW3btrXWc2mC1KpVK+h0OuTk5JiU5+TkICgoyOprgoKCaq1v+DcnJwdt2rQxqdOjRw9jHfNJ4JWVlcjLy7P5vh4eHvDw8DApa9GihUC0DYuvr69UHdIAe4nBXuLI6sZeYsjqBYnd2Mt+mjdvXmcdl07Sdnd3R0xMDLZt22Ys0zQN27ZtQ79+/ay+pl+/fib1AWDr1q3G+mFhYQgKCjKpU1hYiL179xrr9OvXDxcvXsTBgweNdbZv3w5N09C3b1+Hx8kwDMMwzLWFy0+xxcbGYurUqejVqxf69OmDFStWoLi4GNOnTwcATJkyBcHBwVi6dCkA4LHHHsOgQYPw2muvYdSoUVi3bh0OHDiA9957D6iehDV37lw8//zz6NSpE8LCwvDMM8+gbdu2GDNmDACgS5cuGD58OGbOnInVq1ejoqICs2fPxqRJk+occmMYhmEYpvHj8gTpnnvuwblz57Bo0SJkZ2ejR48eiI+PR2BgIAAgIyPDOOMfAG666SasXbsWTz/9NJ566il06tQJmzZtQrdu3Yx1nnzySRQXF2PWrFm4ePEi+vfvj/j4eHh6ehrrfPHFF5g9ezaGDBkCVVUxfvx4vPnmmw0cvePx8PDA4sWLLU4Huhr2EoO9xJHVjb3EkNULEruxl3NQqM51bgzDMAzDMH8vXH6hSIZhGIZhGNngBIlhGIZhGMYMTpAYhmEYhmHM4ASJYRiGYRjGDE6QGIZhGIZhzOAEiWEYhrmm4MXXTEPACRIjHXzwq4LbgWEsKS8vl+r+l3WhaRoAWNxZ/u/ItXZM4wSJAao/xDJ03srKSiiKgtLSUlerWMXQRpcuXcJ3332Hffv2oaioyCnvpSgKCgoKoNfrcenSJae8hzMxtFVxcTFKSkpMnjN8achAZmamqxWQlpaG33//Hbt27cKxY8dQXl7uUh/D/snKykJqaqpLXVCjL+Xm5mLcuHH48ccfTZ6/fPmyi8xsY0iI1q9fj9zcXOh0Oqe8T3l5OdavX++UbTuaaymxBSdIfy8MBxm9Xo+srCxs3boV27dvBwCoquqyzms4kPz666+477770LFjR8yaNQuffvop/vzzT6clIKIQERRFwfnz5zF69Gg8+OCD6N+/Pzp06ICpU6fip59+cpjrkSNHEBsbi6ioKAQGBmL16tVSJRX2YPBduXIlXn75ZZw8edL4XM2r47sCw2fh8OHDuOeee6zWcXZ7V1ZWAgA2b96MyZMnY8CAAbj//vsxd+5cLFmyBN9++y3S09Od6mALQ/s888wzmD9/PpKSkgAApaWluHjxIgoKChrUx3CMWLlyJQoLCxEZGQlU77+ZM2di/vz5OH78eIM61YVOp4Ner8eCBQtw++23448//gCc8GN08+bNmD9/PvLy8ozbl40LFy7g0KFD+O9//4uzZ8+6Wsd+iPnbsXDhQmrRogVFRUVReHg4derUiZ555hm6cOGCS73atGlDY8eOpWeeeYYGDhxIvr6+FBkZSXPmzKEvv/ySzp0751K/yspKIiJasmQJ9ezZk3799Vc6ffo0ffDBB3TzzTeTm5sbdejQgR5//HHS6/VX9V433XQT3XnnnfTnn39S27Zt6d///jcREe3fv5+OHDnikHgagrKyMmrZsiX98MMPxjZ58cUX6a677qJ169a5zEvTNCIi+vPPPykqKor+/PNPIiKL/Xbp0iWnO0RFRdHDDz9Mp06dop07d9JDDz1E119/PXXv3p1uu+02+uSTT5zmUBslJSXk6+tLf/zxBxERFRUV0bBhwyggIIDGjx9Pubm5De7UoUMH+uKLL4iIaPfu3dS/f3+64YYbqE2bNnTXXXdRSUlJgzvVRW5uLt199900cuRISkxMdOi2NU2jvLw86t27Nz322GMWz+fk5FBxcbFD31OU7777jm6++Wbq2rUrtWvXjiZPnkxUfWyoqKhwqVtdcIL0N8Hw5b5hwwby9/enjz76iPbu3Us//vgjLVy4kHr27EkvvPBCg3sZviR++uknioyMNPkwZ2dn07Jly6h79+6kKAodP368wf2s8cgjj9DKlSstytPS0mjBggX0r3/966q2//vvv1OrVq2ooqKCLl++TC1btqTDhw8TEdGHH35IQ4YMoYyMjKt6D2dj6G/vvvsuRUVFERFRfn4+vfLKK+Tn50cTJkwgLy8v2rdvn4tNiUaPHk1LliwxKcvNzaXY2Fj6+OOPnfreeXl5NHDgQDpx4oRJ+aVLl2j9+vU0dOhQ+vrrr4msJG/OwvA+77//vnHfnTlzhubNm0c9e/akDRs2UNu2bem9995rEB8DZ86coW7duhkTtvHjx9PUqVOJiCg5OZl69eolzTHCgCEBOHr0KA0ePJh8fX1p9erVdPnyZdI0zWH7dMeOHeTu7k4fffQRHT9+nOLj42natGnUqVMn+vLLLx3yHvWlXbt29Nprr9GZM2coNDSUXnvtNSIi2rVrF61Zs4YKCwtd6lcbnCD9TTAkIrNmzaK5c+eaPFdeXk4vv/wyNW/enPbs2eMSr507d9LDDz9MRUVFJuUGZDrwJSYm0mOPPea0X9DLli2j4cOHExHRihUrqEePHsYD6Q8//GD80roWePTRR+m+++4jIqKPPvqIRo4cSR988AEREY0dO5aefvrpBvX53//+Rx9++CElJSUZR4e2bdtGYWFhVF5eTklJSbRo0SIKDAykXr160f79+4ms9MerxZBAJiUl0T/+8Q9as2aNQ7fvCFavXk233HILEREtXbqURowYQZs3byYion//+9907733NqhPSUkJTZw4kQIDA2n8+PEUGRlJR48eJao+frRs2bJBferDc889R4MHD6bvvvvOYdssKSmhn376icaOHUuenp4UGRlJLVu2pAkTJtDzzz9P5eXlDnsvUb799ltq3749ERGdO3eOfHx86OTJk0RE9P3339OQIUPozJkzLvOrC06Q/kZomkbPP/+8RYJE1Qfs66+/nt59911jXWdj+NIvLS2l2267jZo3b06rVq2iixcvWn3/hnCyheEL7cCBAzRz5kxSFIUeeOAB+u233+jcuXPG5x3BgQMHqEuXLnTu3Dm66aabaMWKFcbnJk+eTFOmTDFxkpnvv/+eQkJCaMqUKeTl5UUrVqwwJiZ9+vShN954o0F9xo4dSy1atKBbbrmFFi5cSJs3b6aEhAS69dZbKTIykmJiYqhv3760YcOGBhmxGTRoECmKQp07d6ZPPvmEkpOTqayszOnvaw9//fUXhYeHk5+fH3l4eNDXX39t7HMxMTHGfdeQ/TA7O5sefvhhmjBhAu3cuZOIiM6fP0/333+/8dSNqzG0R0pKCqWmptLZs2fpl19+obS0NNq9ezf17t2bFEWh//znP5SXl0d0Fce28ePHU2hoKAUEBNCdd95JISEhdM8999DFixcdGlN9WbVqlfHH3lNPPUWDBw82PvfJJ59Qt27dXGhXN5wg/Q0wfGA3bdpE7du3p6ZNm9Lrr79uzOSpegjYx8eHUlJSiBo4GTl79izdfvvt5OfnR25ubjRu3Dhat24dpaam0uXLlxvMwx5CQkJo8ODBNGXKFGrbti25ubnRzTffTG+++SYdOHDAIb5FRUV0zz330IABA6hJkyb0zTff0OXLl+nVV1+lkJAQOnjwIFEDnnK5GjRNoxdffJGmTp1qHC3S6/W0fft28vHxccmBfP/+/fToo49SZGQkhYSE0H333UdRUVEUFRVFa9eubdB5EQkJCbR06VLq0aMHBQcH09ChQykuLo5++uknSk9PbzAPW5w8eZLWrVtH8fHxRNU/Zj7++GMKCAhw6vwsA4Y+fubMGUpOTrZaZ/Xq1dSzZ086dOiQ031EmDFjBnl6elK7du2oV69e1LRpU+rRoweNHj2a/Pz8qFWrVjRv3rx6bz8zM5MmT55MX3zxBeXk5FBpaSlt2bKF/P39aePGjQ6Npb4cO3aMunTpQomJidSlSxf67LPPiKpPPQ4ePJgef/xxVyvWCidIfyP++OMPuv/++6lTp04UEBBAY8eOpX//+980a9YsGj9+PD3xxBMN5rJt2zarQ79ffPEF3XzzzaQoCnXo0IGmTZtGe/fubTAvaxiSxR07dlDHjh1NJovv3r2bJk+eTD4+PqQoCv31118Oec8zZ87Qww8/TF27dqWePXtSy5YtKSIigt5//32HbL8hOHLkCBUUFBDVmItB1QnKlClTaObMmQ3qYy3p37hxI02YMIFCQkIoMjKS/vGPf9D7779Pe/bsafARy59//pmmTZtGHTt2pHbt2tH999/foO9fk1WrVtH27dstyo8dO0axsbHGOVvOHj0ybH/GjBk0fvx44yTn4uJiys/Pp3PnzlFiYmKDTw2whaHPJCUl0cyZM+nYsWP022+/0a5du+jcuXP0+++/09GjR6mgoIC+/fZbatu2LS1YsEC4rxnqW0vmn3nmGQoMDDTOW3QlmqbR/Pnzyc3NjRRFoQ0bNtDPP/9Md999N0VHR1NmZqarFWuFE6RGzKFDh2jTpk0W5aWlpfT555/TyJEjKSgoiBRFoSFDhtBnn31Gx48fd/qv+u+++4769etHVD0ZdefOnZSdnW1SxzCh19fX1zg/w1Wn2Azvu3nzZpo1a5bNlTI//vjjVb1PeXk5HT161PjLXK/X065du+itt96i+Ph4Onbs2FVtvyE5duwYNWvWjCZNmkSffPIJJSYmGidjnjlzhr7//ns6deqUS9ysfakUFhbS+++/T7fffjt5e3vTP/7xjwZxSUlJoV27dpmUlZWV0ccff0yrV68masBTWIbRmv3791OnTp1Mjh3x8fG0Y8cOKisro6ysLJtzBZ3B5cuXydfX15gEFRUV0fDhwykwMJAmTpxI58+fd7qDvRj21cyZM+mRRx6ps32++OILCg8PN55qE6GiooL+7//+j7755huL19944420bNky4W06ix9++IFGjRpFiqJQmzZt6M477zSeIpUZTpAaMbNmzaLXX3+dqHoS4/r16y0mxGVlZdGqVauob9++FBwcTDfddBM9/PDDlJ+f7xQnTdOotLSUDhw4QEREb7zxBgUGBtJDDz1En376KR06dEia8+c1qaiooMmTJ1OrVq3o5ZdftjlB+2q+MDZs2ECKotCYMWNo1apV0v+6soWmaVRZWUlvv/02DRkyhHx8fOi6666jhx9+mL799ls6ffq0y+eTJSUlUWxsLE2ZMoW++uork+eTk5ONp2scnZwYkpATJ07Qv/71LwoLC6N27dqRt7c3TZw40fi5cAWGWO+9916aNGkSUXXiGBcXR97e3qQoCt17770NnrB98MEH1LVrV6Lq49W8efOoR48etGHDBmrTpo1x3qRM3H333cbLWJSVlRn7u/m/GzduJD8/P+HtHzt2zLhKrWvXrhQcHGwysv3bb79Ramqqg6IRJycnh2bPnk27du0yxnrp0iUqKCigpKQk6aZO2IITpEZMXl6e8Zfe2LFjqVu3bnTffffRyy+/TL/88otFInL06FGaM2cO3XbbbQ3mmJ2dTS+88ALddNNNxgTtySefpE2bNtGff/5J5eXlLv0yNZCenk6DBw+mkJAQCgoKovvvv58++OADOnTokPE00tVy8OBBio6OpqCgIPLx8aGmTZvS6NGj6ZtvvqGcnBxjPRnaQ4QzZ87QCy+8QB06dKAWLVrQ9ddfT99++22Dexi+2D/55BPq0aMH3X333RQREUEdOnSgy5cvU0lJicP2ZV0Od911Fw0fPpzefPNN2rlzJ73//vs0YMAA6tWrl3Fllqvo3Lkzff/990RE9Nprr9GgQYPom2++oW3btlHfvn0pISGhQX3ee+89GjRoEFGNFZ4//PADERE98cQTxmTO1RgSulOnTtHUqVMtrkukaZrFZ/fSpUvGeZ8i3HHHHXTffffR4cOHafr06TRy5Eii6uPUK6+84rQfuPaycOFCGjBggMv78tXCCdLfhBMnTtCbb75Jo0ePpp49e9KAAQPogQceoHfffZf++OMPKb50Dx48SHPnzqUuXbpQeHg49e7d26W/gqyRl5dHK1eupEGDBlHbtm2pb9++NHPmTNq6detVbffEiRMUERFBn3/+OZ04cYKysrLos88+o5iYGON8rAULFjToqQ1HUNOzpKSEoqOjqX///i692GVoaCitWrWKiIgmTpxIc+bMIaqeT3bPPfc4fRSnpKSEmjZtajJHpKKiglJSUqhbt240depUly3NLigooAkTJtDIkSPp22+/pQ4dOtB7771HlZWVlJ+fT0FBQfR///d/RA3YB9PS0qhjx47G1XRfffWVyWq65cuXN4iHvSxYsICaN29OzZo1o8cff5x+//13h17Asri4mLy8vIzJR0REhPF6XSkpKXTHHXcYJ9W7ipCQEFq/fr3xb0Py+Ndff9Fbb70lxQIEe+AE6W/I3r176emnn6bbbruNoqKiaMyYMUQ1To00NCUlJRbv+8MPPzT4JF5zDF8ARUVF9NVXX1nMkzJcM6dNmzbG1Rn1ZcGCBcZfyTXfe/fu3dSzZ09asGABtWvXjkaNGiXt1WcN+/Cnn36iw4cPG5O5mrz++uv03//+t8HdDO159OhRatWqFV28eJEuX75MPj4+xotVZmZmUu/evWn37t0mr3E0+/fvp65du1r9db1x40bq3r27S08z79q1i/r06UOhoaE0ffp0Y/lnn31G7dq1c4lTamoqrV27lrZs2UJUfdrqk08+oYCAAKv9zJWcOXOG3n77bRozZgxFRUXRoEGD6MEHH6SPP/7YIT8M9u3bR71796ZLly7RwYMHyd/f3zgPKzU1lQICAuj06dMOiKR+nD59mqKiokzmZBpGz3Jycqhjx47XxPwjIiI3V9/qhHE+ZWVl+P3339GkSRMMGDAAffr0QZ8+fVBRUYEffvgBFRUVQPU9fJx1Q0Vr7Nu3D8uWLYOfnx/atGmDbt26oXfv3ggPD8eoUaMwatQooMY90Boaw3v+8MMPePrpp3HDDTcgOjoaN998M2688UZ06dIFcXFxiIuLu+r7H3l4eKCyshKVlZVwc3ODoiggIvTr1w833ngjoqKi8NZbb+GRRx7Bnj17MGDAAAdF6TgM954aN24ciAijRo3C+PHj0atXLwQGBsLd3R1bt25Fp06dMGHChAZ1M+xLnU6HLl26oLy8HD/99BM6dOiAmJgYAEBqairS0tLQr18/k9c4gpp9+LrrroOHhwfmzp2L999/HyEhIWjSpAkAICUlBZWVlWjevLnL+n3//v3x9ddfo1mzZkavPXv24IMPPsDMmTOB6vvIubk13NdHeHg4wsPDjX+npqbi//7v//DQQw/B29u7wTxsUVFRgSZNmmDLli3Q6/V46KGH8NBDD2Hv3r347rvv8P/tnXlcTWv7/z+7maJIEU2UNCgNhgYpU6E8hsxTGSNjDseDg+MYMscxliFjmTIPmXMSFQlRUopSiWZJ097X74+vtX4SzzkO7b1xv1+v8zr2Wqu9Pnute933ta77uq/r5s2biImJQd26dXHmzBmoqqr+63MZGhpCIBAgODgYMTEx6N69O9TV1QEAISEh0NDQQLNmzb7hr/sytLS0oKenh40bN8LFxQWysrJ8O46Pj8fr16/RqVMnien7EgQkDSXcGd8coVAIWVlZREdHY9asWUhPT+c7km7dumHEiBFo166dxHRdvHgRM2fORMuWLSEjI4Nz587BwMAAWlpa6NSpE0xNTdGnTx+xdsKf49mzZzhx4gRu376NtLQ0yMnJQU9PD46OjrCyskK7du0gEom+qgBrXFwcbG1tMWjQIMycORNWVlYAgOfPn8Pe3h7bt29Hr169YGtri0mTJsHT0/Mb/sKvhxvMuf8HBwdjy5YtuHnzJnR0dNCpUyckJiYiKysLN27cqDbYiZOqqip0794dLVq0QFRUFPr06YPly5fj9evX8Pb2hpKSEoKDg2vdALh9+zamTp2Kxo0bo1OnTlBXV0d8fDzOnj0LX19feHt7i80I+dAQy8nJQVpaGvLz8+Hg4MAP5AcPHkRaWhomTpyIBg0a1Krxxn13RUUFwsPDcebMGTRo0AC6urqwsrKCubk55OXlkZeXB0VFRakwkDiMjY0xefJkTJ06tdr2srIyXL16FcnJyZg+ffpXX7+zZ89i9uzZePz4MRYuXAg3Nzfs378fN27cwNSpU+Hl5fUNfs2/59y5c/D19YWjoyN69eqF5s2b4/Hjx/jzzz9hYWGBgIAAier7x0jahcWoHbgYhs6dO9OQIUPoyJEjdOzYMfrvf/9LDg4OpKurS2ZmZrRlyxax6uKmYbp3706TJk0iel9Oo0OHDrR7927S09MjdXV1vjyFtBEdHU2LFy8mAwMD0tTUJGtraz4m49/CTeVcuHCBHB0dqWPHjuTq6koDBw6kNm3akKWlJdH7KaC6detKbHn8/4K7r5MnT66WsC8/P59Wr15N7u7u5OvrS+Hh4RJU+X9kZWVRr169SFFRkQYOHEgTJkygVq1aUffu3T9btPZr8Pb25pN7cgiFQjp79iwNHDiQLCwsyMbGhgwNDWnXrl1in+bmfmtgYCC1aNGC9PT0+CSaY8aM4eNFxDWVxf3+xYsXk6WlJXXp0oUMDAxIR0eH7O3taerUqRQSEiI18YlRUVFkZ2dHAQEBJCMjw19PkUhE5eXlfF+cmJj41e3q/PnzdPr0aaqoqKDz589Tv379SFZWloyMjKh169YUEhIiFQlky8vLaf369WRhYUFmZmZkYmJCMjIyNHfuXMrOzpa0vH8MM5B+MHJycqplnHVwcOA7fXq/auLhw4cUHBxMQ4YM4RMPivOhevfuHWlra/MDaatWrSgoKIiIiDZt2kR9+/aliIgIIikup5GQkEBt2rShqVOnfvV3iUQiev78ORUWFtL58+dpyZIl5O3tTR4eHrRo0SLKycmh8vJymjNnDp8/ShrgDDsuv1F5eTkJBALKzs6msrIyidaA+jsKCwtpy5Yt1LlzZxo0aBD5+vpWWyn4raiqqqIhQ4ZQamoqERFNmTKlRgBtdnY2JSQkSKStc/fw2bNnpKamRuvXr6fo6Gi6du0arV+/nuzt7Wn8+PESuZeNGjXiY/vs7e3J09OTvLy8qG7duqStrU1bt24Vu6ZPcevWLXJ3dycFBQVSVFSkcePG8f0XR0ZGBunr6391sHbr1q3J19eXTzOSkpJCe/fupc2bN1NeXt5XfffX8qmYPaFQSBcuXKCTJ09SVlaWVBhvXwIzkH4wVqxYQerq6tS/f38KDAwkX19fPuHcx+Tl5Umk40tISKBBgwZRXFwcPX/+nExMTPilw8nJydSlSxepqfC8atUqOnv2bLUcI/T+wZ80aRJfvPPfkpiYSNOnTyc1NTVq1KgRTZkyhfbs2VNjZWF8fDwtW7asRlJBScLpmzZtGqmrq5OTk1MNA668vJwqKyspPz+fDhw4INHVd8nJybRw4UKaN28erVy5kt9e288A9/25ublkY2NDSkpKpKmpSZMnT5b4MmjOKJs/f361RQIcx48fJ2Vl5W9aXPV/wQ2gYWFh1LJlS6L3y+bV1NR4A9bd3Z28vLykzpNqbGxMw4cPp44dO5KsrCzp6OjQggUL6ObNmzRmzBiytbUl+oqXvsjISNLQ0KC3b9+SSCSi8PBwUlZWpmbNmpGtrS2lpKR841/0ZYhEInr48CHNnz+fRo8eTRcvXpSonm8BM5B+MCIjI2nVqlU0ePBgatu2LTVt2pQMDQ3p9OnTUrP6qby8nB48eECvXr2izMxMsrGxoQULFtDz58/p999/p1atWhFJwVL2hw8fUvPmzcnBwYGGDRtG69ato8jISHrz5g1lZ2eTmpraVxss/fr1IycnJ4qPjycPDw9SVFQkOTk5atmyJY0YMYIuXLjwzX5PbREWFkZz584lgUBASkpKZGdnxxcd5li4cCH17NlT7Nq4wejYsWPUqVMnsra2JgcHB2rRogVv9D569KhWC8Ryg35VVRWVlZXRgwcPaPny5WRhYUECgYBMTExo2bJlteLB+qfMmzeP/vOf/3xy8Pbw8KBff/211jV8+Lzv2LGDhg0bRkKhkHbu3EnOzs6892Xz5s00d+7cWtfzpRQUFFBlZSW9ffuW7ty5Q/PnzycTExMSCARkb29PN27cIPoKA2nWrFnUu3dvovcrDfv160dTp06lly9fkp2dncTTHRw7dozMzMyoa9eufLkoVVVVGj9+vEQToH4NzED6QcnIyKDTp0/TokWLqGPHjmRgYEDt2rWjWbNm0e3btyUtj+iDkg9z584lU1NTMjc3J11dXdq/f3+1/ZIkMTGR/P39yd3dnaysrMjJyYnPOu7s7PxV311cXEz16tXj67cZGhrS2bNnKTs7m3R1dUkgENCqVauIpORa/C9SU1PJxcWF9u7dS15eXqSvr0+qqqrk7u5Ofn5+1Lx5869OhfBv4IwTKysrmjdvHhER+fj40KBBg4jee5V+/fVXfql/beLo6MjHX4hEIsrPz6e//vqLfH19SUFBgaZMmVLrGj6ksrKSN0quX79OysrKtGrVKsrOzubbW1FRETVr1oxCQ0OJxDAVLxQKqaqqil6/fk3Xr1+nqqoqOnjwIBkbG1N4eDgVFRVR9+7d+dxV0gIXb0TvSzlxlJeXU2Zm5jfxdu3bt49at25N0dHR5OTkRBMmTOD7jgEDBnxV4dtvgaWlJf3xxx9E72vnubu705IlS0hGRoYEAgH16dNHovr+DcxA+sH4+O1EKBRSSkoKhYSE0IwZM8jR0ZEMDAzI2dlZrDEPH77Jf+x6LSkpoR07dtDChQvpwYMHEvccfY6bN2/S0qVLaf78+bRz586vDhI9dOgQdejQgYiI7ty5Qzo6OpSVlUVERKtXr6aTJ0/WKE0grVRVVdHbt2+J3sfB3b59m7Zu3Ur9+vWjli1bin3w/5Ds7Gxq3LgxX2ZHQ0ODz9GSlZVF7dq14zN7f6vr/GHR0pcvX9LBgwepXr16nzy2qqqKXr16xWfxlkScRlVVFfn5+ZG2tjb16dOH1q5dS7/++is5OTmRlZVVrZ//3LlzNZIHcuUoXr9+TQ4ODtS1a1eysLAgHR0dqZte27x5M7Vs2ZJatmxJEyZMoCNHjlBKSso3TRCZk5NDXbt2pTp16lCbNm34XEd5eXmkrq4u0YK93DQo94xpaWnRuXPnSCQS0YQJE2jatGmUkJAgMX3/FmYg/aBs2LCBIiMjqxlBXLbejRs38pmExd0Ze3t7k0AgIFNTU/r1118/+dBIMjCbux5FRUUUHh5OCxcupOPHj3/ymK/lr7/+omXLltG7d+8oKCiIHBwc+Ppra9eupc6dO3+T84iLj+vTVVZWUmFhocSDtR8/fkxt27blg4+1tbX5GLdHjx5RvXr1am2F1pAhQ6hnz56kp6dHAwcO/OR54uLi6Nq1a7Vy/k+RkZFBlpaWFBgYyBu1HKdPnyY3NzcyMDCgLl26kI+PDx8fWJt9RYcOHUhBQYEcHR1p+/btNQyLyMhImjhxIi1cuLDaKklJwvVTx48fJzU1NZo3bx4tX76crK2tqV69etSmTRuaO3cunTp16ps+Ay9fvuSnh9PT08nHx4fatm37zb7/3xAREUEjR46k0tJSun79OhkZGVF6ejrR+8SxPXv2lNoFN/8LZiD9QHAdWHR0NDVp0oSvp1RRUUFhYWG0Y8cO3sLnHlhxeCY4Xenp6TR79mxq2bIlderUiUxNTUlFRYXatWtH27Ztk4qq3JzWkSNHkra2NllaWlKDBg2oTp06NGTIEIqMjPxm56qsrORd5I8ePSI9PT3asmULHTx4kJo1a8av0pHWjoW7VhkZGbRy5UpycHAgfX19mjlzpkTfZj/FjBkzaPTo0dS1a1d+qu3Fixfk4+NDXbp0IaqlwrRHjx4lT09PEggEZG5uToMHDyY/P79qtRAdHBzI29ubSEzPY3x8PLm7u5OBgQE1aNCA+vTpU6M2XllZWY3M8bWFUCik+/fvU3BwMA0fPpy0tbWpQYMG1K9fvxqLIKRpFRR3r0aMGFEjRispKYnmzJlDjRs3rlUP3OPHj2n9+vUSLy0ya9YsWrNmDe89trKy4ldPT5o0Saz1Pb8lzED6geA6+OHDh5OnpyfR+8DBBQsWkLy8PBkaGtKoUaPErouLZxg7diyNGjWKUlJS6O3bt/Tw4UPasmULaWtrk0AgIC0tLfrll19qrBgTN+np6aSkpETXrl2jp0+fUlxcHK1fv54cHBxISUmJBAIBRUVFfdNzlpWV0fTp00lBQYHq1atH48aNk7jn5e/g2tvYsWPJxsaGNm/eTC4uLiQQCEhGRobMzMzojz/+kIrpkMTEROrYsSMpKSmRsbExzZ49mywtLaljx45fHTz7d9y+fZtGjx5NO3fupP79+5O1tTV17NiRRo4cSUOGDCF1dXX+GonLAMjLy6M7d+7Qpk2byM3NjRo1akRaWlo0duxYiRq3BQUFFBcXRxs3bqSePXtSo0aNqGnTpjRhwgSxxIl9KSKRiDZs2ED+/v7Vtn0Id29rq31J+gXq1q1bpKury3sjCwsLqW3btqSqqkpt2rQhPT29r17tKymYgfQDYmJiQnv27CF6v0y9a9eudP78eTp//jy1adOmRo4OcdGoUSM6duxYje2BgYE0aNAgWrduHTVv3pzWrl0rEX0ct2/fpmHDhlXbxgWORkRE0Ny5c2tMTXwrysvLq62qkvbYo7KyMlJRUeETIRobG9PGjRvpxIkTVKdOHRIIBLR48WKx6+KM8pMnT/JeUyKiI0eOkKenJ9nZ2dH06dNr3XjjjNwPV8ndvXuXli5dSn379qURI0ZQYGAgkQRjj7Kzsyk8PJz++OMPsrOzo/r161Pr1q3pl19+oeLiYrG0Qe4cBQUFVF5eTkKhkLKysig8PJwWL15MHTt2JIFAQJMnT651Lf8E7l4dOnSItLW1SUdHh8LDw6mkpETS0sROSEgIjRo1ikQiEX9dXr16RatXr6aJEyfyMxnfI8xA+sGoqKggHx8fcnd3p1OnTlGjRo34Ss/l5eUSqcZN7zu+7t2708SJE2vsy8jIoA4dOlB6ejrNmDGDunTpIlEv0qZNm8jZ2bnaar8Pr5Wk39ikAe56HD58mI9/ePDgAWlpafH3bu7cubRly5ZaXUL/d9jZ2ZGamhqtWbOGn8L92DNX24ZJVVUV5eXl0aNHj2rsKygoqNVzfwllZWWUlpZGp0+fpunTp1Pz5s35RQO1CXf9ExMTacKECXxBWo53797Rixcv6MiRI5+8hpLk6tWr1LlzZ1JUVKQGDRrQ2LFj6cyZM/TixQuJtntxsnTpUmrfvn2NnF4/Qj/JDKQfkKtXr5KmpiY1a9aMZs6cyW/fv3+/xKpxExHt3LmTmjZtSgsWLKBbt25RUVERVVRU0Jo1a6hx48ZERHTlyhXS09PjV7CIm8zMTGrWrBnVrVuXLCwsKDg4WOq9OJLkyJEj5OPjQxUVFbRlyxbq1KkTHwDt7+8v8aW9FRUVtGLFCnJ0dKSZM2eKzSDhBofY2FgaNGgQmZubU9euXWn48OG0cePGatnuJc2n2nd+fj6/SrO22z/n7Rs5ciT17duXN7C5a1hZWSnxLNF/R2lpKW3YsIHMzMxIIBCQmZkZ+fj4SDS3lTh48OAB6erqkqKiIllYWNCGDRsoLi5O6tOS/FOYgfQDk5WVxa+aOXnyJLVr146WL19OJKG8OkKhkJYsWUKmpqZkb29P//nPf0hLS4tatWrFByTPmTPnkxl9xcW7d+8oJiaGgoKC6D//+Q9pamqShoYGjRw5Uqwrjb4XRCIR3b9/n0QiEd24cYO0tbXp8uXL9PTpUzI0NKTVq1dLWiJVVFTQ2bNnqXXr1qSurk7bt28XW10xS0tLGjlyJIWGhpKhoSEZGxuTgYEB2djY0ODBgyVSm04oFH62LIQk0dDQoKtXr9bYnpqaSsuWLaPExESJ6PoYznCLiYmh8+fP11i9mZaWRjNnzqQmTZrU2lS8NFFUVETnz58nd3d3srS0pG7dutHMmTNp7969/Eq27xVmIP0AcB1bZWUlxcfH0759+2o0zOvXr9PKlSspPz+fSMKxLU+ePKEVK1bQlClTaMOGDXxQ6KlTp6hly5Z04sQJiWnjEIlE9Pr1a7p58yatXr2aDz7mVkD9zHBTVOfOnasWOFtcXEyDBw8meXl5kpeXJxcXF4kNEOXl5bR48WI6ePAgBQUF0dWrVykrK4tmzpxJurq6NGnSpFormsk9j7du3SJ1dXXeGFNVVaXLly/Tzp07qVGjRmRtbc3HbonjeeRWTH6s9cNzFxYWkrOzs9iTDqakpFDr1q35hJQfJrF88eIF6ejoSLwsy8e4uLhQ69atydvbmwIDAyk6OvqThvfP5IHOysqizZs3U+fOnUlHR4eOHDkiaUlfhYCICIzvGpFIBBkZGUyZMgVhYWEQCoXIyspCq1atMHHiRIwZMwZKSkqSlgkigkAg+Oz+hIQEREREwNvbW6y6/o7KykpkZWXhwYMHsLa2RrNmzSQtSSqoX78+goKC4OHhwd/bt2/f4sGDB6ioqICZmRkaNWokEW2nT59Gnz59YGRkhEGDBuH+/fu4dOkSjIyM8OrVK7x8+RKZmZnQ0tL65ufmrsX8+fORnJyMw4cPIzAwEFu3bkVcXBwAYOzYsbCwsMD06dO/+fk/RVlZGTp37gxdXV04OTmhW7duMDIyqqE5LS0NixYtQuPGjbF69Wq+b6lNuHP37dsXsrKyCA0NrbY/JCQEs2bNQmZmZq3q+FKSkpJw4sQJnDt3Djk5OWjSpAmsrKxgb2+Pli1bwtLS8m/7vB8VkUiEpKQkaGtro169epKW869hBtJ3zocdm4WFBbZs2YJWrVrh1atXOH78OM6ePYvCwkKYmJjg5MmT0NXVFZs2kUgEgUBQo4MQCoWQlZUVm45/izgGh+8Frp1duXIFa9asgYODA1auXIk3b97wx1RVVUFOTg54P3i0bNlSYtcvPT0dq1evxoEDB9C5c2csWrQIrVq1QkxMDIqKilCvXj04OTnV6gC2d+9eJCcnY8mSJZg9ezYKCgqwY8cOAICnpycMDAywcOFCsQyiOTk58Pf3R1paGtLT0yEvLw9jY2N07twZXbp0QePGjflj8/PzISsrC1VVVbEO8CdOnMDo0aOhq6uLYcOGoWfPnjh27BgOHz6M4cOHY/78+WLR8W+4desW9u/fj927d0NDQwMODg44cOCApGUxvhJmIP0gnDx5Env27MGxY8f4baWlpcjMzERkZCRCQ0Nx5MgRsXiSkpOT0bJly2rbPjaWioqK0LdvX9jY2GDNmjX8MZI2SD4cEDg9hw4dQnl5OUaOHAkAP+UbIcfhw4cREhKCy5cvQ05ODiNGjEDv3r3h4uLCHxMbG4sJEyYgNjZWoloB4Pbt29i9ezeUlJTg7e1dzWsiDl6/fg0NDQ3s378fM2fOxPLlyyEvLw9fX1+cO3cOtra2Ym33eXl5uHnzJiIiIvDw4UPk5+ejXr16sLS0RPfu3eHg4ABlZWWxaOF+d3Z2Nho1agR5eXncuHEDu3fvRlxcHB49egRtbW3MmDEDXl5eUFFREYuur2HNmjU4fvw4JkyYAE9Pz+/mZZDxaZiB9INw5swZ7N27F6tXr4aenl61gZ6IUFZWhjp16tT6G6E0u/K/BKFQCBkZGQgEAkycOBEHDx5EQkICmjZtKmlpEufFixfo2bMnLC0tkZeXh7S0NKiqqsLV1RUuLi4IDAxEbm4uzp49K1Zd3GCUkJCAJ0+ewMjICKampggPD4e/vz8SEhLg4+ODUaNGQV1dvVa1fPycvX37FhMnTkR8fDyKi4vRpUsX3pskDj71fD19+hQRERGIiorCkydPUFFRAYFAgN9++w2urq61rom7Rl27dsX8+fPRpUsX4L0HKy8vD8rKypCVla3m3ZIkXPt68OABrly5gk6dOsHAwABqamr8McnJyVi6dCk2bNgANTW1n3aK7UeBGUg/ACkpKTA2NgYRYdiwYViwYMEnjRJx8D248j9HQkICKisr0aZNG34bESEhIQFZWVno3r27RPVJmg/vUWxsLCwtLZGUlIS7d+8iOjoacXFxiI+Ph66uLoKDg2Fubi4RnT179kRBQQGysrJQUlKCLl26oEmTJjh69ChevXqFJUuW1Pp0TWlpKVJSUlBSUgKBQABzc3PIysri+vXr0NXVhZGREeTk5KTmxSA2NhaRkZG4du0a1qxZAwMDA7E8k5WVlRgzZgzq1q2LgICAGvsrKiogKysrVV6YJUuWYNmyZTA3N0e7du3g6OiINm3aoGHDhjh//jzmzJmDV69eSVom4xvADKQfgIKCAoSHh+Pu3bs4fPgwXrx4AVNTU4waNQojR46s9oYjLqTJlf85uAEgPz8fU6ZMwe3bt6GkpAQ5OTn06NEDI0aMgJmZmUQ1ShPcG/Tp06ehoaEBGxsbyMvLA+89hy9fvkRhYSG0tbUlFpwNAE+ePEF2djaUlJSQl5eHiIgIVFRUQFlZGX/99Rfmz5+P7t27f/PpD+77rl27Bn9/f5w7dw4qKiowMzODhYUFJk+ejNatW3+z830JXFvPysrCxYsX8fTpU9SpUwc9evSAtbU1f9y7d+9Qp04dsWq7dOkSpk6divDwcDRu3BgCgQDv3r1DbGwsli5dijNnzvCxbdJCamoqDhw4gFOnTiE7OxsGBgZ4/fo1iouLMWvWLMyYMaNaTB7j+4QZSD8QFRUVyMnJQXR0NM6dO4cbN24gJSUFmzdvxqRJk8SiQRpd+Z+DG9DmzZuHsLAwjB49Gg0bNkRcXBxu3LiBFy9eQFdXFx4eHvjll18kplOaKCsrg76+PhYuXMivjoyLi8OzZ89gaWmJ5s2bS1riZ6msrOQNutqAa/uWlpYwMDDA/PnzoaysjJMnT2L//v149eoVjhw5AkdHx1rT8L949+4dBg0ahDt37qBbt244ffo0GjZsiBYtWmDAgAHo3LkzWrVqVaterbKyMvz555/o168fDAwM+LhEe3t7eHl5YcKECQgICMDhw4eRnJyMoUOHYuXKlbWi5UvhjMyPPWsxMTE4d+4cBAIBunfvDhsbGygqKkqFV5zxlUgyxwDj21BQUEC5ubmUkJDAV+AuLS2l2NhY2rhxI6WlpRFJQSI4IqI7d+7Qhg0bqG/fvpSSkkIkBXlCevXqRSEhIfzn4uJiunfvHu3du5cGDRpEU6ZMkag+aYBLjrdx40a+OnlFRQUdPnyY5OTkyNjYmPr06SOxDOifQyQS8UlRKyoqar38QXZ2NmloaPDP4Yc4OTnR+PHjxf4ccr/Z39+fzM3NqaysjG7cuEH169enpUuXUqtWrUhWVpaaN29e6xmro6KiSCAQkLKyMnXt2pV27dpFubm5tHPnTjI1NaWmTZuSmZkZLV26lJKTk2tVy7/h1atXdPDgQRo9ejQtX75capJXMmoHZiB9p3Cd7JkzZ8jFxYXk5eXJ0NCQPDw8aOvWrfygIG7jgztfZmYmBQUF0W+//UbLli3jE+JxlJaWilXXx3DXLy8vj1avXk1//PHHJ4979eqVVNXLkhTcfe3RowfNmjWLiIiOHj1Krq6u5OfnR+Hh4WRmZiaRxHCcAXDnzh0KDQ2VSNviNLx+/ZpmzZrF1xMrLy/n9+3atYt0dHRq1IKrbbh75+DgwFed9/b2puHDhxO9v4/29vZ08ODBasfXFmVlZRQWFkaenp6kqqpKjRo1IkdHR9LU1KSlS5fyyWylBe56vHz5krp3706amprUq1cv0tfXJ1lZWXJ1deVLx0jDSyjj2yH56EDGv0JGRgZv377F+PHjoa2tjcjISCxYsADy8vKYO3cuxo4di9LSUrG7eLn4AW9vb8ydOxfPnj3DqlWrMGDAAHTr1g3btm1DUlIS6tSpA5FIJFZtH+sEgN27d+P333/Hzp07ceHCBXw846yhoSGRGC5pg5tasLe3R1xcHO7du4c5c+bA1tYW3t7ecHJygqKiIkpLSyWiDQB8fX0RExPDx9Bw9zIuLg5NmjSp1akaLpbJ3t4ea9euxfr165GZmQkFBQXIysqiqqoKjx49goGBAeTl5SEUCmtNy8cIBAIUFRVBXl6eXyRx69Yt9OzZEwDg7OwMdXV16Ovr17oWIoKioiJcXV3xyy+/ICUlBStXroSamhqKi4uxfft2rFu3Djdu3EBFRUWt6/kncPdqzZo1qKiowPXr13HixAkkJibi3LlzyM/Px6pVq4D3/TLjB0LSFhrjy+HeSDds2MBPd3zItWvXSF1dXex1nqTJlf9POXv2LM2ZM4fs7e2pWbNmZGtrS/Pnz6d79+5JWppUEhsbS02aNCFVVVXq2bMn762Jj4+nOnXq8IVqxY1QKKSRI0fS6dOna+x78uQJjRo1ijZv3kxUi1XGKysrKTg4mCZOnEiNGjUiZWVlGjhwIPn7+5ObmxvNnj2b7t69S/TesyQuOA9ITEwM3bx5k8rLy8nV1ZXmzJlDRERxcXGkoKAglulR7tqHhoZSp06dqLCwkN/37NkzWrZsGbVu3ZoEAgE9fvy41vV8Ca1bt6aNGzfyn7nfsnfvXtLX16fIyEgJqmPUBsxA+o6ZNWsWubq60tu3b0koFFJpaSmJRCKqqqoiNzc3mj59ulj1SJsr/59SXl5OycnJFBISQlOmTCF7e3syMTGhdu3a/fDVuP8tT58+5auu37lzh/r27UseHh5i18ENUlFRUeTl5UUeHh5UVFRU47iSkpJajz/iKCsro+TkZNqyZQs5OTmRiooKCQQCmjRpEj8VIy64KZ+PY6LWrFlD+vr6ZG9vTy1atOCf0dq+RtwzP23aNJoxYwbRe8Py46mphw8f1qqOL6W8vJy8vLzI09Pzk/v09PT4YtbS0q8xvh62BvE748OVEf3798eBAwcQHh6OXr168VMLsrKyfDI/iLG0x+dc+b/++ivw3pW/Z88esbjy/ymlpaWoW7cu9PX1YWhoiD59+uDhw4e4efMmXrx4AU1NTUlLlCq4ttSiRQt+m0gkgrm5Ofr16yd2PVy73rNnD/bs2QO8rxHn7e0NS0tLKCoqAoBYUkocOnQIdnZ20NbWhqGhIQwNDeHp6YnHjx/j4sWL2Lt3L3bs2IGmTZti5cqVGDx4cK3qISLIyMjgxo0bGDx4MFJTU/nrMXr0aMjKyiIpKQlDhw5F3759ATFkiRcIBBCJRNDT00NycjIAVFsKz2Xcl7b0GgoKCujWrRu8vLygpqaGIUOGwNbWFgCwb98+FBQUwNnZGfjJM+3/cEjaQmP8cz5+yyouLiYvLy8SCATUo0cPOnToEIWFhZGHhwfp6uqKPVhVmlz5f4dQKOQ9WhoaGtS1a1dasWIFZWVl8cdIqhK9NPG5t2FpfEtOS0ujlStXkrGxMcnIyJClpSWtXbtWLCuNbt++TQKBgJo0aUJeXl4UFhZGubm51Y7Jy8uja9eu0dChQ6utmvzWcP3Evn37KDY2lvr06UMjR46ssZ/EvFiCazNHjhwhVVVVkpWVpd9//53i4+OprKxMbDq+hq1bt5K9vT11796dunbtSi1atCALCwtavnw50XtvGOPHgeVB+k4oLS3FggULsGTJEtStW7favpMnT2LHjh2IiIiAjIwMunXrhrFjx8LV1VVsmXq58+Tk5FTLlr127Vps2rQJTZs2xcuXL2FnZ4f9+/dLrEYRl7xtz549WLx4Mbp06YJu3brh/PnzfGK/nTt38mUPflY+1W4+VacuPDwcSUlJ8PDwkEhyyM/lmomNjcXevXsRHByM4uJivHnzBgoKCrWqpbi4GIcOHUJgYCBiY2NhYGCAESNGoHv37rC0tOSfW3G0/Tdv3qBjx45QUVFBVFQUZsyYgVGjRsHIyKhaIsiFCxfC2tqa9yCJg/T0dOzYsQOXL19GSkoKzMzM4OTkBDs7OxgbG0NXV1cqvDBcG8/MzERSUhIsLCzQqFEj3Lx5E5cvX0Z+fj7q168PFxcX2NraQk5OjuU++sFgBtJ3wqVLl7B3717s27cPKSkpCAgIQOfOndG2bVtoamqCiFBeXo68vDyoqamJNUs11yl8ypWfn5+PvXv3IikpCWZmZujbty+0tbUlVmKBO6+5uTlGjx6NmTNn8vsqKiowcOBACIVCnDlzRuzapIljx44hJSUFTk5OaNmyJRo2bFhtP3fPfXx8cOLECVy/fr1GgWJxkZ6ejrNnz+LBgwdQU1PDr7/+igYNGgDvjZH79+/D2tq6Vg2TjwfG1NRU+Pv7Y/PmzQCAXbt2wcvLq1bO/TmeP3+OJUuWICQkBMbGxqhfvz5MTU3RoUMHtGvXDlpaWmjUqBGuXr2KTp06SWRwv379Ovbv34/w8HAIBAI0adIE27Ztg6mpqVh1fAquvYwePRr169fHlClTqrVxaSkTw6g9mIH0HVFeXg5FRUXs27cPCxYsgLa2NnR0dNC+fXvY29vDzMxMrBWvuQ5i//79MDU1xR9//IH69etj79691fZDQiUMPkdhYSHatWsHPz8/DBgwAOXl5QAARUVFXLp0CZMmTcLBgwfRtm1bSUuVGOPHj0doaCj09PT4elOWlpZo0aJFNeM7OzsbkZGRGDBggFj1cW0rISEBM2bMwPPnz+Hk5IQdO3bg7t27sLS0xKNHj2BkZFRr2bM/ZVBw3alAIEBhYSHGjBmDXr16YfDgwahXr55YBtWoqCg+Puavv/5Cbm4utLW1ceTIEcTExPBxd7m5uahfvz5u3bpVq3o+pry8HGlpaTA2Nua3CYVCHDt2DAcPHsSBAwegpKQkVk2f4+3bt2jUqBHCw8PRoUMH4IOM7A8ePAARwdzcnBlKPyjMQPpO+LhjffbsGc6cOYNLly4hPT0dKioqMDc3h5GREQYPHgwtLS2x6JJmV/7nICKMGTMGr169qlFxPi0tDWZmZnj9+rXEa8VJmuzsbAQHByM0NBTp6enQ0dGBo6Mj7O3tYW5uDh0dnVqftvoc3FTpiBEjUFFRgcOHD2Pz5s0ICgrCnTt3UFRUBD8/Pzg4OKB37961ooF7JmfPng1LS0u4urrWmGb08/NDaWkplixZUisaPiYuLg6//PILrl69ypce0tHR4feXlJTg0qVLiIqKgqGhIRwdHWFsbCy2Ke/jx49j8+bNePXqFV68eAFHR0fMnDkTTk5OtX7uL4G7t8HBwVi1ahXi4uJqGMNhYWE4cuQINm7cWCPsgfGDIOEYKMY/hAusPHXqFE2YMKHavtu3b9PChQupW7dupKurS0+fPhWrtmfPntHYsWOpbt26ZG1tTc7OzuTj40N79uyhhIQEKigoIFlZWbp+/TqRlAT4nj9/ntTU1KhNmza0YcMGevHiBV24cIFcXFyoR48ekpYnUUQiUY0FAffu3aOZM2eSqakp6erqkqurKy1fvpzOnTsn0ezBurq6FBYWRkREbdu2JT8/P6L3y/r79+9PK1euJKrFNldaWkqdO3cmJSUl0tDQoHHjxtG1a9fo1atXFBUVRaampvTnn38SiWEJPRHR48eP6cyZM0REdPz4cTI0NKSxY8fSzp076dmzZ9WOFdd9484TExNDzZs3p6FDh9KePXto69at5OLiQs2aNaNdu3aJRcuXcuzYMTIyMqI7d+4QvU/hwLFq1Spq164dkZT0aYxvD/MgSTmcG//169fQ0NCAra0tunTpguXLl/NTbhxCoRCPHj2ChYWFWLRJuyuf4/r166isrES3bt2qbb979y62bduG6OhoJCYmQlFREQMHDsTMmTMlVnVdmnifJ63G9EFYWBgOHjyI06dPo0uXLjhy5IhE9BUUFGDUqFHo27cvevXqBSMjIzx69Ai6urooLi6GoaEhzp07h7Zt29b61Nbr168RGhqKoKAg3L59G+rq6qhbty50dXVx5coViXjaoqKicOjQIaSmpuLly5dQVlZG69at0bVrVzg5OYktQzznnRoxYgREIhGCg4OB917AgoICLFu2DCdOnEB4eLhUpQDB+ym2Dh06wNbWFps2beKn/p48eYKBAwdi7NixmDZtmsQWnTBqF2YgfQekpqbC0NAQnTp1wq1bt3D//n1+/p4LzlZSUsLOnTvRuXPnajlqagtpd+V/iJubG/r27Yvx48cjLCwMFRUVsLa2hra2NkpLS/Hs2TNUVFSAiGBpaclWoXxAYWEhSkpKkJGRgcaNG1drW2/fvkV2djYMDQ0lpm/9+vWIjIyEuro6nj59ikuXLuHdu3fYunUrNmzYgOfPn9fq+Y8fPw4jI6NqeXuysrJw4cIFKCoqolevXlBTUxNbAPSnzpOeno6oqChEREQgMTERZWVlqKqqQkBAANq0aVPrmji6deuGrl27Yu7cudW25+TkwN3dHb/88guGDBkiNj1/B2dUnzx5Ej4+PiguLkanTp1gaGiIU6dOwdDQEGfOnKn2ksr4wZC0C4vx9+Tn59PFixepVatWJBAISEVFhQYPHsxnbqX3RVXr1q1LL168EIsmaXTl/y+46Q1ra2tq1qwZeXh40MaNGyk2NlZi5TGkFe5aXblyhdzc3KhOnTpkaWlJffr0oUWLFtGFCxeq5YuSJC9fvqSePXuSQCCgFi1a0JIlS8ja2ppsbW1p9+7dRLWQm+bDKaPWrVvTnj17vun3fysKCwvpzZs31bbFx8fTpk2baPTo0WIvmuvn50f169enmJiYatONubm5pKqqSjExMWLV8yUkJyfTn3/+SQMHDiRnZ2fasGED/wyw6bUfF+ZB+o5YsmQJlJSU0LhxY+zatQuRkZFo0qQJunXrhpKSEjx79gy3b98W+/JTaXHlf4qP36grKysRGhqK4OBg3L17F6qqqrC1tYWTkxPMzMxgbW3NPEjvMTU1hZOTExYtWgQXFxeUlZWhpKQEdevWhYmJCUaPHo3+/fuLXdenvCQxMTFYt24dEhIS4OzsjFGjRsHa2rpWngPOCzp48GDUqVMHu3fvBj7wOBQWFuL27duwtbVFvXr1vvn5/wkhISEIDg7GzZs30bBhQ7i7u2Pq1Km8B5D7DbXt2eKuybNnz1C/fn2MHz8eubm56NOnD1q2bImKigqcOXMGUVFRSExMrDUd34K/yw3G+PFgBtJ3iFAoxLt375CcnIxz587h1KlTaN68OWbNmoW2bduKZRpLml35H8Mty/3999/Rq1cvtG/fHgDw8uVLhISE4Pjx43jw4AGcnZ1x4sQJiemUBrhB4M6dO3Bzc8Pz58+hpKQEdXV1PhFpjx49eMOAW/osbiorK3Hx4kU8ffoUFhYWaN26Nb+CrKKiQiwxP8bGxvjjjz8waNCgasv78/PzMX78ePTv3x/Dhw+vdR0c3L2LioqCu7s7unbtimHDhuH+/fvYu3cvMjIysG7dOkyaNEmsL1Dl5eVwc3PDyJEjYWFhgaCgIFy+fBkyMjLIysqCo6Mj5syZA3t7e7Fp+lK4/q6qqgoyMjJsWf/PgqRdWIx/zuvXr8VePuSfIG2u/A/5sGq6QCCghIQEqqysrDHt8ujRI/rrr78koFC64KYLli1bRr179yYioqCgILK0tORLr8yePZuCgoIkpu3ly5fUvXt3atq0KTVv3pwEAgFpa2vTsmXLahxbW5SUlNDAgQNp1KhRNfYVFRVRo0aN6O7du2LRwsGdx9PT85NFVefOnUsWFhY1CtfWNq9evSJvb29q0qQJjR49mnJzc6mkpIT++usvysrKkorSQ5+DW9HJTQmePHmS1q9fLzVTzIzahZnB3wn79+/HkCFDoKGhAWdnZ6xbtw5JSUmorKyUqK6QkBCMGDECenp6aNmyJXx9fZGamorWrVtj8uTJ2L59O+Tl5SFuRyV3vpUrV0JHRwf9+/eHiYkJTExMICcnBzk5OVRUVKCiogJlZWXIyclBx44dxapRGuG8gu3bt4eLiwtEIhGys7Ohra2NqqoqAEBubi5u374tdm0ikQgAsGLFChQVFWHfvn14+vQpXr9+jYkTJ2LdunWYMWNGtd9RWygrK8PV1RXXr1/HgQMHUFRUBJFIhLy8PGzcuBHKysqwsrISixYO7jydOnWCgYEB8IG3GQDGjh2Lt2/f4ty5c2LRw6GhoYFt27bh5MmTeP78Obp164bg4GA+m7e0JIX8FAKBADIyMrxH/vz58/D19UVBQYGkpTHEgaQtNMbn+TAYVF9fn2bNmkVhYWEkEAioYcOGpKioSEOGDKEtW7ZU85SIS9etW7dIXV2dBg0aRCdOnKDFixeTgYEBKSgo0KZNm6QiOPvs2bM0ffp0EggEpKSkRN27d6d9+/ZV82pxBSh/dj6+X5ynISIignR1dWn16tX022+/kaqqKkVGRkpIJdHgwYNp7969RB95Z/78808yMDCg+/fvi0VHYWEheXp6kkAgIFNTU/L09KQWLVqQtbU1HThwgEiMxUu56xAREUGGhoakp6dHGRkZ1Y55+/Yt1alThw+Grs3nk9NTWlpKd+7coYKCAiIiSkpKol9//ZWcnZ3pt99+o/z8/FrT8KVwmktKSujEiRO0YcMGWrhwIaWnp1c7jvstjB8fZiBJMZxbd+jQobzLPCAggNq2bUv5+fk0btw4EggEpK+vL1Zd0urK/xwZGRlkZ2dHf/75Jw0ePJi0tLRIXV2dhg0bRtu3bydzc3M+oSCDaMSIEXThwgX+c3FxMU2bNo0MDAzIxsaG5s+fL3ZN3GCenZ1Ns2fPpjFjxvD7OCOkqKiINDU1+dWd33pqi9OQkZFRLRnro0ePaMGCBdSrVy9auXIlPXjwQGIvB6GhodSzZ09q2rQpqampkZeXF505c4bOnDlD48eP569bRUVFrU79cb9/+fLlVLduXdLW1iZra2uaNWsWTZ06lZo0aUICgYCaNWsmNiPyn/Du3Tvy9PTkX/xkZGTo1KlTRO9XshUVFRFJycpcRu3DDKTvgDZt2tCJEyeIiMjR0ZFWrFhBRERRUVHk4+ND2dnZRGLK1PshO3fupD/++IM/NxcflZKSQgYGBlKTHbeqqop/U83MzKTIyEhat24dubi4UOPGjWnYsGHVMuT+jJSWllJBQQEVFhaSQCCglJQUoo+MjIyMDIm9PXM61q1bR/Xr16f69evT2rVrKTc3l+i9kXTkyBGqV69erWtwd3enWbNmSW0cytOnT+n06dM0b9486tKlC9WpU4fk5OSobdu2dOnSJbFqCQwMJENDQxo/fjz9+eeftHbtWlq7di2tWbOGunbtSjNnzhSrns/B9Z3+/v5kYWFBJSUlFBERQY0aNaL8/HwSiUS0du1aCg0NZcbRTwRbxSalfJhB29/fH926dUP79u3RqVMnzJ49G0OHDkVJSQlMTU1x4cIFmJiYiFXXjRs3MHr0aFRWVuLGjRvQ1tbmjyktLUWjRo1w/fp1tGvXTiqqXhcXF6N+/fr854qKCrx58waKiopQUlKCnJycRPVJCu5+/vbbbwgNDYWxsTEePXqER48eVYu9wPsYoKNHj2LgwIESW9p848YN3Lx5E5GRkbh37x4UFBTQvHlzCIVCqKmpYdasWbCzs4NQKOTjR74F3HVKSUmBtbU1oqKi+IrzXPtOTU2Fqqoq1NXVv8k5v5by8nI8efIEDx8+xK1bt5CQkIDMzEzo6emhU6dO+OWXX2o9yWFlZSXCwsIQGBgIZWVlzJs3r1qmf2nJQM3dX3t7e/Tr1w+zZ8/mY7YOHjyIiooKzJw5E0KhEFu3bpW0XIaY+DlHBSmHW5aO9wGOkyZNgkgkgoqKCoyMjBAcHIz27dtj06ZNICKxGUf4IBD01atXaNmyJe7fvw9zc3P07duXr+h+8uRJDB06FO3atUNlZaVEjA+uwysoKMCxY8dw9OhRZGRkYNCgQejfvz9at24tNQOZJOHup4eHB3JycrB7927Iyspi4MCB6Nu3L+zs7KCrq4s6depgx44d8PPzw6BBgySmt2PHjujYsSNevnyJuLg4REdH4/Lly8jIyICqqipCQ0OhoKAAGxubb3perj0dPnwY1tbWMDU15QvmysjIQCQS4eLFi0hMTMT69eslYkBWVFQgJiYGT5484TM+m5ubw9zcHD169EBCQgLi4+MRERGBS5cuYd68ebWi48MXInl5efTu3RvOzs7YvHkzvLy84ObmhnHjxkFPT08qjCO8fw7Ky8vRvHlzFBcXA+/7sQMHDgAAFBQUcPPmTUyaNAmQIsOOUbswD5KU8fjxY6xevRpdu3ZF+/bta5RxOH36NHx8fJCZmQkbGxvMnDkTQ4cO5TtrcZKamoqEhATcunULUVFRuHXrFiorK2FpaQk/P78atc/ECdeBzZs3D6dOncKAAQNw584dfgWPjY0NPD09MWjQIGhqakpMp6R59+4dFBUV+QHN1NQU//3vf7Fv3z5cu3YN6urq6NOnDwwNDbFlyxb4+vpi+vTpEtP7cf4toVCItLQ0xMTEIDY2FrGxscjKykLTpk1x+fLlb/5MBAYGIigoCNeuXeNXX3HP3owZM/DixQscPXpUbF7TDz3Nvr6+uHbtGlq2bIno6GiYmZlh+PDh8PLyQoMGDfi/efnyJYqLi2FkZFSr2tq2bQttbW1YWFhASUkJWlpayMrKwunTp9G0aVNs3LgRzZo1q1UN/xTufoWEhGDPnj3o378/1qxZgydPnkAoFOLKlSvo168fcnNzUadOHUnLZYgJZiBJGUeOHMGiRYtQr149aGpqwsLCAh06dOCXxOJ9DaynT5+ibt26MDAwkHgmV2lw5X8OdXV1HDhwAD169IC9vT26desGS0tLjBw5Eu/evcOkSZOwefNmiWiTBubMmQN3d3c4OjrW2FdWVoadO3ciKCgIxcXF6NevH/744w+pqD31YWJGjpKSEqSkpPAJLSdPnvzNz5uYmAhLS0uMGzcO06dP542M+Ph49OjRA1u2bEGfPn3E5mHgjLM5c+YgJiYG69evx40bN7B06VI4OTkhNDQUsrKy6NixI8LCwsT2ElVQUIBNmzYhJSUFOTk5UFFRQWpqKh4/fgy8b1txcXESTSD7KfLy8uDl5YWzZ89CU1MTCxcuRFRUFO7fv4+ePXtixYoVzHv0E8EMJCmkuLgYly9fxpkzZ/Do0SMQEfT19WFtbQ1bW1tYW1tXi6cRN59y5XMUFBRUc+VnZWXh2rVrYtXHvVVfvXoVkydPRmJiIrKysmBpaYno6Gg0b94cc+fOhYaGBry9vaGsrCxWfdKCUCjEwIEDsW7dOujr68PX1xcmJiawsrKCgYEBGjZsyB9bWFgIJSUlieas+ZRXRigUIiwsDB06dOAzaeMDw+FbwrWrkJAQbNq0Cc2aNYOKigoqKysRFxcHbW1thIWFfdNz/lP09fXh5+eHoUOHwt3dHS1btsTy5csxbdo03L17F5MmTcK4ceMkNrhzRpKCggLu37+PgoICdO/eXew6PoZrU8+fP0diYiJ69OgBALh27RoCAgIQERGBNm3aYOzYsXB1dYWKiopUxFQyxAMzkKSMjx++Z8+e4cKFC7h06RJSU1NRp04dmJqawsjICGPHjq02iNUm0uzK/xwnT57EmTNnsHHjRoSGhuLPP//E2bNn0ahRI+zduxcHDhzAhQsXJKJN2iguLoarqysyMzPRpEkTODg4wM7ODmZmZmjevDnq1q0raYnV4J6T27dvY/DgwXB1dcXWrVtrdfDiyvs8ffoUYWFhePXqFZSUlFBSUgJbW1tMnDgR6urqYh9Ak5OTMWTIEISGhkJTUxPGxsYIDg5Gx44dcfv2baxevRr+/v5o1qwZqx32GVauXIm5c+di1apVmDBhAurXr89fq9LSUqlr/wzxwIK0pQwZGRn+LU8kEkFfXx/e3t7w9vbGgwcPcObMGVy5cgVxcXHw9fUVmy6hUAg5OTmsWbMGmZmZOHfuHG7cuIGkpCQYGhri119/xdy5c6u58ps0aYImTZqITePHuLi4QENDAwKBAEZGRsjNzcXDhw9haWmJzZs3//SZs0UiEUQiEeTk5JCYmIhbt27hyZMn2LdvH06fPo2jR4+iVatWsLOzg5OTk9hjyrgBKj8/HwcOHED37t1hbGwMIuINEB0dHUybNo2vr/et3/e4Z/H+/ftYs2YNDhw4AH19fVhYWEBNTQ2Ojo4YO3Zstb8Rt3dBXV0dw4cPx8uXL0FE0NLS4o2g/Px83Lp1i4/1YcbRp5kzZw4UFRUREhICoVCIOXPm8Neqbt26zLD8WZFslgHG57h//z6NGTOGrK2tady4cZSUlMTvEwqF9ODBA/7f4kRPT4+Cg4OJiMjNzY1mzJhBpaWlNG7cOLK2tqbt27cTSSAnEweXq+bj+m/FxcXk4eFBcnJypKioSHZ2dvTixQuJaJRGBAIBnT59utq269ev08SJE6l+/fq0cOFCsWviEgguWrSIXFxc6M6dO0TvaxKeP3+e4uPja10D1467detG7u7uFBMTQ0lJSbRlyxZydXUlXV1dOnv2bK3r+F88evSIT/z47t07cnR0JCMjI/L19eX7DxJjVu/vjQ8zaK9bt46UlZXJ1dWV7t27RyTBvowheZiBJEVwxs7du3fJ3NychgwZQosWLSKBQMAbRImJiRLT9+TJE7K2tqa0tDR6+/Yt6ejoUEREBNH7cigDBw7kjQ5xFej8GO68ixcvptWrV1dLbFhSUkKXLl2iQ4cOUXJyskT0SRPctUpKSqKePXtSfn4+lZeX1yhbU1lZSYWFhRJSSaSlpcUb5RkZGeTm5kb169cngUBAGzdurPXzFxcXk7KyMj158qTGPnd3dxo8eLDYB1HufOfPn6fu3bvT8ePH+X0JCQk0duxYsrW1pSlTpvDPJEtw+M9ISEigXr16kaenJ6WmpkpaDkOCsEgzKYKbHvDz84ONjQ1CQkJgZGQEKysrmJubIz8/H3PmzMGGDRskou9DV35OTo7UufI5N/jz58+xZcsWmJiYQFVVld+nrKyMbt26YdCgQTXSJ/yMcO3tzp07ePv2LaKjo6GgoAAFBQXgfTA+l8eKu47i1hYfHw8ZGRl4eHgAANauXYuioiI8fPgQ8+fPR0REBEpKSmpVS0pKCpo1a4aEhATgfQC4UCgEAHh7eyM6Ohpv3rypVQ2fY/ny5WjTpg169+7NazMxMcHs2bPh7+9fbSk9Cyz+/3DtSygU8ivr0tPTkZSUBBMTE4wfPx6XLl2ClZUV4uLiJKyWISlYDJIUwa0uiYuLw8qVK4H3xpKXlxcAoGHDhqhTpw7fGYs7GPTly5eYOnUq5OTkUF5eDkVFRYwZMwZubm64fv06vwJEEjmZ8P56yMrKIjAwECYmJnBzc+P3cYngAgICoKOjg379+oldn7QhIyODyspK7Nq1Cw8fPoSPjw9mzZoFNzc36Onp8YaSJOAMbAUFBTRo0ADLli1D3bp1ER4ejhUrVkBHRwc2NjYIDg6GiopKrekgIlhZWcHa2hpbtmyBra0tGjduzO9PTExEvXr1oKamJtbnUVZWFm/fvkViYiI2bNjA9x3c/xUVFbF161bIy8t/86SZPwJc+zpz5gwmT56MoqIiGBkZoaqqCunp6bCzs4Oenh6ioqJ+6jxpPzvMQJJC+vTpg9TUVJSWliI9PR1DhgwBEaG4uBgXL17E7NmzxaaFC1INCwvDunXr4OPjg759+0JJSQkBAQFYu3Ytbt26BXt7e/z3v/8FJPimyg0OL168qJFfRSQSQVFREcnJyUhOTmYG0gdMmzYNDx48wF9//YWgoCAcPXoUrVu3RteuXeHk5AQ1NTWJ6OLSW0yaNAnbtm1Dbm4u/Pz84OrqCrzPGebg4ADUYmZjbiD18fHB8OHDYWRkBA8PD9jb2+PUqVN4/PgxFi1axOsVJzk5OWjevDliY2NhZWVVzUAjIpw5c4Z/0WL8fxISEmBiYgKBQAANDQ2sW7cOTZs2RVJSEjQ1NaGgoMB7DTU1NdGsWTO2tP9nRdJzfIz/g4sP2LBhA02bNo2MjY3JwcGB2rVrR/Q+DmL27NlkbGwsVl1crIOjoyPNmjWL/8wFfD5+/Jhu3bolVk1/x/bt26lhw4YUFxdXbTsXN3X06FGJaZNmMjIyKDg4mKZOnUo9evQgExMTiRQT5drY4cOHycXFhV68eEGxsbF8wWEioiNHjlDz5s0pNjaWSEzxNUKhkLZt20bOzs6kpaVF/fv3p+PHj0sktoeLHxs9ejR17NiRMjIy+H1lZWW0YMECatOmDa+b8X8cPXqU+vbtS/T+OuXl5bHrw/gsLA+SFPHmzRs0bdoUCQkJOHHiBHbt2gUiQsOGDZGQkAAzMzNMmzZNrJl68T5zt76+Pi5evAgrKyvgg3ifZ8+eYdGiRZg2bZrUuPIzMzMxZMgQAICvry8sLCyQlpaGU6dO4cyZM0hLS5O0RKkiNzcX9erVq5YhOyEhAefPn0eHDh3Eng6Ba1vjx4+Huro6VqxYUW1/fn4+goODQUSYOnWqWLV9iDTkx4mOjsaQIUOQn58PDw8PWFtb49ChQygqKsKiRYvg4eHBMj9/QFJSElJSUuDm5oa1a9di//79GDZsGKysrGBiYiI1pU8Y0gEzkKQAbkCIjo6Gn58fdu/eDRUVFdy8eRNnz56FSCRC48aNMXz4cL7ciDhJTU3FkCFDMGHCBIwbN66auzktLQ1t27bFo0ePJJrz6GPu3r2LuXPn4sqVK1BTU0O9evWgq6uLefPm8VM0PyvcgJmUlISAgACkpqbi3bt3sLS0RM+ePeHs7CxpiRAKhfjjjz9QXl5ezUDi2l5lZSWEQiGUlJR++hw1lZWV2LZtG44fP47U1FR06dIFXl5ecHR0/Kmvy98RExODNWvWIDY2FnJycrC2toaTkxPatm2LFi1aiC0JL0N6YQaSFMB18Nu3b0dgYCBmzZqFwYMH8/slFfT8obYxY8YgOTkZISEh0NbWBt7XYFu2bBlOnTqFe/fuSWyenjvvvXv3kJCQgCFDhvA6SkpKcPHiRairq6N9+/as0OQHdO7cGTIyMujWrRt27dqFyspKAIChoSE6dOiACRMmQE9PT6yauHsZFhaG2bNn4/Xr11i1ahV69OjBgmX/IRUVFVBQUPjpDcdPwV2bFy9e4M2bNzAxMUFJSQmOHj2KgwcP4uHDh2jSpAlatmwJf39/qXrpY4gfZiBJCYWFhejUqRPS0tLQoEEDeHl5oUuXLrCyshL7EutP8T248lesWAE/Pz80bdoUjo6OGDly5CeLsP7McAbIrVu30KtXLzx79gyqqqqoV68etm3bhvv372P9+vXQ1tbGvn37+CBocXPixAns3bsXjx8/RlVVFdq3b4927drBzs4OrVu3lvjUFuP7ZtCgQdDX18eqVauqbU9PT8f+/fvx119/SayuHkN6YAaSFFFRUYH4+HgEBATgzp07UFZWhrGxMWxsbGBnZyfxytfS7spPT0/Ho0ePEB0djevXryMlJQWampp8AU+uTIU0aJUUnIH066+/4uXLl9i7dy8CAwOxbds23L17FxUVFfD09ISDgwOmTJkiabl48uQJTp06hWvXriE7OxsNGzaEhoYGli5dCgMDA0nLY3xHFBYWYvny5Zg4cSKMjIyQmJiIli1b8tO1cnJyNTz1P3t/8bPDDCQp5c2bN7h69SqCgoJw7949jBs3Dr/99pukZVVDWl35ZWVlePbsGe7cuYMtW7YgKioKDRo0wOPHj6GhoSFpeVLB77//jtzcXGzatAnjx4+HkpISNm7cCADw9PSEhYUFfvnlF7Fq4jyQ58+fx9u3b/Gf//ynWi6myMhInDx5ErGxsQgLC4O8vLxY9TG+byIiIjBy5Ejk5eWBiLBy5UoMHTq0WqxRVVUVevfujcDAQOjo6EhUL0PyMAPpOyAzMxMAWD6Of8Hly5exevVqTJkyhc82zPg/UlNT0aJFC/j7+8Pf3x979uyBiooKunTpgosXL8LOzk4iujw9PREdHQ0dHR106NAB7u7usLW15fdLq2HOkG5KS0vx5s0bdO3aFZWVlRCJRHj9+jXs7OwwYcIE/Oc//0FwcDAmT56M4uJiSctlSAHMQGJ8t3ADZE5ODnx8fDBs2DC4ublBSUmJP6aqqgr9+/fHzJkzpWJ1ljQgFAohIyPDGxfp6emYMmUKnj9/joyMDDg7O+PYsWMS0xcXF4e7d+8iOjoaSUlJKC4uhp6eHtzc3ODg4ABTU1P2osD414SHh0NHRwdv3rxBTEwMzp07h+joaOTk5EBPTw++vr6YNm2aRBfHMKQDZiAxvlu4QfLmzZuYM2cO3rx5A4FAgI4dO2Lw4MGws7PD6dOnMWDAABQVFUFZWVnSkiVOZWUlNm7ciM2bN0NNTQ1dunRBz549IRQK8fz5c5iZmcHExERi2bM/5O3bt7h37x6uXLmCwMBAFBUVwd7eHhcuXJC0NMZ3yKcWkVRVVeH169fIyMhARkYGVFVV0bFjR5Y+ggEwA4nxPSIUClFaWop69eoB7z1JT548wcOHDxETE4PY2FikpqYiIyMD2traGDBgAFavXi1p2RKFGxw2btyI5cuXY9y4cRAKhQgODsaLFy/QqVMn9O7dG05OTrC2tpa03Bps3rwZp06dwuzZs9GtWzeJr5hkfJ9w5ZqSkpLQu3dvWFhYSFoSQ4phBhLju2P//v0YNWoU+vTpgzFjxlSLLXr37h2SkpLw/PlzVFZWomHDhujQoQPzHr3Hzc0N3bt3x4wZM/ht9+7dw+bNm7Fz50506tQJ4eHhYtXEeQJjYmKwc+dODBgwAA4ODtWW8qempmL69OkIDAyUSLJUxvcL5wl6+fIlxo4di6SkJGhpaSEyMhJ6enoYOnQoxo8fj+bNm0taKkPKYAYS47sjJycHZ8+exfHjx3H9+nXUrVsXI0aMwJAhQ9C2bVtJy5NqDh8+jNzcXPj4+Hxyf2ZmpsTKLWzduhU7duyAkpIS1NXVYWtrC1dXV7Rq1Qq7du2Cn58fsrOzJaKN8f3CxRLNnj0bcXFx2LVrF27evInZs2fDw8MDAQEBKC8vh6WlJe7cucNi2xg8zEBifLeUl5fj/PnzGDp0KL8qRU9PD6NHj8bo0aPZMt33cB6ad+/eYc+ePdi1axd++eUXODo6omnTppKWV43Y2FjcunUL0dHRSEtL4z2CWlpamDVrFry9vVnwLONf0aJFCyxbtgxDhw6Fm5sbjIyM4O/vj3nz5iEyMhLe3t4YNmwYm75l8DADifHdwQ2Q58+fx/LlyzF06FDY2NjgzZs3OH78OHbt2oWKigq0atUKERERUFdXl7RkqWDgwIGIjY3Fs2fPoKWlBWdnZzg6OsLGxgYGBgZSVXuqsrIScXFxePjwIWRlZdGqVSvY2NhAXl6eBc8yvpjnz5/Dy8sLW7duhZ6eHszMzBAUFAQnJyckJydj5syZ2Lp1K19GicEAAPYaxvju4Fzgq1evRtu2bfnpIpFIhI4dO0JXVxeBgYHw8PD46Y0jzpi4desWTp06hYsXL8LGxgahoaEICQnB0qVL0aRJE7Rq1Qpr166VWO2p169fY9euXYiPj4exsTE6dOiArl27on379jWOZcYR40tRVlbGkCFDUFxcjLy8PGhqaqKkpAQAkJSUhJiYGGYcMWrADCTGd4eMjAyEQiHq1q1bLV5ARkYGSkpK8Pb2RnR0NNzd3SWqU5p49uwZxo8fDycnJ+B9MkZPT09kZGRg7969CA8PF7txxBlvmZmZGDBgAPLy8tCqVSvs2LED69evR8eOHbFlyxY0bdqU5T1ifBWNGjWCt7c3/1lbWxuDBw+Gm5sbHj58CA8PD0DChcEZ0gebYmN8twQEBGDSpEnYuHEj+vXrx8fTJCYmon379khISGBxSO9ZtmwZLly4gICAAJiYmEhaDvDBYDRt2jQkJCQgICCAr6925coVzJw5E1paWjh//jzzGjG+GM6ozsvLw9WrV/HixQvIycnBxsYGurq62L9/PyIiImBvb48JEyZAQ0ODGeKMajADifFds3LlSly7dg2amprQ0NDAu3fvEBsbizp16oh9ubq0Eh8fD3d3d+Tk5MDGxgbDhw+Hg4MDzMzMpOJt2crKChMmTMCkSZNQUVEBeXl5CAQCXLx4ET4+Pti9ezc6duwoaZmM7wwu2HrChAm4ePEiKisroa2tDTk5OTRv3hxt2rRBly5dYGNjI2mpDCmFGUiM75KUlBTcvXsXN27cQGpqKlRUVJCfn4+ysjJ07twZY8aMgZ6enqRlSg3FxcW4efMmNm/ejMzMTKirq8PCwgKWlpZwcnKCrq6uRHRVVlZi4sSJKCgo4MubEBH/n76+Pvbt2wdnZ2cWnM34YoqLi9GoUSOEh4fD3t4ecXFxuHDhAqKiolBQUIDc3Fz4+/vDxcVF0lIZUojkXx8ZjH8I90Z46NAhbNq0Ca9evULDhg3RoEEDHDhwAC9evICKispPH5j9KerXr48ePXqgR48eyM7OxvHjx3H06FEcOXIE69atk5iBJC8vDzc3NwwePBhjx47FtGnT0KZNG5SVlWHnzp14+/YtX0OPGUeMfwpnTCclJWHAgAEwNzcH3nsrraysUFZWhoiICJw/fx7t2rWTtFyGlMI8SIzvDn19fcyYMQMzZsxAx44d0b59e6xbtw7x8fE4duwYRo8eLbEB/3tCJBIhKSkJ2trafNkWSXH69Gls3boVqampqKyshKysLOTl5TFhwgRMnz6dBc8yvgjOQNq5cyd27tyJX3/9FX379pW0LMZ3BjOQGN8FXIcXGxuLXr164cWLFxCJRNDU1MS1a9dgbW2Nu3fvwtvbG4GBgbCyspK0ZMZn+DB49tq1a0hPT4eMjAy/CrG8vBzv3r1Dnz59YGhoCFlZWTa9xvhiCgsL0alTJ6SlpaFZs2YYOXIknJyc0KZNG4m/EDC+D9grGeO7gBsci4qKoK2tjdLSUoSEhEBPT48vrlpQUIDMzExmHEkxRISqqiooKChg7ty5fPCsvr4+VFRUoKmpCVtbWwwePBi6urr8fWfGEeNLUVNTw507dxAfH49t27YhNDQUYWFhMDY2ho2NDezs7NCmTRtJy2RIMcyDxPiuKC8vR9++fTFo0CAEBARg2LBhmDZtGoqLizFmzBgoKSlh//79kpbJ+BvevHkDdXV1Png2NjYWFy5cQExMDF6/fo2CggKsX7+eBc8yvhlv3rzB1atXERQUhHv37mHcuHH47bffJC2LIcUwA4nx3XH8+HGMHDkSpaWlGDduHGxtbbFt2zbIy8sjICAArVu3lrRExic4dOgQSktL4erqiqysLKxduxaBgYHVpjvKyspw48YNnDt3DgsWLECDBg0kqpnxY5KZmQkAaNasGct9xPgszEBifJcUFRVh27Zt2LNnD8rKyuDq6orJkycz40iKcXFxQU5ODnR1ddG2bVtcvXoVvr6+LHiWwWBIJcxAYnz3VFRUQEZGBnJyciyYV4oRiURISUnB3r17cfnyZTx8+BDa2toseJbBYEglzEBiMBhip6KiAg8ePEBAQABiY2OhrKzMgmcZDIZUwQwkBoMhUVjwLIPBkEaYgcRgMKQGFjzLYDCkBWYgMRgMBoPBYHwEez1jMBgMBoPB+AhmIDEYDAaDwWB8BDOQGAwGg8FgMD6CGUgMBoPBYDAYH8EMJAaDwWAwGIyPYAYSg8FgfAXOzs6YMWPGV33Hs2fPIBAIcO/evW+mi8FgfB3MQGIwGLWGl5cXBAJBjf9SUlK+yffv3r0bampq3+S7/i3Hjh3DkiVLJKqBwWB8e+QkLYDBYPzY9OjRA0FBQdW2aWhoSEzP56isrIS8vPwX/13Dhg1rRQ+DwZAszIPEYDBqFUVFRTRp0qTaf7KysgCAkydPwtraGkpKSmjRogUWL16Mqqoq/m/XrVsHc3NzKCsrQ0dHBz4+PigpKQEAhIeHY/To0SgqKuI9U7///jsAQCAQ4MSJE9V0qKmpYffu3cAHU1qHDh2Ck5MTlJSUcODAAQDAjh07YGJiAiUlJRgbG2PLli3/8/d9PMWmr6+P5cuXY8yYMahXrx50dXURGBhY7W9iYmJgZWUFJSUltG3bFnFxcTW+9+HDh+jZsydUVFTQuHFjjBw5Erm5ufxvV1BQQEREBH/8qlWroKmpiZycnH98bxgMxv+AGAwGo5bw9PSkPn36fHLfX3/9RfXr16fdu3fT06dP6eLFi6Svr0+///47f4y/vz9dvXqV0tLS6MqVK9SqVSuaNGkSERGVl5fT+vXrqX79+pSdnU3Z2dn05s0bov+rDkDHjx+vdj5VVVUKCgoiIqK0tDQCQPr6+hQaGkqpqamUlZVF+/fvJy0tLX5baGgoNWzYkHbv3v3Z3+jk5ETTp0/nP+vp6VHDhg1p8+bNlJycTH5+fiQjI0OPHz8mIqI3b96QhoYGDRs2jB4+fEinT5+mFi1aEACKi4sjIqKCggLS0NCguXPnUmJiIt29e5e6d+9OnTt35s8ze/Zs0tPTo8LCQrp79y4pKCjQyZMn/9V9YjAYNWEGEoPBqDU8PT1JVlaWlJWV+f8GDBhARERdu3al5cuXVzt+3759pKWl9dnvO3LkCKmrq/Ofg4KCSFVVtcZx/9RAWr9+fbVjDAwMKDg4uNq2JUuWkJ2d3Wc1fcpAGjFiBP9ZJBKRpqYmbd26lYiIAgICSF1dnd69e8cfs3Xr1moG0pIlS8jFxaXaeTIyMggAJSUlEb03EC0tLWnQoEFkampK48eP/6xGBoPx5bAYJAaDUat07twZW7du5T8rKysDAO7fv4/IyEgsW7aM3ycUClFWVobS0lLUrVsXly9fhp+fHx4/fozi4mJUVVVV2/+1tG3blv/327dv8fTpU4wdOxbjx4/nt1dVVUFVVfWLvtfCwoL/t0AgQJMmTfDq1SsAQGJiIiwsLKCkpMQfY2dnV+3v79+/j2vXrkFFRaXGdz99+hRGRkZQUFDAgQMHYGFhAT09Pfj7+3+RRgaD8b9hBhKDwahVlJWVYWhoWGN7SUkJFi9ejP79+9fYp6SkhGfPnsHd3R2TJk3CsmXL0LBhQ9y4cQNjx45FRUXF/zSQBAIBPq7DXVlZ+UltH+oBgO3bt6NDhw7VjuNipv4pHwd7CwQCiESif/z3JSUl6N27N1auXFljn5aWFv/vmzdvAgDy8/ORn59f7fcwGIyvgxlIDAZDIlhbWyMpKemTxhMAxMbGQiQSYe3atZCR+b/1JIcPH652jIKCAoRCYY2/1dDQQHZ2Nv85OTkZpaWl/1NP48aN0bRpU6SmpmL48OH/8lf9PSYmJti3bx/Kysp4L1JUVFS1Y6ytrREaGgp9fX3IyX26m3769Cl8fX2xfft2HDp0CJ6enrh8+TJ/rRgMxtfBniQGgyERFi5ciL1792Lx4sV49OgREhMTcfDgQfz2228AAENDQ1RWVmLjxo1ITU3Fvn37sG3btmrfoa+vj5KSEly5cgW5ubm8EdSlSxds2rQJcXFxuHPnDiZOnPiPlvAvXrwYfn5++PPPP/HkyRPEx8cjKCgI69at+2a/e9iwYRAIBBg/fjwSEhJw7tw5rFmzptoxkydPRn5+PoYOHYrbt2/j6dOnuHDhAkaPHg2hUAihUIgRI0bA1dUVo0ePRlBQEB48eIC1a9d+M50Mxs8OM5AYDIZEcHV1xZkzZ3Dx4kW0a9cOtra28Pf3h56eHgCgTZs2WLduHVauXInWrVvjwIED8PPzq/Yd9vb2mDhxIgYPHgwNDQ2sWrUKALB27Vro6OjA0dERw4YNw6xZs/5RzNK4ceOwY8cOBAUFwdzcHE5OTti9ezeaN2/+zX63iooKTp8+jfj4eFhZWWH+/Pk1ptKaNm2KyMhICIVCuLi4wNzcHDNmzICamhpkZGSwbNkyPH/+HAEBAcD7abfAwED89ttvuH///jfTymD8zAjo44l6BoPBYDAYjJ8c5kFiMBgMBoPB+AhmIDEYDAaDwWB8BDOQGAwGg8FgMD6CGUgMBoPBYDAYH8EMJAaDwWAwGIyPYAYSg8FgMBgMxkcwA4nBYDAYDAbjI5iBxGAwGAwGg/ERzEBiMBgMBoPB+AhmIDEYDAaDwWB8BDOQGAwGg8FgMD7i/wHri9ZSdqwvIgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAIhCAYAAACyp5soAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyPJJREFUeJzs3Xl4TNf/B/D3ncmKrEKChEgQJCH22mvfWmtRXSxVlKKkuqjWUlRrKf2i1VYXtJZWldpSrdqpvRWJNaFCJEFCQmSb+/n9ITO/jCTkxNyZIz6v58nTOnOT+773nrlz5txz7lWIiMAYY4wxVkLobB2AMcYYY8ySuHHDGGOMsRKFGzeMMcYYK1G4ccMYY4yxEoUbN4wxxhgrUbhxwxhjjLEShRs3jDHGGCtRuHHDGGOMsRKFGzeMMcYYK1G4ccNYCfP9999DURRcvHjR1lFYrnPnzqFjx45wc3ODoihYv369rSMxVqJx44Y99owf5gX9vPvuu5qsc//+/Zg6dSpu3rypyd9/kqWnp2Pq1KnYuXOnraNYzKBBgxAZGYmZM2dixYoVaNiwoWbrWrp0KRRFwbJly/K9duDAAeh0OkyYMCHfaxs3bsSzzz4Lb29vODg4wNPTE61atcK8efOQmppqtqy/v7/Z+8zJyQnVq1fHW2+9heTkZM22rai2bNmCqVOn2joGsyGFny3FHnfff/89hgwZgg8//BBVq1Y1ey0kJARhYWEWX+fcuXPx1ltv4cKFC/D397f4338UBoMB2dnZcHR0hKIoto4j7Pr16yhXrhymTJlSIj6g7t69i1KlSmHSpEmYMWOG5usjIrRq1QqnT5/G6dOnUbZsWQBAdnY26tevj9TUVERHR6N06dIAAFVVMXToUHz//fcIDQ1Fnz594Ofnh7S0NBw4cAAbNmxAs2bNsH37dtM6/P394eHhgTfffBMAkJGRgaNHj2Lp0qWoV68eDh06pPl2Psjo0aOxePFi8Mfbk8vO1gEYs5QuXbpo+o3YGu7cuWP60CkuvV4PvV5vsUzWoqoqsrKybB3D4q5duwYAcHd3t9jffFA9URQFX375JcLCwjBhwgR89913AIB58+bh5MmT+O2338x+d/bs2fj+++8xfvx4zJs3z6xB/MYbb+Dq1atYvnx5vvVUqlQJL730kunfr776KsqUKYO5c+fi3LlzqF69usW2lzFhxNhj7rvvviMAdPjw4Qcut2XLFmrRogWVKlWKypQpQ127dqWTJ0+aLfPvv//SoEGDqGrVquTo6Eje3t40ZMgQun79ummZKVOmEIB8PxcuXKALFy4QAPruu+/yrR8ATZkyJd/fiYqKogEDBpC7uzuFhYWZXl+xYgXVr1+fnJycyMPDg/r370+XLl0q8v64cOGCqaxKlSrUrVs32rFjBzVo0ICcnJwoJCSEduzYQUREv/zyC4WEhJCjoyPVr1+fjh07ZvY3Bw0aRKVLl6aYmBjq2LEjlSpViipUqEDTpk0jVVXNlr19+zaFh4eTr68vOTg4UI0aNWjOnDn5lgNAr7/+Ov3www9Uu3ZtsrOzo/nz5xe4b437rSjHJ+++PXfuHA0aNIjc3NzI1dWVBg8eTHfu3Mm3z1asWEGNGjUiZ2dncnd3p5YtW9Lvv/9utkxR6s/9CqorVapUMb1+7Ngx6ty5M7m4uFDp0qWpbdu2dODAgQKP586dO2nkyJFUrlw5cnd3f+B6iYjee+890+/FxsaSs7Mz9e7d22yZO3fukLu7OwUHB1NOTs5D/6aRsT7db+7cuQSAYmNjzcq3b99u2ndubm7UvXt3io6Ozvf7RdkfWVlZNHXqVKpWrRo5OjqSp6cnNW/enLZt20aUW1cLqkPsycI9N6zEuHXrFq5fv25W5uXlBQBYsWIFBg0ahE6dOuGTTz5Beno6vvjiC7Ro0QLHjx83XVr6448/EBsbiyFDhsDHxwdRUVH46quvEBUVhb///huKoqB37944e/YsVq1ahfnz55vWUa5cOdO3dBF9+/ZF9erV8dFHH5m60WfOnIkPPvgA/fr1w6uvvopr165h4cKFaNWqFY4fP16sXoDz58/jhRdewIgRI/DSSy9h7ty5ePbZZ7FkyRK89957GDVqFABg1qxZ6NevH86cOQOd7v+H5RkMBnTu3BlPPfUUZs+ejYiICEyZMgU5OTn48MMPgdxLIt27d8eOHTswdOhQhIWF4ffff8dbb72FK1euYP78+WaZ/vrrL/z0008YPXo0vLy8ULduXXzxxRcYOXIkevXqhd69ewMA6tSpU+Tjk1e/fv1QtWpVzJo1C8eOHcPSpUtRvnx5fPLJJ6Zlpk2bhqlTp6JZs2b48MMP4eDggIMHD+Kvv/5Cx44dAYH6c7/evXvD3d0d48ePx4ABA9C1a1eUKVMGABAVFYWWLVvC1dUVb7/9Nuzt7fHll1/i6aefxq5du9CkSROzvzVq1CiUK1cOkydPxp07dx56vN9//32sXr0aI0aMQJUqVWBnZ4f//e9/Zsvs3bsXN2/exIQJE4R7+7Kzs03vt4yMDBw/fhyffvopWrVqZXZ5+M8//0SXLl0QEBCAqVOn4u7du1i4cCGaN2+OY8eOmfZdUffH1KlTMWvWLLz66qto3LgxUlNTceTIERw7dgwdOnTAiBEjEB8fjz/++AMrVqwQ2iZWgti6dcXYozJ+sy3s21paWhq5u7vTsGHDzH4vISGB3NzczMrT09Pz/f1Vq1YRANq9e7epbM6cOfl6R4ioWD03AwYMMFvu4sWLpNfraebMmWblkZGRZGdnl6+8sP1xf88NANq/f7+p7PfffycA5OzsTP/995+p/MsvvyQApl4dyvNteMyYMaYyVVWpW7du5ODgQNeuXSMiovXr1xMAmjFjhlmm5557jhRFofPnz5vtD51OR1FRUWbLXrt2Ld++Mirq8THu21deecVs2V69elHZsmVN/z537hzpdDrq1asXGQwGs2WNPU0i9acgxjoxZ84cs/KePXuSg4MDxcTEmMri4+PJxcWFWrVqZSozHs8WLVoI9a5QnmMMgBYsWJDv9c8++4wA0Pr1683Kc3Jy6Nq1a2Y/eXvejPXp/p/mzZvn60ULCwuj8uXL040bN0xl//77L+l0Oho4cKDw/qhbt26BvUZ5vf7669xb84Tj2VKsxFi8eDH++OMPsx/kftu/efMmBgwYgOvXr5t+9Ho9mjRpgh07dpj+hrOzs+n/MzIycP36dTz11FMAgGPHjmmS+7XXXjP797p166CqKvr162eW18fHB9WrVzfLK6J27dpo2rSp6d/Gb8Jt27ZF5cqV85XHxsbm+xujR482/b+iKBg9ejSysrLw559/ArmzVPR6PcaOHWv2e2+++SaICFu3bjUrb926NWrXrl3kbRA9Pvfv25YtW+LGjRum2T/r16+HqqqYPHmyWS+VcfsgWH+KymAwYNu2bejZsycCAgJM5RUqVMALL7yAvXv35puhNGzYMOHeFU9PT9N2GXuh8jKuw9ibZBQZGYly5cqZ/dy4ccNsmSZNmpjeZ5s2bcLMmTMRFRWF7t274+7duwCAq1ev4p9//sHgwYPh6elp+t06deqgQ4cO2LJli/D+cHd3R1RUFM6dOye0L9iThS9LsRKjcePGBQ4oNp4E27ZtW+Dvubq6mv4/OTkZ06ZNw+rVq5GUlGS23K1btyyeGUC+GV7nzp0DERU6INPe3r5Y68nbgAEANzc3AICfn1+B5SkpKWblOp3O7IMHAGrUqAEApnvq/Pfff6hYsSJcXFzMlqtVq5bp9bzu3/aHET0+92+zh4eHadtcXV0RExMDnU73wAaWSP0pqmvXriE9PR1BQUH5XqtVqxZUVUVcXByCg4NN5aL7ymAwYPjw4ahYsSJu376NsWPHmhr8RsbjdPv2bbPyatWqmZZdvnx5gZd3vLy80L59e9O/u3XrhqCgIDz33HNYunQpxowZYzrehW3n77//jjt37iAtLa3I++PDDz9Ejx49UKNGDYSEhKBz5854+eWXTZcuGQM3btiTQFVVIHfchI+PT77X7ez+/23Qr18/7N+/H2+99RbCwsJQpkwZqKqKzp07m/7OgxQ29dpgMBT6O3l7I4x5FUXB1q1bC/ymfv+37KIq7Ft/YeXWmEZ7/7Y/jOjxscS2idQfLYnuq88++wzHjx/H+vXrceXKFbz++utYuXIlXnjhBdMyNWvWBACcPHkSPXr0MJWXKVPG1HDZu3dvkdfZrl07AMDu3bsxZswYobxF1apVK8TExGDDhg3Ytm0bli5divnz52PJkiV49dVXNVkne/xw44aVeIGBgQCA8uXLm33TvF9KSgq2b9+OadOmYfLkyabygrq/C2vEGHsG7r+53/09Fg/LS0SoWrWqqWdEBqqqIjY21izT2bNngdz7ngBAlSpV8OeffyItLc2s9+b06dOm1x+msH0rcnyKKjAwEKqqIjo6utD7IRW1/ogoV64cSpUqhTNnzuR77fTp09DpdPl61ETExcVhypQp6NGjB3r06AFVVbFs2TKEh4ejW7dupt65li1bws3NDatXr8bEiRPzXZoTlZOTA+TpCTIe78K208vLC6VLl4aTk5PQ/vD09MSQIUMwZMgQ3L59G61atcLUqVNNjZvH8f5OzLJ4zA0r8Tp16gRXV1d89NFHyM7Ozve6cYaT8Vv+/d/qFyxYkO93jPcJub8R4+rqCi8vL+zevdus/PPPPy9y3t69e0Ov12PatGn5shBRvrEP1rRo0SKzLIsWLYK9vb3pG3vXrl1hMBjMlgOA+fPnQ1EUdOnS5aHrKFWqFFDAvhU5PkXVs2dP6HQ6fPjhh/l6fozrKWr9EaHX69GxY0ds2LDB7DEZiYmJWLlyJVq0aFGsy11GY8aMARFh4cKFQO4lxSVLluD69et47733TMuVKlUKb7/9Nk6ePIl33323wB4tkV6ujRs3AgDq1q0L5I6ZCQsLw7Jly8yO58mTJ7Ft2zZ07doVENwf99f/MmXKoFq1asjMzDSVFfb+ZE8O7rlhJZ6rqyu++OILvPzyy6hfvz6ef/55lCtXDpcuXcLmzZvRvHlzLFq0CK6urmjVqhVmz56N7OxsVKpUCdu2bcOFCxfy/c0GDRoAACZNmoTnn38e9vb2ePbZZ1G6dGm8+uqr+Pjjj/Hqq6+iYcOG2L17t6mHoygCAwMxY8YMTJw4ERcvXkTPnj3h4uKCCxcu4Ndff8Xw4cMLvH2+1pycnBAREYFBgwahSZMm2Lp1KzZv3oz33nsP5cqVAwA8++yzaNOmDSZNmoSLFy+ibt262LZtGzZs2IBx48aZekEexNnZGbVr18aaNWtQo0YNeHp6IiQkBCEhIUU+PkVVrVo1TJo0CdOnT0fLli3Ru3dvODo64vDhw6hYsSJmzZpV5PojasaMGfjjjz/QokULjBo1CnZ2dvjyyy+RmZmJ2bNnF3ubfv31V2zYsAHz5s0z6+2oV68eXn/9dSxatAiDBw9Go0aNAADvvvsuTp06hTlz5mDbtm3o06cPfH19kZKSgmPHjuHnn39G+fLl4eTkZLaeK1eu4IcffgAAZGVl4d9//8WXX34JLy8vs0tSc+bMQZcuXdC0aVMMHTrUNBXczc3N7A7URd0ftWvXxtNPP40GDRrA09MTR44cwdq1a80Guxvfn2PHjkWnTp2g1+vx/PPPF3ufsseQradrMfaoinoTvx07dlCnTp3Izc2NnJycKDAwkAYPHkxHjhwxLXP58mXq1asXubu7k5ubG/Xt25fi4+MLnJo8ffp0qlSpEul0OrOp1+np6TR06FByc3MjFxcX6tevHyUlJRU6Fdw4jfp+v/zyC7Vo0YJKly5NpUuXppo1a9Lrr79OZ86cKdL+KOgmfvcz3kgvr4KmLhd0Ez9vb2+aMmVKvinUaWlpNH78eKpYsSLZ29tT9erVH3gTv4Ls37+fGjRoQA4ODmb7rajHp7B9W9C+ISL69ttvqV69euTo6EgeHh7UunVr+uOPP8yWKUr9KUhhU8Ep96Z1nTp1ojJlylCpUqWoTZs2ZtP1SaB+U+6+9/X1pbCwsAKnjaemplLFihWpfv36+V7/9ddfqWvXrlSuXDmys7Mjd3d3atGiBc2ZM4du3rxptuz9U8F1Oh2VL1+eBgwYYDbd3+jPP/+k5s2bk7OzM7m6utKzzz5b6E38HrY/ZsyYQY0bNyZ3d3dydnammjVr0syZMykrK8u0TE5ODo0ZM4bKlStHiqLwtPAnED9bijH2UIMHD8batWvzzaphjDEZ8ZgbxhhjjJUo3LhhjDHGWInCjRvGGGOMlSg85oYxxhhjJQr33DDGGGOsROHGDWOMMcZKlCfuJn6qqiI+Ph4uLi58i27GGGPsMUFESEtLQ8WKFR/6qJAnrnETHx//SM9sYYwxxpjtxMXFwdfX94HLPHGNG+PD/OLi4h7p2S2WZjAYEBUVheDg4EKfZGwLsuaCxNk4lxjOJU7WbJxLDOcSk5qaCj8/P7OH8hbmiWvcGC9Fubq6Ste4KVOmDFxdXaWqTLLmgsTZOJcYziVO1mycSwznKp6iDCnhAcWMMcYYK1G4cSMJRVHg5+cn3SBnWXNB4mycSwznEidrNs4lhnNp54m7iV9qairc3Nxw69YtqS5LMcYYY6xwIp/f3HMjCYPBgNOnT8NgMNg6ihlZc0HibJxLDOcSJ2s2ziWGc2mHGzcSycjIsHWEAsmaCxJn41xiOJc4WbNxLjGcSxvcuGGMMcZYicKNG8YYY4yVKDygWBLG20rL9lgIWXNB4mycSwznEidrNs4lhnOJEfn85sYNY4wxxqTHs6UeQwaDAZGRkdKNTpc1FyTOxrnEcC5xsmbjXGI4l3a4cSMRWSuSrLkgcTbOJYZziZM1G+cSw7m0wY0bxhhjjJUo3LhhjDHGWInCA4olQUTIyMiAk5OTVKPTZc0FibNxLjGcS5ys2TiXGM4lRuTz285qqZ4Q/u9uLuZvEuwUIIcAQLwyXfy4WzHX+3AODg6a/e1HJWs2ziWGc4mTNRvnEsO5tMGXpSRhpwC9q6qwk6eRDABQVRWRkZFQVdXWUfKRNRvnEsO5xMmajXOJ4Vza4cYNY4wxxkoUbtwwxhhjrEThxg1jjDHGShSeLWVhJW1AMRFBVVXodDqpRs1D4mycSwznEidrNs4lhnOJ4ccvPIYUAKXsitOs0V5WVpatIxRK1mycSwznEidrNs4lhnNpgxs3ktArQGc/FXrJWjeqquLMmTNSjpqXNRvnEsO5xMmajXOJ4Vza4cYNY4wxxkoUbtwwxhhjrEThxo1EciTtAdTr9baOUChZs3EuMZxLnKzZOJcYzqUNni1lYcWfLfVotHz8AmOMMWZrPFvqMaSA4ONMUCBXW5OIkJqaChnbwLJm41xiOJc4WbNxLjGcSzvcuJGEXgFaVZBztlRsbKyUo+Zlzca5xHAucbJm41xiOJd2uHHDGGOMsRKFGzeMMcYYK1G4cSMJApCaBclG3Nzj5ORk6wiFkjUb5xLDucTJmo1zieFc2uDZUhbGs6UYY4wxy+PZUo8hHQgBLgSdZH03qqrixo0bUg4skzUb5xLDucTJmo1zieFc2uHGjSR0CtCwnAqdZLOliAhxcXFSTgmUNRvnEsO5xMmajXOJ4VzakaJxs3jxYvj7+8PJyQlNmjTBoUOHivR7q1evhqIo6Nmzp+YZGWOMMfZ4sHnjZs2aNQgPD8eUKVNw7Ngx1K1bF506dUJSUtIDf+/ixYuYMGECWrZsabWsjDHGGJOfzRs3n376KYYNG4YhQ4agdu3aWLJkCUqVKoVvv/220N8xGAx48cUXMW3aNAQEBFg1r1YIQGK6bPcnvsfFxcXWEQolazbOJYZziZM1G+cSw7m0YWfLlWdlZeHo0aOYOHGiqUyn06F9+/Y4cOBAob/34Ycfonz58hg6dCj27NnzwHVkZmYiMzPT9O/U1FQgt4FkMBgAAIqiQKfTQVVVs2uMxnLjcg8r1+nutRXtFPMmioHuNV7s7htPk0OAknt3YgDYl6jAuIgCMrtbMQEwkAIdyGxcjrG8sOyW2KbAwECz/ZV3W+8fcFZYuV6vBxEVWH5/xsLKC9omf39/KMq9HSKyTYqiFHr8LLFNVatWBRGZraOo2/Sg7I+6Tf7+/kDuNXXRbXqU4/SwbSqsjml9nB60TXn3l6qqVj1ORdmmgIAAqKr60DpWWLlWde9hdcza5wg8oI7Z8hxxfx0zGAxSnCOMjB0H9y9vq3NEQeUPYtPGzfXr12EwGODt7W1W7u3tjdOnTxf4O3v37sU333yDf/75p0jrmDVrFqZNm5avPCoqCmXKlAEAeHp6onLlyrh8+TKSk5NNy/j4+MDHxwcXL15EWlqaqdzPzw9ly5bFuXPnkJGRYSo3VobuVVTY5ekTi4jTIT0H6F3VvDKsu6BDKTugs58KBYCHA+FahoJfLurh7XzvcQxGqVlAxGU9/F3uDTw2SkxXsCtBQVJSEhISEkzlltqmqlWr4u7du0hKSjKrzEFBQXBwcEBkZKTZNoWGhiIrKwtnzpwxlen1eoSGhiItLQ2xsbGmcicnJ9SsWRMpKSmIi4szlbu4uCAwMPCh20REyMjIQJUqVVCxYkWh4+Tq6oro6GizN4ultqlGjRqIiYnB7du3TQ2vom5TcY9TUbbJuL+cnJxQp04dqx2nh21TpUqVYDAYkJKSYvZFROvj9LBtunr1qml/lS1b1mrHqSjbFBwcjIsXL+LWrVumOqb1cSrKNuXk5Jj2Wc2aNW1+jjAqX748dDodbt++jdu3b1vtOD1smy5dumTaX66urjY/RxgREby9veHu7o6zZ89a7Tg9bJtiYmJQVDa9z018fDwqVaqE/fv3o2nTpqbyt99+G7t27cLBgwfNlk9LS0OdOnXw+eefo0uXLgCAwYMH4+bNm1i/fn2B6yio58bPzw/JycmmefKWbBlXnbilWD03dgqhh7+KDRd1yFB1wj03sR910aRlTEQ4efIkateuDb1eb7atsPG3MoPBgKioKISEhMDe3l6anhsAOHHiBIKDg832ma2/lRn3V3BwMOzt7YW2SctvZaqqIioqqsA6Zsuem5ycHNP+srOzk6rnBgJ1rLByLepeUeqYLXpuCqtjtu65yVvH9Hq9zc8RRsbjGBoaamo8F3WbtKx7KSkp8PT0LNJ9bmzac+Pl5QW9Xo/ExESz8sTERPj4+ORbPiYmBhcvXsSzzz5rKjPuYDs7O5w5cwaBgYFmv+Po6AhHR8d8f8tYkfIyHuSClhUpz6GC53PnFNCMpDzlBMX0u/f+P//yKhSoBZQXlv1Rt8lYyQraXyJ/B7kVtKBy0ex5y42VXjSLpcoL2iaDwWAqL2ods1Tde1i5MZfxhGWt41TUjI9axworL842GfeTXq83LWet4/SwckvWMUtvU1HqWGHl1qh7WtWxwsoftE1565hxGVufI/LmLiy7Lc8RRWXTAcUODg5o0KABtm/fbipTVRXbt28368kxqlmzJiIjI/HPP/+Yfrp37442bdrgn3/+gZ+fn5W3gDHGGGOysWnPDQCEh4dj0KBBaNiwIRo3bowFCxbgzp07GDJkCABg4MCBqFSpEmbNmgUnJyeEhISY/b67uzsA5Ct/3KgALqQqkO1+kIqiwNPTM1/XpAxkzca5xHAucbJm41xiOJd2bN646d+/P65du4bJkycjISEBYWFhiIiIMA0yvnTpUqFdVyWJSgoOX5evIul0OlSuXNnWMQokazbOJYZziZM1G+cSw7m0ww/OtLDiPjhTpxAalCUcvaFALWTMzoNo9eBMVVVx+fJl+Pr6StfIlDUb5xLDucTJmo1zieFcYvjBmY8hHYCqriTdASEi07Rr2ciajXOJ4VziZM3GucRwLu3I9lnKGGOMMfZIuHHDGGOMsRKFGzeSUAmISin4Hja2pCgKfHx8pBw1L2s2ziWGc4mTNRvnEsO5tMMDii2suAOKH5VWA4oZY4wxGfCA4seQXiG09lGhV+RqaxoMBsTExAg9sMxaZM3GucRwLnGyZuNcYjiXdrhxIwkFgHcpgoydgHkfYCYbWbNxLjGcS5ys2TiXGM6lDW7cMMYYY6xE4cYNY4wxxkoUbtxIQiXgyDWdlLOl/Pz8pBw1L2s2ziWGc4mTNRvnEsO5tGPzZ0uxe1QoiJXwEqdOp0PZsmVtHaNAsmbjXGI4lzhZs3EuMZxLO9xzIwm9Qujsa5ByttTp06elHDUvazbOJYZziZM1G+cSw7m0w40bSSgAXB0g5WypjIwMW0colKzZOJcYziVO1mycSwzn0gY3bhhjjDFWonDjhjHGGGMlCjduJGEgYPdVHQxyDbmBTqdDQEAAdDr5qoqs2TiXGM4lTtZsnEsM59IOz5aSBEFBwl1bp8hPURRNnsFlCbJm41xiOJc4WbNxLjGcSzuPb7OshLFTCL39DbCTcLZUZGSklKPmZc3GucRwLnGyZuNcYjiXdrhxIxE7SY+GzBVc1mycSwznEidrNs4lhnNpQ9KPU8YYY4yx4uHGDWOMMcZKFIWI5BrkobHU1FS4ubnh1q1bmgyY8n93c7F+TwHBxR5Iy743uFjUxY+7FWu9D0NEyMjIgJOTk3TPGZE1G+cSw7nEyZqNc4nhXGJEPr+550YSBCA9595/ZePg4GDrCIWSNRvnEsO5xMmajXOJ4Vza4MaNJOwUoHdVFXbyNJIBAKqqIjIyEqqq2jpKPrJm41xiOJc4WbNxLjGcSzvcuGGMMcZYicKNG8YYY4yVKNy4YYwxxliJwrOlLKy4s6UAgp0C5BAAyWZLqaoKnU4n1ah5SJyNc4nhXOJkzca5xHAuMTxb6jGkAChlV5xmjfaysrJsHaFQsmbjXGI4lzhZs3EuMZxLG9y4kYReATr7qdBL1rpRVRVnzpyRctS8rNk4lxjOJU7WbJxLDOfSDjduGGOMMVaicOOGMcYYYyUKN24kkiNpD6Ber7d1hELJmo1zieFc4mTNxrnEcC5t8GwpCyv+bKlHo9VsKcYYY0wGPFvqMaSA4ONMUCR7uhQRITU1FTK2gWXNxrnEcC5xsmbjXGI4l3a4cSMJvQK0qiDnbKnY2FgpR83Lmo1zieFc4mTNxrnEcC7tcOOGMcYYYyUKN24YY4wxVqJw40YSBCA1C5KNuLnHycnJ1hEKJWs2ziWGc4mTNRvnEsO5tMGzpSyMZ0sxxhhjlsezpR5DOhACXAg6yfpuVFXFjRs3pBxYJms2ziWGc4mTNRvnEsO5tMONG0noFKBhORU6yWZLERHi4uKknBIoazbOJYZziZM1G+cSw7m0w40bxhhjjJUo3LhhjDHGWInCjRtJEIDEdNnuT3yPi4uLrSMUStZsnEsM5xInazbOJYZzaYNnS1kYz5ZijDHGLI9nSz2GdCAEe6hSzpZKSEiQctS8rNk4lxjOJU7WbJxLDOfSDjduJKFTgGAPknK2VEJCgpSj5mXNxrnEcC5xsmbjXGI4l3a4ccMYY4yxEoUbN4wxxhgrUbhxIwkVwIVUBbJd4VQUBZ6enlAUya6XSZyNc4nhXOJkzca5xHAu7fBsKQvj2VKMMcaY5fFsqceQTiE08lKhU+Rqa6qqikuXLkk5al7WbJxLDOcSJ2s2ziWGc2mHGzeS0AGo6krSHRAiQnJyspSj5mXNxrnEcC5xsmbjXGI4l3Zk+yxljDHGGHsk3LhhjDHGWInCjRtJqAREpShQJesFVBQFPj4+Uo6alzUb5xLDucTJmo1zieFc2uHZUhbGs6UYY4wxy+PZUo8hvUJo7aNCL9lsKYPBgJiYGBgMBltHyUfWbJxLDOcSJ2s2ziWGc2mHGzeSUAB4lyLI2AmYlpZm6wiFkjUb5xLDucTJmo1zieFc2uDGDWOMMcZKFG7cMMYYY6xE4caNJFQCjlzTSTlbys/PT8pR87Jm41xiOJc4WbNxLjGcSzt2tg7A7lGhIFbCS5w6nQ5ly5a1dYwCyZqNc4nhXOJkzca5xHAu7XDPjST0CqGzr0HK2VKnT5+WctS8rNk4lxjOJU7WbJxLDOfSDjduJKEAcHWAlLOlMjIybB2hULJm41xiOJc4WbNxLjGcSxvcuGGMMcZYicKNG8YYY4yVKNy4kYSBgN1XdTDINeQGOp0OAQEB0OnkqyqyZuNcYjiXOFmzcS4xnEs7PFtKEgQFCXdtnSI/RVE0eQaXJciajXOJ4VziZM3GucRwLu08vs2yEsZOIfT2N8BOwtlSkZGRUo6alzUb5xLDucTJmo1zieFc2pGicbN48WL4+/vDyckJTZo0waFDhwpddt26dWjYsCHc3d1RunRphIWFYcWKFVbNqxU7KY5GfjJXcFmzcS4xnEucrNk4lxjOpQ2bf5yuWbMG4eHhmDJlCo4dO4a6deuiU6dOSEpKKnB5T09PTJo0CQcOHMCJEycwZMgQDBkyBL///rvVszPGGGNMPjZv3Hz66acYNmwYhgwZgtq1a2PJkiUoVaoUvv322wKXf/rpp9GrVy/UqlULgYGBeOONN1CnTh3s3bvX6tkZY4wxJh+bDijOysrC0aNHMXHiRFOZTqdD+/btceDAgYf+PhHhr7/+wpkzZ/DJJ58UuExmZiYyMzNN/05NTQVyu9yM3W6KokCn00FVVRD9/5gXY/n93XOFlRtHlt8/bsZAAAGwu+8OfTl076Z9egVQQPjzsgIFBODef/V5licABlKgA0FXQHlh2R91mxRFQVBQEIjI7DXjtqqqWuA+uL9cr9eDiAosvz9jYeX3bxMRoVq1av+/nwWOk6IohR6/R90mnU6H6tWr59tnRdmmh2V/lG0y7i/jvhPZpkc5Tg/LDqDQOqblcSrKNhn3l6qqVjtORS2vUaNGkepYYeVa1L2i1DFrniPyKqiO2eocUVAdMxgMNj9HGBERatSoUeDytjhHPOjcURibNm6uX78Og8EAb29vs3Jvb2+cPn260N+7desWKlWqhMzMTOj1enz++efo0KFDgcvOmjUL06ZNy1ceFRWFMmXKALmXuipXrozLly8jOTnZtIyPjw98fHxw8eJFpKX9/4Of/Pz8ULZsWZw7d87sLo4BAQEAgO5VVLPxMxFxOqTnAL2rmleGdRd0KGUHdPa7V64DkKUC6y4C3s5Aqwr/v3xqFhBxWQ9/F6Bhuf8vT0xXsCtBQVJSEhISEkzlltqmqlWrokyZMoiKijKrzEFBQXBwcEBkZKTZNoWGhiIrKwtnzpwxlen1eoSGhiItLQ2xsbGmcicnJ9SsWRMpKSmIi4szlbu4uCAwMLBI20RE8PHxQYUKFYSOk6urK6Kjo83eLJbapqCgIKSnp+PcuXPF2qbiHKeibhMRQVEUqx+nB22Tr68vPDw8cPbsWbMvIlofp6Jsk3F/Wfs4PWybQkJCkJWVhbNnz1rtOBV1m4z7TJZzBHI/U8qXLy/NOSLvNhn3lyznCKPatWsjMzNTinOEcZtiYmJQVArd38yyovj4eFSqVAn79+9H06ZNTeVvv/02du3ahYMHDxb4e6qqIjY2Frdv38b27dsxffp0rF+/Hk8//XS+ZQvqufHz80NycrJpqpslW8ZVJ24pVs+NnULo4a9iw0UdMlSdcM9N7EddNGkZExFOnjyJ2rVrQ6/Xm20rbPytzGAwICoqCiEhIbC3t5em5wYATpw4geDgYLN9ZutvZcb9FRwcDHt7e6Ft0vJbmaqqiIqKKrCO2bLnJicnx7S/7OzspOq5gUAdK6xci7pXlDpmi56bwuqYrXtu8tYxvV5v83OEkfE4hoaG5nsyuC17blJSUuDp6Ylbt249dKq6TXtuvLy8oNfrkZiYaFaemJgIHx+fQn9Pp9OZLkeEhYXh1KlTmDVrVoGNG0dHRzg6OuYrN1ak+/9uQe5f7mHlOVTwE6JyCmhGUp5ygmL63Xv/n395FQrUAsoLy/6o22SsZAXtL5G/g9wKWlC5aPa85cZKL5rFUuUFbZPBYDCVF7WOWaruPazcmMt4wrLWcSpqxketY4WVF2ebjPtJr9eblrPWcXpYuSXrmKW3qSh1rLBya9Q9repYYeUP2qa8dcy4jK3PEXlzF5bdlueIoirWgOKbN29i6dKlmDhxoqlL6dixY7hy5YrQ33FwcECDBg2wfft2U5mqqti+fbtZT87DqKpq1jvDGGOMsSeXcM/NiRMn0L59e7i5ueHixYsYNmwYPD09sW7dOly6dAnLly8X+nvh4eEYNGgQGjZsiMaNG2PBggW4c+cOhgwZAgAYOHAgKlWqhFmzZgG5Y2gaNmyIwMBAZGZmYsuWLVixYgW++OIL0U1hjDHGWAkk3LgJDw/H4MGDMXv2bLi4uJjKu3btihdeeEE4QP/+/XHt2jVMnjwZCQkJCAsLQ0REhGmQ8aVLl8y6ru7cuYNRo0bh8uXLcHZ2Rs2aNfHDDz+gf//+wuuWSQ7dG2Bc0KUoW9LpdAgNDS20+9CWZM3GucRwLnGyZuNcYjiXdoQHFLu5ueHYsWMIDAyEi4sL/v33XwQEBOC///5DUFCQ2ehsGaWmpsLNza1IA5KKw//dzcX6PQUEF3sgLfveeBtRFz/uVqz1PgwRISMjA05OTvkGltmarNk4lxjOJU7WbJxLDOcSI/L5Ldwsc3R0NN0rJq+zZ8+iXLlyon+O5dIr96aE6+WpR0DueKYzZ84UOFvD1mTNxrnEcC5xsmbjXGI4l3aEGzfdu3fHhx9+iOzsbCB31PSlS5fwzjvvoE+fPlpkZIwxxhgrMuHGzbx583D79m2UL18ed+/eRevWrVGtWjW4uLhg5syZ2qRkjDHGGCsi4QHFbm5u+OOPP7Bv3z78+++/uH37NurXr4/27dtrk/AJkiNpD6DIvQWsTdZsnEsM5xInazbOJYZzaUNoQHF2djacnZ3xzz//ICQkRNtkGpF1QPGj0mpAMWOMMSYDzQYU29vbo3LlykIPr2JFo4Dg40y5D86UBxEhNTU13y21ZSBrNs4lhnOJkzUb5xLDubQjPOZm0qRJeO+998wedsUenV6596BMGWdLxcbGSjlqXtZsnEsM5xInazbOJYZzaUd4zM2iRYtw/vx5VKxYEVWqVEHp0qXNXj927Jgl8zHGGGOMCRFu3PTs2VObJIwxxhhjFiDcuJkyZYo2SZ5wBCA1C5KNuLnHycnJ1hEKJWs2ziWGc4mTNRvnEsO5tCH8+AWjo0eP4tSpUwCA4OBg1KtXz9LZNMGzpRhjjLHHj6aPX0hKSkLbtm3RqFEjjB07FmPHjkWDBg3Qrl07XLt27VFyP9F0IAS4EHSS9d2oqoobN25IObBM1mycSwznEidrNs4lhnNpR7hxM2bMGKSlpSEqKgrJyclITk7GyZMnkZqairFjx2qT8gmgU4CG5VToJJstRUSIi4uTckqgrNk4lxjOJU7WbJxLDOfSjvCYm4iICPz555+oVauWqax27dpYvHgxOnbsaOl8jDHGGGNChHtuVFWFvb19vnJ7e/vHuguLMcYYYyWDcOOmbdu2eOONNxAfH28qu3LlCsaPH4927dpZOt8TgwAkpst2f+J7XFxcbB2hULJm41xiOJc4WbNxLjGcSxvCs6Xi4uLQvXt3REVFwc/Pz1QWEhKC3377Db6+vlpltQieLcUYY4w9fjSdLeXn54djx45h8+bNGDduHMaNG4ctW7bg2LFj0jdsZKYDIdhDlXK2VEJCgpSXHGXNxrnEcC5xsmbjXGI4l3aEGzcAoCgKOnTogDFjxmDMmDFo37695ZM9YXQKEOxBUs6WSkhIkHLUvKzZOJcYziVO1mycSwzn0o5w42bs2LH43//+l6980aJFGDdunKVyMcYYY4wVi3Dj5pdffkHz5s3zlTdr1gxr1661VC7GGGOMsWIRbtzcuHEDbm5u+cpdXV1x/fp1S+V64qgALqQqkO0Kp6Io8PT0hKJIdr1M4mycSwznEidrNs4lhnNpR7hxU61aNUREROQr37p1KwICAiyV64mjkoLD13VQSa7KpNPpULlyZeh0xRqepSlZs3EuMZxLnKzZOJcYzqUd4eTh4eF4++23MWXKFOzatQu7du3C5MmT8e6772L8+PHapHwC6BRCIy8VOkWuAVyqquLSpUtSjpqXNRvnEsO5xMmajXOJ4VzaEW7cvPLKK5g3bx6++eYbtGnTBm3atMEPP/yAL774AsOGDdMm5RNAB6CqKxVv+pqGiAjJyclSjpqXNRvnEsO5xMmajXOJ4VzaEX62FACMHDkSI0eOxLVr1+Ds7IwyZcpYPhljjDHGWDEIdxTcvXsX6enpAIBy5crhxo0bWLBgAbZt26ZFPsYYY4wxIcKNmx49emD58uUAgJs3b6Jx48aYN28eevTogS+++EKLjE8ElYCoFAWqZL2AiqLAx8dHylHzsmbjXGI4lzhZs3EuMZxLO8KNm2PHjqFly5YAgLVr18LHxwf//fcfli9fXuDN/VjRqFAQlaKDCrkqk06ng4+Pj5Sj5mXNxrnEcC5xsmbjXGI4l3aEk6enp5ueFrpt2zb07t0bOp0OTz31FP777z8tMj4R9AqhtY8KvWSzpQwGA2JiYmAwGGwdJR9Zs3EuMZxLnKzZOJcYzqWdYt3nZv369YiLi8Pvv/+Ojh07AgCSkpI0ecr2k0IB4F2KJOu3uSctLc3WEQolazbOJYZziZM1G+cSw7m0Idy4mTx5MiZMmAB/f380adIETZs2BXJ7cerVq6dFRsYYY4yxIhOeCv7cc8+hRYsWuHr1KurWrWsqb9euHXr16mXpfIwxxhhjQop1nxsfHx/4+PiYlTVu3NhSmZ5IKgFHrumknC3l5+cn5ah5WbNxLjGcS5ys2TiXGM6lnWI1bpjlqVAQK+ElTp1Oh7Jly9o6RoFkzca5xHAucbJm41xiOJd2Ht95XiWMXiF09jVIOVvq9OnTUo6alzUb5xLDucTJmo1zieFc2uHGjSQUAK4OkHK2VEZGhq0jFErWbJxLDOcSJ2s2ziWGc2mDGzeMMcYYK1GK1bhZsWIFmjdvjooVK5pu3LdgwQJs2LDB0vkYY4wxxoQIN26++OILhIeHo2vXrrh586bpmpy7uzsWLFigRcYngoGA3Vd1MMg15AY6nQ4BAQFS3oZb1mycSwznEidrNs4lhnNpRzj5woUL8fXXX2PSpEnQ6/Wm8oYNGyIyMtLS+Z4YBAUJdxXIdo9iRVHg6uoq5ZRAWbNxLjGcS5ys2TiXGM6lHeHGzYULFwq8E7GjoyPu3LljqVxPHDuF0NvfADsJZ0tFRkZKOWpe1mycSwznEidrNs4lhnNpR7hxU7VqVfzzzz/5yiMiIlCrVi1L5Xoi2UnaAyhzBZc1G+cSw7nEyZqNc4nhXNoQvolfeHg4Xn/9dWRkZICIcOjQIaxatQqzZs3C0qVLtUnJGGOMMVZEwo2bV199Fc7Oznj//feRnp6OF154ARUrVsRnn32G559/XpuUjDHGGGNFpBBRsQd5pKen4/bt2yhfvrxlU2koNTUVbm5uuHXrFlxdXS3+9/3f3Vys31NAcLEH0rJRrEHFFz/uVqz1PgwRISMjA05OTtINLpM1G+cSw7nEyZqNc4nhXGJEPr+Fe24uXLiAnJwcVK9eHaVKlUKpUqUAAOfOnYO9vT38/f2Ln/wJRgDSc+79VzYODg62jlAoWbNxLjGcS5ys2TiXGM6lDeEhrIMHD8b+/fvzlR88eBCDBw+2VK4njp0C9K6qwk6eRjIAQFVVREZGQlVVW0fJR9ZsnEsM5xInazbOJYZzaUe4cXP8+HE0b948X/lTTz1V4CwqxhhjjDFrEm7cKIqCtLS0fOW3bt167KeOMcYYY+zxJ9y4adWqFWbNmmXWkDEYDJg1axZatGhh6XyMMcYYY0KEZ0tFR0ejVatWcHd3R8uWLQEAe/bsQWpqKv766y+EhIRoldUiZJ0tBRDsFCCHAEg2W0pVVeh0OqlGzUPibJxLDOcSJ2s2ziWGc4kR+fwW7rmpXbs2Tpw4gX79+iEpKQlpaWkYOHAgTp8+LX3DRmYKgFJ2xWnWaC8rK8vWEQolazbOJYZziZM1G+cSw7m0Uawb/lesWBEfffQRNm/ejLVr12Ly5Mnw9PS0fLoniF4BOvup0EvWulFVFWfOnJFy1Lys2TiXGM4lTtZsnEsM59KO8H1uAODmzZs4dOgQkpKS8m38wIEDLZWNMcYYY0yYcONm48aNePHFF3H79u18j0RXFIUbN4wxxhizKeHLUm+++SZeeeUV3L59Gzdv3kRKSorpJzk5WZuUT4gcSXsA9Xq9rSMUStZsnEsM5xInazbOJYZzaUN4tlTp0qURGRmJgIAA7VJpSN7ZUo9Gq9lSjDHGmAw0nS3VqVMnHDly5FHysQIoIPg4ExTJni5FREhNTcUjPF9VM7Jm41xiOJc4WbNxLjGcSzvCjZtu3brhrbfewtSpU/HLL7/gt99+M/thxaNXgFYV5JwtFRsbK+WoeVmzcS4xnEucrNk4lxjOpR3hAcXDhg0DAHz44Yf5XlMUhR/BwBhjjDGbEm7cPM4tOcYYY4yVfMW6iR+zPAKQmgXJRtzc4+TkZOsIhZI1G+cSw7nEyZqNc4nhXNoQni0FAHfu3MGuXbtw6dKlfLdoHjt2rCXzWRzPlmKMMcYePyKf38KXpY4fP46uXbsiPT0dd+7cgaenJ65fv45SpUqhfPny0jduZKUDwd8FuJgGqBI9YUpVVaSkpMDDwwM6nVwdfbJm41xiOJc4WbNxLjGcSzvCqcePH49nn30WKSkpcHZ2xt9//43//vsPDRo0wNy5c7VJ+QTQKUDDcip08rRrgNwpgXFxcVJOCZQ1G+cSw7nEyZqNc4nhXNoRbtz8888/ePPNN6HT6aDX65GZmQk/Pz/Mnj0b7733njYpGWOMMcaKSLhxY29vb+qmKl++PC5dugQAcHNzQ1xcnOUTMsYYY4wJEB5zU69ePRw+fBjVq1dH69atMXnyZFy/fh0rVqxASEiINimfAAQgMV22+xPf4+LiYusIhZI1G+cSw7nEyZqNc4nhXNoQni115MgRpKWloU2bNkhKSsLAgQOxf/9+VK9eHd988w3CwsK0S2sBPFuKMcYYe/xo+myphg0bok2bNkDuZamIiAikpqbi6NGj0jdsZKYDIdhDhU6yvhtVVZGQkCDlzRtlzca5xHAucbJm41xiOJd2hBs3bdu2xc2bN/OVp6amom3btsUKsXjxYvj7+8PJyQlNmjTBoUOHCl3266+/RsuWLeHh4QEPDw+0b9/+gcs/LnQKEOxBUs6WSkhIkHLUvKzZOJcYziVO1mycSwzn0o5w42bnzp35btwHABkZGdizZ49wgDVr1iA8PBxTpkzBsWPHULduXXTq1AlJSUmFrn/AgAHYsWMHDhw4AD8/P3Ts2BFXrlwRXjdjjDHGSp4iDyg+ceKE6f+jo6ORkJBg+rfBYEBERAQqVaokHODTTz/FsGHDMGTIEADAkiVLsHnzZnz77bd499138y3/448/mv176dKl+OWXX7B9+3YMHDhQeP2MMcYYK1mK3LgJCwuDoihQFKXAy0/Ozs5YuHCh0MqzsrJw9OhRTJw40VSm0+nQvn17HDhwoEh/Iz09HdnZ2fD09Czw9czMTGRmZpr+nZqaCuQ2yIxPMFcUBTqdDqqqmnXDGcvvf9J5YeXGKfJ2inlXnoHuzYayu++SUw4BCgC9AugUwn9p9/4LUqCAoM+zPAEwkAIdzC9dGcsLy/6o2wQAnp6e+a69Gre1qOV6vR5EVGD5/RkLK79/m1RVhbu7u2kZkeNU0BPsLbVNiqLAw8OjSNtqybr3sG0y7i9VVa16nB6WnYgKrWNaHqeHbVPe/WXN41SUcpE6Vli5FttUlDpmi7pXWB2z1TmioDomuk1a1j1VVeHh4QEUcF61xTniQZ9PhSly4+bChQsgIgQEBODQoUMoV66c6TUHBweUL18eer2+yCsGgOvXr8NgMMDb29us3NvbG6dPny7S33jnnXdQsWJFtG/fvsDXZ82ahWnTpuUrj4qKQpkyZYDcD+/KlSvj8uXLSE5ONi3j4+MDHx8fXLx4EWlpaaZyPz8/lC1bFufOnUNGRoapPCAgAADQvYoKuzwX/CLidEjPAXpXNa8M6y7oUMoO6Oz3/+WVShPWXQS8nYFWFf6/PDULiLish7/LvTsZGyWmK9iVoCApKcmsN82S21S5cmVERkaaVaygoCA4ODggMjLSbJtCQ0ORlZWFM2fOmMr0ej1CQ0ORlpaG2NhYU7mTkxNq1qyJlJQUs3skubi4IDAwsMjb5OTkJLxNrq6uiI6O1mybypQpg6ioqGJvU3GOU1G36ebNmzY5Tg/apsqVK+P06dNWP05F2aabN2/a5Dg9bJs8PDzM6pg1jlNRt+nmzZtSnSN8fHxQuXJlxMTESHOOyLtNN2/elOocYcvj9KBtiomJQVEJTQXPzs7G8OHDMXnyZFStWrXIKylMfHw8KlWqhP3796Np06am8rfffhu7du3CwYMHH/j7H3/8MWbPno2dO3eiTp06BS5TUM+Nn58fkpOTTVPJLNkyrjpxS7F7buqVJRy/oSBL1Qn33MR+1EWzlvGVK1dQoUIFs2eMyPCtTFVVXLlyBb6+vrCzs5Oq5yYuLg4VK1Y022e2/lZm3F+VKlWCnZ2d0DZp3XMTHx9fYB2zZc+NwWAw7S+9Xi9dz01R61hh5Vr13Dysjtmq56agOmbrnpu8dcx4139Zem7i4+Ph6+uL+9my5yYlJQWenp6Wf3Cmvb09fv31V0yePFnk1wrl5eUFvV6PxMREs/LExET4+Pg88Hfnzp2Ljz/+GH/++WehDRsAcHR0hKOjY75yvV6fr6epsAeEFdYjVVh5DhU85SmngGYk5ZbbAajiQjh6XcktVwpcXoUCtYDywrI/6jYZDAYkJyebTvDF/TvIraAFlYtmz1t+8+ZN+Pn5CWexVHlB22QwGJCSkgJfX98i1zFL1b2HlRv3l6IoQttUnOxF3SZL1rHCyouzTURk2l/G5ax1nB5Wbsk6ZultKkodK6xcq7pnjTpWWPmDtilvHTMuY+tzhFFh9Qs2OEc8rLzAv13kJXP16NED69evF/21Ajk4OKBBgwbYvn27qUxVVWzfvt2sJ+d+s2fPxvTp0xEREYGGDRtaJAtjjDHGSgbhxy9Ur14dH374Ifbt24cGDRqgdOnSZq+PHTtW6O+Fh4dj0KBBaNiwIRo3bowFCxbgzp07ptlTAwcORKVKlTBr1iwAwCeffILJkydj5cqV8Pf3N13HK1OmjGkMDWOMMcaeXMKNm2+++Qbu7u44evQojh49avaaoijCjZv+/fvj2rVrmDx5MhISEhAWFoaIiAjTIONLly6ZdV198cUXyMrKwnPPPWf2d6ZMmYKpU6eKbo40VAKiUgq+5GRLiqLAx8fH1MUsE1mzcS4xnEucrNk4lxjOpR3hZ0s97vjZUowxxtjjR9NnS+VFRI/17ZllolcIrX1U6BW59qfBYEBMTIzQ/QWsRdZsnEsM5xInazbOJYZzaadYjZvly5cjNDQUzs7OcHZ2Rp06dbBixQrLp3uCKAC8SxFk7ATMe78B2ciajXOJ4VziZM3GucRwLm0Ij7n59NNP8cEHH2D06NFo3rw5AGDv3r147bXXcP36dYwfP16LnIwxxhhjRSLcuFm4cCG++OILs+c4de/eHcHBwZg6dSo3bhhjjDFmU8KXpa5evYpmzZrlK2/WrBmuXr1qqVxPHJWAI9d0Us6WyntDLpnImo1zieFc4mTNxrnEcC7tCDduqlWrhp9++ilf+Zo1a1C9enVL5XriqFAQm6ZAlWzUjU6nQ9myZQu9k6QtyZqNc4nhXOJkzca5xHAu7QgnnzZtGiZPnozOnTtj+vTpmD59Ojp37oxp06bhww8/1CblE0CvEDr7GqScLXX69GkpR83Lmo1zieFc4mTNxrnEcC7tCDdu+vTpg4MHD8LLywvr16/H+vXr4eXlhUOHDqFXr17apHwCKABcHSBZv809eZ8sKxtZs3EuMZxLnKzZOJcYzqUN4QHFANCgQQP88MMPlk/DGGOMMfaIitW4MRgM+PXXX3Hq1CkAQO3atdGjRw/TI+4ZY4wxxmxFuDUSFRWF7t27IyEhAUFBQUDuwyzLlSuHjRs3IiQkRIucJZ6BgN1XdTDINeQGOp0OAQEBUg4skzUb5xLDucTJmo1zieFc2hFO/uqrryI4OBiXL1/GsWPHcOzYMcTFxaFOnToYPny4NimfAAQFCXcVyHaPYkVR4OrqKuWUQFmzcS4xnEucrNk4lxjOpR3hxs0///yDWbNmwcPDw1Tm4eGBmTNn4vjx45bO98SwUwi9/Q2wk3C2VGRkpJSj5mXNxrnEcC5xsmbjXGI4l3aEGzc1atRAYmJivvKkpCRUq1bNUrmeSHaS9gDKXMFlzca5xHAucbJm41xiOJc2hD9OZ82ahbFjx2Lt2rW4fPkyLl++jLVr12LcuHH45JNPkJqaavphjDHGGLM24QHFzzzzDACgX79+putxRPcupTz77LOmfyuK8ti3/BhjjDH2+BFu3OzYsUObJE84AwERcXLOlgoKCpJy1Lys2TiXGM4lTtZsnEsM59KOcOOmdevW2iR5whGA9Jx7/5WNg4ODrSMUStZsnEsM5xInazbOJYZzaaNYzbKMjAwcOnQImzZtwm+//Wb2w4rHTgF6V1VhJ9nMO1VVERkZCVVVbR0lH1mzcS4xnEucrNk4lxjOpR3hnpuIiAgMHDgQ169fz/caj7NhjDHGmK0J99yMGTMGffv2xdWrV6GqqtkPN2wYY4wxZmvCjZvExESEh4fD29tbm0SMMcYYY49AIeM87iJ65ZVX0Lx5cwwdOlS7VBpKTU2Fm5sbbt26BVdXV4v/ff93NxfzNwl2CpBDAIrxCIaLH3cr5nofjIigqip0Op10t+KWNRvnEsO5xMmajXOJ4VxiRD6/hcfcLFq0CH379sWePXsQGhoKe3t7s9fHjh0rnphBAVDKDkjLlm/GVFZWFpycnGwdo0CyZuNcYjiXOFmzcS4xnEsbwpelVq1ahW3btuGXX37BwoULMX/+fNPPggULtEn5BNArQGc/FXp5GslA7qj5M2fOSDlqXtZsnEsM5xInazbOJYZzaUe452bSpEmYNm0a3n333cf6Bj+MMcYYK5mEWydZWVno378/N2wYY4wxJiXhFsqgQYOwZs0abdI84XIk7QHU6/W2jlAoWbNxLjGcS5ys2TiXGM6lDeHZUmPHjsXy5ctRt25d1KlTJ9+A4k8//dTSGS1K3tlSj0ar2VKMMcaYDDSdLRUZGYl69eoBAE6ePGn2mkxTxh43CgjezkDiXYCKMRVcK0SEtLQ0uLi4SHd8Zc3GucRwLnGyZuNcYjiXdoQvS+3YsaPQn7/++kublE8AvQK0qiDnbKnY2FgpR83Lmo1zieFc4mTNxrnEcC7t8KhgxhhjjJUoRb4s1bt37yItt27dukfJwxhjjDH2SIrcuHFzc9M2yROOAKRmyXd3YgBS36VS1mycSwznEidrNs4lhnNpQ3i21OOOZ0sxxhhjjx+Rz28ecyMJHQgBLgSdZH03qqrixo0bUg4skzUb5xLDucTJmo1zieFc2uHGjSR0CtCwnAqdZLOliAhxcXGQsYNP1mycSwznEidrNs4lhnNphxs3jDHGGCtRuHHDGGOMsRKFGzeSIACJ6YpkI27ucXFxsXWEQsmajXOJ4VziZM3GucRwLm3wbCkL49lSjDHGmOXxbKnHkA6EYA9VytlSCQkJUo6alzUb5xLDucTJmo1zieFc2uHGjSR0ChDsQVLOlkpISJBy1Lys2TiXGM4lTtZsnEsM59ION24YY4wxVqJw44YxxhhjJQo3biShAriQqkC2K5yKosDT0xOKItn1MomzcS4xnEucrNk4lxjOpR2eLWVhPFuKMcYYszyeLfUY0imERl4qdIpcbU1VVXHp0iUpR83Lmo1zieFc4mTNxrnEcC7tcONGEjoAVV1JugNCREhOTpZy1Lys2TiXGM4lTtZsnEsM59KObJ+ljDHGGGOPhBs3jDHGGCtR7GwdgN2jEhCVokDVqBewuAOddSDU8iCcWn0ZKoo3cl6rwc6KosDHx0e6Ef2cSwznEidrNs4lhnNphxs3klChICpFvookay4A0Ol08PHxsXWMfDiXGM4lTtZsnEsM59IOX5aShF4htPZRoZdstpSsuQDAYDAgJiYGBoPB1lHMcC4xnEucrNk4lxjOpR1u3EhCAeBdiop54Uc7suYySktLs3WEAnEuMZxLnKzZOJcYzqUNbtwwxhhjrEThxg1jjDHGShRu3EhCJeDINZ1ms6WKS9ZcyB3R7+fnJ92Ifs4lhnOJkzUb5xLDubTDs6UkoUJBrISXOGXNhdwR/WXLlrV1jHw4lxjOJU7WbJxLDOfSDvfcSEKvEDr7GqSblSRrLuSO6D99+rR0I/o5lxjOJU7WbJxLDOfSDjduJKEAcHWAdLOSZM1llJGRYesIBeJcYjiXOFmzcS4xnEsb3LhhjDHGWInCjRvGGGOMlSjcuJGEgYDdV3UwSDa0RdZcyB30FhAQAJ1OrmrMucRwLnGyZuNcYjiXdni2lCQIChLu2jpFfrLmQu50RVdXV1vHyIdzieFc4mTNxrnEcC7tPL7NshLGTiH09jfATrJZSbLmQu6I/sjISOlG9HMuMZxLnKzZOJcYzqUd7rmRiJ2kTU0tc/m/u7nYv2unEHpXVbFu5X/IIfH5XBc/7lbsdT+MrCcFziVG1lyQOBvnEsO5tCHpxyljjDHGWPFw44YxxhhjJQo3biRhICAiTr5ZSbLmgsTZdDodgoKCpJtpwLnEyJoLEmfjXGI4l3Ye3+QlDAFIz7n3X5nImguSZ3NwcLB1hAJxLjGy5oLE2TiXGM6lDZs3bhYvXgx/f384OTmhSZMmOHToUKHLRkVFoU+fPvD394eiKFiwYIFVs2rJTgF6V1VhJ9lzDmTNBYmzqaqKyMhIqKpq6yhmOJcYWXNB4mycSwzn0o5NGzdr1qxBeHg4pkyZgmPHjqFu3bro1KkTkpKSClw+PT0dAQEB+Pjjj+Hj42P1vIwxxhiTn00bN59++imGDRuGIUOGoHbt2liyZAlKlSqFb7/9tsDlGzVqhDlz5uD555+Ho6Oj1fMyxhhjTH42u89NVlYWjh49iokTJ5rKdDod2rdvjwMHDlhsPZmZmcjMzDT9OzU1Fcidw2+cx68oCnQ6HVRVBdH/j+Awlt8/37+wcuPgq/tveGege+NC7r98kkP3nratV+79jgKCnULIIQUKCPo8yxMAAynQgaAroLyw7MZyYyaVABUK9AqZPem7sHIld0RLcbbJtKzBAL1eDyIqsJuzsG26v1wFoJICnULQ4f/3mQ4ECGzTvexKocfv/oyFlT9om4go39/X6/UPPU73l4vUPUV58DYZDAZTLtFtKii7pbbJuK7ibFNRyou7TXn3lzWPU1HKIVDHCivXYpuKUsdsUfcKq2NaH6eHbVPe/SW6TVrWPWOuwuqYtc8RhZU/iM0aN9evX4fBYIC3t7dZube3N06fPm2x9cyaNQvTpk3LVx4VFYUyZcoAADw9PVG5cmVcvnwZycnJpmV8fHzg4+ODixcvIi0tzVTu5+eHsmXL4ty5c2aPhQ8ICAAAdK+imt34LiJOh/Sce+ND8lp3QYdSdkBnv3vlChR0rUxYdxHwdgZaVfj/5VOzgIjLevi7AA3L/X95YrqCXQkKkpKSkJCQYCq/f5uM645KURCVoqCFN8G71P9XqiPXdIhNAzpUUuGaZxzZ7qsK1l3Q5W7T/y9f1G0CgOjoaISGhiItLQ2xsbGmcicnJwAodJtqeRCCPf5/nRdSFRy+rqBBWUJVVzLts+ruQFQKBLZJh4S793LlfbMEBQXBwcEBkZGRZtsUGhqKrKwsnDlzxlSm1+sL3aagoCD4+voiOjraVO7i4oLAwMCHHiej4tQ9V1fXIm2T8XiIbFPNmjWRkpKCuLg4i2+Tr68vQkNDcfbsWbMvIiLbVJzjVNRtio6OtslxetA2hYSEoGrVqmZ1TOvjJLJN0dHRVj9OD9omb29vhIaGWv04FXWboqOjpTpHAEBwcDCys7OlOEcYtykmJgZFpdD9zSwriY+PR6VKlbB//340bdrUVP72229j165dOHjw4AN/39/fH+PGjcO4ceMeuFxBPTd+fn5ITk42PTvDki3jqhO3FKuXQwHBxR5IywaySSfccxP7UZcHtoyD3t8KFKPnRiVCGXsFd3MIeV8R6bk5M6NLoa39wEkRxe65Me6zW1mAATrhnpuYmZ3NsljqW5lOp0N6ejocHR2hKIrZ8rb8VkZEyMjIgJOTE/R6vdA2afmtDLk9ufb29mb7y9Y9N6qqmvaXTqeTqudGp9Ph7t27cHBweGgdK6xci7pXlDpmi54bFFLHbN1zk7eOKYpi83OEEREhKysLTk5OBe53W/XcpKSkwNPTE7du3Xros69s1nPj5eUFvV6PxMREs/LExESLDhZ2dHQscHyOXq83vfmMCpvTf/9yDysv7FEAOQU0Iym33E4B2vuqWHdBl1uuFLi8CgVqAeWFZTeW35/JUEjG+8vtlHu9MOsu6Arcrgdtk5FxPxnfvEXdpkLLSYGK+/YZFX2b7s/1KOUFbZPBYMC5c+cQGhpa5Dpmqbr3oHKDwYDz588jNDTUdIIv6jYVJ3tRt8lgMODMmTMF7q+HbVNRy4uzTURk2l/G5axxnIpSbjAYcPbsWYvUMUtuU1HrWGHlWtU9a9SxwsoftE1565hxGVueI4weVL8etk0i2S21TQWxWePGwcEBDRo0wPbt29GzZ08gt+W4fft2jB492laxGAMs9cyrNZele+YVY4w9CWz64Mzw8HAMGjQIDRs2ROPGjbFgwQLcuXMHQ4YMAQAMHDgQlSpVwqxZs4DcbkXjNeasrCxcuXIF//zzD8qUKYNq1arZclMYY4wxJgmbNm769++Pa9euYfLkyUhISEBYWBgiIiJMg4wvXbpk1m0VHx+PevXqmf49d+5czJ07F61bt8bOnTttsg2WlCPp/ZJkzQWJs8maS6Rb15o4lzhZs3EuMZxLGzYbUGwrqampcHNzK9KApOJ4lMsZj+JhlzJslQsPyca58uPLUowxlp/I57fNH7/A7lFA8HEm031lZCFrLkicTdZcRITU1NR8sxlsjXOJkzUb5xLDubTDjRtJ6JV797XRi48/1ZSsuSBxNllzqaqK2NhY6Z4Xw7nEyZqNc4nhXNrhxg1jjDHGShRu3DDGGGOsROHGjSQo9xELsl3hlDUXJM4may7keeSFbDiXOFmzcS4xnEsbNp0Kzv6fgRREXJZv6p2suSBxNllz6fV61KxZ09Yx8uFc4mTNxrnEcC7tcM+NJHQgBLgYn3AtD1lzQeJssuZSVRU3btyQbpAg5xInazbOJYZzaYcbN5LQKfeejK2TbIaNrLkgcTZZcxER4uLipJveybnEyZqNc4nhXNrhxg1jjDHGShRu3DDGGGOsROHGjSQIQGK6bPe0lTcXJM4may4AcHFxsXWEAnEucbJm41xiOJc2eLaUJAykYFeCZIM0JM4FibPJmkuv1yMwMNDWMfLhXOJkzca5xHAu7XDPjSR0IAR7qNLNsJE1FyTOJmsuVVWRkJAg3QwIziVO1mycSwzn0g43biShU4BgD5Juho2suSBxNllzERESEhKkmwHBucTJmo1zieFc2uHGDWOMMcZKFG7cMMYYY6xE4caNJFQAF1IVyHaFU9ZckDibrLkURYGnpycURa7rZZxLnKzZOJcYzqUdni0lCZUUHL4uX0WSNRckziZrLp1Oh8qVK9s6Rj6cS5ys2TiXGM6lHe65kYROITTyUqFT5BrAJWsuSJxN1lyqquLSpUvSzYDgXOJkzca5xHAu7XDjRhI6AFVdSboDImsuSJxN1lxEhOTkZOlmQHAucbJm41xiOJd2ZDv/MsYYY4w9Em7cMMYYY6xE4caNJFQColIUqJL1AsqaCxJnkzWXoijw8fGRbgYE5xInazbOJYZzaYdnS0lChYKoFPkqkqy5IHE2WXPpdDr4+PjYOkY+nEucrNk4lxjOpR3uuZGEXiG09lGhl2yGjay5IHE2WXMZDAbExMTAYDDYOooZziVO1mycSwzn0g43biShAPAuRZDt+76suSBxNllzAUBaWpqtIxSIc4mTNRvnEsO5tMGNG8YYY4yVKNy4YYwxxliJwgOKJaEScOSaTroZNrLmgsTZtM7l/+7mYv2eDgR/F+Di6stQi3HR7OLH3Yq13odRFAV+fn7SzcyQNRckzsa5xHAu7XDjRhIqFMRKeIlT1lyQOBvnEqPT6VC2bFlbx8hH1lyQOBvnEsO5tMOXpSShVwidfQ3SzbCRNRckzsa5xBgMBpw+fVq6mRmy5oLE2TiXGM6lHW7cSEIB4OoA6WbYyJoLEmfjXOIyMjJsHaFAsuaCxNk4lxjOpQ1u3DDGGGOsROHGDWOMMcZKFG7cSMJAwO6rOhjkGg4hbS5InI1zidHpdAgICIBOJ9fpSNZckDgb5xLDubTDs6UkQVCQcNfWKfKTNRckzsa5xCiKAldXV1vHyEfWXJA4G+cSw7m08/g2y0oYO4XQ298AO8lmssiaCxJn41xiDAYDIiMjpZuZIWsuSJyNc4nhXNrhxo1E7CQ9GrLmgsTZOJcYWU+isuaCxNk4lxjOpQ1JT3WMMcYYY8XDjRvGGGOMlSjcuJGEgYCIOPlmssiaCxJn41xidDodgoKCpJuZIWsuSJyNc4nhXNp5fJOXMAQgPefef2Uiay5InI1ziXNwcLB1hALJmgsSZ+NcYjiXNrhxIwk7BehdVYWdZPfGlzUXJM7GucSoqorIyEioqmrrKGZkzQWJs3EuMZxLO9y4YYwxxliJwo0bxhhjjJUofIdixphF+L+7uVi/Z6cQeldVsW7NZeSQ+DWzix93K9Z6GWMlF/fcSCKHgHUXdMiRbLSnrLkgcTbOJUbWXDqdDqGhoVLOGJE1G+cSw7m08/gmL2EUAKXs7v1XJrLmgsTZOJcYWXMBQFZWlq0jFErWbJxLDOfSBl+WkoReATr7qdJ9g5U1FyTOxrnEaJ3rkS+XXdAV63IZNLxkpqoqzpw5g9DQUOj1ek3WURycSwzn0g733DDGGGOsROGeG8YYs4Hi9ijBCoOweXA4e9xxz41EciS9X5KsuSBxNs4lhnOJkzWbrLlkvbzCubTBPTeSyCEF6y7KV5lkzQWJs3EuMZxLnKzZZM2l1+sRGhpq6xj5cC7tcM+NJBQQfJwJimRP/pE1FyTOxrnEcC5xsmaTNRcRITU1FUScqyhkzSWCGzeS0CtAqwoq9JLNh5U1FyTOxrnEcC5xsmaTNZeqqoiNjZXuWUmcSzvcuGGMMcZYicKNG8YYY4yVKNy4kQQBSM2CZFeq5c0FibNxLjGcS5ys2WTNBQBOTk62jlAgzqUNni0lCQMpiLgs3ywDWXNB4mycSwznEidrNllz6fV61KxZ09Yx8uFc2uHGjSR0IPi7ABfTAFWip+zImgsSZ+NcYjiXOFmzaZ2ruDcXfNRcWj5GIyUlBR4eHlI9pFLWXCIez9QlkE4BGpZToZPnPAVInAsSZ+NcYjiXOFmzcS4xRIS4uDjpplzLmksEN24YY4wxVqJw44YxxhhjJQo3biRBABLTZbuvp7y5IHE2ziWGc4mTNRvnEufi4mLrCAWSNVdR8YBiSRhIwa4EyS4IS5wLEmfjXGI4lzhZsz2puR7lCe/3nC72b2ox2Fmv1yMwMNDif9eauOdGEjoQgj1U6CT7biFrLkicjXOJ4VziZM3GucTImktVVSQkJDzWj1/gnhtJ6BQg2INw5qYCVaJ6LmsuSJyNc4nhXOJkzca5xGidq7g9SnYKoXdVFesu6JBDxevx0mr6fFFxzw1jjDHGShRu3DDGGGOsROHGjSRUABdSFch2hVPWXJA4G+cSw7nEyZqNc4nhXNrhMTeSUEnB4evyzTKQNRckzsa5xHAucbJm41xiOJd2pOi5Wbx4Mfz9/eHk5IQmTZrg0KFDD1z+559/Rs2aNeHk5ITQ0FBs2bLFalm1olMIjbxU6BSJRrtJnAsSZ+NcYjiXOFmzcS4xnEs7Nm/crFmzBuHh4ZgyZQqOHTuGunXrolOnTkhKSipw+f3792PAgAEYOnQojh8/jp49e6Jnz544efKk1bNbkg5AVVey/QG5j6y5IHE2ziWGc4mTNRvnEsO5tGPz7J9++imGDRuGIUOGoHbt2liyZAlKlSqFb7/9tsDlP/vsM3Tu3BlvvfUWatWqhenTp6N+/fpYtGiR1bMzxhhjTD42HXOTlZWFo0ePYuLEiaYynU6H9u3b48CBAwX+zoEDBxAeHm5W1qlTJ6xfv77A5TMzM5GZmWn6961btwAAKSkpMBgMAABFUaDT6aCqqtlTUI3lxuUeVq7T6aBmpsPuvq48A927/bfdfZcwcwhQAOgVQFEIWXdVKFk6qKoOCgj6PMtT7l02dSCzJ9say2/evFlgduM26bLuAABUAlQo0CuEvHEKKycQMu8SlCwFujz3OyjKNhmlpKRAr9eDiPLdFErNTC90m+4vV3OvBeuUe98ojPuMMnVQSVfkbbqXXUFKSopZFp3uXltfVVXT/ipsm+6VKwUeJxVA5l0DlCydaZ8VdZuM++tBdU/NTC90mx5U98zrmCK0TQXVMeTeyTRfHStgmx50PIx1DAXWsQdvk3F/4b7jl5eamS78ftKBoOj+f3+BFKFtMpYXVMcURYHBYDCrYyLvJwjWsYLK89axgs57BdWxh72f7BQyq2OkKkLblEMKbt26le/4FVTHRN5PeEAdK8o2oUh17I7w++n+OqaQIrRNhdWxvOeO/HXs4e8n5J5bM3PPrTqYb9TDtkl33/sy7/G7P6PoZ67xbxbpaeVkQ1euXCEAtH//frPyt956ixo3blzg79jb29PKlSvNyhYvXkzly5cvcPkpU6ZQ7r7nH/7hH/7hH/7hn8f8Jy4u7qHtixI/W2rixIlmPT2qqiI5ORlly5aFosgzGjw1NRV+fn6Ii4uDq6urreOYyJoLEmfjXGI4lzhZs3EuMZxLDBEhLS0NFStWfOiyNm3ceHl5Qa/XIzEx0aw8MTERPj4+Bf6Oj4+P0PKOjo5wdHQ0K3N3d3/k7FpxdXWVqjIZyZoLEmfjXGI4lzhZs3EuMZyr6Nzc3Iq0nE0HFDs4OKBBgwbYvn27qUxVVWzfvh1NmzYt8HeaNm1qtjwA/PHHH4UuzxhjjLEni80vS4WHh2PQoEFo2LAhGjdujAULFuDOnTsYMmQIAGDgwIGoVKkSZs2aBQB444030Lp1a8ybNw/dunXD6tWrceTIEXz11Vc23hLGGGOMycDmjZv+/fvj2rVrmDx5MhISEhAWFoaIiAh4e3sDAC5dumQaoQ4AzZo1w8qVK/H+++/jvffeQ/Xq1bF+/XqEhITYcCsenaOjI6ZMmZLvEpqtyZoLEmfjXGI4lzhZs3EuMZxLOwoVaU4VY4wxxtjjweY38WOMMcYYsyRu3DDGGGOsROHGDWOMMcZKFG7cMMYYY6xE4cYNY4wxxkoUbtwwxhh74vHE4ZKFGzfMovgEwYqD6w2zpaysLCmeNfi4vw+MT0u//6netsCNmxLg/sfG20pOTg4URUFGRoato+Rj3D+3b9/Gb7/9hkOHDiEtLU2KTHfu3EF6errZa8aThLUY1xcfH4+YmBirrhsAFEXBrVu3YDAYcPv2bauv/1HExsZi37592L17N06dOoWsrCxN15eVlYU1a9Zoug5biIuLs+r6jO+/pKQk9O7dG1u2bDF7/e7du1bNg9z3wePI2JhZs2YNkpKSoNfrbR2JGzePC+Mb0WAwID4+Hn/88Qf++usvAIBOp7PZm8JYqffs2YMXX3wR1apVw/Dhw7F8+XKcPHnS5g0I5O47RVFw/fp1dO/eHa+99hpatGiBKlWqYNCgQdi2bZtNchobFIsWLcLs2bNx4cIF02t578ptDcb69cEHH+Ddd99FdHQ0ACAjIwM3b97ErVu3NFv3P//8g/DwcAQHB8Pb2xtLliyxeuNOVE5ODgBg8+bNGDBgAFq2bImXXnoJ48aNw9SpU7FhwwZcvHhRk3Vv3rwZ7777LpKTkwEbNIQtyVjvjh8/jv79+xe4jFbbZzx3LVq0CKmpqQgKCjJlGTZsGN59912cPn1ak3Xf78aNGzh27Bh++uknXL161SrrtCS9Xg+DwYCJEyeiY8eO+PvvvwFbf/Em9liZNGkSubu7U3BwMAUEBFD16tXpgw8+oBs3btg0V4UKFahXr170wQcfUKtWrcjV1ZWCgoJo7NixtGrVKrp27ZrNsuXk5BAR0dSpU6levXq0Z88eunz5Mi1dupSaN29OdnZ2VKVKFXrzzTfJYDBYNVtmZiZ5eHjQpk2bTOv+6KOPqEePHrR69WqrZklPTydXV1f6+++/iYgoLS2NOnXqROXLl6c+ffpQUlKSJutt1qwZPfvss3Ty5EmqWLEiTZgwgYiIDh8+TP/8848m63xUqqoSEVFwcDCNGjWK/vvvP9q1axeNHDmS6tSpQ3Xr1qUOHTrQsmXLLL7e5ORkatSoEb3xxhv5Xk9MTKQ7d+5YdJ1aMu7HkydPUnBwMJ08eZKIKN/78Pbt25plqFKlCv34449ERLR//35q0aIF1a9fnypUqEA9evSg9PR0zdZNRPTbb79R8+bNqXbt2uTr60sDBgwgyj03ZGdna7puS0tKSqLnnnuOunbtSlFRUTbNwo2bx4Dxw3nt2rVUtmxZ+u677+jgwYO0ZcsWmjRpEtWrV49mzpxp9VzGE9O2bdsoKCjI7KSakJBAH3/8MdWtW5cURaHTp09bPd/9Xn/9dVq0aFG+8tjYWJo4cSKNGDHCalmMx/TLL7+k4OBgIiJKSUmhOXPmkKenJ/Xt25dKlSpFhw4d0jyL8YPk66+/NmW5cuUKjR8/nurVq0dr166lihUr0ldffWXxde/bt4+8vLwoOzub7t69Sx4eHnT8+HEiIvrmm2+oXbt2dOnSJYuv1xKSk5OpVatWdP78ebPy27dv05o1a6h9+/b0yy+/EBXwYf2odu7cSQ4ODvTdd9/R6dOnKSIiggYPHkzVq1enVatWWXRd1tK9e3eaOnWqWVlSUhKFh4fT999/r8k6r1y5QiEhIaYGfZ8+fWjQoEFERHTmzBlq2LCh5ucuX19fmjdvHl25coX8/f1p3rx5RES0e/du+vbbbyk1NVXT9VuKsSF24sQJatOmDbm6utKSJUvo7t27pKqq1b84cuPmMWBsRAwfPpzGjRtn9lpWVhbNnj2b3Nzc6MCBAzbJtWvXLho1ahSlpaWZlRvJ0LAhIoqKiqI33nhDsx6I4hgzZgy9+OKLRET03XffUdeuXWnp0qVERNSrVy96//33rZZlyZIl9PTTTxMR0axZs6hLly60efNmIiKaMGECvfDCCxZf58cff0ydO3cmIqIFCxZQWFiY6SS4adMmU2NLJsaGaXR0NL388sv07bffWnX96enptG3bNurVqxc5OTlRUFAQeXh4UN++fWnGjBmUlZVl1TzF8fvvv9M333xD0dHRpl6Z7du3U9WqVSkrK4uio6Np8uTJ5O3tTQ0bNqTDhw8TFXBueVTp6enUr18/8vb2pj59+lBQUBCdOHGCKPe85uHhYdH13W/Dhg1UuXJlIiK6du0aubi40IULF4iIaOPGjdSuXTu6cuWKphm0Mn36dGrTpg399ttvNlk/N24eE6qq0owZM/I1bij3ZFunTh368ssvTctqzfgBlJGRQR06dCA3NzdavHgx3bx5s8D1WyNTQYwfREeOHKFhw4aRoij06quv0t69e+natWum121l48aN5OfnRwMHDqRSpUrRggULTCf7xo0b02effWa1LGfPnqWAgADy9PQkR0dH+uWXX0z7p0GDBqYsltxnR44coVq1atG1a9eoWbNmtGDBAtNrAwYMoIEDB1p8nZbSunVrUhSFatasScuWLaMzZ85QZmampuvs06cP+fv7U/ny5enZZ58lPz8/6t+/P928eVPT9Vpar169yN3dnZ5++mmaNGkSbd68mSIjI6lt27YUFBREDRo0oCZNmtDatWs1/8afkJBAo0aNor59+9KuXbuIiOj69ev00ksvmS4RaWXx4sWmxv17771Hbdq0Mb22bNkyCgkJ0XT9j8r4vjx37hzFxMTQ1atXaceOHRQbG0v79++nRo0akaIo9M4771BycjKRFT8LuHEjOWPlWb9+PVWuXJmcnZ1p/vz5ptY95XYDuri40Llz54is3JC4evUqdezYkTw9PcnOzo569+5Nq1evppiYGLp7967VcjyMn58ftWnThgYOHEgVK1YkOzs7at68Of3vf/+jI0eO2Cyrqqr00Ucf0aBBg0y9NAaDgf766y9ycXGx+ofWhQsXaPXq1RQREUGU23j9/vvvqXz58pqMe0hLS6P+/ftTy5Ytyd7enn799Ve6e/cuzZ07l/z8/Ojo0aNEGlzWsYTIyEiaNWsWhYWFUaVKlah9+/Y0bdo02rZtG128eNHi64uLi6MBAwbQjz/+SImJiZSRkUFbt26lsmXL0rp16yy+Pq0dPnyYxowZQ0FBQeTn50cvvvgiBQcHU3BwMK1cuVKz8SbGunTlyhU6c+ZMgcssWbKE6tWrR8eOHdMkg9GpU6eoVq1aFBUVRbVq1aIVK1YQ5V7iadOmDb355puart9Shg4dSk5OTuTr60sNGzYkZ2dnCgsLo+7du5Onpyd5eXnR+PHjrZqJGzePib///pteeuklql69OpUvX5569epFEyZMoOHDh1OfPn3orbfeslqW7du3F9j1/eOPP1Lz5s1JURSqUqUKDR48mA4ePGi1XPczNvJ27txJ1apVMxvUvH//fhowYAC5uLiQoih09uxZq+f7559/6NatW0R5rldT7kl/4MCBNGzYMKtlWbx4Mf3111/5yk+dOkXh4eGmsRBa9KBcuXKFRo0aRbVr16Z69eqRh4cHBQYG0tdff23xdWnlzz//pMGDB1O1atXI19eXXnrpJYv+fWNdLugD/4MPPiBvb2/TWCXZFfTla926ddS3b1/y8/OjoKAgevnll+nrr7+mAwcOWPzLmrEODx06lPr06WMa+Hrnzh1KSUmha9euUVRUlFUu86uqSu+++y7Z2dmRoii0du1a+vPPP+m5556j0NBQiouL0zxDcRmPS3R0NA0bNoxOnTpFe/fupd27d9O1a9do3759dOLECbp16xZt2LCBKlasSBMnTuSemyfdsWPHaP369fnKMzIy6IcffqCuXbuSj48PKYpC7dq1oxUrVtDp06c1/6b/22+/UdOmTYlyB07u2rWLEhISzJYxDox1dXU1jUewxWUp4zo3b95Mw4cPL3TWw5YtW6yc7F6joXTp0vT888/TsmXLKCoqyjRw8MqVK7Rx40b677//NM1g/AZ7+PBhql69ull9i4iIoJ07d1JmZibFx8cXOp6quLKysujEiROm3iCDwUC7d++mhQsXUkREBJ06dcoi69HSuXPnaPfu3WZlmZmZ9P3339OSJUuILNwYzM7Opn///Zd+/fVXUxe/0VNPPUUff/yxxdZlDQU11FJTU+nrr7+mjh07UpkyZejll1/WZN13794lV1dXUwMmLS2NOnfuTN7e3tSvXz+6fv26JustzKZNm6hbt26kKApVqFCBnn32WdMlMlkZ6/awYcPo9ddff+i54ccff6SAgIB8dVcr3LiR1PDhw2n+/PlEuQPb1qxZk29gWXx8PC1evJiaNGlClSpVombNmtGoUaMoJSVFk0yqqlJGRgYdOXKEiIg+++wz8vb2ppEjR9Ly5cvp2LFj0l37z87OpgEDBpCXlxfNnj270MHE1mx8qapKOTk59Pnnn1O7du3IxcWFatSoQaNGjaINGzbQ5cuXrZLHeHJ64YUX6PnnnyfK/XCZNm0alSlThhRFoRdeeEGT3pq1a9eSoijUs2dPWrx4sdTfUI2MjcHz58/TiBEjqGrVquTr60tlypShfv36md4XWjh16pRpNlTt2rWpUqVKZj2Re/fupZiYGM3Wr4WcnByKjo6m8PBwGjhwIP38889mr585c8Z0WchSddB4DJcuXUq1a9cmyj2Pjh8/nsLCwmjt2rVUoUIF0/hFrSQmJtLo0aNp9+7dpvf67du36datWxQdHS3VJf2Hee6550y3rcjMzDRtz/3/XbduHXl6elotFzduJJWcnGz6ttyrVy8KCQmhF198kWbPnk07duzI14g4ceIEjR07ljp06GC1jAkJCTRz5kxq1qyZqXH19ttv0/r16+nkyZOUlZVls4HERhcvXqQ2bdqQn58f+fj40EsvvURLly6lY8eOmS4J2dqVK1do5syZVKVKFXJ3d6c6derQhg0brLb+mjVr0saNG4mIaN68edS6dWv69ddfafv27dSkSROKjIy0+DqPHj1KoaGh5OPjQy4uLuTs7Ezdu3enX3/9lRITE03L2br+5GX8gO3Rowd17tyZ/ve//9GuXbvo66+/ppYtW1LDhg1NM20s7ZlnnqEXX3yRjh8/TkOGDKGuXbsS5dbvOXPmaPaFRgvG/bhs2TIKCwuj5557jgIDA6lKlSp09+5dSk9P1/y9+dVXX1Hr1q2J8szY27RpExERvfXWW6bGvlYmTZpELVu21Ky+aM3YSPzvv/9o0KBB+e65pKpqvvfu7du3TeNCrYEbN4+B8+fP0//+9z/q3r071atXj1q2bEmvvvoqffnll/T3339L8QFw9OhRGjduHNWqVYsCAgKoUaNGUn2TTE5OpkWLFlHr1q2pYsWK1KRJExo2bBj98ccfNs2V99ilp6dTaGgotWjRwmo3r7t16xb17duXunbtShs2bKAqVarQV199RTk5OZSSkkI+Pj7077//5sv6KM6fP0+BgYH0ww8/0Pnz5yk+Pp5WrFhBDRo0MI3XmjhxosUvhVlCeno6OTs7m41vyc7OpnPnzlFISAgNGjTI4lOx79y5Q6VKlTJ9EAYGBpru+3Lu3Dl65plnTAPAHyf+/v60ePFiIiLq168fjR07lih3PFz//v017QmLjY2latWqmWYG/vzzz2YzAz/99FPN1k25ExzWrFlj+rexsXD27FlauHChJgPStTBx4kRyc3Oj0qVL05tvvkn79u3T/KaHRcWNm8fMwYMH6f3336cOHTpQcHAw9ezZkyjPpQ5rS09Pz7feTZs2WXUw7P2MH4ZpaWn0888/5xsTZLyHRoUKFUyzE6zBuJ+2bdtGx48fN3145zV//nz66aefrJaJcm8W1rhxY/L396chQ4aYylesWEG+vr4WX9/EiRNN35opz/Hav38/1atXjyZOnEi+vr7UrVs36e7QevjwYapdu3aB37jXrVtHdevWtfil2UOHDlGjRo3o9u3bdPToUSpbtqxpTEhMTAyVL1+eLl++bNF1asV4rE+cOEFeXl508+ZNunv3Lrm4uJhuWBkXF0eNGjWi/fv3m/2OpcXExNDKlStp69atRLmXVJYtW0bly5cv8L1pKZcvX6bg4GCzsX7Gno7ExESqVq2a9ONtjK5cuUKff/459ezZk4KDg6l169b02muv0ffff2/zu4vb2eahD6yoMjMzsW/fPtjb26Nly5Zo3LgxGjdujOzsbGzatAnZ2dlA7jM8rPmwskOHDuHjjz+Gp6cnKlSogJCQEDRq1AgBAQHo1q0bunXrBuR5rpM1Gde3adMmvP/++6hfvz5CQ0PRvHlzPPXUU6hVqxamTZuGadOmWfW5PMbnr/Tu3RtEhG7duqFPnz5o2LAhvL294eDggD/++APVq1dH3759rZarRYsW+OWXX1C6dGnY29sDAA4cOIClS5di2LBhQO6zlOzsLHO6cHR0RE5OjulvKooCIkLTpk3x1FNPITg4GAsXLsTrr7+OAwcOoGXLlhZZb3HlrcM1atSAo6Mjxo0bh6+//hp+fn6mfXbu3Dnk5OTAzc3NovW+WrVqUBQFK1euxKFDh9ChQweULVsWALBq1SqUK1cOlSpVssi6tGbcJ3q9HrVq1UJWVha2bduGKlWqoEGDBgCAmJgYxMbGomnTpma/Y2kBAQEICAgw/TsmJgb//vsvRo4ciTJlymiyTgCoUKECqlSpgoULF6Jjx47Q6/WmbYyMjMS1a9fQqlUrzdb/qLKzs2Fvb4+tW7fCYDBg5MiRGDlyJA4ePIjffvsN+/fvx6FDh1CqVCls2rQJbm5uNsmpkAyPk2ZmDAYD9Ho9Dh48iAkTJuDSpUumN1v79u3x0ksvoVGjRjbLtW3bNoSHh6N69erQ6XTYsmULAgMDUaFCBbRq1Qq1a9dGjx49LPZhWFwXL17E+vXrcfjwYVy4cAF2dnaoUqUKWrZsiXr16qFRo0ZQVdUqD6k0ftgZ/7ty5Up8/vnn2L9/P/z8/NCqVSucOnUK8fHx2Lt3r9lJV6ssAJCYmIgLFy4gOTkZzZs3N52IVq9ejQsXLuC1116Dh4eHRT+sjx8/jqeeegr9+vVDeHg46tWrBwD477//0KxZM3z99dfo2rUrnnrqKYwcORKDBg2yyHot5fDhwxgzZgy8vb3RqlUrlC1bFpGRkdi8eTPGjx+PESNGWLQxiNyHZb711ls4ffo0Jk+ejG7duuGHH37A3r17MWbMGAwePNhi67KGnJwcdOjQAQEBAfj777/Ro0cPfPTRR7h27RpGjBgBJycnrFy50mL70Vh/s7KysHPnTmzatAkeHh6oXLky6tWrh9DQUNjb2+PGjRtwdHTUtHEDAFu2bMH48ePRsmVLdO3aFVWrVsXp06fxv//9D3Xq1MGXX36p6fotoWbNmnj99dcxZswYs/KMjAz89ddfOHfuHN544w2bfMEF+MGZUjJes2/Tpg09//zz9PPPP9O6devo3XffpebNm1PlypUpODiYPv/8c6vmMl5W6dChA40cOZIo95b5TZo0oe+//56qVKlCZcuWNT1OQCYHDx6kadOmUWBgIJUvX57q169vGktiDcZ99/rrr5vdGCw5OZnmzJlDzzzzDI0fP5527typeRbj9f2vvvqKAgICqEqVKqYbqb3yyium6/1adM0bLzH8/vvv1LJlS2rRogV16tSJ+vbtS3Xr1qWwsDCi3EsTpUqV0nw6/MOMGDHCdCNBI4PBQJs3b6a+fftSnTp1qEGDBlStWjX69ttvLX5peOvWrbRx40bKysqirVu3Uq9evUiv11ONGjUoJCSEVq1aJeUNDosiPj6eunbtSo6OjtS3b18aPnw4BQUFUYcOHQp9gGZxGY/LtGnTKCwsjNq2bUuBgYHk5+dHzZo1ozFjxtCqVausNk4wMzOTFixYQHXq1KHg4GCqVasW6XQ6mjhxIl29etUqGYrj77//pqZNm9KXX35JOp3OdHxUVaXMzEzTZ9epU6dsXi+5cSORxMREsztmNm/e3PQmp9zR5idPnqSVK1fS888/b7rJmTUr0d27d8nX19f0AR0UFETfffcdEREtWrSIevbsSXv27CGS9Jb50dHRVLduXRozZozm6zJ+kBvvX5OZmUmKotDVq1cpIyPDJs8AMma6ePEiubu704IFC+jgwYO0Y8cOWrBgATVr1oyGDRumWTZVVem///6jmzdv0tatW2n69Ok0YsQI6tOnD02ZMoUSExMpMzOT3nnnHdP9lGwlJyeHnn/+eYqNjSUiotGjR+cbuHv16lWKjo7WrK6HhITQ+PHjTbcwOH/+PC1fvpwWL15MN27c0GSd1nTz5k36/PPPqU2bNtSvXz8aP3682Ww5S/Py8jKNs2vWrBkNGjSIBg8eTKVKlSJfX1/64osvNFt3QWOHDAYD/f7777RhwwaKj4+3eYPgYQ4cOEDPPPMMOTg4kKOjI7366qum871RXFwc+fv723xgMTduJPLxxx9T2bJlqXfv3vTVV1/R+PHjTTcDu9+NGzds8uEYHR1N/fr1o+PHj9N///1HtWrVMk0VPnfuHLVt21aKp9jOnj2bNm/ebHYvEMo9mYwcOdL0QEgtGU9mY8eOpbJly1Lr1q3zfWBnZmZSdnY2JScn048//qj5zCDjh/CkSZPMBvUa/frrr1S6dGlNHnZ36tQpeuONN8jd3Z28vLxo9OjRtGzZsnwz/iIjI2nmzJn5bpBnC8b32PXr16lBgwbk5ORE5cuXp9dff13zabz79u2jcuXK0Z07d0hVVdq5cyeVLl2aKlWqRE899VS+p5E/Ls6dO0eTJ0+m9957jz755BNTuVbnM2ODISIigqpXr06UO4XZ3d3d1JB65plnaPDgwZr2FKqqSidPnqRJkybRkCFDaNu2bZqtS2s1a9akF198kVq0aEF6vZ78/Pzogw8+oP3799Mrr7xCTz31FJGNv+By40Yi+/bto9mzZ1P//v2pYcOGVLFiRapWrRpt3LhRmlkjmZmZdOLECUpKSqIrV65QgwYN6IMPPqD//vuPpk6dSkFBQUQ2nr578uRJqlq1KjVv3pxeeOEF+vTTT2nfvn2UlpZGV69eJXd3d6t+cEZERNDEiRNJURRycnKipk2bmh4yajR58mTq0qWL1TK999571L179wJPPn369KG3337b4uvs1asXtW7dmiIjI6lPnz7k6OhIdnZ2VL16dXrppZfo999/t/g6H5XxgzEnJ4cyMjLoxIkT9NFHH1GdOnVIURSqVasWzZw5U5PehgkTJtCzzz5LlDujrVevXjRmzBhKSEigpk2baj5d2ZKM9WzdunXUqlUrql+/PjVv3pwCAgJMX0CioqIs/uDRvOehpUuX0gsvvEAGg4G++eYbevrpp029C4sXL6aJEydadN33W7duHQUHB1O7du1Mj6lxc3OjYcOGaTrtXQspKSmUnZ1Nd+7coSNHjtCkSZOoVq1apCgKNWvWjPbu3UvEjRt2v7i4ONq4cSNNmTKFWrRoQYGBgdSoUSOaMGECHT582NbxiPLcOn3ixIlUu3ZtCg0NpcqVK9MPP/xg9rqtnDp1iubPn0/PPPMM1atXj1q3bm26k/PTTz9t9TyxsbHUsWNHWr58OQ0ePJj8/f3Jzc2NnnnmGZo1axZVrVpV82np2dnZppP9rl27qHTp0jR79my6evWq6XjdunWLKlWqRL/88guRBS95pqamkouLi+kZXtWqVaPNmzfT1atXqXLlyqQoCs2ePduUUzYtW7Y0jYVQVZWSk5Np9+7dNH78eHJwcKDRo0dbfJ0rVqygkJAQOnjwILVu3ZqGDx9u2n/PPfec1R9E+CiM9ahevXr03nvvERHRqFGjqF+/fkS5vTlvv/22aTq4pdedk5ND165do127dlFOTg6tXr2aatasSTt37qRbt25Rhw4dTPfZ0UpYWBh9+OGHRLnPtXrmmWdo+vTppNPpSFEU6tGjh6brtxTj+BrKfRyQUWZmJl25csXm4+SMuHEjkftbuQaDgc6fP0+rVq2icePGUcuWLSkwMJCefvppq7aI837rur8r9fbt27R06VKaPHkynThxQqobrhnt37+fZsyYQZMmTaJvvvnGJjcXzMnJoTt37hDljq06fPgwffHFF9SrVy+qXr26Jh+OD8sza9Ys8vX1pR49etC8efPo7bffptatW1O9evUsvr41a9ZQkyZNiIjoyJEj5OfnR/Hx8URENGfOHNqwYUO+27XbSt4HAiYkJNDq1avJxcWlwGVzcnIoKSnJdEddS46ZSExMpHbt2pGzszPVrVvXdC+bGzduUNmyZa3yYEdLunr1Knl7e5seI1OuXDnTvV7i4+OpUaNGpjtzW6IObNmyJd/N8IyPNbh27Ro1b96c2rVrR3Xq1CE/Pz9NP5SNl8GM216hQgXasmULqapKw4cPp7Fjx1J0dLRm67ekxYsXU/Xq1al69eo0fPhw+vnnn+n8+fM2H2NzP27cSOizzz6jffv2mTVgjHdBXbhwoemuntYefDZixAhSFIVq165Nb7/9doFvRlt1Qxr3xa1bt2jnzp00efJk+vXXXwtcxlbuf65VdnY23bx5U/OxU3FxcRQWFkZfffWVqYFltHHjRurWrRsFBgZS27ZtadSoUaYxVJbcX7t376aZM2fS3bt36bvvvqPmzZubnic1b948atOmjcXWZSnPP/88denShapUqUJ9+/YtcPbY8ePHaceOHZrmSEhIMF26uXTpEo0aNYoaNmyo6Tq1cPr0aWrYsKFpALuvr69pfF5UVBS5uLhYdIZekyZNyMHBgVq2bElff/11vg/fffv20WuvvUaTJ082m8GohT179tDLL79M6enptGvXLqpRowZdunSJKPemnl26dJFyAoaRMduvv/5K7u7u9N5779FHH31E9evXJxcXF6pbty5NnDiRfvvtN5uMBS0IN24kYfwgOXjwIPn4+Jie9ZOVlUURERG0dOlSU6vfWHms8Q3XmOvSpUv01ltvUfXq1alVq1ZUu3ZtKlOmDDVq1IiWLFli9afoFpbz5ZdfJl9fXwoLCyMPDw9ydnam559/nvbt22ezTHFxcfTJJ59Q8+bNyd/fn8LDw636rTsyMpKeeeYZCgwMJA8PD+rRo0e+Z1dlZGTku5OzJWVnZ5suqURFRVGVKlXo888/p9WrV1OlSpVMs1RkOcEbDAZau3YtDRo0iBRFodDQUOrfvz/NmjXL7NluzZs3pxEjRhBZ6f14+vRpWrBgwWP5uAUionHjxtGQIUOoXbt2pstTly9fplGjRlHbtm2JLFQHDAYD/fvvv7Ry5Up68cUXydfXlzw8PKhXr175JhNY40vPhAkTaO7cuaZe23r16plmwo4cOdKqzwQsDmPdfumll/KNxztz5gy988475O3trUmvb3Fx40YSxjf0iy++SIMGDSLKHbT1wQcfkL29PVWrVo0GDhxo9VzG8Q9Dhw6lgQMH0vnz5+nOnTt08uRJ+vzzz8nX15cURaEKFSrQm2++mW92kjVdunSJnJycaMeOHRQTE0PHjx+nBQsWUPPmzcnJyYkURaG///7banmMx3To0KHUoEEDWrx4MXXs2JEURSGdTkfBwcH04YcfWuUa9Y0bN+jIkSO0aNEi6tatG3l5eVGFChVo6NChVr+8kZGRQW+88QY5ODiQi4sLvfrqq9J827vf4cOHaciQIfTNN99Q7969qX79+tSiRQt6+eWX6fnnn6eyZcuajp+1egZlaQAWx6lTp6hFixbk5ORENWvWpLfeeovCwsKoRYsWmg1CTUlJoePHj9PChQupS5cu5OXlRRUrVqThw4drMsbnfgcOHKDKlSubek1v3rxJDRs2JDc3N6pbty5VqVLFKrM3H5WqqvTZZ5/R/PnzzcryMr4XZKij3LiRTK1atWjZsmVEudOZ27VrR1u3bqWtW7dS3bp1891TwFq8vLxo3bp1+cq/+uor6tevH3366adUtWpVmjdvnk3yUe4H0QsvvGBWZhxIuGfPHpo4cWK+yzJay8jIoDJlyphuBFezZk1auHAhrV+/npydnUlRFJo2bZrV8uTk5NDVq1dp586d9OGHH1LTpk3J1dWVQkJC6M0336TU1FSrjXnJzMw0myFj67E29zM2uPLO4Dl27BjNmDGDevbsSS+99BJ99dVXRBJc8pSV8cvRhg0bTD3PREQ///wzDRo0iJo2bUpvvPGGJg18Y31KSUmhzMxMMhgMFB8fTzt37qRp06ZRixYtSFEUev311y2+7rxWrVpFAwcOJFVVTfUkKSmJ5syZQ6+99pqpl15Wxsxr1qwhX19f8vPzo507d9Lt27dtHe2BuHEjkaysLBo1ahQ988wz9Ntvv5GXl5fp6b+ZmZmaPKG5KFJSUqhDhw702muv5XstLi6OmjRpQpcuXaJx48ZR27ZtbdZ7s2jRInr66afNZpTl3U/W/DZhXO9PP/1kGh9x4sQJqlChgmn/TJw4kT7//HOLT38tqoyMDLpw4QJt3LiR3njjDapatappkC+7Jycnh27cuEFRUVH5XktJSbFJpsdR06ZNyd3dnebOnWu6hH1/b50lG4jGv3Xq1CkaPny46eGYRnfv3qXLly/Tzz//XOCxtaQZM2ZQ48aN890XSYbeDRF//fUXtWnThhwdHcnDw4OGDh1KmzZtosuXL9vsHPYg3LiRzF9//UXly5enSpUqUXh4uKn8hx9+0OQJzUX1zTffUMWKFemDDz6gAwcO0K1btygrK4vmzp1L3t7eRES0fft2qlKlimlGgjVduXKFKlWqRKVKlaI6derQypUrpegJ+Pnnn2nUqFGUlZVFn3/+ObVq1co0iHL+/Pk2mf5Z0H5JTk42zSKTYb/ZkvFD5+jRo9SvXz8KDQ2ldu3a0YsvvkgLFy40u4s4K5qsrCz6+OOPqWXLlhQeHq55w9DYY/Tyyy9Tz549TV8ojMc2OzvbKnd4PnHiBFWuXJkcHR2pTp069Nlnn9Hx48elvN1BUaWnp9Nnn31GwcHBpCgKBQcH06hRozS9s3RxcONGUvHx8aaZAxs2bKBGjRrRRx99RGSj+4AYDAaaPn061a5dm5o1a0bdu3enChUqUFBQkGkw6DvvvFPgXW+t4e7du3To0CH67rvvqHv37lS+fHkqV64cvfzyy5rPZnkQVVXp33//JVVVae/eveTr60t//vknxcTEULVq1WjOnDmaZzAYDIXe+p0VLiwsjF5++WX65ZdfqFq1alSzZk0KDAykBg0aUP/+/a3yHLCSJCsrizZv3kwhISFUtmxZ+vrrrzV5flle5cqVo7/++itfeWxsLM2cOZNOnTql6fopdwbn1q1b6ZlnnqGwsDBq3749hYeH0/Lly00zpmRlbAweOnSItm7dmm/G54ULFyg8PJx8fHysfsn/YbhxY2PGD5js7GyKjIykFStW5Kvwu3btok8++YSSk5OJbPzN+uzZs/Txxx/T6NGj6bPPPjMNRv3tt9+oevXqtH79eptlo9x9c+3aNdq/fz/NmTPHNIDXODPDGozd7Vu2bDEbsJiamkr9+/cne3t7sre3p44dO2p6QjDOTsrr/obOzZs36emnn36sbginJeP78cCBA1S2bFnTh6+bmxv9+eef9M0335CXlxfVr1/fNI7qSe/pepDMzEyaNm0arV69mr777jv666+/KD4+nsLDw6ly5co0cuRIzR4Uef78eQoJCTHdkDLvTSwvX75Mfn5+mj9C437x8fG0ePFiatOmDfn5+dHPP/9s1fUXV8eOHSkkJIRGjBhBX331FR08eLDAhqlM7wWFiMj6zyJnRqqqQqfTYfTo0YiIiIDBYEB8fDyCgoLw2muv4ZVXXoGTk5OtYz70sfXR0dHYs2cPRowYYdVcD5KdnY34+HicOHEC9evXR6VKlay6fldXV3z33Xfo06ePaf/duXMHJ06cQFZWFoKDg+Hl5aXJujMyMtCmTRtUrlwZrVu3Rvv27VGjRg3T68Y8Fy5cwJQpU+Dt7Y05c+aY6uOTyrhfJk2ahHPnzuGnn37CV199hS+++ALHjx8HAAwdOhR16tTBG2+8Yeu40tu4cSN69OiBGjVqoF+/fvj333/xxx9/oEaNGkhKSkJCQgKuXLmCChUqWHS9xuPYs2dP6PV6/PLLL2avr1q1ChMmTMCVK1csut6iUlUVZ86cga+vL1xcXGySQcSZM2ewfv16bNmyBYmJifDx8UG9evXQrFkzVK9eHWFhYQ/9jLA2btzYUN4PmDp16uDzzz9HUFAQkpKS8Ouvv2Lz5s24efMmatWqhQ0bNqBy5cpWy6aqKhRFyVdZDQYD9Hq91XIUhy0+oI3Hcvv27Zg7dy6aN2+OTz75BGlpaaZlcnJyYGdnB+SeLKpXr65ZzsTERMyfPx8XLlzApUuXYG9vj5o1a6JNmzZo27YtvL29TcsmJydDr9fDzc1NuhOUrSxfvhznzp3D9OnT8dZbbyElJQVLly4FAAwaNAiBgYGYPHky76+HuHTpEubMmYMff/wRbdq0wZQpUxAUFIRDhw7h1q1bcHFxQevWrTXbj+vXr8eQIUNQuXJlvPDCC+jSpQvWrVuHn376CS+++CImTZpk8XWWdAcOHMAPP/yA77//HuXKlUPz5s3x448/2jpWfrbuOmJE69evp169epmV3blzh86ePUvfffcdPfPMM1YbpCtyKePNN980W8aW8uYzZlm9ejUtW7aMVFW1WnfpmjVrqGfPnlSmTBlyd3en0aNH53sg5JEjR6h+/fpWyXP9+nX67bff6K233qIuXbpQkyZNqH379jRhwgT6/fffpZ/OaUvG8QUrVqygcuXK0ddff03ff/89eXh4mC7H2rrePy4OHTpEo0aNovDwcE0HZBuPR3x8vOny8J49e2jo0KFUv359cnR0pMDAQFq4cKHm431Kujlz5lCzZs1MM3plm/3FPTcS2LRpE5YvX445c+agSpUqZt9iiAgZGRlwdnbW/FtiSbiUYTAYoNPpoCgKXnvtNaxevRrR0dGoWLGi1TJcvnwZXbp0QVhYGG7cuIELFy7Azc0NnTp1QseOHfHVV1/h+vXr2Lx5s2YZCjomMTEx2LNnD/7++2+cPXsWWVlZUBQF77//Pjp16qRZlsfN/e+zO3fu4LXXXkNkZCRSU1PRtm1bUy8Oy8/YuxsdHY2zZ8+iRo0aqF27Nnbu3In58+cjOjoao0aNwsCBA1G2bFmLrtt47Nq1a4dJkyahbdu2QG7v5I0bN1C6dGno9XqznkuWn/EYnjhxAtu3b0erVq0QGBgId3d30zLnzp3DjBkz8Nlnn8Hd3V26Xkxu3NjY+fPnUbNmTRARXnjhBXzwwQcFNiis4XG9lBEdHY3s7GzUrVvXVEZEiI6ORnx8PDp06GCVHHn3w9GjRxEWFoYzZ87g2LFjOHjwII4fP47IyEhUrlwZK1euRGhoqFVyFeTo0aPYt28fduzYgblz5yIwMNDmx1EW6enpOH/+PG7fvg1FURAaGgq9Xo9du3ahcuXKqFGjBuzs7KRq1MuoS5cuSElJQXx8PG7fvo22bdvCx8cHa9euRVJSEqZPn67JZaHs7Gy88sorKFWqFL788st8r2dlZUGv10t/eV0G06dPx8yZMxEaGopGjRqhZcuWqFu3Ljw9PbF161a88847SEpKsnXMAnHjxsZSUlKwc+dOHDt2DD/99BMuX76M2rVrY+DAgXj55ZfNWsrWcuPGDezfvx979uzByZMnkZycDBcXF4SFhaFDhw5o3rw5SpcubfVcRsYP4eTkZIwePRqHDx+Gk5MT7Ozs0LlzZ7z00ksIDg62ei7jt52NGzeiXLlyaNCgAezt7YHcXrGEhATcvHkTvr6+mg0kNjLuo/j4eGzbtg0xMTFwdnZG586dUb9+fdNyd+/ehbOzs6ZZHgfGY7djxw7Mnz8fW7ZsQZkyZRAcHIw6derg9ddfR0hIiK1jPlbOnj2Lq1evwsnJCTdu3MCePXuQlZWF0qVLY/fu3Zg0aRI6dOigyTi+P/74A2PGjMHOnTvh7e0NRVFw9+5dHD16FDNmzMCmTZtM49/Yg8XGxuLHH3/Eb7/9hqtXryIwMBDXrl1DamoqJkyYgHHjxpmNJ5QFN24kkZWVhcTERBw8eBBbtmzB3r17cf78eSxevBgjR460SobH5VKG8WT43nvvISIiAkOGDIGnpyeOHz+OvXv34vLly6hcuTL69OmDN99806rZMjIy4O/vj8mTJ5tmuh0/fhwXL15EWFgYqlatarUsd+/eRb9+/XDkyBG0b98eGzduhKenJwICAvDcc8+hTZs2CAoK4h6IPHU/LCwMgYGBmDRpEkqXLo0NGzbghx9+QFJSEn7++We0bNnS1lEfe9nZ2aZGvyVkZGTgf//7H3r16oXAwEDTRIhmzZph8ODBGD58OL788kv89NNPOHfuHAYMGIBPPvnEYusviYxfju7vzT106BC2bNkCRVHQoUMHNGjQAI6OjnL2+tp4zM8TLyUlha5fv07R0dGmpzKnp6fT0aNHaeHChXThwgUiSQYuHjlyhD777DPq2bMnnT9/nsjG9zXo2rUrrVq1yvTv1NRU+ueff2j58uXUr18/Gj16tNWyGAfTLVy40PRk3KysLPrpp5/Izs6OatasST169LDKwHBjlvnz51NoaChlZGTQ3r17ydXVlWbMmEFBQUGk1+upatWqVrlL6+Pi6tWrVK5cuQKfjt66dWsaNmyYFO/Dx5Gqqqabj2ZlZVl08Onff/9NiqJQ6dKlqV27dvTtt9/S9evX6ZtvvqHatWtTxYoVKTg4mGbMmEHnzp2z2HpLuqSkJFq9ejUNGTKEPvroI6vc8NCSuHFjA8YT5KZNm6hjx46mp3736dOHvvjiC9NJwNoNB+P6rly5Qt999x29//77NHPmTNPNyozS09Otmisv4767ceMGzZkzhz788MMCl0tKSrLqs3+M+65z5840YcIEIiJau3YtderUiWbNmkU7d+6k4OBgq9y0y5ilefPmpif4jhgxgl588UVTrmbNmtHq1avNln9SGT9or127RhMmTDA9hygzM9P02rfffkt+fn7SPr1cBsZ9deTIEfrll1+sep7IyMigiIgIGjRoELm5uZGXlxe1bNmSypcvTzNmzDDdAJU9mPFckJCQQB06dKDy5ctT165dyd/fn/R6PXXq1Mk02032hv6T3RdtIzqdDnfu3MGwYcPg6+uLffv24YMPPoC9vT0mTpyIoUOHIj093erdfMbr0iNGjMDEiRNx8eJFzJ49G8899xzat2+PJUuW4MyZM3B2doaqqlbNljcjAHz//feYOnUqvvnmG/z++++4/+pquXLlrDpeydiF26xZMxw/fhz//PMP3nnnHTz11FMYMWIEWrduDUdHR6Snp1sly61bt2Bvb28aBH7gwAF06dIFAPD000+jbNmy8Pf31zzL48A43qNZs2aYN28eFixYgCtXrsDBwQF6vR45OTmIiopCYGAg7O3tYTAYbB1ZSsb35vjx43Ho0CHTWC7je/P48ePw8fGx+CUhIoKjoyM6deqEN998E+fPn8cnn3wCd3d3pKam4uuvv8ann36KvXv3Iisry6LrLmmMdXvu3LnIysrCrl27sH79epw6dQpbtmxBcnIyZs+eDeR+jknN1q2rJ43x281nn31munyR144dO6hs2bJWf27N43YpY/PmzfTOO+9Qs2bNqFKlSvTUU0/RpEmT6J9//rFprqNHj5KPjw+5ublRly5dTN9eIyMjydnZ2fTQTC0Zv30dOnSI9u/fT5mZmdSpUyd65513iIjo+PHj5ODgYJMHnMoqOzubVq5cSa+99hp5eXlR6dKlqW/fvjR//nzq1q0bvfXWW3Ts2DGi3B4dVjCDwUAvv/wybdy4Md9rZ8+epYEDB9LixYuJLHhfFOPf+eWXX6hVq1Z08+ZN02sXL16kmTNnUkhICCmKQqdPn7bIOku6kJAQWrhwoenfxn28fPly8vf3p3379tkwXdFw48ZGJkyYQJ06daI7d+6QwWCg9PR0UlWVcnJyqFu3bvTGG29YNc/jeCkjMzOTzp07R6tWraLRo0dTs2bNqFatWtSoUSObP6E2JibG9CTiI0eOUM+ePalPnz6ar9fYVXz/uJG5c+eSv78/NWvWjAICAkzHVbYbb9laRkYGnTt3jj7//HNq3bo1lSlThhRFoZEjR/LTwB/AWI/+/vtvGjx4MPXp04du3bqVb7nbt29bvM4Zz0Vjx46lcePGEeU2Vu+/bHLy5EmLrrekyszMpMGDB9OgQYMKfK1KlSqmhxHL8DlQGLnmbpVweUeU9+7dGz/++CN27tyJrl27mrpw9Xq96SZwsOLjDgq7lPH2228DuZcyli1bJs2ljPT0dJQqVQr+/v6oVq0aevTogZMnT2L//v24fPkyypcvb5NcxuMVEBBgKlNVFaGhoejVq5em6yYi6HQ67N27F/3790dsbCwcHR0BAEOGDIFer8eZM2cwYMAA9OzZE8hzKeFJt2bNGjRt2hS+vr6oVq0aqlWrhkGDBuH06dPYtm0bli9fjqVLl6JixYr45JNP0L9/f1tHlorxHLVs2TIsW7YMyH222ogRIxAWFmaqh1rcQkJRFKiqiipVquDcuXMAYDYt2fgoGVvcHuJx5ODggPbt22Pw4MFwd3fH888/j6eeegoAsGLFCqSkpODpp58GZD9/2Lp19aS4/1tEamoqDR48mBRFoc6dO9OaNWsoIiKC+vTpQ5UrV7b6oN3H5VKGwWAw9SKVK1eO2rVrRx9//DHFx8ebltHySdv3K+ybizW/0Rjr1ooVK+jo0aPUo0cPevnll/O9TjYeDC6rw4cPk6Io5OPjQ4MHD6aIiAi6fv262TI3btygHTt20IABA8xm6LH8Lly4QJ988gnVrFmTdDodhYWF0bx58zSZbWN8n/3888/k5uZGer2epk6dSpGRkZSRkWHx9T1JvvjiC2rWrBl16NCB2rVrRwEBAVSnTh366KOPiHJ7x2TG97mxgvT0dHzwwQeYPn06SpUqZfbahg0bsHTpUuzZswc6nQ7t27fH0KFD0alTJ6vdf8S4nsTERLO7EM+bNw+LFi1CxYoVkZCQgKZNm+KHH36wycMzjTeJWrZsGaZNm4a2bduiffv22Lp1q+mGa998843pdutaK+jY5O2ZM76+c+dOnDlzBn369NH0xn1paWlo0aIFypQpg7///hvjxo3DwIEDUaNGDbOb9E2ePBn169c39dywe1JTU7FmzRp89dVXOHr0KAIDA/HSSy+hQ4cOCAsLM71vH4cHx9pCYfc5OXr0KJYvX46VK1ciNTUVaWlpcHBwsPj6L126hKVLl+LPP//E+fPnERwcjNatW6Np06aoWbMmKleuLHcvg40Zz1dXrlzBmTNnUKdOHXh5eWH//v34888/kZycDFdXV3Ts2BFPPfUU7Ozs5Ly3TR7cuLGCP/74A8uXL8eKFStw/vx5fPnll2jTpg0aNmyI8uXLg4iQmZmJGzduwN3d3ap3/zVW0IIuZSQnJ2P58uU4c+YMgoOD0bNnT/j6+trkpm/GdYaGhmLIkCEIDw83vZaVlYW+ffvCYDBg06ZNVsmzbt06nD9/Hq1bt0b16tXh6elp9rpxv44aNQrr16/Hrl27UL16dU0z/ffff5g+fTpWrVqFmjVrwtXVFbVr10aTJk3QqFEjVKhQAV5eXvjrr7/QqlUr6U9O1nL/foiNjcX8+fOxePFiAMC3336LwYMH2zDh/7V37/FQpv//wF+DEJKIUo4lURFDRRGVqOhT24lOK6Hjrq0227f9tNu2bemwqFQOHXSi2pIOKnROBxSSkIpEJSVnwhjv3x/fZn6pdr+7nw8zTNfz8egRc9/cb/fMXPO+r+t9X1f7UFBQgLNnz+L+/ftQUVHBDz/8gC5dugDvk8L09HRwudxWTxCvXbuGQ4cO4erVq+BwOOjevTtCQkLQr1+/Vjtmeyd4Tjw8PKCsrIxvvvmmWXvVHif6ZMmNiNTX10NOTg4HDx7ETz/9BC0tLWhra2Pw4MEYOnQo+vfvDyUlJZHFI3ixHjp0CP369cOvv/4KZWVlHDhwoNl2tKEp+svLyzFo0CD4+flhypQpqK+vBwDIycnhwoULWLhwIY4cOQJLS8tWj8Xb2xtRUVHQ1dUVrrliZmaGXr16NUtOi4qKcPPmTUyZMqXVYklMTBSOiV+/fh0lJSXQ0tLCsWPHkJycLKxPKikpgbKyMm7fvt1qsbQXn0vsBE0hh8NBeXk55s6di3HjxsHV1RWdOnVqlw18axOck6ysLCxZsgTPnj2DnZ0ddu/ejdTUVJiZmSEzMxOGhoYtOivxx+rr6/H06VMYGRkJH+Pz+Thx4gSOHDmCiIgIyMvLt9rxJUFNTQ26du2Kq1evYsiQIcAHs0nfv38fRAQTE5N28x5gyY0IfNwo5ufnIyYmBhcuXEBBQQGUlJRgYmICQ0NDuLq6QlNTUyRxtbehDCLC3Llz8fr1609W1H769Cn69++PN2/eiKznq6ioCJGRkYiKikJBQQG0tbVha2uLoUOHwsTEBNra2q3SBf+htLQ0fP/997h8+bJwCQ9tbW3h9urqaly4cAGJiYkwMDCAra0tjIyMvvjhFcF70tfXF2ZmZnBycvpk2NDPzw+1tbVYu3at2OJs6wTDxbNmzUJDQwP++OMP7NixA+Hh4bh79y4qKirg5+eHYcOGYfz48a0SQ3R0NHbs2IHXr1/j+fPnsLW1xbJly2BnZ9cqx5M0gvdCZGQkNm3ahLS0tE8S/9jYWBw7dgxBQUGflFa0WWKu+fkiCAo6T58+TfPmzWu27c6dO/Tzzz+Tg4MD6ejoUG5urkhjy8/PJ09PT1JQUCAul0v29va0aNEi2r9/P2VlZVFZWRlJS0vTtWvXiNrArX/nz58nFRUVGjhwIG3dupWeP39OcXFx5OjoSGPGjBFJDE1NTZ8UiN+7d4+WLVtG/fr1Ix0dHXJycqL169fTuXPnWnUmz4cPH1JMTAwREUVHR5OBgQF5enrSnj17KD8/v9m+bX1GUVGrra2lESNGkLy8PKmrq5OXlxdduXKFXr9+TYmJidSvXz/atm0bEbtl/v+ko6NDsbGxRERkaWlJfn5+RO9v/Z40aRJt3LiRqAXbD8FrOTk5mfT19Wn69Om0f/9+Cg4OJkdHR+rZsyft3bu3RY71pThx4gQZGhrS3bt3id5PiyCwadMmGjRoEFEb+Az4u1jPTSsSdH2/efMG6urqsLKywsiRI7F+/XrhMJUAn89HZmYmTE1NRRJbexjKuHbtGng8HhwcHJo9npqaipCQECQlJSE7OxtycnKYOnUqli1bJtKVm9/PE/VJN21sbCyOHDmCM2fOYOTIkTh27JhI4klMTMTRo0eRl5eHV69eQVFREQMGDMCoUaNgZ2cnlhXm24M3b94gKioK4eHhuHPnDtTU1KCgoAAdHR1cunSp1Xvf2ruysjJ8/fXXmDhxIsaNGwdDQ0NkZmZCR0cHlZWVMDAwwLlz52BpadliQ3uCnsdZs2ahqakJkZGRwPuepLKyMqxbtw4nT57E1atX28z0FW1dTU0NhgwZAisrK2zfvl04jPfo0SNMnToVnp6e8PHxaTe9viy5aWV5eXkwMDDA8OHDcfv2baSnpwvHhQWFxPLy8tizZw9GjBjRbH6U1tJehjKcnZ0xceJEeHt7IzY2Fg0NDeByudDS0kJtbS3y8/PR0NAAIoKZmZlYimPLy8tRXV2NwsJCdOvWrdnzV1NTg6KiIhgYGLTa8T9XO1JQUIDExEQkJCQgOzsbdXV1aGxsRGhoKAYOHNhqsbQ30dHRMDQ0bDb/ycuXLxEXFwc5OTmMGzcOKioqrPD6b9iyZQtu3rwJNTU15Obm4sKFC3j37h2Cg4OxdetWPHv2rFWO6+DggFGjRmHlypXNHi8uLoaLiwu+//57uLm5tcqxJYkg6Tx16hQWLVqEyspKDB8+HAYGBjh9+jQMDAwQExPT7IK8zRN315GkKy0tpfj4eOrbty9xOBxSUlIiV1dX4QyP9H6RRwUFBXr+/LlIYmpPQxmC4QAul0s9e/akyZMnU1BQEKWkpIhkKYO/iunSpUvk7OxMHTt2JDMzM5owYQKtXr2a4uLims27Iyrl5eVUVVXV7LGMjAzavn07eXh4sEUfPxrOGDBgAO3fv1/cIUmEV69e0dixY4nD4VCvXr1o7dq1xOVyycrKivbt20fUSvOi+Pn5kbKyMiUnJzcbOiwpKaHOnTtTcnJyix9T0j1+/Ji2bdtGU6dOJXt7e9q6dauwPWsvQ1LEhqVEZ+3atZCXl0e3bt2wd+9e3Lx5E927d4eDgwOqq6uRn5+PO3fuiPyOjLY6lPHx1TKPx0NUVBQiIyORmpqKzp07w8rKCnZ2dujfvz+4XK7Ir6779esHOzs7rF69Go6Ojqirq0N1dTUUFBRgbGwMDw8PTJo0SSSxHD58GJGRkbh16xZUVVXh4uKCb7/9VtiTJOh1+9J7IQTnwdXVFR07dsS+ffuAD65cy8vLcefOHVhZWaFTp07iDrdN+9xrKTk5GQEBAcjKyoK9vT2+/vprcLncFm3TBM9Vfn4+lJWV4e3tjZKSEkyYMAF9+vRBQ0MDYmJikJiYiOzs7BY77pfk/5rHqz1gyY2I8fl8vHv3Do8fP8a5c+dw+vRp6OvrY/ny5bC0tBTJ0E97GcoQ3Ib4yy+/YNy4cRg8eDAA4NWrVzh8+DCio6Nx//592Nvb4+TJkyKJSfCmv3v3LpydnfHs2TPIy8tDTU1NOBHjmDFjhB+cglsqWzOWxMREuLi4YNSoUZgxYwbS09Nx4MABFBYWIiAgAAsXLmw3t2+KipGREX799VdMmzat2S3gpaWl8Pb2xqRJkzBz5kxxh9nm8Xg8xMfHIzc3F6amphgwYIDwrrOGhoZWq1eqr6+Hs7MzZs+eDVNTU4SHh+PixYuQkpLCy5cvYWtrixUrVmDo0KGtcnxJJvh8aGxshJSUVPttO8TddfSlePPmTZuc+r6tDmV8uPIyh8OhrKws4vF4n3RtZ2Zm0vXr10UWl6Bbdt26dTR+/HgiIgoPDyczMzPhsg++vr4UHh4usljc3d0/u8jdypUrydTU9JNFNL901dXVNHXqVPr6668/2VZRUUFdu3YVrgDenrrhRUVwTl69ekWjR4+mHj16kL6+PnE4HNLS0qJ169Z9sm9Le/36Nc2fP5+6d+9OHh4eVFJSQtXV1XT9+nV6+fKl2JeJaY8Ed4EKhvdOnTpFW7ZsEcsQe0topylZ+3Lo0CG4ublBXV0d9vb2CAgIQE5ODng8nljjOnz4MGbNmgVdXV306dMHS5cuRV5eHgYMGIDFixdj165d6NChA0TZuSc41saNG6GtrY1JkybB2NgYxsbGkJGRgYyMDBoaGtDQ0IC6ujoUFxfDxsZGZPEJerwGDx4MR0dHNDU1oaioCFpaWmhsbAQAlJSU4M6dOyKLZfjw4ejduzfwQc8gAHh6eqKmpgbnzp1r9VjaE0VFRTg5OeHatWuIiIhARUUFmpqa8PbtWwQFBUFRURHm5uZAW18YUEyampoAABs2bEBFRQUOHjyI3NxcvHnzBgsWLEBAQACWLFkCtOL5U1dXR0hICE6dOoVnz57BwcEBkZGRwpm42YR9/xyHw4GUlJRw5OD8+fNYunQpysrKxB3af0bc2ZWk+rBwUU9Pj5YvX06xsbHE4XBIVVWV5OTkyM3NjXbu3Nmsl0JUcd2+fZvU1NRo2rRpdPLkSVqzZg317t2bZGVlafv27WIvJD579ix99913xOFwSF5enkaPHk0HDx5s1pMkWNhNVD4+J4IekYSEBNLR0aHNmzfTqlWrqHPnznTz5s1WjUVwRZyQkEAGBgakq6tLhYWFzfapqamhjh07Cosqxf2ctiXl5eXk7u5OHA6H+vXrR+7u7tSrVy/icrkUERFB1A4WBhQ3V1dXOnDgANFHPTTbtm2j3r17U3p6eoseT3CM2tpaunv3LpWVlRERUU5ODv3www9kb29Pq1atotLS0hY9riQSnMvq6mo6efIkbd26lX7++WcqKChotp/gHLdHLLlpJYKuvenTpwuHDEJDQ8nS0pJKS0vJy8uLOBwO6enpiTSu9jSUUVhYSNbW1rRt2zZydXUlTU1NUlNToxkzZtCuXbvIxMREODmYKM2aNYvi4uKE31dWVpKPjw/17t2bLCws6N///rfIYomKiqKxY8dSjx49SEVFhebMmUMxMTEUExND3t7eNHfuXCIiamho+KKHWASJXWFhYbOJMjMzM+mnn36icePG0caNG+n+/fssCfwLgnNTVFREvr6+wtcXfZAMVlRUkIaGhvCO0JaeuG/9+vWkoKBAWlpaxOVyafny5fTtt99S9+7dicPhUM+ePVli+je8e/eO3N3dhRe5UlJSdPr0aaL3d0xVVFQQteOLIpbctLKBAwfSyZMniYjI1taWNmzYQEREiYmJtGjRIioqKiISwwyoe/bsoV9//VV4bEE90JMnT6h3795tYnbPxsZG4VXYixcv6ObNmxQQEECOjo7UrVs3mjFjRrNZNFtTbW0tlZWVUXl5OXE4HHry5AnRRw13YWGhWK50cnNz6cyZM/Tjjz/SyJEjqWPHjiQjI0OWlpZ04cIFkcfTFgmeJxcXF1q+fHm7rSMQN8F5DAgIIGVlZVJWViZ/f38qKSkhep/gHDt2jDp16tRqMYSFhZGBgQF5e3vTtm3byN/fn/z9/en333+nUaNG0bJly1rt2JJA8FkTGBhIpqamVF1dTQkJCdS1a1cqLS2lpqYm8vf3p6ioqHab2BC7Fbx1fDgzcWBgIBwcHDB48GAMHz4cvr6+mD59Oqqrq9GvXz/ExcXB2NhYpHHduHEDHh4e4PF4uHHjBrS0tIT71NbWomvXrrh27RoGDRok9sUCKysroaysLPy+oaEBVVVVkJOTg7y8PGRkZFr1+IJztmrVKkRFRcHIyAiZmZnIzMxsNj6N97UIx48fx9SpU8VSq1FfX49Hjx7hwYMHuH37NrKysvDixQvo6upi+PDh+P7779vXJFwtRPAcPnnyBFwuF4mJicIVogWv77y8PHTu3BlqamriDrdduHHjBm7duoWbN2/i3r17kJWVhb6+Pvh8PlRUVLB8+XJYW1uDz+cLazlaCo/HQ2xsLMLCwqCoqIgff/yx2czu7WUGXXERvB+GDh2Kr776Cr6+vsL6vCNHjqChoQHLli0Dn89HcHCwuMP9j7XuJ8MXSHD7Mt4XvS1cuBBNTU1QUlKCoaEhIiMjMXjwYGzfvh1EJLLEBh8U971+/Rp9+vRBeno6TExMMHHiROGq1adOncL06dMxaNAg8Hi8Vk8ePiZ445WVleHEiRM4fvw4CgsLMW3aNEyaNAkDBgwQ6QeQ4JxNnjwZxcXF2LdvH6SlpTF16lRMnDgR1tbW0NHRQceOHbF79274+flh2rRpIomtoaEBycnJePTokXA2URMTE5iYmGDMmDHIyspCRkYGEhIScOHCBfz4448iiautEbym/vjjD3C5XPTr10+44KOUlBSampoQHx+P7OxsbNmyhRUR/w02NjawsbHBq1evkJaWhqSkJFy8eBGFhYXo3LkzoqKiICsrCwsLixY53ocXWR06dMD48eNhb2+PHTt2YM6cOXB2doaXlxd0dXVZYvN/4HA4qK+vh76+PiorK4H37X5ERAQAQFZWFrdu3cLChQuB9pwsirvrSJJkZ2fT3LlzKSIigh4/fvzJ9tOnT5OWlhZxOByytLSkyMhIIjEVLrbVoQxBl+nKlSupf//+tHr1anJ2diYOhyM8b0FBQVRcXCySeGpra5t1zRobG9P+/fvJwcGBpKWlSUNDg7y9vWnjxo2kq6tLW7ZsadV4BMMCr1+/ppkzZ1KPHj3Izs6O5OXlycLCggICAj4pqCwqKqKcnJxWjas9CA0NJSsrq2a3CQvee9999x1NnjyZqB3XGIjSx3U0jY2N9PjxY4qIiKBly5aRnZ0d9enTh+zs7Fq0fbOwsKAJEybQTz/9ROvWraO9e/fSb7/9RkOGDKGvvvpKZLO8t2eC13dkZCQ5OTlRaGgo9enTh+j98xgXF0cKCgptcuqSf4INS7WgY8eOYfXq1ejUqRM0NDRgamqKIUOGCG9PxPv1hnJzc6GgoIDevXuL/SqxrQ5lqKmpISIiAmPGjMHQoUPh4OAAMzMzzJ49G+/evcPChQuxY8eOVo9jxYoVcHFxga2t7Sfb6urqsGfPHoSHh6OyshJfffUVfv3111Y9X4IehxUrViA5ORlbtmzBjRs38Ntvv8HOzg5RUVGQlpaGjY0NYmNjRd7z1pZlZ2fDzMwMXl5e+O6772BoaAgAyMjIwJgxY7Bz505MmDCh/V6pisGHEyAKVFdX48mTJ8JJLRcvXtwixyorK8P27dvx5MkTFBcXQ0lJCXl5eXj48CHw/v2YlpbG1k/7m96+fYs5c+bg7Nmz0NDQwM8//4zExESkp6dj7Nix2LBhQ7t+L7DkpoVVVlbi4sWLiImJQWZmJogIenp64HK5sLKyApfLbVZDImqfG8oQKCsrazaU8fLlS1y5ckVksQmGDy5fvozFixcjOzsbL1++hJmZGZKSkqCvr4+VK1dCXV0d8+fPh6KiYqvGw+fzMXXqVAQEBEBPTw9Lly6FsbExzM3N0bt3b6iqqgr3LS8vh7y8vMjm19DT04Ofnx+mT58OFxcX9OnTB+vXr4ePjw9SU1OxcOFCeHl5tevGqSUJXluHDx/G9u3b0bNnTygpKYHH4yEtLQ1aWlqIjY0Vd5jtwufq8Ph8PmJjYzFkyBDhDMX4IBlvDYIER1ZWFunp6SgrK8Po0aNb5ViSQPC8PXv2DNnZ2RgzZgwA4MqVKwgNDUVCQgIGDhwIT09PODk5QUlJSew1l/8Nlty0oI9fCPn5+YiLi8OFCxeQl5eHjh07ol+/fjA0NISnp2ezD8fW9GGB89KlS3HlyhX06dMHSUlJ6N+/P2bOnIk5c+agS5cuwp959eoVKisrhVe3onTq1CnExMQgKCgIUVFR2LZtG86ePYuuXbviwIEDiIiIQFxcnEhjqqyshJOTE168eIHu3btj2LBhsLa2Rv/+/aGvrw8FBQWRxfL48WO4ubkhKioKGhoaMDIyQmRkJGxsbHDnzh1s3rwZgYGB6NmzZ7tbD6a1CJY8yc3NRWxsLF6/fg15eXlUV1fDysoKCxYsgJqaWrtuzMVBcL7u3LkDV1dXODk5ITg4mJ3HNmzjxo1YuXIlNm3ahHnz5kFZWVnYTtTW1oq0LWtNrM+6BUlJSQmvlJuamqCnp4f58+dj/vz5uH//PmJiYnDp0iWkpaVh6dKlIouLz+dDRkYGv//+O168eIFz587hxo0byMnJgYGBAX744QesXLmy2VBG9+7d0b17d5HF+CFHR0eoq6uDw+HA0NAQJSUlePDgAczMzLBjxw6RzUjc1NSEpqYmyMjIIDs7G7dv38ajR49w8OBBnDlzBsePH0ffvn1hbW0NOzs7ODg4iCQuNTU1zJw5E69evQIRQVNTU5jAlJaW4vbt2+jZsyfwhc+wK3gvpqen4/fff0dERAT09PRgamoKFRUV2NrawtPTs9nPsA/kTwk++EpLSxEREYHRo0fDyMgIRCQ8X9ra2vDx8RGu/8aumduuFStWQE5ODocPHwafz8eKFSuE7YSCgoLkXBCJu+hHEqWnp9PcuXOJy+WSl5dXs2JOPp9P9+/fF34tSrq6usIiZmdnZ1qyZAnV1taSl5cXcblc2rVrF5EY5tyhDwoUP17LqrKykiZPnkwyMjIkJydH1tbWYika5HA4dObMmWaPXbt2jRYsWEDKysr0888/iyyWzMxM4aR87969I1tbWzI0NKSlS5cKX3PEZtgVvo4dHBzIxcWFkpOTKScnh3bu3ElOTk6ko6NDZ8+eFXeYbZ7gdbR69WpydHSku3fvEr1fL+/8+fOUkZEh5giZv+vDmYkDAgJIUVGRnJyc6N69e0RiavtbC0tuWoggUUlNTSUTExNyc3Oj1atXE4fDESYz2dnZYovv0aNHxOVy6enTp1RTU0Pa2tqUkJBA9H6JiKlTpwqTBnHMZCs45po1a2jz5s3NJsOrrq6mCxcu0NGjRz97F1prx5STk0Njx46l0tJSqq+v/2S5DB6PR+Xl5a0ai6DROX/+PI0ePZqio6OF27KyssjT05OsrKzom2++ET6P7K6f/02OFRUV6dGjR59sc3FxIVdXV4lq0FuTpqam8OKosLCQnJ2dSVlZmTgcDgUFBYk7POY/kJWVRePGjSN3d3fKy8sTdzgtivXBthBBN6yfnx8sLCxw+PBhGBoawtzcHCYmJigtLcWKFSuwdetWscT34VBGcXFxmxrKEHSDPnv2DDt37oSxsTE6d+4s3KaoqAgHBwdMmzatWQG0KOICgLt376KmpgZJSUmQlZWFrKws8L44WzAXkCDe1rZ+/XoMHDgQ48ePB94XbBobG8PX1xeBgYEICgoSPo9siAV48uQJevbsiaysLOD9+eLz+QCA+fPnIykpCVVVVWKOsu0SvAcyMjIgJSWFyZMnAwD8/f1RUVGBBw8e4N///jcSEhJQXV0t5miZzxE8h3w+X3hnWUFBAXJycmBsbAxvb29cuHAB5ubmSEtLE3O0LYfV3LQQwR0paWlp2LhxI/A+0ZkzZw4AQFVVFR07dhQ2pKIuuHv16hW+/fZbyMjIoL6+HnJycpg7dy6cnZ1x7do1YeV8a97d8GeampogLS2NsLAwGBsbw9nZWbhNMOFUaGgotLW18dVXX4ksLikpKfB4POzduxcPHjzAokWLsHz5cjg7O0NXV1eY5IiCtLQ0ampqkJ2dja1btwpfb4L/5eTkEBwcjA4dOrTYxGntHRHB3NwcXC4XO3fuhJWVFbp16ybcnp2djU6dOkFFRYUVwP4JwYWOrKwsunTpgnXr1kFBQQFXr17Fhg0boK2tDQsLC0RGRkJJSUnc4TKfIXgOY2JisHjxYlRUVMDQ0BCNjY0oKCiAtbU1dHV1kZiYCA0NDXGH22JYctPCJkyYgLy8PNTW1qKgoABubm4gIlRWViI+Ph6+vr4ii0VQUBkbG4uAgAAsWrQIEydOhLy8PEJDQ+Hv74/bt29j6NCh+J//+R9ATFf7gg/o58+ffzJHRVNTE+Tk5PD48WM8fvxYpMmNgI+PD+7fv4/r168jPDwcx48fx4ABAzBq1CjY2dlBRUVFJHEUFxdDX18fKSkpMDc3b/aBTESIiYkRJtbM/2/UFy1ahJkzZ8LQ0BCTJ0/G0KFDcfr0aTx8+BCrV68GWAHsXxJMZ7Fw4UKEhISgpKQEfn5+cHJyAt7P7zVs2DCgPc9mK6GysrJgbGwMDocDdXV1BAQEoEePHsjJyYGGhgZkZWWFvZsaGhro2bOn5CT64h4XkwSC2oatW7eSj48PGRkZ0bBhw2jQoEFE78f9fX19ycjISKRxCWoJbG1tafny5cLvBQWCDx8+pNu3b4s0pr+ya9cuUlVVpbS0tGaPC2qEjh8/LrbY6H2dQWRkJH377bc0ZswYMjY2FtkifYL6Hw8PD7KxsaHCwkLhtrq6Ovrpp59o4MCBRKzW5rP4fD6FhISQvb09aWpq0qRJkyg6Opqdq78gaC/++OMPcnR0pOfPn1NKSkqzGbCPHTtG+vr6lJKSQsRee23K8ePHaeLEiUTv24i3b99+Uc8Pm+emhVRVVaFHjx7IysrCyZMnsXfvXhARVFVVkZWVhf79+8PHx0fkM6DW1NRAT08P8fHxMDc3Bz6occnPz8fq1avh4+PTJoYyXrx4ATc3NwDA0qVLYWpqiqdPn+L06dOIiYnB06dPxRJXSUkJOnXq1Gzm4aysLJw/fx5DhgwR2a3pAJCUlAQ3NzeUlpZi8uTJ4HK5OHr0KCoqKrB69WpMnjyZXT3/DZI0n0drEbQT3t7eUFNTw4YNG5ptLy0tRWRkJIgI3377rdjiZD4vJycHT548gbOzM/z9/XHo0CHMmDED5ubmMDY2FtbmSSqW3PyXBA1AUlIS/Pz8sG/fPigpKeHWrVs4e/Ysmpqa0K1bN8ycOVO4BIMo5eXlwc3NDfPmzYOXl1ezLsenT5/C0tISmZmZYpvT5mOpqalYuXIlLl26BBUVFXTq1Ak6Ojr48ccfhd3grU2QHOTk5CA0NBR5eXl49+4dzMzMMHbsWNjb24skjj/D4/EQEhKC6Oho5OXlYeTIkZgzZw5sbW0lY34Kps3g8/n49ddfUV9f3yy5EbQjPB4PfD4f8vLykjM/igRKTk7G77//jpSUFMjIyIDL5cLOzg6Wlpbo1auXyCaUFSWW3PyXBG/oXbt2ISwsDMuXL4erq6twuzgKdD+Obe7cuXj8+DEOHz4MLS0t4P2aUuvWrcPp06dx7949sYyzCo557949ZGVlwc3NTRhDdXU14uPjoaamhsGDB6Njx44ijQ0ARowYASkpKTg4OGDv3r3g8XgAAAMDAwwZMgTz5s2Drq6uyOP6WENDA2RlZdmHC9NiBO/N2NhY+Pr64s2bN9i0aRPGjBkjUUWnkkzQLjx//hxVVVUwNjZGdXU1jh8/jiNHjuDBgwfo3r07+vTpg8DAwDZzgdtSWHLTAsrLyzF8+HA8ffoUXbp0wZw5czBy5EiYm5uL7Bbhv9LWhzI2bNgAPz8/9OjRA7a2tpg9e/ZnF6oUBUGjfvv2bYwbNw75+fno3LkzOnXqhJCQEKSnp2PLli3Q0tLCwYMHhYWUDCOJTp48iQMHDuDhw4dobGzE4MGDMWjQIFhbW2PAgAFsaK8dmDZtGvT09LBp06ZmjxcUFODQoUO4fv26RK6rxpKbFtLQ0ICMjAyEhobi7t27UFRUhJGRESwsLGBtbS32lWrb8lBGQUEBMjMzkZSUhGvXruHJkyfQ0NAQLgopmOpdFHEKkpsffvgBr169woEDBxAWFoaQkBCkpqaioaEB7u7uGDZsGL755ptWj4dh2oJHjx7h9OnTuHLlCoqKiqCqqgp1dXX89ttv6N27t7jDYz5SXl6O9evXY8GCBTA0NER2djb69OkjHEaUkZH5ZERB0np+WXLTCqqqqnD58mWEh4fj3r178PLywqpVq8QdVjNtcSijrq4O+fn5uHv3Lnbu3InExER06dIFDx8+hLq6ukhj+eWXX1BSUoLt27fD29sb8vLyCAoKAgC4u7vD1NQU33//vUhjYhhREPTinj9/HjU1NfjXv/7VbE6nmzdv4tSpU0hJSUFsbCw6dOgg1niZTyUkJGD27Nl4+/YtiAgbN27E9OnTm9XWNDY2Yvz48QgLC4O2trZY420NLLlpZS9evAAAyZo/QAQuXryIzZs345tvvhHOxitqeXl56NWrFwIDAxEYGIj9+/dDSUkJI0eORHx8PKytrcUSF8OIgru7O5KSkqCtrY0hQ4bAxcUFVlZWwu1t8QKJ+V+1tbWoqqrCqFGjwOPx0NTUhDdv3sDa2hrz5s3Dv/71L0RGRmLx4sWorKwUd7itgiU3jMgJGsPi4mIsWrQIM2bMgLOzM+Tl5YX7NDY2YtKkSVi2bJnI707i8/mQkpISNtgFBQX45ptv8OzZMxQWFsLe3h4nTpwQaUwMI2ppaWlITU1FUlIScnJyUFlZCV1dXTg7O2PYsGHo168fu2Br465evQptbW1UVVUhOTkZ586dQ1JSEoqLi6Grq4ulS5fCx8dHrDe+tBaW3DAiJ2gQb926hRUrVqCqqgocDgc2NjZwdXWFtbU1zpw5gylTpqCiogKKiooii43H4yEoKAg7duyAiooKRo4cibFjx4LP5+PZs2fo378/jI2NRTYrMcOIW01NDe7du4dLly4hLCwMFRUVGDp0KOLi4sQdGvMnPneDSGNjI968eYPCwkIUFhaic+fOsLGxkdjb+Flyw4gMn89HbW0tOnXqBLzvwXn06BEePHiA5ORkpKSkIC8vD4WFhdDS0sKUKVOwefNmkcUmLS2NoKAgrF+/Hl5eXuDz+YiMjMTz588xfPhwjB8/HnZ2duByuSKJiWHamh07duD06dPw9fWFg4MDmzCyDRMs+ZOTk4Px48fD1NRU3CGJFEtuGJE5dOgQvv76a0yYMAFz585tVkvz7t075OTk4NmzZ+DxeFBVVcWQIUNE2msDAM7Ozhg9ejSWLFkifOzevXvYsWMH9uzZg+HDh+Pq1asijYlhREHQo5qcnIw9e/ZgypQpGDZsWLPbvfPy8vDdd98hLCxMLJOSMn9N0APz6tUreHp6IicnB5qamrh58yZ0dXUxffp0eHt7Q19fX9yhtjqW3DAiU1xcjLNnzyI6OhrXrl2DgoICZs2aBTc3N1haWoo7PADAH3/8gZKSEixatOiz21+8eCHx05YzX7bg4GDs3r0b8vLyUFNTg5WVFZycnNC3b1/s3bsXfn5+KCoqEneYzGcIamd8fX2RlpaGvXv34tatW/D19cXkyZMRGhqK+vp6mJmZ4e7duxJdL8WSG0bk6uvrcf78eUyfPl1Yya+rqwsPDw94eHiI/LZEwRXru3fvsH//fuzduxfff/89bG1t0aNHD5HGwjBtQUpKCm7fvo2kpCQ8ffpU2LOqqamJ5cuXY/78+RJZhCopevXqhXXr1mH69OlwdnaGoaEhAgMD8eOPP+LmzZuYP38+ZsyYIdHDiiy5YURG0BieP38e69evx/Tp02FhYYGqqipER0dj7969aGhoQN++fZGQkAA1NTWRxjd16lSkpKQgPz8fmpqasLe3h62tLSwsLNC7d2+JXH+FYf4Kj8dDWloaHjx4AGlpafTt2xcWFhbo0KGDRBahSoJnz55hzpw5CA4Ohq6uLvr374/w8HDY2dnh8ePHWLZsGYKDg4VL8UgqlnYzIiPoAt28eTMsLS2FQz9NTU2wsbGBjo4OwsLCMHnyZJElNoIG+vbt2zh9+jTi4+NhYWGBqKgoHD58GL/99hu6d++Ovn37wt/fX+LWX2GYD7158wZ79+5FRkYGjIyMMGTIEIwaNQqDBw/+ZF+W2LRNioqKcHNzQ2VlJd6+fQsNDQ1UV1cD71cKT05OlvjEBiy5YURJSkoKfD4fCgoKzcZ6paSkIC8vj/nz5yMpKQkuLi4ijy0/Px/e3t6ws7MD3k9g5u7ujsLCQhw4cABXr15liQ0jkQQJ/osXLzBlyhS8ffsWffv2xe7du7FlyxbY2Nhg586d6NGjB5vXph3o2rUr5s+fL/xeS0sLrq6ucHZ2xoMHDzB58mRAzIs6iwIblmJELjQ0FAsXLkRQUBC++uorYV1LdnY2Bg8ejKysLJHX3axbtw5xcXEIDQ2FsbGxSI/NMOIk+JDz8fFBVlYWQkNDhetFXbp0CcuWLYOmpibOnz/PemvaKEHS+fbtW1y+fBnPnz+HjIwMLCwsoKOjg0OHDiEhIQFDhw7FvHnzoK6uLvGJKktuGLHYuHEjrly5Ag0NDairq+Pdu3dISUlBx44dRX6rdUZGBlxcXFBcXAwLCwvMnDkTw4YNQ//+/SX6yoZhPmRubo558+Zh4cKFaGhoQIcOHcDhcBAfH49FixZh3759sLGxEXeYzGcICoPnzZuH+Ph48Hg8aGlpQUZGBvr6+hg4cCBGjhwJCwsLcYcqMiy5YUTqyZMnSE1NxY0bN5CXlwclJSWUlpairq4OI0aMwNy5c6GrqyvyuCorK3Hr1i3s2LEDL168gJqaGkxNTWFmZgY7Ozvo6OiIPCaGERUej4cFCxagrKxMuLQIEQn/6enp4eDBg7C3t2eFxG1UZWUlunbtiqtXr2Lo0KFIS0tDXFwcEhMTUVZWhpKSEgQGBsLR0VHcoYoEuyxlWp3gquLo0aPYvn07Xr9+DVVVVXTp0gURERF4/vw5lJSURH531IeUlZUxZswYjBkzBkVFRYiOjsbx48dx7NgxBAQEsOSGkWgdOnSAs7MzXF1d4enpCR8fHwwcOBB1dXXYs2cPampqhGu8scSmbREkmzk5OZgyZQpMTEyA9z1x5ubmqKurQ0JCAs6fP49BgwaJO1yRYT03jMjo6elhyZIlWLJkCWxsbDB48GAEBAQgIyMDJ06cgIeHR5tKIpqampCTkwMtLS3hkhEMI8nOnDmD4OBg5OXlgcfjQVpaGh06dMC8efPw3XffSXwRanskSG727NmDPXv24IcffsDEiRPFHZbYseSGaVWCN15KSgrGjRuH58+fo6mpCRoaGrhy5Qq4XC5SU1Mxf/58hIWFwdzcXNwhM8wX4cMi1CtXrqCgoABSUlLCuxfr6+vx7t07TJgwAQYGBpCWlmZDUm1UeXk5hg8fjqdPn6Jnz56YPXs27OzsMHDgwC/2woyl4EyrEjSEFRUV0NLSQm1tLQ4fPgxdXV3hApRlZWV48eIFS2wYRkSICI2NjZCVlcXKlSuFRah6enpQUlKChoYGrKys4OrqCh0dHeH7mCU2bZOKigru3r2LjIwMhISEICoqCrGxsTAyMoKFhQWsra0xcOBAcYcpUqznhhGJ+vp6TJw4EdOmTUNoaChmzJgBHx8fVFZWYu7cuZCXl8ehQ4fEHSbDfFGqqqqgpqYmLEJNSUlBXFwckpOT8ebNG5SVlWHLli1fTBGqpKiqqsLly5cRHh6Oe/fuwcvLC6tWrRJ3WCLFkhtGZKKjozF79mzU1tbCy8sLVlZWCAkJQYcOHRAaGooBAwaIO0SGkXhHjx5FbW0tnJyc8PLlS/j7+yMsLKzZ8EVdXR1u3LiBc+fO4aeffkKXLl3EGjPzn3vx4gUAoGfPnhI/t82HWHLDiFRFRQVCQkKwf/9+1NXVwcnJCYsXL2aJDcOIiKOjI4qLi6GjowNLS0tcvnwZS5cuZUWojERhyQ0jNg0NDZCSkoKMjAwrVGQYEWlqasKTJ09w4MABXLx4EQ8ePICWlhYrQmUkCktuGIZhvlANDQ24f/8+QkNDkZKSAkVFxS+6CJWRHCy5YRiGYVgRKiNRWHLDMAzDNPOlFqEykoMlNwzDMAzDSBSWjjMMwzAMI1FYcsMwDMMwjERhyQ3DMAzDMBKFJTcMwzAMw0gUltwwDMMwDCNRWHLDMMwXy97eHkuWLPmvfkd+fj44HA7u3bvXYnExDPPfYckNwzCfNWfOHHA4nE/+PXnypEV+/759+6CiotIiv+s/deLECaxdu1asMTAM0/JkxB0AwzBt15gxYxAeHt7sMXV1dbHF82d4PB46dOjwj39OVVW1VeJhGEa8WM8NwzB/Sk5ODt27d2/2T1paGgBw6tQpcLlcyMvLo1evXlizZg0aGxuFPxsQEAATExMoKipCW1sbixYtQnV1NQDg6tWr8PDwQEVFhbBH6JdffgEAcDgcnDx5slkcKioq2LdvH/DBMNDRo0dhZ2cHeXl5REREAAB2794NY2NjyMvLw8jICDt37vzLv+/jYSk9PT2sX78ec+fORadOnaCjo4OwsLBmP5OcnAxzc3PIy8vD0tISaWlpn/zeBw8eYOzYsVBSUkK3bt0we/ZslJSUCP92WVlZJCQkCPfftGkTNDQ0UFxc/LefG4Zh/gIxDMN8hru7O02YMOGz265fv07Kysq0b98+ys3Npfj4eNLT06NffvlFuE9gYCBdvnyZnj59SpcuXaK+ffvSwoULiYiovr6etmzZQsrKylRUVERFRUVUVVVF9L8zplN0dHSz43Xu3JnCw8OJiOjp06cEgPT09CgqKory8vLo5cuXdOjQIdLU1BQ+FhUVRaqqqrRv374//Rvt7Ozou+++E36vq6tLqqqqtGPHDnr8+DH5+fmRlJQUPXz4kIiIqqqqSF1dnWbMmEEPHjygM2fOUK9evQgApaWlERFRWVkZqaur08qVKyk7O5tSU1Np9OjRNGLECOFxfH19SVdXl8rLyyk1NZVkZWXp1KlT/9HzxDDMp1hywzDMZ7m7u5O0tDQpKioK/02ZMoWIiEaNGkXr169vtv/BgwdJU1PzT3/fsWPHSE1NTfh9eHg4de7c+ZP9/m5ys2XLlmb79O7dmyIjI5s9tnbtWrK2tv7TmD6X3MyaNUv4fVNTE2loaFBwcDAREYWGhpKamhq9e/dOuE9wcHCz5Gbt2rXk6OjY7DiFhYUEgHJycojeJ3dmZmY0bdo06tevH3l7e/9pjAzD/HOs5oZhmD81YsQIBAcHC79XVFQEAKSnp+PmzZtYt26dcBufz0ddXR1qa2uhoKCAixcvws/PDw8fPkRlZSUaGxubbf9vWVpaCr+uqalBbm4uPD094e3tLXy8sbERnTt3/ke/19TUVPg1h8NB9+7d8fr1awBAdnY2TE1NIS8vL9zH2tq62c+np6fjypUrUFJS+uR35+bmwtDQELKysoiIiICpqSl0dXURGBj4j2JkGOavseSGYZg/paioCAMDg08er66uxpo1azBp0qRPtsnLyyM/Px8uLi5YuHAh1q1bB1VVVdy4cQOenp5oaGj4y+SGw+Hg4/V8eTzeZ2P7MB4A2LVrF4YMGdJsP0GN0N/1cWEyh8NBU1PT3/756upqjB8/Hhs3bvxkm6ampvDrW7duAQBKS0tRWlra7O9hGOa/w5IbhmH+MS6Xi5ycnM8mPgCQkpKCpqYm+Pv7Q0rqf+9b+OOPP5rtIysrCz6f/8nPqquro6ioSPj948ePUVtb+5fxdOvWDT169EBeXh5mzpz5H/5V/zdjY2McPHgQdXV1wt6bxMTEZvtwuVxERUVBT08PMjKfb2Jzc3OxdOlS7Nq1C0ePHoW7uzsuXrwoPFcMw/x32DuJYZh/7Oeff8aBAwewZs0aZGZmIjs7G0eOHMGqVasAAAYGBuDxeAgKCkJeXh4OHjyIkJCQZr9DT08P1dXVuHTpEkpKSoQJzMiRI7F9+3akpaXh7t27WLBgwd+6zXvNmjXw8/PDtm3b8OjRI2RkZCA8PBwBAQEt9nfPmDEDHA4H3t7eyMrKwrlz5/D7778322fx4sUoLS3F9OnTcefOHeTm5iIuLg4eHh7g8/ng8/mYNWsWnJyc4OHhgfDwcNy/fx/+/v4tFifDfOlYcsMwzD/m5OSEmJgYxMfHY9CgQbCyskJgYCB0dXUBAAMHDkRAQAA2btyIAQMGICIiAn5+fs1+x9ChQ7FgwQK4urpCXV0dmzZtAgD4+/tDW1sbtra2mDFjBpYvX/63anS8vLywe/duhIeHw8TEBHZ2dti3bx/09fVb7O9WUlLCmTNnkJGRAXNzc/z73//+ZPipR48euHnzJvh8PhwdHWFiYoIlS5ZARUUFUlJSWLduHZ49e4bQ0FDg/VBVWFgYVq1ahfT09BaLlWG+ZBz6eHCbYRiGYRimHWM9NwzDMAzDSBSW3DAMwzAMI1FYcsMwDMMwjERhyQ3DMAzDMBKFJTcMwzAMw0gUltwwDMMwDCNRWHLDMAzDMIxEYckNwzAMwzAShSU3DMMwDMNIFJbcMAzDMAwjUVhywzAMwzCMRPl/Lbyi/RodZVoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Define the classifiers and their hyperparameters in a finer grid\n", "def get_fine_grids(use_bootstrap=True):\n", @@ -426,13 +413,13 @@ " }\n", "\n", "# optimized classifiers and find their hyperparameters\n", - "#clf_opt = ClassifierComparisonOpt(X_train_val, y_train_val)\n", + "clf_opt = ClassifierComparisonOpt(X_train_val, y_train_val)\n", "fine_grid = get_fine_grids()\n", - "#clf_opt.fit_models(fine_grid)\n", - "#clf_opt.print_summary()\n", + "clf_opt.fit_models(fine_grid)\n", + "clf_opt.print_summary()\n", "\n", "# Show feature importance for each model\n", - "#clf_opt.show_feature_importance()" + "clf_opt.show_feature_importance()" ] }, { @@ -441,24 +428,40 @@ "metadata": {}, "source": [ "### Remove redundant features (optional)\n", - "If we want to remove redundant features, we will have to select different features for different models as the importance scores varied slightly between models. However, we have kept this section optional since we may want to use the same feature sets for all models in order to produce a fair comparison. Nevertheless, for optimal performance of each model, this step is advantageous." + "This section is only used to see how the removal of redundant features will affect the validation metrics. We have kept this section optional since we may want to use the same feature sets for all models in order to produce a fair comparison. Infact, for our final models we decided to not remove the redundant features as we aimed to compare the models and therefore wanted them to have the same feature sets. Nevertheless, for optimal performance of each model, removing redundant features is advantegous." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "776cdb17", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'fine_grid' is not defined", + "name": "stdout", + "output_type": "stream", + "text": [ + "Tuning Decision Tree ...\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", - "\u001b[31mNameError\u001b[39m Traceback (most recent call last)", - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[4]\u001b[39m\u001b[32m, line 10\u001b[39m\n\u001b[32m 8\u001b[39m \u001b[38;5;66;03m# Train decision tree without redundant features\u001b[39;00m\n\u001b[32m 9\u001b[39m cmp_dt = ClassifierComparisonOpt(X_dt, y_train_val)\n\u001b[32m---> \u001b[39m\u001b[32m10\u001b[39m cmp_dt.fit_models({\u001b[33m'\u001b[39m\u001b[33mDecision Tree\u001b[39m\u001b[33m'\u001b[39m: \u001b[43mfine_grid\u001b[49m[\u001b[33m'\u001b[39m\u001b[33mDecision Tree\u001b[39m\u001b[33m'\u001b[39m]})\n\u001b[32m 12\u001b[39m \u001b[38;5;66;03m# Train XGBoost without redundant features\u001b[39;00m\n\u001b[32m 13\u001b[39m cmp_xgb = ClassifierComparisonOpt(X_xgb, y_train_val)\n", - "\u001b[31mNameError\u001b[39m: name 'fine_grid' is not defined" + "\u001b[31mKeyboardInterrupt\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[13]\u001b[39m\u001b[32m, line 12\u001b[39m\n\u001b[32m 10\u001b[39m \u001b[38;5;66;03m# Train decision tree without redundant features\u001b[39;00m\n\u001b[32m 11\u001b[39m cmp_dt = ClassifierComparisonOpt(X_dt, y_train_val)\n\u001b[32m---> \u001b[39m\u001b[32m12\u001b[39m \u001b[43mcmp_dt\u001b[49m\u001b[43m.\u001b[49m\u001b[43mfit_models\u001b[49m\u001b[43m(\u001b[49m\u001b[43m{\u001b[49m\u001b[33;43m'\u001b[39;49m\u001b[33;43mDecision Tree\u001b[39;49m\u001b[33;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfine_grid\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m'\u001b[39;49m\u001b[33;43mDecision Tree\u001b[39;49m\u001b[33;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 14\u001b[39m \u001b[38;5;66;03m# Train XGBoost without redundant features\u001b[39;00m\n\u001b[32m 15\u001b[39m cmp_xgb = ClassifierComparisonOpt(X_xgb, y_train_val)\n", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[12]\u001b[39m\u001b[32m, line 63\u001b[39m, in \u001b[36mClassifierComparisonOpt.fit_models\u001b[39m\u001b[34m(self, models_with_params)\u001b[39m\n\u001b[32m 60\u001b[39m grid_search = GridSearchCV(model, param_grid, scoring=\u001b[33m'\u001b[39m\u001b[33maccuracy\u001b[39m\u001b[33m'\u001b[39m, cv=cv, n_jobs=-\u001b[32m1\u001b[39m)\n\u001b[32m 62\u001b[39m start_train = time.time()\n\u001b[32m---> \u001b[39m\u001b[32m63\u001b[39m \u001b[43mgrid_search\u001b[49m\u001b[43m.\u001b[49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43my_train\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 64\u001b[39m end_train = time.time()\n\u001b[32m 66\u001b[39m best_model = grid_search.best_estimator_\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/sklearn/base.py:1365\u001b[39m, in \u001b[36m_fit_context..decorator..wrapper\u001b[39m\u001b[34m(estimator, *args, **kwargs)\u001b[39m\n\u001b[32m 1358\u001b[39m estimator._validate_params()\n\u001b[32m 1360\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m config_context(\n\u001b[32m 1361\u001b[39m skip_parameter_validation=(\n\u001b[32m 1362\u001b[39m prefer_skip_nested_validation \u001b[38;5;129;01mor\u001b[39;00m global_skip_validation\n\u001b[32m 1363\u001b[39m )\n\u001b[32m 1364\u001b[39m ):\n\u001b[32m-> \u001b[39m\u001b[32m1365\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfit_method\u001b[49m\u001b[43m(\u001b[49m\u001b[43mestimator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/sklearn/model_selection/_search.py:1051\u001b[39m, in \u001b[36mBaseSearchCV.fit\u001b[39m\u001b[34m(self, X, y, **params)\u001b[39m\n\u001b[32m 1045\u001b[39m results = \u001b[38;5;28mself\u001b[39m._format_results(\n\u001b[32m 1046\u001b[39m all_candidate_params, n_splits, all_out, all_more_results\n\u001b[32m 1047\u001b[39m )\n\u001b[32m 1049\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m results\n\u001b[32m-> \u001b[39m\u001b[32m1051\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_run_search\u001b[49m\u001b[43m(\u001b[49m\u001b[43mevaluate_candidates\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1053\u001b[39m \u001b[38;5;66;03m# multimetric is determined here because in the case of a callable\u001b[39;00m\n\u001b[32m 1054\u001b[39m \u001b[38;5;66;03m# self.scoring the return type is only known after calling\u001b[39;00m\n\u001b[32m 1055\u001b[39m first_test_score = all_out[\u001b[32m0\u001b[39m][\u001b[33m\"\u001b[39m\u001b[33mtest_scores\u001b[39m\u001b[33m\"\u001b[39m]\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/sklearn/model_selection/_search.py:1605\u001b[39m, in \u001b[36mGridSearchCV._run_search\u001b[39m\u001b[34m(self, evaluate_candidates)\u001b[39m\n\u001b[32m 1603\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34m_run_search\u001b[39m(\u001b[38;5;28mself\u001b[39m, evaluate_candidates):\n\u001b[32m 1604\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Search all candidates in param_grid\"\"\"\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1605\u001b[39m \u001b[43mevaluate_candidates\u001b[49m\u001b[43m(\u001b[49m\u001b[43mParameterGrid\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mparam_grid\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/sklearn/model_selection/_search.py:997\u001b[39m, in \u001b[36mBaseSearchCV.fit..evaluate_candidates\u001b[39m\u001b[34m(candidate_params, cv, more_results)\u001b[39m\n\u001b[32m 989\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.verbose > \u001b[32m0\u001b[39m:\n\u001b[32m 990\u001b[39m \u001b[38;5;28mprint\u001b[39m(\n\u001b[32m 991\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mFitting \u001b[39m\u001b[38;5;132;01m{0}\u001b[39;00m\u001b[33m folds for each of \u001b[39m\u001b[38;5;132;01m{1}\u001b[39;00m\u001b[33m candidates,\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 992\u001b[39m \u001b[33m\"\u001b[39m\u001b[33m totalling \u001b[39m\u001b[38;5;132;01m{2}\u001b[39;00m\u001b[33m fits\u001b[39m\u001b[33m\"\u001b[39m.format(\n\u001b[32m 993\u001b[39m n_splits, n_candidates, n_candidates * n_splits\n\u001b[32m 994\u001b[39m )\n\u001b[32m 995\u001b[39m )\n\u001b[32m--> \u001b[39m\u001b[32m997\u001b[39m out = \u001b[43mparallel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 998\u001b[39m \u001b[43m \u001b[49m\u001b[43mdelayed\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_fit_and_score\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 999\u001b[39m \u001b[43m \u001b[49m\u001b[43mclone\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbase_estimator\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1000\u001b[39m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1001\u001b[39m \u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1002\u001b[39m \u001b[43m \u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1003\u001b[39m \u001b[43m \u001b[49m\u001b[43mtest\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1004\u001b[39m \u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m=\u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1005\u001b[39m \u001b[43m \u001b[49m\u001b[43msplit_progress\u001b[49m\u001b[43m=\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_splits\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1006\u001b[39m \u001b[43m \u001b[49m\u001b[43mcandidate_progress\u001b[49m\u001b[43m=\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcand_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_candidates\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1007\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mfit_and_score_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1008\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1009\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mcand_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrain\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtest\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mproduct\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1010\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43menumerate\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mcandidate_params\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1011\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43menumerate\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mcv\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mrouted_params\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplitter\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1012\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1013\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1015\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(out) < \u001b[32m1\u001b[39m:\n\u001b[32m 1016\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[32m 1017\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mNo fits were performed. \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 1018\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mWas the CV iterator empty? \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 1019\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mWere there no candidates?\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 1020\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/sklearn/utils/parallel.py:82\u001b[39m, in \u001b[36mParallel.__call__\u001b[39m\u001b[34m(self, iterable)\u001b[39m\n\u001b[32m 73\u001b[39m warning_filters = warnings.filters\n\u001b[32m 74\u001b[39m iterable_with_config_and_warning_filters = (\n\u001b[32m 75\u001b[39m (\n\u001b[32m 76\u001b[39m _with_config_and_warning_filters(delayed_func, config, warning_filters),\n\u001b[32m (...)\u001b[39m\u001b[32m 80\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m delayed_func, args, kwargs \u001b[38;5;129;01min\u001b[39;00m iterable\n\u001b[32m 81\u001b[39m )\n\u001b[32m---> \u001b[39m\u001b[32m82\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[34;43m__call__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43miterable_with_config_and_warning_filters\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/joblib/parallel.py:2072\u001b[39m, in \u001b[36mParallel.__call__\u001b[39m\u001b[34m(self, iterable)\u001b[39m\n\u001b[32m 2066\u001b[39m \u001b[38;5;66;03m# The first item from the output is blank, but it makes the interpreter\u001b[39;00m\n\u001b[32m 2067\u001b[39m \u001b[38;5;66;03m# progress until it enters the Try/Except block of the generator and\u001b[39;00m\n\u001b[32m 2068\u001b[39m \u001b[38;5;66;03m# reaches the first `yield` statement. This starts the asynchronous\u001b[39;00m\n\u001b[32m 2069\u001b[39m \u001b[38;5;66;03m# dispatch of the tasks to the workers.\u001b[39;00m\n\u001b[32m 2070\u001b[39m \u001b[38;5;28mnext\u001b[39m(output)\n\u001b[32m-> \u001b[39m\u001b[32m2072\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m output \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.return_generator \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43moutput\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/joblib/parallel.py:1682\u001b[39m, in \u001b[36mParallel._get_outputs\u001b[39m\u001b[34m(self, iterator, pre_dispatch)\u001b[39m\n\u001b[32m 1679\u001b[39m \u001b[38;5;28;01myield\u001b[39;00m\n\u001b[32m 1681\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m._backend.retrieval_context():\n\u001b[32m-> \u001b[39m\u001b[32m1682\u001b[39m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28mself\u001b[39m._retrieve()\n\u001b[32m 1684\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mGeneratorExit\u001b[39;00m:\n\u001b[32m 1685\u001b[39m \u001b[38;5;66;03m# The generator has been garbage collected before being fully\u001b[39;00m\n\u001b[32m 1686\u001b[39m \u001b[38;5;66;03m# consumed. This aborts the remaining tasks if possible and warn\u001b[39;00m\n\u001b[32m 1687\u001b[39m \u001b[38;5;66;03m# the user if necessary.\u001b[39;00m\n\u001b[32m 1688\u001b[39m \u001b[38;5;28mself\u001b[39m._exception = \u001b[38;5;28;01mTrue\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Documents/MLP/Projects/MLPproject/.venv/lib64/python3.13/site-packages/joblib/parallel.py:1800\u001b[39m, in \u001b[36mParallel._retrieve\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 1789\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.return_ordered:\n\u001b[32m 1790\u001b[39m \u001b[38;5;66;03m# Case ordered: wait for completion (or error) of the next job\u001b[39;00m\n\u001b[32m 1791\u001b[39m \u001b[38;5;66;03m# that have been dispatched and not retrieved yet. If no job\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 1795\u001b[39m \u001b[38;5;66;03m# control only have to be done on the amount of time the next\u001b[39;00m\n\u001b[32m 1796\u001b[39m \u001b[38;5;66;03m# dispatched job is pending.\u001b[39;00m\n\u001b[32m 1797\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (nb_jobs == \u001b[32m0\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[32m 1798\u001b[39m \u001b[38;5;28mself\u001b[39m._jobs[\u001b[32m0\u001b[39m].get_status(timeout=\u001b[38;5;28mself\u001b[39m.timeout) == TASK_PENDING\n\u001b[32m 1799\u001b[39m ):\n\u001b[32m-> \u001b[39m\u001b[32m1800\u001b[39m \u001b[43mtime\u001b[49m\u001b[43m.\u001b[49m\u001b[43msleep\u001b[49m\u001b[43m(\u001b[49m\u001b[32;43m0.01\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 1801\u001b[39m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[32m 1803\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m nb_jobs == \u001b[32m0\u001b[39m:\n\u001b[32m 1804\u001b[39m \u001b[38;5;66;03m# Case unordered: jobs are added to the list of jobs to\u001b[39;00m\n\u001b[32m 1805\u001b[39m \u001b[38;5;66;03m# retrieve `self._jobs` only once completed or in error, which\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 1811\u001b[39m \u001b[38;5;66;03m# timeouts before any other dispatched job has completed and\u001b[39;00m\n\u001b[32m 1812\u001b[39m \u001b[38;5;66;03m# been added to `self._jobs` to be retrieved.\u001b[39;00m\n", + "\u001b[31mKeyboardInterrupt\u001b[39m: " ] } ], @@ -469,6 +472,8 @@ "# Remove redundant features for XGBoost\n", "X_xgb = X_train_val.drop(columns=['native.country', 'race'])\n", "\n", + "# Remove redundant features for Random Forest\n", + "X_rf = X_train_val.drop(columns=['native.country', 'sex', 'race'])\n", "\n", "# Train decision tree without redundant features\n", "cmp_dt = ClassifierComparisonOpt(X_dt, y_train_val)\n", @@ -478,11 +483,10 @@ "cmp_xgb = ClassifierComparisonOpt(X_xgb, y_train_val)\n", "cmp_xgb.fit_models({'XGBoost': fine_grid['XGBoost']})\n", "\n", - "# Train Random Forest, keep all features\n", - "cmp_rf = ClassifierComparisonOpt(X_train_val, y_train_val)\n", + "# Train Random Forest without redundant features\n", + "cmp_rf = ClassifierComparisonOpt(X_rf, y_train_val)\n", "cmp_rf.fit_models({'Random Forest': fine_grid['Random Forest']})\n", "\n", - "\n", "# Print results\n", "res = pd.concat([cmp_dt.results_df, cmp_rf.results_df, cmp_xgb.results_df])\n", "print(\"\\n------ Results Sorted by Accuracy ------\")\n", @@ -495,12 +499,12 @@ "metadata": {}, "source": [ "### Final Models\n", - "I have not run this code yet. I'm still not sure if we should remove some of the features." + "After finding optimal hyperparameters, we can train the final models. As you can see we are not using pipeline here as we do not have to use scaling for our models. Importantly though, if we were to use models that benefits from scaling, that would be a very important step in both the hyperparameter tuning and in training the final models." ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "a470fd20", "metadata": {}, "outputs": [ @@ -508,21 +512,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "Classification Report:\n", - " precision recall f1-score support\n", + "Classification Report for Decision Tree:\n", + " precision recall f1-score support\n", "\n", - " Poor 0.87 0.95 0.90 4533\n", - " Rich 0.77 0.56 0.65 1500\n", + " Lower-earning 0.87 0.95 0.90 4533\n", + "Higher-earning 0.77 0.56 0.65 1500\n", "\n", - " accuracy 0.85 6033\n", - " macro avg 0.82 0.75 0.78 6033\n", - "weighted avg 0.84 0.85 0.84 6033\n", + " accuracy 0.85 6033\n", + " macro avg 0.82 0.75 0.78 6033\n", + " weighted avg 0.84 0.85 0.84 6033\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAHHCAYAAAASxkpJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWhpJREFUeJzt3X1cjff/B/DX6eacbs+pUKcmiUi5HbacmZsm0mL5ymhsyu1YzD2zuUlmNrdzb8bUjJnd8CWMaO5z1zSEhmUx3RjqKLq/fn/4dv0c5eiczlHyeu5xPR7O5/pcn+v9aam3z811SQRBEEBERERkYCZVHQARERHVTEwyiIiIyCiYZBAREZFRMMkgIiIio2CSQUREREbBJIOIiIiMgkkGERERGQWTDCIiIjIKJhlERERkFEwyiJ7i8uXL6NatGxQKBSQSCbZt22bQ9q9duwaJRIKoqCiDtvs869y5Mzp37mzQNq9fvw4LCwscPXrUoPcPCQlB3759KxkdUc3EJIOeC1evXsX777+PBg0awMLCAnK5HO3bt8eSJUvw4MEDo947NDQU586dw5w5c7Bhwwa0bdvWqPd7lsLCwiCRSCCXy8v9Ol6+fBkSiQQSiQQLFizQuf2bN28iIiICiYmJBoi2ciIjI+Hj44P27dvrfK22fkyZMgU///wz/vjjDwNESVSzmFV1AERPs3PnTrz99tuQyWQYOHAgmjVrhoKCAhw5cgSTJk1CUlIS1qxZY5R7P3jwAPHx8fjkk08watQoo9zDzc0NDx48gLm5uVHafxozMzPcv38fO3bsKPMv8o0bN8LCwgJ5eXl6tX3z5k3MmjUL9evXR6tWrSp83d69e/W635PcunUL0dHRiI6O1ut6bf14+eWX0bZtWyxcuBDffvutAaIlqjk4kkHVWkpKCkJCQuDm5oYLFy5gyZIlGDZsGMLDw/H999/jwoULaNq0qdHuf+vWLQCAnZ2d0e4hkUhgYWEBU1NTo91DG5lMhi5duuD7778vc27Tpk0IDAx8ZrHcv38fACCVSiGVSg3W7nfffQczMzP07NnTYG0+qm/fvvjll1+Qk5NjlPaJnldMMqhamzdvHnJycrBu3To4OzuXOe/h4YExY8aIn4uKijB79mw0bNgQMpkM9evXx8cff4z8/HyN6+rXr48ePXrgyJEjePXVV2FhYYEGDRpo/Es0IiICbm5uAIBJkyZBIpGgfv36AB5OM5T++VERERGQSCQaZbGxsXj99ddhZ2cHGxsbeHp64uOPPxbPP2lNRlxcHDp06ABra2vY2dkhKCgIFy9eLPd+V65cQVhYGOzs7KBQKDBo0CDxF3ZF9O/fH7t370ZWVpZYdurUKVy+fBn9+/cvU//OnTuYOHEimjdvDhsbG8jlcgQEBGhMGRw4cACvvPIKAGDQoEHitEtpPzt37oxmzZohISEBHTt2hJWVlfh1eXxNRGhoKCwsLMr039/fH/b29rh586bW/m3btg0+Pj6wsbEpc27NmjVo2LAhLC0t8eqrr+Lw4cMa55/WDwDo2rUrcnNzERsbqzUOohcNkwyq1nbs2IEGDRrgtddeq1D9oUOHYsaMGWjdujUWL16MTp06Ye7cuQgJCSlT98qVK+jTpw+6du2KhQsXwt7eHmFhYUhKSgIA9O7dG4sXLwYAvPPOO9iwYQO+/PJLneJPSkpCjx49kJ+fj8jISCxcuBBvvfXWUxcf7tu3D/7+/sjMzERERATGjx+PY8eOoX379rh27VqZ+n379sW9e/cwd+5c9O3bF1FRUZg1a1aF4+zduzckEgl++eUXsWzTpk1o0qQJWrduXab+X3/9hW3btqFHjx5YtGgRJk2ahHPnzqFTp07iL3wvLy9ERkYCAIYPH44NGzZgw4YN6Nixo9jO7du3ERAQgFatWuHLL7+Er69vufEtWbIEderUQWhoKIqLiwEAX331Ffbu3Ytly5bBxcXliX0rLCzEqVOnyu3HunXr8P7770OpVGLevHlo37493nrrLVy/fl2sU5F+eHt7w9LSskKLSoleKAJRNZWdnS0AEIKCgipUPzExUQAgDB06VKN84sSJAgAhLi5OLHNzcxMACIcOHRLLMjMzBZlMJkyYMEEsS0lJEQAI8+fP12gzNDRUcHNzKxPDzJkzhUf/Wi1evFgAINy6deuJcZfeY/369WJZq1atBEdHR+H27dti2R9//CGYmJgIAwcOLHO/wYMHa7T5n//8R6hVq9YT7/loP6ytrQVBEIQ+ffoIXbp0EQRBEIqLiwWlUinMmjWr3K9BXl6eUFxcXKYfMplMiIyMFMtOnTpVpm+lOnXqJAAQVq9eXe65Tp06aZTt2bNHACB8+umnwl9//SXY2NgIvXr1emofr1y5IgAQli1bplFeUFAgODo6Cq1atRLy8/PF8jVr1ggANO6vrR+lGjduLAQEBDw1HqIXCUcyqNpSq9UAAFtb2wrV37VrFwBg/PjxGuUTJkwA8HAB6aO8vb3RoUMH8XOdOnXg6emJv/76S++YH1e6luO///0vSkpKKnRNWloaEhMTERYWBgcHB7G8RYsW6Nq1q9jPR40YMULjc4cOHXD79m3xa1gR/fv3x4EDB5Ceno64uDikp6eXO1UCPFzHYWLy8MdHcXExbt++LU4F/f777xW+p0wmw6BBgypUt1u3bnj//fcRGRmJ3r17w8LCAl999dVTr7t9+zYAwN7eXqP89OnTyMzMxIgRIzTWf4SFhUGhUFS4D6Xs7e3x77//6nwdUU3GJIOqLblcDgC4d+9eher//fffMDExgYeHh0a5UqmEnZ0d/v77b43yevXqlWnD3t4ed+/e1TPisvr164f27dtj6NChcHJyQkhICLZs2aI14SiN09PTs8w5Ly8v/Pvvv8jNzdUof7wvpb9QdenLm2++CVtbW/zwww/YuHEjXnnllTJfy1IlJSVYvHgxGjVqBJlMhtq1a6NOnTo4e/YssrOzK3zPl156SacFngsWLICDgwMSExOxdOlSODo6VvhaQRA0Ppd+nRs1aqRRbm5ujgYNGlS43Ufbf3w9DtGLjkkGVVtyuRwuLi44f/68TtdV9Af9k3ZzPP7LSJd7lK4XKGVpaYlDhw5h3759eO+993D27Fn069cPXbt2LVO3MirTl1IymQy9e/dGdHQ0tm7d+sRRDAD47LPPMH78eHTs2BHfffcd9uzZg9jYWDRt2rTCIzbAw6+PLs6cOYPMzEwAwLlz5yp0Ta1atQDolnDp4+7du6hdu7ZR70H0vGGSQdVajx49cPXqVcTHxz+1rpubG0pKSnD58mWN8oyMDGRlZYk7RQzB3t5eYydGqcdHSwDAxMQEXbp0waJFi3DhwgXMmTMHcXFx+O2338ptuzTO5OTkMucuXbqE2rVrw9raunIdeIL+/fvjzJkzuHfvXrmLZUv99NNP8PX1xbp16xASEoJu3brBz8+vzNfEkP+yz83NxaBBg+Dt7Y3hw4dj3rx5OHXq1FOvq1evHiwtLZGSkqJRXvp1fvz7pbCwsEzdp/WjqKgI169fh5eXV0W6QvTCYJJB1drkyZNhbW2NoUOHIiMjo8z5q1evYsmSJQAeDvcDKLMDZNGiRQBg0Oc9NGzYENnZ2Th79qxYlpaWhq1bt2rUu3PnTplrSx/m9Pi22lLOzs5o1aoVoqOjNX5pnz9/Hnv37hX7aQy+vr6YPXs2li9fDqVS+cR6pqamZUZJfvzxR/zzzz8aZaXJUHkJma6mTJmC1NRUREdHY9GiRahfvz5CQ0Of+HUsZW5ujrZt2+L06dMa5W3btkWdOnWwevVqFBQUiOVRUVFl4n1aPy5cuIC8vLwK74IielHwiZ9UrTVs2BCbNm1Cv3794OXlpfHEz2PHjuHHH39EWFgYAKBly5YIDQ3FmjVrkJWVhU6dOuHkyZOIjo5Gr169nrg9Uh8hISGYMmUK/vOf/+DDDz/E/fv3sWrVKjRu3Fhj4WNkZCQOHTqEwMBAuLm5ITMzEytXrkTdunXx+uuvP7H9+fPnIyAgACqVCkOGDMGDBw+wbNkyKBQKREREGKwfjzMxMcG0adOeWq9Hjx6IjIzEoEGD8Nprr+HcuXPYuHFjmbUMDRs2hJ2dHVavXg1bW1tYW1vDx8cH7u7uOsUVFxeHlStXYubMmeJW1PXr16Nz586YPn065s2bp/X6oKAgfPLJJ1Cr1eJaH3Nzc3z66ad4//338cYbb6Bfv35ISUnB+vXrde5HbGwsrKys0LVrV536RVTjVeneFqIK+vPPP4Vhw4YJ9evXF6RSqWBrayu0b99eWLZsmZCXlyfWKywsFGbNmiW4u7sL5ubmgqurqzB16lSNOoLwcAtrYGBgmfs8vnXySVtYBUEQ9u7dKzRr1kyQSqWCp6en8N1335XZwrp//34hKChIcHFxEaRSqeDi4iK88847wp9//lnmHo9vj9y3b5/Qvn17wdLSUpDL5ULPnj2FCxcuaNQpvd/jW2TXr18vABBSUlKe+DUVBM0trE/ypC2sEyZMEJydnQVLS0uhffv2Qnx8fLlbT//73/8K3t7egpmZmUY/O3XqJDRt2rTcez7ajlqtFtzc3ITWrVsLhYWFGvXGjRsnmJiYCPHx8Vr7kJGRIZiZmQkbNmwoc27lypWCu7u7IJPJhLZt2wqHDh3SqR+CIAg+Pj7Cu+++qzUGoheRRBB0WBlGRPScGjJkCP78888yT/SsrMTERLRu3Rq///67Tu9nIXoRMMkgohdCamoqGjdujP379+v1JtYnCQkJQUlJCbZs2WKwNolqCiYZREREZBTcXUJERERGwSSDiIiIjIJJBhERERkFkwwiIiIyCj6MqxwlJSW4efMmbG1t+cIjIqLnkCAIuHfvHlxcXMQ3BhtaXl6extNiK0MqlcLCwsIgbVUnTDLKcfPmTbi6ulZ1GEREVEnXr19H3bp1Dd5uXl4eLG1rAUX3DdKeUqlESkpKjUs0mGSUw9bWFgAg9Q6FxLTir6Emep6kHlhQ1SEQGc09tRoe7q7iz3NDKygoAIruQ+YdClT290RxAdIvRKOgoIBJxougdIpEYiplkkE1Vuk7PIhqMqNPeZtZVPr3hCCpucsjmWQQERHpSwKgsolMDV76xySDiIhIXxKTh0dl26iham7PiIiIqEpxJIOIiEhfEokBpktq7nwJkwwiIiJ9cbpEq5rbMyIiIqpSHMkgIiLSF6dLtGKSQUREpDcDTJfU4EmFmtszIiIiqlIcySAiItIXp0u0YpJBRESkL+4u0arm9oyIiIiqFEcyiIiI9MXpEq2YZBAREemL0yVaMckgIiLSF0cytKq56RMRERFVKY5kEBER6YvTJVoxySAiItKXRGKAJIPTJUREREQ6YZJBRESkLxOJYQ49ff7555BIJBg7dqxYlpeXh/DwcNSqVQs2NjYIDg5GRkaGxnWpqakIDAyElZUVHB0dMWnSJBQVFWnUOXDgAFq3bg2ZTAYPDw9ERUXpHB+TDCIiIn2Vrsmo7KGHU6dO4auvvkKLFi00yseNG4cdO3bgxx9/xMGDB3Hz5k307t1bPF9cXIzAwEAUFBTg2LFjiI6ORlRUFGbMmCHWSUlJQWBgIHx9fZGYmIixY8di6NCh2LNnj04xMskgIiJ6zuTk5GDAgAH4+uuvYW9vL5ZnZ2dj3bp1WLRoEd544w20adMG69evx7Fjx3D8+HEAwN69e3HhwgV89913aNWqFQICAjB79mysWLECBQUFAIDVq1fD3d0dCxcuhJeXF0aNGoU+ffpg8eLFOsXJJIOIiEhfpc/JqOwBQK1Waxz5+flPvG14eDgCAwPh5+enUZ6QkIDCwkKN8iZNmqBevXqIj48HAMTHx6N58+ZwcnIS6/j7+0OtViMpKUms83jb/v7+YhsVxSSDiIhIXwacLnF1dYVCoRCPuXPnlnvLzZs34/fffy/3fHp6OqRSKezs7DTKnZyckJ6eLtZ5NMEoPV96TlsdtVqNBw8eVPjLwy2sRERE1cD169chl8vFzzKZrNw6Y8aMQWxsLCwsLJ5leHrhSAYREZG+DDhdIpfLNY7ykoyEhARkZmaidevWMDMzg5mZGQ4ePIilS5fCzMwMTk5OKCgoQFZWlsZ1GRkZUCqVAAClUllmt0np56fVkcvlsLS0rPCXh0kGERGRvp7x7pIuXbrg3LlzSExMFI+2bdtiwIAB4p/Nzc2xf/9+8Zrk5GSkpqZCpVIBAFQqFc6dO4fMzEyxTmxsLORyOby9vcU6j7ZRWqe0jYridAkREZG+nvEL0mxtbdGsWTONMmtra9SqVUssHzJkCMaPHw8HBwfI5XKMHj0aKpUK7dq1AwB069YN3t7eeO+99zBv3jykp6dj2rRpCA8PF0dPRowYgeXLl2Py5MkYPHgw4uLisGXLFuzcuVOnrjHJICIiqkEWL14MExMTBAcHIz8/H/7+/li5cqV43tTUFDExMRg5ciRUKhWsra0RGhqKyMhIsY67uzt27tyJcePGYcmSJahbty7Wrl0Lf39/nWKRCIIgGKxnNYRarYZCoYCs+TBITKVVHQ6RUdw9tbyqQyAyGrVaDadaCmRnZ2sspjRk+wqFArIucyAxq9wCTKEoD/n7PzFarFWJIxlERET6esbTJc8bLvwkIiIio+BIBhERkd70f/eIRhs1FJMMIiIifXG6RKuamz4RERFRleJIBhERkb4kkspPl9TgkQwmGURERPrS8YmdT2yjhqq5PSMiIqIqxZEMIiIifXHhp1ZMMoiIiPTF6RKtmGQQERHpiyMZWtXc9ImIiIiqFEcyiIiI9MXpEq2YZBAREemL0yVa1dz0iYiIiKoURzKIiIj0JJFIIOFIxhMxySAiItITkwztOF1CRERERsGRDCIiIn1J/ndUto0aikkGERGRnjhdoh2nS4iIiMgoOJJBRESkJ45kaMckg4iISE9MMrRjkkFERKQnJhnacU0GERERGQVHMoiIiPTFLaxaMckgIiLSE6dLtON0CRERERkFRzKIiIj09PBN75UdyTBMLNURkwwiIiI9SWCA6ZIanGVwuoSIiIiMgiMZREREeuLCT+2YZBAREemLW1i14nQJERERGQVHMoiIiPRlgOkSoQZPl3Akg4iISE+lazIqe+hi1apVaNGiBeRyOeRyOVQqFXbv3i2e79y5c5n2R4wYodFGamoqAgMDYWVlBUdHR0yaNAlFRUUadQ4cOIDWrVtDJpPBw8MDUVFROn99OJJBRESkJ0Ms/NT1+rp16+Lzzz9Ho0aNIAgCoqOjERQUhDNnzqBp06YAgGHDhiEyMlK8xsrKSvxzcXExAgMDoVQqcezYMaSlpWHgwIEwNzfHZ599BgBISUlBYGAgRowYgY0bN2L//v0YOnQonJ2d4e/vX+FYmWQQERE9R3r27Knxec6cOVi1ahWOHz8uJhlWVlZQKpXlXr93715cuHAB+/btg5OTE1q1aoXZs2djypQpiIiIgFQqxerVq+Hu7o6FCxcCALy8vHDkyBEsXrxYpySD0yVERET6khjoAKBWqzWO/Pz8p96+uLgYmzdvRm5uLlQqlVi+ceNG1K5dG82aNcPUqVNx//598Vx8fDyaN28OJycnsczf3x9qtRpJSUliHT8/P417+fv7Iz4+XocvDkcyiIiI9GbI6RJXV1eN8pkzZyIiIqLca86dOweVSoW8vDzY2Nhg69at8Pb2BgD0798fbm5ucHFxwdmzZzFlyhQkJyfjl19+AQCkp6drJBgAxM/p6ela66jVajx48ACWlpYV6huTDCIiomrg+vXrkMvl4meZTPbEup6enkhMTER2djZ++uknhIaG4uDBg/D29sbw4cPFes2bN4ezszO6dOmCq1evomHDhkbtw+M4XUJERKQnQ+4uKd0tUnpoSzKkUik8PDzQpk0bzJ07Fy1btsSSJUvKrevj4wMAuHLlCgBAqVQiIyNDo07p59J1HE+qI5fLKzyKATDJICIi0ltVbGEtT0lJyRPXcCQmJgIAnJ2dAQAqlQrnzp1DZmamWCc2NhZyuVycclGpVNi/f79GO7GxsRrrPiqC0yVERETPkalTpyIgIAD16tXDvXv3sGnTJhw4cAB79uzB1atXsWnTJrz55puoVasWzp49i3HjxqFjx45o0aIFAKBbt27w9vbGe++9h3nz5iE9PR3Tpk1DeHi4OHoyYsQILF++HJMnT8bgwYMRFxeHLVu2YOfOnTrFyiSDiIhIT1XxnIzMzEwMHDgQaWlpUCgUaNGiBfbs2YOuXbvi+vXr2LdvH7788kvk5ubC1dUVwcHBmDZtmni9qakpYmJiMHLkSKhUKlhbWyM0NFTjuRru7u7YuXMnxo0bhyVLlqBu3bpYu3atTttXASYZRERE+quCF6StW7fuiedcXV1x8ODBp7bh5uaGXbt2aa3TuXNnnDlzRrfgHsM1GURERGQUHMkgIiLSU1VMlzxPmGQQERHpiUmGdkwyiIiI9MQkQzuuySAiIiKj4EgGERGRvqpgd8nzhEkGERGRnjhdoh2nS4iIiMgoOJJBBjc2tCtmjgrCqu9/w8eLfoad3ApThwfCt10T1HWyx+2sHOw8cBafrY6BOjdPvO5l73qYOSoIrZq4QhCAhKS/EbFsG85f/gcA4OrsgLPbI8vcr+ugBTh9/tqz6h4RAGDR+j2I+e0PXP47AxYyc7zaogEiRgWhUX2nMnUFQcDbY1Zhf/wFfDd/GAI7txTP/Z70N2Yt/y8SL12HRAK0aeqGiNG90Lxx3WfZHdITRzK0q9KRjLCwMPF/UOkb5SIjI1FUVFSVYVElvOxdD2H/aY/zf94Qy5zrKKCso8CMJVvxWshn+GDWd+ii8sbS6QPEOtaWUvy0JBw30u/Cb9ACBAxbhJz7efhpWTjMTDW/TYM+WArP7lPFI/Fi6jPrH1GpY79fwdC3O2LvNxPxy/JRKCwqRu/Ry5H7oOxLqlZ9/xvK+z2Scz8ffcasQF2lPfatn4jdX4+HjZUF+oxegcKi4mfQC6osCQzwgrQavCijyqdLunfvjrS0NFy+fBkTJkxAREQE5s+fb5R7FRQUGKVdesjaUoo1kWEY89n3yLr3QCy/eDUNoVPW4tfD53Htn39x+PSf+HTVDnTv0Aym/0sgGtVXwsHOGnO/isGVvzNx6a90zPt6N5xqyeHq7KBxnzvZuci8fU88iopLnmk/iQDgp2Xh6N+zHbwaOqN547pYOfNd3Ei/i8SL1zXqnUu+gRUb47B8+rtl2rh8LR13s+9j6vs90Ki+E7waOmPysABk3rmH62l3nlVXiIymypMMmUwGpVIJNzc3jBw5En5+fti+fTvu3r2LgQMHwt7eHlZWVggICMDly5c1rv3555/RtGlTyGQy1K9fHwsXLtQ4X79+fcyePRsDBw6EXC7H8OHDn2XXXjjzJ/fD3qPncfBk8lPrym0scC83D8X/SxCu/J2B21k5ePet12BuZgoLmTneDVLh0l9pSH3sh+33C9/Hn3vmYvfX4xDQsblR+kKkK3XOw6k/e7mVWHY/rwDDpkdh/uS+cKotL3ONh5sTHBTW+G77MRQUFuFBXgG++288PN2VqPdYck3VU3V51Xt1VeVJxuMsLS1RUFCAsLAwnD59Gtu3b0d8fDwEQcCbb76JwsJCAEBCQgL69u2LkJAQnDt3DhEREZg+fTqioqI02luwYAFatmyJM2fOYPr06VXQoxdD765t0LKJKyJXbH9qXQeFNSYNCUD01mNiWc79fPQcsQR9A15B2pHFuHFwIbqovNB3zEoxEcm9n49PFv+CsI/Wod+4VTj+x1V8N38YEw2qciUlJZi66Cf4tGwAbw8XsfzjRT/j1RbueLNTi3Kvs7W2wI7VY7Bl9yk4vz4OdTtNwP74i9iy5AOYmZk+q/CpMiQGOmqoarPwUxAE7N+/H3v27EFAQAC2bduGo0eP4rXXXgMAbNy4Ea6urti2bRvefvttLFq0CF26dBETh8aNG+PChQuYP38+wsLCxHbfeOMNTJgwQeu98/PzkZ////OoarXa8B2swV5yssPcCcHoPWo58gu0r6extbbAD1+ORHJKGj5fs1Mst5CZY+m0ATjxx18YOm09TE1MMOrdLvjhy5F4I3Q+8vILcSc7Fys3xYnXnLmQCmVtBUa/2wW7D50zWv+InmbivC24eDUNu78eJ5btOngWh0//iYPfffTE6x7kFeDDTzfCp2UDrP10EIpLSrD8u/3oN3YV4qInwdJC+izCJzKaKk8yYmJiYGNjg8LCQpSUlKB///7o3bs3YmJi4OPjI9arVasWPD09cfHiRQDAxYsXERQUpNFW+/bt8eWXX6K4uBimpg//FdC2bdunxjB37lzMmjXLgL16sbRsUg+OteQ4sGGKWGZmZorXXm6IYW93hFP7sSgpEWBjJcNPSz9Azv08vDvpa421FH3826KeswO6DV4IQRAAAMOmRSElbh7e7NgCv8QmlHvvhKS/0dmniXE7SKTFpHlbsOfweexaMxYvOdmL5YdP/4mUG/+i/huTNOoPnLIWqlYNEfPVWPy05zRS0+5g7zcTYGLycGD560/D4P7GZOw6dBbB3Z7+84uqFneXaFflSYavry9WrVoFqVQKFxcXmJmZYfv2pw+5V5S1tfVT60ydOhXjx48XP6vVari6uhoshpru0KlkvBYyR6Ns+Yx3cflaBpZ8G4uSEgG21hb4aWk4CgqL0H/8V2VGPCwtpCgRBDHBAPC/z4CJyZP/AjZr/BIy/uXIEz17giBg8vwfsfPAH9ixegzcXqqtcX5saDe8F/SaRln7dz7DZ+OC0b1DMwAPRzJMHvsl9fAzUFIigKo/JhnaVXmSYW1tDQ8PD40yLy8vFBUV4cSJE+J0ye3bt5GcnAxvb2+xztGjRzWuO3r0KBo3biyOYlSUTCaDTCarRC9ebDn383HxappG2f0HBbiTnYuLV9Nga22Bn5eFw8pCivdnRMPWxgK2NhYAgH/v5qCkRMCBE5cQ+WEvLJjSF2t+OAgTEwnGhnZDcXExDp/+EwAQEuiDwsIinE1+uD22p29LvNtThQ/nbHq2HSYCMPGLLfhpz2lsWjAcNlYWYrIrt7GApYUUTrXl5S72rKu0FxOSzj5NMGPpNkz8YguG9+uEkhIBX0bvhampKTq0bfxM+0P6kUhQ7vZkXduoqao8yShPo0aNEBQUhGHDhuGrr76Cra0tPvroI7z00kviFMmECRPwyiuvYPbs2ejXrx/i4+OxfPlyrFy5soqjp8e18HTFK83dAQBntkVonntrBq6n3cHlvzPwzvivMGVYAPZ+MwElJQLO/nkDfT5ciYzb/z9SMXFId7g6O6C4uAR/XsvA4I+/wfa4xGfYG6KHvvn5MACgx4glGuUrZryL/j3bVaiNxvWV+H7R+/ji693oNnghTEwkaNG4Ln5a+gGUtRUGj5noWauWSQYArF+/HmPGjEGPHj1QUFCAjh07YteuXTA3NwcAtG7dGlu2bMGMGTMwe/ZsODs7IzIyUmPRJ1Wdno/84D36+2XYvzLqqdccOHkJB05eeuL5zTtPYPPOEwaJj6iy7p5abpBrfH284OvjZYiQqAo8HMmo7HSJgYKphqo0yXh8u+mj7O3t8e2332q9Pjg4GMHBwU88f+3aNT0jIyIiqgADTJfU5C2s1e45GURERFQzVNvpEiIiouqOu0u0Y5JBRESkJ+4u0Y7TJURERGQUHMkgIiLSk4mJROsDAytCqOT11RmTDCIiIj1xukQ7TpcQERGRUXAkg4iISE/cXaIdkwwiIiI9cbpEOyYZREREeuJIhnZck0FERERGwZEMIiIiPXEkQzsmGURERHrimgztOF1CRERERsEkg4iISE8SSMQpE70PHd/1vmrVKrRo0QJyuRxyuRwqlQq7d+8Wz+fl5SE8PBy1atWCjY0NgoODkZGRodFGamoqAgMDYWVlBUdHR0yaNAlFRUUadQ4cOIDWrVtDJpPBw8MDUVFROn99mGQQERHpqXS6pLKHLurWrYvPP/8cCQkJOH36NN544w0EBQUhKSkJADBu3Djs2LEDP/74Iw4ePIibN2+id+/e4vXFxcUIDAxEQUEBjh07hujoaERFRWHGjBlinZSUFAQGBsLX1xeJiYkYO3Yshg4dij179uj29REEQdCtezWfWq2GQqGArPkwSEylVR0OkVHcPbW8qkMgMhq1Wg2nWgpkZ2dDLpcbpX2FQoEWU7fD1MK6Um0V5+Xi7Ny3KhWrg4MD5s+fjz59+qBOnTrYtGkT+vTpAwC4dOkSvLy8EB8fj3bt2mH37t3o0aMHbt68CScnJwDA6tWrMWXKFNy6dQtSqRRTpkzBzp07cf78efEeISEhyMrKwq+//lrhuDiSQUREpKdKT5VUcndKcXExNm/ejNzcXKhUKiQkJKCwsBB+fn5inSZNmqBevXqIj48HAMTHx6N58+ZiggEA/v7+UKvV4mhIfHy8RhuldUrbqCjuLiEiItKTIXeXqNVqjXKZTAaZTFbuNefOnYNKpUJeXh5sbGywdetWeHt7IzExEVKpFHZ2dhr1nZyckJ6eDgBIT0/XSDBKz5ee01ZHrVbjwYMHsLS0rFDfOJJBRERUDbi6ukKhUIjH3Llzn1jX09MTiYmJOHHiBEaOHInQ0FBcuHDhGUZbMRzJICIi0pMhH8Z1/fp1jTUZTxrFAACpVAoPDw8AQJs2bXDq1CksWbIE/fr1Q0FBAbKysjRGMzIyMqBUKgEASqUSJ0+e1GivdPfJo3Ue35GSkZEBuVxe4VEMgCMZREREejPk7pLSLamlh7Yk43ElJSXIz89HmzZtYG5ujv3794vnkpOTkZqaCpVKBQBQqVQ4d+4cMjMzxTqxsbGQy+Xw9vYW6zzaRmmd0jYqiiMZREREeqqKx4pPnToVAQEBqFevHu7du4dNmzbhwIED2LNnDxQKBYYMGYLx48fDwcEBcrkco0ePhkqlQrt27QAA3bp1g7e3N9577z3MmzcP6enpmDZtGsLDw8XEZsSIEVi+fDkmT56MwYMHIy4uDlu2bMHOnTt1ipVJBhER0XMkMzMTAwcORFpa2sNttC1aYM+ePejatSsAYPHixTAxMUFwcDDy8/Ph7++PlStXitebmpoiJiYGI0eOhEqlgrW1NUJDQxEZGSnWcXd3x86dOzFu3DgsWbIEdevWxdq1a+Hv769TrHxORjn4nAx6EfA5GVSTPavnZLSZuRNmlXxORlFeLhJmBRot1qrEkQwiIiI98S2s2nHhJxERERkFRzKIiIj0xFe9a8ckg4iISE+cLtGO0yVERERkFBzJICIi0hOnS7RjkkFERKQnTpdox+kSIiIiMgqOZBAREemJIxnaMckgIiLSE9dkaMckg4iISE8cydCOazKIiIjIKDiSQUREpCdOl2jHJIOIiEhPnC7RjtMlREREZBQcySAiItKTBAaYLjFIJNUTkwwiIiI9mUgkMKlkllHZ66szTpcQERGRUXAkg4iISE/cXaIdkwwiIiI9cXeJdkwyiIiI9GQieXhUto2aimsyiIiIyCg4kkFERKQviQGmO2rwSAaTDCIiIj1x4ad2nC4hIiIio+BIBhERkZ4k//uvsm3UVEwyiIiI9MTdJdpxuoSIiIiMgiMZREREeuLDuLSrUJKxffv2Cjf41ltv6R0MERHR84S7S7SrUJLRq1evCjUmkUhQXFxcmXiIiIiohqhQklFSUmLsOIiIiJ47fNW7dpVak5GXlwcLCwtDxUJERPRc4XSJdjrvLikuLsbs2bPx0ksvwcbGBn/99RcAYPr06Vi3bp3BAyQiIqquShd+VvaoqXROMubMmYOoqCjMmzcPUqlULG/WrBnWrl1r0OCIiIjo+aVzkvHtt99izZo1GDBgAExNTcXyli1b4tKlSwYNjoiIqDornS6p7KGLuXPn4pVXXoGtrS0cHR3Rq1cvJCcna9Tp3LlzmdGSESNGaNRJTU1FYGAgrKys4OjoiEmTJqGoqEijzoEDB9C6dWvIZDJ4eHggKipKp1h1TjL++ecfeHh4lCkvKSlBYWGhrs0RERE9t0oXflb20MXBgwcRHh6O48ePIzY2FoWFhejWrRtyc3M16g0bNgxpaWniMW/ePPFccXExAgMDUVBQgGPHjiE6OhpRUVGYMWOGWCclJQWBgYHw9fVFYmIixo4di6FDh2LPnj0VjlXnhZ/e3t44fPgw3NzcNMp/+uknvPzyy7o2R0RERDr49ddfNT5HRUXB0dERCQkJ6Nixo1huZWUFpVJZbht79+7FhQsXsG/fPjg5OaFVq1aYPXs2pkyZgoiICEilUqxevRru7u5YuHAhAMDLywtHjhzB4sWL4e/vX6FYdR7JmDFjBkaNGoUvvvgCJSUl+OWXXzBs2DDMmTNHIwMiIiKq6SQGOiojOzsbAODg4KBRvnHjRtSuXRvNmjXD1KlTcf/+ffFcfHw8mjdvDicnJ7HM398farUaSUlJYh0/Pz+NNv39/REfH1/h2HQeyQgKCsKOHTsQGRkJa2trzJgxA61bt8aOHTvQtWtXXZsjIiJ6bhnyseJqtVqjXCaTQSaTab22pKQEY8eORfv27dGsWTOxvH///nBzc4OLiwvOnj2LKVOmIDk5Gb/88gsAID09XSPBACB+Tk9P11pHrVbjwYMHsLS0fGrf9HpORocOHRAbG6vPpURERFQOV1dXjc8zZ85ERESE1mvCw8Nx/vx5HDlyRKN8+PDh4p+bN28OZ2dndOnSBVevXkXDhg0NFvPT6P0wrtOnT+PixYsAHq7TaNOmjcGCIiIieh4Y8lXv169fh1wuF8ufNooxatQoxMTE4NChQ6hbt67Wuj4+PgCAK1euoGHDhlAqlTh58qRGnYyMDAAQ13EolUqx7NE6crm8QqMYgB5Jxo0bN/DOO+/g6NGjsLOzAwBkZWXhtddew+bNm5/aUSIioprCkNMlcrlcI8l4EkEQMHr0aGzduhUHDhyAu7v7U69JTEwEADg7OwMAVCoV5syZg8zMTDg6OgIAYmNjIZfL4e3tLdbZtWuXRjuxsbFQqVQV7pvOCz+HDh2KwsJCXLx4EXfu3MGdO3dw8eJFlJSUYOjQobo2R0RERDoIDw/Hd999h02bNsHW1hbp6elIT0/HgwcPAABXr17F7NmzkZCQgGvXrmH79u0YOHAgOnbsiBYtWgAAunXrBm9vb7z33nv4448/sGfPHkybNg3h4eHiCMqIESPw119/YfLkybh06RJWrlyJLVu2YNy4cRWOVeeRjIMHD+LYsWPw9PQUyzw9PbFs2TJ06NBB1+aIiIiea8/6qeCrVq0C8PCBW49av349wsLCIJVKsW/fPnz55ZfIzc2Fq6srgoODMW3aNLGuqakpYmJiMHLkSKhUKlhbWyM0NBSRkZFiHXd3d+zcuRPjxo3DkiVLULduXaxdu7bC21cBPZIMV1fXch+6VVxcDBcXF12bIyIiem4ZcrqkogRB0Hre1dUVBw8efGo7bm5uZaZDHte5c2ecOXNGp/gepfN0yfz58zF69GicPn1aLDt9+jTGjBmDBQsW6B0IERHR86Z04Wdlj5qqQiMZ9vb2GplWbm4ufHx8YGb28PKioiKYmZlh8ODB6NWrl1ECJSIioudLhZKML7/80shhEBERPX+qYrrkeVKhJCM0NNTYcRARET13DPFY8JqbYlTiYVwAkJeXh4KCAo2yiuzxJSIioppP5yQjNzcXU6ZMwZYtW3D79u0y54uLiw0SGBERUXWnz6vay2ujptJ5d8nkyZMRFxeHVatWQSaTYe3atZg1axZcXFzw7bffGiNGIiKiakkiMcxRU+k8krFjxw58++236Ny5MwYNGoQOHTrAw8MDbm5u2LhxIwYMGGCMOImIiOg5o/NIxp07d9CgQQMAD9df3LlzBwDw+uuv49ChQ4aNjoiIqBor3V1S2aOm0jnJaNCgAVJSUgAATZo0wZYtWwA8HOEofWEaERHRi4DTJdrpnGQMGjQIf/zxBwDgo48+wooVK2BhYYFx48Zh0qRJBg+QiIiInk86r8l49O1rfn5+uHTpEhISEuDh4SG+3Y2IiOhFwN0l2lXqORnAwxesuLm5GSIWIiKi54ohpjtqcI5RsSRj6dKlFW7www8/1DsYIiKi5wkfK65dhZKMxYsXV6gxiUTCJIOIiIgAVDDJKN1N8qL5ffsc2PIx6VRDXb99v6pDIDKanHvP5vvbBHrsoCinjZqq0msyiIiIXlScLtGuJidQREREVIU4kkFERKQniQQw4e6SJ2KSQUREpCcTAyQZlb2+OuN0CRERERmFXknG4cOH8e6770KlUuGff/4BAGzYsAFHjhwxaHBERETVGV+Qpp3OScbPP/8Mf39/WFpa4syZM8jPzwcAZGdn47PPPjN4gERERNVV6XRJZY+aSuck49NPP8Xq1avx9ddfw9zcXCxv3749fv/9d4MGR0RERM8vnRd+Jicno2PHjmXKFQoFsrKyDBETERHRc4HvLtFO55EMpVKJK1eulCk/cuQIGjRoYJCgiIiIngelb2Gt7FFT6ZxkDBs2DGPGjMGJEycgkUhw8+ZNbNy4ERMnTsTIkSONESMREVG1ZGKgo6bSebrko48+QklJCbp06YL79++jY8eOkMlkmDhxIkaPHm2MGImIiOg5pHOSIZFI8Mknn2DSpEm4cuUKcnJy4O3tDRsbG2PER0REVG1xTYZ2ej/xUyqVwtvb25CxEBERPVdMUPk1FSaouVmGzkmGr6+v1geHxMXFVSogIiIiqhl0TjJatWql8bmwsBCJiYk4f/48QkNDDRUXERFRtcfpEu10TjIWL15cbnlERARycnIqHRAREdHzgi9I085gO2feffddfPPNN4ZqjoiIiJ5zBnvVe3x8PCwsLAzVHBERUbUnkaDSCz9r8nSJziMZvXv31jj+85//oF27dhg0aBDef/99Y8RIRERULZWuyajsoYu5c+filVdega2tLRwdHdGrVy8kJydr1MnLy0N4eDhq1aoFGxsbBAcHIyMjQ6NOamoqAgMDYWVlBUdHR0yaNAlFRUUadQ4cOIDWrVtDJpPBw8MDUVFROsWqc5KhUCg0DgcHB3Tu3Bm7du3CzJkzdW2OiIiIdHDw4EGEh4fj+PHjiI2NRWFhIbp164bc3Fyxzrhx47Bjxw78+OOPOHjwIG7evInevXuL54uLixEYGIiCggIcO3YM0dHRiIqKwowZM8Q6KSkpCAwMhK+vLxITEzF27FgMHToUe/bsqXCsEkEQhIpWLi4uxtGjR9G8eXPY29tX+CbPG7VaDYVCgaSUTNjK5VUdDpFR5BUWV3UIREaTc0+N1o2ckZ2dDbkRfo6X/p6Y9t/fYWFtW6m28nLv4dOg1nrHeuvWLTg6OuLgwYPo2LEjsrOzUadOHWzatAl9+vQBAFy6dAleXl6Ij49Hu3btsHv3bvTo0QM3b96Ek5MTAGD16tWYMmUKbt26BalUiilTpmDnzp04f/68eK+QkBBkZWXh119/rVBsOo1kmJqaolu3bnzbKhEREQCJgf4DHiYujx75+fkViiE7OxsA4ODgAABISEhAYWEh/Pz8xDpNmjRBvXr1EB8fD+DhOsrmzZuLCQYA+Pv7Q61WIykpSazzaBuldUrbqAidp0uaNWuGv/76S9fLiIiIapzSLayVPQDA1dVVYznC3Llzn3r/kpISjB07Fu3bt0ezZs0AAOnp6ZBKpbCzs9Oo6+TkhPT0dLHOowlG6fnSc9rqqNVqPHjwoEJfH513l3z66aeYOHEiZs+ejTZt2sDa2lrjvDGGpYiIiGq669eva/wOlclkT70mPDwc58+fx5EjR4wZmt4qnGRERkZiwoQJePPNNwEAb731lsbjxQVBgEQiQXEx53mJiOjFYMiHccnlcp3+oT5q1CjExMTg0KFDqFu3rliuVCpRUFCArKwsjdGMjIwMKJVKsc7Jkyc12ivdffJoncd3pGRkZEAul8PS0rJCMVY4yZg1axZGjBiB3377raKXEBER1WgSiUTr+7wq2oYuBEHA6NGjsXXrVhw4cADu7u4a59u0aQNzc3Ps378fwcHBAIDk5GSkpqZCpVIBAFQqFebMmYPMzEw4OjoCAGJjYyGXy8WXn6pUKuzatUuj7djYWLGNiqhwklG6CaVTp04VbpyIiIgMKzw8HJs2bcJ///tf2NraimsoFAoFLC0toVAoMGTIEIwfPx4ODg6Qy+UYPXo0VCoV2rVrBwDo1q0bvL298d5772HevHlIT0/HtGnTEB4eLk7TjBgxAsuXL8fkyZMxePBgxMXFYcuWLdi5c2eFY9VpTUZlszUiIqKapCreXbJq1SoAQOfOnTXK169fj7CwMAAP3zNmYmKC4OBg5Ofnw9/fHytXrhTrmpqaIiYmBiNHjoRKpYK1tTVCQ0MRGRkp1nF3d8fOnTsxbtw4LFmyBHXr1sXatWvh7+9f4Vgr/JwMExMTKBSKpyYad+7cqfDNqys+J4NeBHxOBtVkz+o5GXN2JRrkORmfvNnKaLFWJZ1GMmbNmgWFQmGsWIiIiKgG0SnJCAkJEReIEBERvehMJJJKvyCtstdXZxVOMrgeg4iISFNVrMl4nlT4iZ86vOKEiIiIqOIjGSUlJcaMg4iI6Pmjx6vay2ujptL5seJERET0kAkkMKlkllDZ66szJhlERER6khhgJKMmL3nU+S2sRERERBXBkQwiIiI9cXeJdkwyiIiI9MTnZGjH6RIiIiIyCo5kEBER6YkLP7VjkkFERKQnExhguqQGb2HldAkREREZBUcyiIiI9MTpEu2YZBAREenJBJWfEqjJUwo1uW9ERERUhTiSQUREpCeJRAJJJec7Knt9dcYkg4iISE8SVP4lqjU3xWCSQUREpDc+8VM7rskgIiIio+BIBhERUSXU3HGIymOSQUREpCc+J0M7TpcQERGRUXAkg4iISE/cwqodkwwiIiI98Ymf2tXkvhEREVEV4kgGERGRnjhdoh2TDCIiIj3xiZ/acbqEiIiIjIIjGURERHridIl2TDKIiIj0xN0l2jHJICIi0hNHMrSryQkUERERVSGOZBAREemJu0u040gGERGRnkpfkFbZQxeHDh1Cz5494eLiAolEgm3btmmcDwsLE6dxSo/u3btr1Llz5w4GDBgAuVwOOzs7DBkyBDk5ORp1zp49iw4dOsDCwgKurq6YN2+ezl8fJhlERETPkdzcXLRs2RIrVqx4Yp3u3bsjLS1NPL7//nuN8wMGDEBSUhJiY2MRExODQ4cOYfjw4eJ5tVqNbt26wc3NDQkJCZg/fz4iIiKwZs0anWLldAkREZGeTCCBSSUnPHS9PiAgAAEBAVrryGQyKJXKcs9dvHgRv/76K06dOoW2bdsCAJYtW4Y333wTCxYsgIuLCzZu3IiCggJ88803kEqlaNq0KRITE7Fo0SKNZORpOJJBRESkJ0NOl6jVao0jPz9f77gOHDgAR0dHeHp6YuTIkbh9+7Z4Lj4+HnZ2dmKCAQB+fn4wMTHBiRMnxDodO3aEVCoV6/j7+yM5ORl3796tcBxMMoiIiKoBV1dXKBQK8Zg7d65e7XTv3h3ffvst9u/fjy+++AIHDx5EQEAAiouLAQDp6elwdHTUuMbMzAwODg5IT08X6zg5OWnUKf1cWqciOF1CRESkJ8n//qtsGwBw/fp1yOVysVwmk+nVXkhIiPjn5s2bo0WLFmjYsCEOHDiALl26VCpWXXEkg4iISE+GnC6Ry+Uah75JxuMaNGiA2rVr48qVKwAApVKJzMxMjTpFRUW4c+eOuI5DqVQiIyNDo07p5yet9SgPkwwiIqIa7MaNG7h9+zacnZ0BACqVCllZWUhISBDrxMXFoaSkBD4+PmKdQ4cOobCwUKwTGxsLT09P2NvbV/jeTDKIiIj0JPnf7pLKHLpOt+Tk5CAxMRGJiYkAgJSUFCQmJiI1NRU5OTmYNGkSjh8/jmvXrmH//v0ICgqCh4cH/P39AQBeXl7o3r07hg0bhpMnT+Lo0aMYNWoUQkJC4OLiAgDo378/pFIphgwZgqSkJPzwww9YsmQJxo8fr1OsXJNBRESkJ30eplVeG7o4ffo0fH19xc+lv/hDQ0OxatUqnD17FtHR0cjKyoKLiwu6deuG2bNna0y/bNy4EaNGjUKXLl1gYmKC4OBgLF26VDyvUCiwd+9ehIeHo02bNqhduzZmzJih0/ZVgEkGERGR3qoiyejcuTMEQXji+T179jy1DQcHB2zatElrnRYtWuDw4cO6BfcYTpcQERGRUXAkg4iISE+G3MJaEzHJICIi0pOJ5OFR2TZqKk6XEBERkVFwJIOIiEhPnC7RjkkGERGRnqpid8nzhNMlREREZBQcySAiItKTBJWf7qjBAxlMMoiIiPTF3SXacbqEiIiIjKLaj2Rcu3YN7u7uOHPmDFq1avXU+mFhYcjKysK2bduMHhtpl34rGwu+jsGhk5fwIL8Abi/VxtxJIWju6SrWufJ3BhZ8HYOTZ/9CcXEJGro5YfnMULg4PXzL3+aYeMTEnUHS5RvIvZ+P0//9FHIby6rqEpGouLgEq76LRUzc77h99x7q1JIjyK8thvfvAsn/VvKt3LAXvx78A+m3smBubgZvj5cwOqw7WjSpJ7Zz4fINfPnNbiT9eR0mJibwe70ZJg3vCStLw7zmm4yLu0u0q/IkIywsDNHR0QAAMzMz1K1bF2+//TYiIyNhYWEBV1dXpKWloXbt2lUcKeki+959vDNmGXxaeeDrz4fBQWGNv//5Fwrb/08QUm/+i/5jlqNPwKv4MNQfNtYWuHwtHTLp/39b5uUXosMrnujwiicWrt1VFV0hKtc3Px7Alp3x+HRCPzR0c0LS5RuYsWgLbKwtMKDX6wAAt7p18PEHvVDX2QF5+YXYsPUwRny8FjHfTIaDnQ0yb2dj+NSv4d+pJaZ+EITc+/mY99V2TFu4BYumvVfFPaSK4O4S7ao8yQCA7t27Y/369SgsLERCQgJCQ0MhkUjwxRdfwNTUFEqlsqpDJB2t2RwHZR07fD45RCxzda6lUWfRut3o6OOFye/3FMvquWgmk2HBHQEAJxKvGDFaIt39ceEafNs1RUcfLwDAS0oH7D6QiPPJ18U6gb4va1wzaXhPbN1zCn+mpKHdy41w6MRFmJmZ4pPwXjAxeTh7PW10b/QZuRipN/8t8/eBqh8JKr9wswbnGNVjTYZMJoNSqYSrqyt69eoFPz8/xMbGAng4XSKRSJCYmCjWT0pKQo8ePSCXy2Fra4sOHTrg6tWrGm0uWLAAzs7OqFWrFsLDw1FYWPgsu/TCizt2Ac09XfHhrGi0C56JoPcX4oedx8XzJSUlOHjiItzr1sHgKV+hXfBM9Alfgtgj56owaqKKa+ldHycSr+DajVsAgOS/buJM0jW8/opnufULC4vw0+4TsLW2gGcDFwBAQWExzM1MxQQDACxk5gCAM+evGbcDRM9AtRjJeNT58+dx7NgxuLm5lXv+n3/+QceOHdG5c2fExcVBLpfj6NGjKCoqEuv89ttvcHZ2xm+//YYrV66gX79+aNWqFYYNG1Zum/n5+cjPzxc/q9Vqw3bqBXQ97TY2bT+GQX06YUT/LjibfB2fLt8KczNT9PZ/BbezcpD7IB9rNsdh7KDumDisBw6fuoRREdHYsHAkXm3ZsKq7QKTVkL6dkXs/D0HDFsDURILiEgGjQ/0R+EZrjXoHT1zA5LmbkJdfiDoOtvjqs2GwV1gDAF5t2RAL1uzA+h8P4N1er+NBXgG+/GY3AODWHf4ceh6YQAKTSs53mNTgsYxqkWTExMTAxsYGRUVFyM/Ph4mJCZYvX15u3RUrVkChUGDz5s0wN3+Y8Tdu3Fijjr29PZYvXw5TU1M0adIEgYGB2L9//xOTjLlz52LWrFmG7dQLThAENGtcFxOGvgkA8G5UF5evpWPzjnj09n8FJSUCAKDLa00xqE+nh3U8XsKZpGv4fscxJhlU7e05dBY7487g8ynvoKGbE5Kv3sS8r3Y8XAData1Y75WWHvhx5Vjczc7FL7tPYuJn32HjktGoZWcDj/pKzJ7YDwvW7MDS9b/CxFSC/m+1Ry17G5jU5H2NNQinS7SrFkmGr68vVq1ahdzcXCxevBhmZmYIDg4ut25iYiI6dOggJhjladq0KUxNTcXPzs7OOHfuycPwU6dOxfjx48XParUarq6uT6xPT1fHQY6Gbk4aZQ3rOWHPobMAAHuFNcxMTeBRTp2E8ynPLE4ifS1auxND+voioHMrAEBjd2ekZWZh3Q+/aSQZVhZS1HOpjXoutdHSyw09Bn+Brb+exNCQNwA8XLcR6Psybt+9B0sLKSCRYMPWw6irrFXebYmeK9UiybC2toaHhwcA4JtvvkHLli2xbt06DBkypExdS8unb198PAGRSCQoKSl5Yn2ZTAaZjNvFDKl1s/pIuX5Lo+zajVt46X9bU6XmZmju6Yq/HquTcuOWuH2VqDrLyy+E5LHRBhMTCQRB0HpdiSCgoLCoTHkte1sAwNY9pyA1N0O71o0MFywZD4cytKoWCz8fZWJigo8//hjTpk3DgwcPypxv0aIFDh8+zIWc1VxYcEf8cfFvrNq4D3//8y927P8dP+w8jgFB7cU6Q/r5YveBRPyw8zj+/udfbNh2BL/FX0D/t14T69y6o8aFK//g73/+BQAk/5WGC1f+QZb6/jPvE9GjOvl44evNcTh04iL+Sb+D/UfPY8PWw3jjtWYAgPt5BViyfjf+uPg3bmbcxYX/bXHN/FeNbh1aiO18v/0oLly+gWs3bmHz9mOYu3IbxgwK4PNgnhMSA/1XU1WLkYzHvf3225g0aRJWrFiBPn36aJwbNWoUli1bhpCQEEydOhUKhQLHjx/Hq6++Ck/P8ld107PXokk9rJg1CAvX7cSKDbGo6+yAjz8Iwlt+bcQ63V5vjlljg/HV93H4dPlWuLs6YllEKNo2byDW+X5HPJZ/u1f8PGDcCgDA55P6oXf3V59dh4geM/WDICz/di/mrNiKO1k5qFNLjj4BPhgxwA8AYGoiwbXrtzBh3wbcVefCztYKTRu7ImrBSHjU//9t+eeSr2Plhljcz8uHe11HTB/dGz0f+XtC9DyrlkmGmZkZRo0ahXnz5iEgIEDjXK1atRAXF4dJkyahU6dOMDU1RatWrdC+ffsntEZVxVflDV+Vt9Y6fQJ80CfA54nnPwz1x4eh/oYOjajSrK0sMGXEW5gy4q1yz8uk5lg8Y+BT2/lsUshT61A1ZoCHcdXggQxIhKdNIL6A1Go1FAoFklIyYSuXV3U4REaRV1hc1SEQGU3OPTVaN3JGdnY25Eb4OV76eyIuMRU2tpVrP+eeGm+0qme0WKtStVuTQURERDVDtZwuISIiei5wd4lWTDKIiIj0xLewasckg4iISE98C6t2XJNBRERERsGRDCIiIj1xSYZ2TDKIiIj0xSxDK06XEBERkVFwJIOIiEhP3F2iHZMMIiIiPXF3iXacLiEiIiKj4EgGERGRnrjuUzsmGURERPpilqEVp0uIiIieI4cOHULPnj3h4uICiUSCbdu2aZwXBAEzZsyAs7MzLC0t4efnh8uXL2vUuXPnDgYMGAC5XA47OzsMGTIEOTk5GnXOnj2LDh06wMLCAq6urpg3b57OsTLJICIi0pPEQP/pIjc3Fy1btsSKFSvKPT9v3jwsXboUq1evxokTJ2BtbQ1/f3/k5eWJdQYMGICkpCTExsYiJiYGhw4dwvDhw8XzarUa3bp1g5ubGxISEjB//nxERERgzZo1OsXK6RIiIiI9VcXukoCAAAQEBJR7ThAEfPnll5g2bRqCgoIAAN9++y2cnJywbds2hISE4OLFi/j1119x6tQptG3bFgCwbNkyvPnmm1iwYAFcXFywceNGFBQU4JtvvoFUKkXTpk2RmJiIRYsWaSQjT8ORDCIiIj1JDHQAD0cPHj3y8/N1jiclJQXp6enw8/MTyxQKBXx8fBAfHw8AiI+Ph52dnZhgAICfnx9MTExw4sQJsU7Hjh0hlUrFOv7+/khOTsbdu3crHA+TDCIiomrA1dUVCoVCPObOnatzG+np6QAAJycnjXInJyfxXHp6OhwdHTXOm5mZwcHBQaNOeW08eo+K4HQJERGRvgy4u+T69euQy+VisUwmq2TDVY8jGURERHoy5MJPuVyuceiTZCiVSgBARkaGRnlGRoZ4TqlUIjMzU+N8UVER7ty5o1GnvDYevUdFMMkgIiKqIdzd3aFUKrF//36xTK1W48SJE1CpVAAAlUqFrKwsJCQkiHXi4uJQUlICHx8fsc6hQ4dQWFgo1omNjYWnpyfs7e0rHA+TDCIiIj2V7i6p7KGLnJwcJCYmIjExEcDDxZ6JiYlITU2FRCLB2LFj8emnn2L79u04d+4cBg4cCBcXF/Tq1QsA4OXlhe7du2PYsGE4efIkjh49ilGjRiEkJAQuLi4AgP79+0MqlWLIkCFISkrCDz/8gCVLlmD8+PE6xco1GURERHqqigd+nj59Gr6+vuLn0l/8oaGhiIqKwuTJk5Gbm4vhw4cjKysLr7/+On799VdYWFiI12zcuBGjRo1Cly5dYGJiguDgYCxdulQ8r1AosHfvXoSHh6NNmzaoXbs2ZsyYodP2VQCQCIIg6Ni/Gk+tVkOhUCApJRO2jyzCIapJ8gqLqzoEIqPJuadG60bOyM7O1lhMaSilvydOXroJG9vKtZ9zT41Xm7gYLdaqxJEMIiIiffHdJVoxySAiItKTPo8FL6+NmooLP4mIiMgoOJJBRESkp6p4d8nzhEkGERGRnrgkQzsmGURERPpilqEV12QQERGRUXAkg4iISE/cXaIdkwwiIiJ9GWDhZw3OMThdQkRERMbBkQwiIiI9cd2ndkwyiIiI9MUsQytOlxAREZFRcCSDiIhIT9xdoh2TDCIiIj3xseLacbqEiIiIjIIjGURERHriuk/tmGQQERHpi1mGVkwyiIiI9MSFn9pxTQYREREZBUcyiIiI9CSBAXaXGCSS6olJBhERkZ64JEM7TpcQERGRUXAkg4iISE98GJd2TDKIiIj0xgkTbThdQkREREbBkQwiIiI9cbpEOyYZREREeuJkiXacLiEiIiKj4EgGERGRnjhdoh2TDCIiIj3x3SXaMckgIiLSFxdlaMU1GURERGQUHMkgIiLSEwcytONIBhERkZ5KF35W9tBFREQEJBKJxtGkSRPxfF5eHsLDw1GrVi3Y2NggODgYGRkZGm2kpqYiMDAQVlZWcHR0xKRJk1BUVGSIL4kGjmQQERE9Z5o2bYp9+/aJn83M/v/X+bhx47Bz5078+OOPUCgUGDVqFHr37o2jR48CAIqLixEYGAilUoljx44hLS0NAwcOhLm5OT777DODxskkg4iISE9VtbvEzMwMSqWyTHl2djbWrVuHTZs24Y033gAArF+/Hl5eXjh+/DjatWuHvXv34sKFC9i3bx+cnJzQqlUrzJ49G1OmTEFERASkUmml+vMoTpcQERHpS2KgQ0eXL1+Gi4sLGjRogAEDBiA1NRUAkJCQgMLCQvj5+Yl1mzRpgnr16iE+Ph4AEB8fj+bNm8PJyUms4+/vD7VajaSkJN2D0YIjGURERNWAWq3W+CyTySCTycrU8/HxQVRUFDw9PZGWloZZs2ahQ4cOOH/+PNLT0yGVSmFnZ6dxjZOTE9LT0wEA6enpGglG6fnSc4bEJIOIiEhPhtxd4urqqlE+c+ZMRERElKkfEBAg/rlFixbw8fGBm5sbtmzZAktLy0pGY1hMMoiIiPRkyMeKX79+HXK5XCwvbxSjPHZ2dmjcuDGuXLmCrl27oqCgAFlZWRqjGRkZGeIaDqVSiZMnT2q0Ubr7pLx1HpXBNRlERETVgFwu1zgqmmTk5OTg6tWrcHZ2Rps2bWBubo79+/eL55OTk5GamgqVSgUAUKlUOHfuHDIzM8U6sbGxkMvl8Pb2NmifOJJBRESkt8rvLtF1wmXixIno2bMn3NzccPPmTcycOROmpqZ45513oFAoMGTIEIwfPx4ODg6Qy+UYPXo0VCoV2rVrBwDo1q0bvL298d5772HevHlIT0/HtGnTEB4eXuHEpqKYZBAREempKt7CeuPGDbzzzju4ffs26tSpg9dffx3Hjx9HnTp1AACLFy+GiYkJgoODkZ+fD39/f6xcuVK83tTUFDExMRg5ciRUKhWsra0RGhqKyMjIynWkHBJBEASDt/qcU6vVUCgUSErJhO0j82NENUleYXFVh0BkNDn31GjdyBnZ2dka6xwMpfT3xLW0O5VuX61Wo76zg9FirUpck0FERERGwekSIiIiPVXFdMnzhEkGERGRnqrqseLPC06XEBERkVFwJIOIiEhPnC7RjkkGERGRngz5WPGaiNMlREREZBQcySAiItIXhzK0YpJBRESkJ+4u0Y7TJURERGQUHMkgIiLSE3eXaMckg4iISE9ckqEdkwwiIiJ9McvQimsyiIiIyCg4kkFERKQn7i7RjkkGERGRnrjwUzsmGeUQBAEAkHPvXhVHQmQ8+UXFVR0CkdGU/vwu/XluLGq1ulq0UV0xySjHvf99c/q0aFjFkRARUWXcu3cPCoXC4O1KpVIolUo0cnc1SHtKpRJSqdQgbVUnEsHYad5zqKSkBDdv3oStrS0kNXkcq5pQq9VwdXXF9evXIZfLqzocIoPj9/izJwgC7t27BxcXF5iYGGePQ15eHgoKCgzSllQqhYWFhUHaqk44klEOExMT1K1bt6rDeOHI5XL+AKYajd/jz5YxRjAeZWFhUSMTA0PiFlYiIiIyCiYZREREZBRMMqjKyWQyzJw5EzKZrKpDITIKfo/Ti4oLP4mIiMgoOJJBRERERsEkg4iIiIyCSQYREREZBZMMIiIDu3btGiQSCRITEytUPywsDL169TJqTERVgUkGGVRYWBgkEgkkEgmkUik8PDwQGRmJoqKiqg6NyGAe/T43NzeHu7s7Jk+ejLy8PACAq6sr0tLS0KxZsyqOlKhq8YmfZHDdu3fH+vXrkZ+fj127diE8PBzm5uaYOnWqwe9VUFBQI5/3T9Vf6fd5YWEhEhISEBoaColEgi+++AKmpqZQKpVVHSJRleNIBhmcTCaDUqmEm5sbRo4cCT8/P2zfvh13797FwIEDYW9vDysrKwQEBODy5csa1/78889o2rQpZDIZ6tevj4ULF2qcr1+/PmbPno2BAwdCLpdj+PDhz7JrRKLS73NXV1f06tULfn5+iI2NBVD+dElSUhJ69OgBuVwOW1tbdOjQAVevXtVoc8GCBXB2dkatWrUQHh6OwsLCZ9klIoNjkkFGZ2lpiYKCAoSFheH06dPYvn074uPjIQgC3nzzTfEHaUJCAvr27YuQkBCcO3cOERERmD59OqKiojTaW7BgAVq2bIkzZ85g+vTpVdAjIk3nz5/HsWPHnjiq9s8//6Bjx46QyWSIi4tDQkICBg8erDGN+Ntvv+Hq1av47bffEB0djaioqDLf+0TPG06XkNEIgoD9+/djz549CAgIwLZt23D06FG89tprAICNGzfC1dUV27Ztw9tvv41FixahS5cuYuLQuHFjXLhwAfPnz0dYWJjY7htvvIEJEyZURZeIRDExMbCxsUFRURHy8/NhYmKC5cuXl1t3xYoVUCgU2Lx5M8zNzQE8/P5+lL29PZYvXw5TU1M0adIEgYGB2L9/P4YNG2b0vhAZC0cyyOBKf/haWFggICAA/fr1Q1hYGMzMzODj4yPWq1WrFjw9PXHx4kUAwMWLF9G+fXuNttq3b4/Lly+juLhYLGvbtu2z6QiRFr6+vkhMTMSJEycQGhqKQYMGITg4uNy6iYmJ6NChg5hglKdp06YwNTUVPzs7OyMzM9PgcRM9S0wyyOBKf/hevnwZDx48QHR0NCQSicHat7a2NlhbRPqytraGh4cHWrZsiW+++QYnTpzAunXryq1raWn51PYeT0AkEglKSkoMEitRVWGSQQZX+sO3Xr16MDN7OCPn5eWFoqIinDhxQqx3+/ZtJCcnw9vbW6xz9OhRjbaOHj2Kxo0ba/wLj6i6MTExwccff4xp06bhwYMHZc63aNEChw8f5kJOeuEwyaBnolGjRggKCsKwYcNw5MgR/PHHH3j33Xfx0ksvISgoCAAwYcIE7N+/H7Nnz8aff/6J6OhoLF++HBMnTqzi6Ime7u2334apqSlWrFhR5tyoUaOgVqsREhKC06dP4/Lly9iwYQOSk5OrIFKiZ4dJBj0z69evR5s2bdCjRw+oVCoIgoBdu3aJw8StW7fGli1bsHnzZjRr1gwzZsxAZGSkxqJPourKzMwMo0aNwrx585Cbm6txrlatWoiLi0NOTg46deqENm3a4Ouvv9a6RoOoJuCr3omIiMgoOJJBRERERsEkg4iIiIyCSQYREREZBZMMIiIiMgomGURERGQUTDKIiIjIKJhkEBERkVEwySCqpsLCwtCrVy/xc+fOnTF27NhnHseBAwcgkUiQlZX1xDoSiQTbtm2rcJsRERFo1apVpeK6du0aJBIJEhMTK9UOERkPkwwiHYSFhUEikUAikUAqlcLDwwORkZEoKioy+r1/+eUXzJ49u0J1K5IYEBEZm1lVB0D0vOnevTvWr1+P/Px87Nq1C+Hh4TA3N8fUqVPL1C0oKIBUKjXIfR0cHAzSDhHRs8KRDCIdyWQyKJVKuLm5YeTIkfDz88P27dsB/P8Ux5w5c+Di4gJPT08AwPXr19G3b1/Y2dnBwcEBQUFBuHbtmthmcXExxo8fDzs7O9SqVQuTJ0/G40/8f3y6JD8/H1OmTIGrqytkMhk8PDywbt06XLt2Db6+vgAAe3t7SCQS8f0vJSUlmDt3Ltzd3WFpaYmWLVvip59+0rjPrl270LhxY1haWsLX11cjzoqaMmUKGjduDCsrKzRo0ADTp08v9w2kX331FVxdXWFlZYW+ffsiOztb4/zatWvh5eUFCwsLNGnSBCtXrtQ5FiKqOkwyiCrJ0tISBQUF4uf9+/cjOTkZsbGxiImJQWFhIfz9/WFra4vDhw/j6NGjsLGxQffu3cXrFi5ciKioKHzzzTc4cuQI7ty5g61bt2q978CBA/H9999j6dKluHjxIr766ivY2NjA1dUVP//8MwAgOTkZaWlpWLJkCQBg7ty5+Pbbb7F69WokJSVh3LhxePfdd3Hw4EEAD5Oh3r17o2fPnkhMTMTQoUPx0Ucf6fw1sbW1RVRUFC5cuIAlS5bg66+/xuLFizXqXLlyBVu2bMGOHTvw66+/4syZM/jggw/E8xs3bsSMGTMwZ84cXLx4EZ999hmmT5+O6OhoneMhoioiEFGFhYaGCkFBQYIgCEJJSYkQGxsryGQyYeLEieJ5JycnIT8/X7xmw4YNgqenp1BSUiKW5efnC5aWlsKePXsEQRAEZ2dnYd68eeL5wsJCoW7duuK9BEEQOnXqJIwZM0YQBEFITk4WAAixsbHlxvnbb78JAIS7d++KZXl5eYKVlZVw7NgxjbpDhgwR3nnnHUEQBGHq1KmCt7e3xvkpU6aUaetxAIStW7c+8fz8+fOFNm3aiJ9nzpwpmJqaCjdu3BDLdu/eLZiYmAhpaWmCIAhCw4YNhU2bNmm0M3v2bEGlUgmCIAgpKSkCAOHMmTNPvC8RVS2uySDSUUxMDGxsbFBYWIiSkhL0798fERER4vnmzZtrrMP4448/cOXKFdja2mq0k5eXh6tXryI7OxtpaWnw8fERz5mZmaFt27ZlpkxKJSYmwtTUFJ06dapw3FeuXMH9+/fRtWtXjfKCggK8/PLLAICLFy9qxAEAKpWqwvco9cMPP2Dp0qW4evUqcnJyUFRUBLlcrlGnXr16eOmllzTuU1JSguTkZNja2uLq1asYMmQIhg0bJtYpKiqCQqHQOR4iqhpMMoh05Ovri1WrVkEqlcLFxQVmZpp/jaytrTU+5+TkoE2bNti4cWOZturUqaNXDJaWljpfk5OTAwDYuXOnxi934OE6E0OJj4/HgAEDMGvWLPj7+0OhUGDz5s1YuHChzrF+/fXXZZIeU1NTg8VKRMbFJINIR9bW1vDw8Khw/datW+OHH36Ao6NjmX/Nl3J2dsaJEyfQsWNHAA//xZ6QkIDWrVuXW7958+YoKSnBwYMH4efnV+Z86UhKcXGxWObt7Q2ZTIbU1NQnjoB4eXmJi1hLHT9+/OmdfMSxY8fg5uaGTz75RCz7+++/y9RLTU3FzZs34eLiIt7HxMQEnp6ecHJygouLC/766y8MGDBAp/sTUfXBhZ9ERjZgwADUrl0bQUFBOHz4MFJSUnDgwAF8+OGHuHHjBgBgzJgx+Pzzz7Ft2zZcunQJH3zwgdZnXNSvXx+hoaEYPHgwtm3bJra5ZcsWAICbmxskEgliYmJw69Yt5OTkwNbWFhMnTsS4ceMQHR2Nq1ev4vfff8eyZcvExZQjRozA5cuXMWnSJCQnJ2PTpk2IiorSqb+NGjVCamoqNm/ejKtXr2Lp0qXlLmK1sLBAaGgo/vjjDxw+fBgffvgh+vbtC6VSCQCYNWsW5s6di6VLl+LPP//EuXPnsH79eixatEineIio6jDJIDIyKysrHDp0CPXq1UPv3r3h5eWFIUOGIC8vTxzZmDBhAt577z2EhoZCpVLB1tYW//nPf7S2u2rVKvTp0wcffPABmjRpgmHDhiE3NxcA8NJLL2HWrFn46KOP4OTkhFGjRgEAZs+ejenTp2Pu3Lnw8vJC9+7dsXPnTri7uwN4uE7i559/xrZt29CyZUusXr0an332mU79feuttzBu3DiMGjUKrVq1wrFjxzB9+vQy9Tw8PNC7d2+8+eab6NatG1q0aKGxRXXo0KFYu3Yt1q9fj+bNm6NTp06IiooSYyWi6k8iPGllGREREVElcCSDiIiIjIJJBhERERkFkwwiIiIyCiYZREREZBRMMoiIiMgomGQQERGRUTDJICIiIqNgkkFERERGwSSDiIiIjIJJBhERERkFkwwiIiIyCiYZREREZBT/B0luSAS1k+fgAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHHCAYAAAAcbzQmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbANJREFUeJzt3Xtcjvf/B/DXXerueN8JnUgiUlNabGlGmUNoDsMwmZzHynGI70jOm+PCMIeVWYbNYRNGWDnlLGchEaMy1F3R+fr9QdfPrdy61e1WXk+P6/Ho/lyfz+d6X3fpfvf5fK7rkgiCIICIiIiI3jgdbQdARERE9K5iIkZERESkJUzEiIiIiLSEiRgRERGRljARIyIiItISJmJEREREWsJEjIiIiEhLmIgRERERaQkTMSIiIiItYSJGRGVy7do1tGvXDnK5HBKJBNu2bSvX/m/evAmJRILw8PBy7bci8/b2hre3d7n2efv2bRgYGODw4cPlevzevXujZ8+e5RAhUeXERIyoEkhISMBXX32FunXrwsDAADKZDM2bN0doaCiePHmi0WP7+/vj/PnzmDVrFtatW4emTZtq9HhvUv/+/SGRSCCTyUp8H69duwaJRAKJRIL58+er3f/du3cREhKCuLi4cor49U2fPh0eHh5o3ry52m1VnUdQUBA2b96Ms2fPllOkRJVLFW0HQERls2PHDnz++eeQSqXo168fGjVqhNzcXBw6dAjjx4/HxYsXsXLlSo0c+8mTJ4iNjcW3336LwMBAjRzDzs4OT548gZ6enkb6f5UqVarg8ePH2L59e7GRnYiICBgYGCA7O/u1+r579y6mTZuGOnXqwM3NrdTt9uzZ81rHe5n79+9j7dq1WLt27Wu1V3Ue77//Ppo2bYoFCxbgl19+KaeIiSoPjogRVWCJiYno3bs37OzscOnSJYSGhmLIkCEICAjAb7/9hkuXLuG9997T2PHv378PADAzM9PYMSQSCQwMDKCrq6uxY6gilUrRunVr/Pbbb8X2rV+/Hr6+vm8slsePHwMA9PX1oa+vX279/vrrr6hSpQo6depUbn0+r2fPntiyZQsyMzM10j9RRcZEjKgCmzt3LjIzM7FmzRpYW1sX2+/g4IBRo0aJr/Pz8zFjxgzUq1cPUqkUderUwf/+9z/k5OQotatTpw4+/fRTHDp0CB9++CEMDAxQt25dpRGNkJAQ2NnZAQDGjx8PiUSCOnXqAM+m9Iq+fl5ISAgkEolSWVRUFD7++GOYmZnBxMQEjo6O+N///ifuf9kasf3796NFixYwNjaGmZkZunTpgsuXL5d4vOvXr6N///4wMzODXC7HgAEDxKSmNPr06YNdu3YhLS1NLDtx4gSuXbuGPn36FKv/8OFDjBs3Di4uLjAxMYFMJkOHDh2Upueio6PxwQcfAAAGDBggTnEWnae3tzcaNWqEU6dOoWXLljAyMhLflxfXaPn7+8PAwKDY+fv4+KBq1aq4e/euyvPbtm0bPDw8YGJiUmzfypUrUa9ePRgaGuLDDz/EwYMHlfa/6jwAoG3btsjKykJUVJTKOIjeRUzEiCqw7du3o27duvjoo49KVX/w4MEIDg6Gu7s7Fi1aBC8vL8yZMwe9e/cuVvf69evo0aMH2rZtiwULFqBq1aro378/Ll68CADo1q0bFi1aBAD44osvsG7dOvzwww9qxX/x4kV8+umnyMnJwfTp07FgwQJ07tz5lQvG9+7dCx8fH6SmpiIkJARjx47FkSNH0Lx5c9y8ebNY/Z49eyIjIwNz5sxBz549ER4ejmnTppU6zm7dukEikWDLli1i2fr169GwYUO4u7sXq3/jxg1s27YNn376KRYuXIjx48fj/Pnz8PLyEpMiJycnTJ8+HQAwdOhQrFu3DuvWrUPLli3Ffh48eIAOHTrAzc0NP/zwA1q1alVifKGhoahRowb8/f1RUFAAAPjpp5+wZ88eLFmyBDY2Ni89t7y8PJw4caLE81izZg2++uorWFlZYe7cuWjevDk6d+6M27dvi3VKcx7Ozs4wNDQs1YUARO8cgYgqpPT0dAGA0KVLl1LVj4uLEwAIgwcPViofN26cAEDYv3+/WGZnZycAEA4cOCCWpaamClKpVPjmm2/EssTERAGAMG/ePKU+/f39BTs7u2IxTJ06VXj+186iRYsEAML9+/dfGnfRMcLCwsQyNzc3wcLCQnjw4IFYdvbsWUFHR0fo169fseMNHDhQqc/PPvtMqFat2kuP+fx5GBsbC4IgCD169BBat24tCIIgFBQUCFZWVsK0adNKfA+ys7OFgoKCYuchlUqF6dOni2UnTpwodm5FvLy8BADCihUrStzn5eWlVLZ7924BgDBz5kzhxo0bgomJidC1a9dXnuP169cFAMKSJUuUynNzcwULCwvBzc1NyMnJEctXrlwpAFA6vqrzKNKgQQOhQ4cOr4yH6F3DETGiCkqhUAAATE1NS1V/586dAICxY8cqlX/zzTfAs0X/z3N2dkaLFi3E1zVq1ICjoyNu3LhR5tiLFK0t+/PPP1FYWFiqNvfu3UNcXBz69+8Pc3NzsdzV1RVt27YVz/N5w4YNU3rdokULPHjwQHwPS6NPnz6Ijo5GcnIy9u/fj+Tk5BKnJfFsXZmOztNfrwUFBXjw4IE47Xr69OlSH1MqlWLAgAGlqtuuXTt89dVXmD59Orp16wYDAwP89NNPr2z34MEDAEDVqlWVyk+ePInU1FQMGzZMaT1a//79IZfLS30ORapWrYr//vtP7XZElR0TMaIKSiaTAQAyMjJKVf/WrVvQ0dGBg4ODUrmVlRXMzMxw69YtpfLatWsX66Nq1ap49OhRmeJ+Xq9evdC8eXMMHjwYlpaW6N27NzZt2qQyKSuK09HRsdg+Jycn/Pfff8jKylIqf/FcipIOdc6lY8eOMDU1xcaNGxEREYEPPvig2HtZpLCwEIsWLUL9+vUhlUpRvXp11KhRA+fOnUN6enqpj1mzZk21FuXPnz8f5ubmiIuLw+LFi2FhYVHqtoIgKL0uep/r16+vVK6np4e6deuWut/n+39xfSARMREjqrBkMhlsbGxw4cIFtdqV9sPwZVcpvviBrc4xitYvFTE0NMSBAwewd+9efPnllzh37hx69eqFtm3bFqtbFmU5lyJSqRTdunXD2rVrsXXr1peOhgHA7NmzMXbsWLRs2RK//vordu/ejaioKLz33nulHvnDs/dHHWfOnEFqaioA4Pz586VqU61aNUDNpPR1PHr0CNWrV9foMYgqIiZiRBXYp59+ioSEBMTGxr6yrp2dHQoLC3Ht2jWl8pSUFKSlpYlXQJaHqlWrKl1hWOTFUTcA0NHRQevWrbFw4UJcunQJs2bNwv79+/HPP/+89DwAID4+vti+K1euoHr16jA2Ni6X83hRnz59cObMGWRkZJR4gUORP/74A61atcKaNWvQu3dvtGvXDm3atCn2npTnCFFWVhYGDBgAZ2dnDB06FHPnzsWJEyde2a527dowNDREYmKiUnnR+/ziz0teXl6xuq86j/z8fNy+fRtOTk5qnBHRu4GJGFEFNmHCBBgbG2Pw4MFISUkptj8hIQGhoaHAs6k1AMWubFy4cCEAlOv9sOrVq4f09HScO3dOLLt37x62bt2qVO/hw4fF2hbdEPTFW2oUsba2hpubG9auXauU2Fy4cAF79uwRz1MTWrVqhRkzZmDp0qWwsrJ6aT1dXd1io22///47/v33X6WyooSxpKRVXUFBQUhKSsLatWuxcOFC1KlTB/7+/i99H4vo6emhadOmOHnypFJ506ZNUaNGDaxYsQK5ublieXh4eLF4X3Uely5dQnZ2dqmv7iV6l/DO+kQVWL169bB+/Xr06tULTk5OSnfWP3LkCH7//Xf0798fANC4cWP4+/tj5cqVSEtLg5eXF44fP461a9eia9euL701wuvo3bs3goKC8Nlnn2HkyJF4/Pgxli9fjgYNGigtVp8+fToOHDgAX19f2NnZITU1FcuWLUOtWrXw8ccfv7T/efPmoUOHDvD09MSgQYPw5MkTLFmyBHK5HCEhIeV2Hi/S0dHB5MmTX1nv008/xfTp0zFgwAB89NFHOH/+PCIiIoqtrapXrx7MzMywYsUKmJqawtjYGB4eHrC3t1crrv3792PZsmWYOnWqeBuKsLAweHt7Y8qUKZg7d67K9l26dMG3334LhUIhrj3U09PDzJkz8dVXX+GTTz5Br169kJiYiLCwMLXPIyoqCkZGRmjbtq1a50X0TtD2ZZtEVHZXr14VhgwZItSpU0fQ19cXTE1NhebNmwtLliwRsrOzxXp5eXnCtGnTBHt7e0FPT0+wtbUVJk2apFRHeHb7Cl9f32LHefG2CS+7fYUgCMKePXuERo0aCfr6+oKjo6Pw66+/Frt9xb59+4QuXboINjY2gr6+vmBjYyN88cUXwtWrV4sd48VbI+zdu1do3ry5YGhoKMhkMqFTp07CpUuXlOoUHe/F22OEhYUJAITExESV7+vzt694mZfdvuKbb74RrK2tBUNDQ6F58+ZCbGxsibed+PPPPwVnZ2ehSpUqSufp5eUlvPfeeyUe8/l+FAqFYGdnJ7i7uwt5eXlK9caMGSPo6OgIsbGxKs8hJSVFqFKlirBu3bpi+5YtWybY29sLUqlUaNq0qXDgwAG1zkMQBMHDw0Po27evyhiI3lUSQZ3VqkREVCkNGjQIV69eLXbn/LKKi4uDu7s7Tp8+rdbzNIneFUzEiIgISUlJaNCgAfbt24fmzZuXW7+9e/dGYWEhNm3aVG59ElUmTMSIiIiItIRXTRIRERFpCRMxIiIiIi1hIkZERESkJUzEiIiIiLSEN3QltRUWFuLu3bswNTXlQ3yJiCogQRCQkZEBGxsb6OhobkwmOztb6ckMr0tfXx8GBgblEtPbhokYqe3u3buwtbXVdhhERFRGt2/fRq1atTTSd3Z2NgxNqwH5j8vcl5WVFRITEytlMsZEjNRmamoKANB39odEV1/b4RBpRFL0fG2HQKQxGQoFHOxtxd/nmpCbmwvkP4bU2R8oy2dFQS6SL61Fbm4uEzEiAOJ0pERXn4kYVVpFz1wkqszeyPKSKgZl+qwQJJV7OTsTMSIiItIcCYCyJHyVfCkyEzEiIiLSHInO060s7Suxyn12RERERG8xjogRERGR5kgkZZyarNxzk0zEiIiISHM4NalS5T47IiIiorcYR8SIiIhIczg1qRITMSIiItKgMk5NVvLJu8p9dkRERERvMY6IERERkeZwalIlJmJERESkObxqUqXKfXZEREREbzGOiBEREZHmcGpSJSZiREREpDmcmlSJiRgRERFpDkfEVKrcaSYRERHRW4wjYkRERKQ5nJpUiYkYERERaY5EUsZEjFOTRERERKQBTMSIiIhIc3QkZd/K4LvvvoNEIsHo0aPFsuzsbAQEBKBatWowMTFB9+7dkZKSotQuKSkJvr6+MDIygoWFBcaPH4/8/HylOtHR0XB3d4dUKoWDgwPCw8PVjo+JGBEREWlO0Rqxsmyv6cSJE/jpp5/g6uqqVD5mzBhs374dv//+O2JiYnD37l1069ZN3F9QUABfX1/k5ubiyJEjWLt2LcLDwxEcHCzWSUxMhK+vL1q1aoW4uDiMHj0agwcPxu7du9WKkYkYERERVTqZmZnw8/PDqlWrULVqVbE8PT0da9aswcKFC/HJJ5+gSZMmCAsLw5EjR3D06FEAwJ49e3Dp0iX8+uuvcHNzQ4cOHTBjxgz8+OOPyM3NBQCsWLEC9vb2WLBgAZycnBAYGIgePXpg0aJFasXJRIyIiIg0p+g+YmXZACgUCqUtJydH5WEDAgLg6+uLNm3aKJWfOnUKeXl5SuUNGzZE7dq1ERsbCwCIjY2Fi4sLLC0txTo+Pj5QKBS4ePGiWOfFvn18fMQ+SouJGBEREWlOOU1N2traQi6Xi9ucOXNeesgNGzbg9OnTJdZJTk6Gvr4+zMzMlMotLS2RnJws1nk+CSvaX7RPVR2FQoEnT56U+u3h7SuIiIjorXf79m3IZDLxtVQqfWm9UaNGISoqCgYGBm8wwtfDETEiIiLSnHKampTJZErbyxKxU6dOITU1Fe7u7qhSpQqqVKmCmJgYLF68GFWqVIGlpSVyc3ORlpam1C4lJQVWVlYAACsrq2JXURa9flUdmUwGQ0PDUr89TMSIiIhIc97wVZOtW7fG+fPnERcXJ25NmzaFn5+f+LWenh727dsntomPj0dSUhI8PT0BAJ6enjh//jxSU1PFOlFRUZDJZHB2dhbrPN9HUZ2iPkqLU5NERESkOW/4od+mpqZo1KiRUpmxsTGqVasmlg8aNAhjx46Fubk5ZDIZRowYAU9PTzRr1gwA0K5dOzg7O+PLL7/E3LlzkZycjMmTJyMgIEAciRs2bBiWLl2KCRMmYODAgdi/fz82bdqEHTt2qBUvEzEiIiJ6pyxatAg6Ojro3r07cnJy4OPjg2XLlon7dXV1ERkZieHDh8PT0xPGxsbw9/fH9OnTxTr29vbYsWMHxowZg9DQUNSqVQurV6+Gj4+PWrFIBEEQyvXsqNJTKBSQy+WQugyBRFdf2+EQacSjE0u1HQKRxigUClhWkyM9PV1pAXx5H0Mul0PaehYkVV5/0byQn42cfd9qNFZt4ogYERERac4bnpqsaLhYn4iIiEhLOCJGREREGlS250VW9jEjJmJERESkOZyaVKlyp5lEREREbzGOiBEREZHmSCRlm5qs5CNiTMSIiIhIc17j7vjF2ldilfvsiIiIiN5iHBEjIiIizeFifZWYiBEREZHmcGpSJSZiREREpDkcEVOpcqeZRERERG8xjogRERGR5nBqUiUmYkRERKQ5nJpUqXKnmURERERvMY6IERERkcZIJBJIOCL2UkzEiIiISGOYiKnGqUkiIiIiLeGIGBEREWmO5NlWlvaVGBMxIiIi0hhOTarGqUkiIiIiLeGIGBEREWkMR8RUYyJGREREGsNETDUmYkRERKQxTMRU4xoxIiIiIi3hiBgRERFpDm9foRITMSIiItIYTk2qxqlJIiIiIi3hiBgRERFpjESCMo6IlWc0bx8mYkRERKQxEpRxarKSZ2KcmiQiIiLSEo6IERERkcZwsb5qTMSIiIhIc3j7CpU4NUlERESkJRwRIyIiIs0p49SkUMmnJjkiRkRERBpTtEasLJs6li9fDldXV8hkMshkMnh6emLXrl3ifm9v72L9Dxs2TKmPpKQk+Pr6wsjICBYWFhg/fjzy8/OV6kRHR8Pd3R1SqRQODg4IDw9/rfeHI2JERESkMWVdrK9u21q1auG7775D/fr1IQgC1q5diy5duuDMmTN47733AABDhgzB9OnTxTZGRkbi1wUFBfD19YWVlRWOHDmCe/fuoV+/ftDT08Ps2bMBAImJifD19cWwYcMQERGBffv2YfDgwbC2toaPj49a8TIRIyIiokqjU6dOSq9nzZqF5cuX4+jRo2IiZmRkBCsrqxLb79mzB5cuXcLevXthaWkJNzc3zJgxA0FBQQgJCYG+vj5WrFgBe3t7LFiwAADg5OSEQ4cOYdGiRWonYpyaJCIiIs2RlMMGQKFQKG05OTmvPHRBQQE2bNiArKwseHp6iuURERGoXr06GjVqhEmTJuHx48fivtjYWLi4uMDS0lIs8/HxgUKhwMWLF8U6bdq0UTqWj48PYmNj1X57OCJGREREGlNeU5O2trZK5VOnTkVISEiJbc6fPw9PT09kZ2fDxMQEW7duhbOzMwCgT58+sLOzg42NDc6dO4egoCDEx8djy5YtAIDk5GSlJAyA+Do5OVllHYVCgSdPnsDQ0LDU58dEjIiIiN56t2/fhkwmE19LpdKX1nV0dERcXBzS09Pxxx9/wN/fHzExMXB2dsbQoUPFei4uLrC2tkbr1q2RkJCAevXqafw8XsSpSSIiItKY8rpqsugqyKJNVSKmr68PBwcHNGnSBHPmzEHjxo0RGhpaYl0PDw8AwPXr1wEAVlZWSElJUapT9LpoXdnL6shkMrVGw8BEjIiIiDTpTd++oiSFhYUvXVMWFxcHALC2tgYAeHp64vz580hNTRXrREVFQSaTidObnp6e2Ldvn1I/UVFRSuvQSotTk0RERFRpTJo0CR06dEDt2rWRkZGB9evXIzo6Grt370ZCQgLWr1+Pjh07olq1ajh37hzGjBmDli1bwtXVFQDQrl07ODs748svv8TcuXORnJyMyZMnIyAgQByFGzZsGJYuXYoJEyZg4MCB2L9/PzZt2oQdO3aoHS8TMSIiItKYN30fsdTUVPTr1w/37t2DXC6Hq6srdu/ejbZt2+L27dvYu3cvfvjhB2RlZcHW1hbdu3fH5MmTxfa6urqIjIzE8OHD4enpCWNjY/j7+yvdd8ze3h47duzAmDFjEBoailq1amH16tVq37oCTMSIiIhIo97wQ7/XrFnz0n22traIiYl5ZR92dnbYuXOnyjre3t44c+aMesGVgGvEiIiIiLSEI2JERESkMW96arKiYSJGREREGsNETDUmYkRERKQxTMRU4xoxIiIiIi3hiBgRERFpzhu+arKiYSJGREREGsOpSdU4NUlERESkJRwRq8C8vb3h5uaGH374QduhkJpG+7fF1MAuWP7bP/jfws0wkxlh0lBftGrWELUsq+JBWiZ2RJ/D7BWRUGRli+3ed66NqYFd4NbQFoIAnLp4CyFLtuHCtX8BALbW5jj31/Rix2s7YD5OXrj5Rs+R3m0Lw3Yj8p+zuHYrBQZSPXzoWhchgV1Qv45lsbqCIODzUcuxL/YSfp03BL7ejcV9py/ewrSlfyLuym1IJECT9+wQMqIrXBrUesNnRK+LI2KqvVWJWP/+/ZGWloZt27ZpO5QKYcuWLdDT09N2GKSm951ro/9nzXHh6h2xzLqGHFY15AgO3YorN5Jha22OhRN7w6qGHP0nPr1LtLGhPv4IDcCug+cx7vuNqKKrg4lDffHHkgA08p2M/IJCsb8uXy/GlRv3xNcP07Le8FnSu+7I6esY/HlLvO9sh/yCAsxYth3dRizF0U2TYWwoVaq7/Ld/UNJnbebjHPQY9SM6tHDB/KBeyC8oxHcrd6DHiB9xYcdM6FXRfXMnRK9NgjImYpV8kRinJkspNzf3jR0rLy+vVPXMzc1hamqq8Xio/Bgb6mPl9P4YNfs3pGU8EcsvJ9yDf9Bq/H3wAm7++x8OnryKmcu3o32LRtDVffrftH4dK5ibGWPOT5G4fisVV24kY+6qXbCsJoOttbnScR6mZyH1QYa4PZ+kEb0JfywJQJ9OzeBUzxouDWph2dS+uJP8CHGXbyvVOx9/Bz9G7MfSKX2L9XHtZjIepT/GpK8+Rf06lnCqZ40JQzog9WEGbt97+AbPhkhzKkwiFhMTgw8//BBSqRTW1taYOHEi8vPzAQCRkZEwMzNDQUEBACAuLg4SiQQTJ04U2w8ePBh9+/7/f/RDhw6hRYsWMDQ0hK2tLUaOHImsrP8fNahTpw5mzJiBfv36QSaTYejQoSXGdfv2bfTs2RNmZmYwNzdHly5dcPPm/08BnThxAm3btkX16tUhl8vh5eWF06dPK/UhkUiwfPlydO7cGcbGxpg1axZCQkLg5uaGdevWoU6dOpDL5ejduzcyMjLEdt7e3hg9erRSzLNnz8bAgQNhamqK2rVrY+XKlUrHOnLkCNzc3GBgYICmTZti27ZtkEgkiIuLe63vC6ln3oRe2HP4AmKOx7+yrszEABlZ2Sh4lkRdv5WCB2mZ6Nv5I+hV0YWBVA99u3jiyo17SHrhQ+m3BV/h6u452LVqDDq0dNHY+RCVliLz6RR7VZmRWPY4OxdDpoRj3oSesKwuK9bGwc4S5nJj/PrXEeTm5eNJdi5+/TMWjvZWqP3CHx/09iqamizLVplViETs33//RceOHfHBBx/g7NmzWL58OdasWYOZM2cCAFq0aIGMjAzx4ZsxMTGoXr06oqOjxT5iYmLg7e0NAEhISED79u3RvXt3nDt3Dhs3bsShQ4cQGBiodNz58+ejcePGOHPmDKZMmVIsrry8PPj4+MDU1BQHDx7E4cOHYWJigvbt24sjaBkZGfD398ehQ4dw9OhR1K9fHx07dlRKqAAgJCQEn332Gc6fP4+BAweKcW7btg2RkZGIjIxETEwMvvvuO5Xv1YIFC9C0aVOcOXMGX3/9NYYPH474+Kcf+gqFAp06dYKLiwtOnz6NGTNmICgo6LW+J6S+bm2boHFDW0z/8a9X1jWXG2P8oA5Yu/WIWJb5OAedhoWiZ4cPcO/QItyJWYDWnk7oOWqZmKxlPc7Bt4u2oP/ENeg1ZjmOnk3Ar/OGMBkjrSosLMSkhX/Ao3FdODvYiOX/W7gZH7rao6OXa4ntTI0NsH3FKGzadQLWH49BLa9vsC/2MjaFfo0qnJasOCTlsFVib9UasZdZtmwZbG1tsXTpUkgkEjRs2BB3795FUFAQgoODIZfL4ebmhujoaDRt2hTR0dEYM2YMpk2bhszMTKSnp+P69evw8vICAMyZMwd+fn7iaFL9+vWxePFieHl5Yfny5TAwMAAAfPLJJ/jmm29eGtfGjRtRWFiI1atXixl7WFgYzMzMEB0djXbt2uGTTz5RarNy5UqYmZkhJiYGn376qVjep08fDBgwQKluYWEhwsPDxenHL7/8Evv27cOsWbNeGlPHjh3x9ddfAwCCgoKwaNEi/PPPP3B0dMT69eshkUiwatUqGBgYwNnZGf/++y+GDBmi8v3PyclBTk6O+FqhUKisT8XVtDTDnG+6o1vgUuTk5qusa2psgI0/DEd84j18t3KHWG4g1cPiyX44dvYGBk8Og66ODgL7tsbGH4bjE/95yM7Jw8P0LCxbv19sc+ZSEqyqyzGib2vsOnBeo+dI9DLj5m7C5YR72LVqjFi2M+YcDp68iphfJ7603ZPsXIycGQGPxnWxeuYAFBQWYumv+9Br9HLsXzsehgb6b+gMiDSnQoyIXb58GZ6enkrDk82bN0dmZibu3Hm64NnLywvR0dEQBAEHDx5Et27d4OTkhEOHDiEmJgY2NjaoX78+AODs2bMIDw+HiYmJuPn4+KCwsBCJiYniMZo2bSp+PWzYMKX6Rf1cv34dpqamYrm5uTmys7ORkJAAAEhJScGQIUNQv359yOVyyGQyZGZmIikpSekcnz9WkTp16iitAbO2tkZqaqrK98rV9f//spRIJLCyshLbxMfHw9XVVUw0AeDDDz985fs/Z84cyOVycbO1tX1lG1LWuGFtWFSTIXpdEO7HhuJ+bCg+blIfX/Xywv3YUOjoPP3ZNjGS4o/FXyPzcTb6jl+ltLarh09T1LY2R8D0X3HmUhJOXriJIZPDUdumGjq2LHlEAXh6ZaW9bY03cp5ELxo/dxN2H7yA7ctHoqZlVbH84MmrSLzzH+p8Mh7Vm41E9WYjAQD9glbj06+eXgn+x+6TSLr3ED8G94X7e3b4wMUeq2b2R9LdB9h54JzWzonUw6lJ1SrEiFhpeHt74+eff8bZs2ehp6eHhg0bwtvbG9HR0Xj06JE4GgYAmZmZ+OqrrzBy5Mhi/dSuXVv82tjYWPx6+vTpGDdunFLdzMxMNGnSBBEREcX6qVHj6Qefv78/Hjx4gNDQUNjZ2UEqlcLT07PY4v/nj1XkxSsiJRIJCgtVL7p+nTavMmnSJIwdO1Z8rVAomIyp6cCJeHzUW3kkc2lwX1y7mYLQX6JQWCjA1NgAfywOQG5ePvqM/anYyJmhgT4KBQGCIIhlT19DTORK0qhBTaT8x1FMerMEQcCEeb9jR/RZbF8xCnY1qyvtH+3fDl92+UiprPkXszF7THe0b9EIeDYipvPCB/HT10BhoQCqGHj7CtUqRCLm5OSEzZs3QxAE8Rty+PBhmJqaolatp/eSKVontmjRIjHp8vb2xnfffYdHjx4pTTG6u7vj0qVLcHBwKHUMFhYWsLCwUCpzd3fHxo0bYWFhAZms+ELTojiXLVuGjh07As8W9//333+v8S6UnaOjI3799Vfk5ORAKn16+fiJEyde2U4qlYr16fVkPs7B5YR7SmWPn+TiYXoWLifcg6mxATYvCYCRgT6+Cl4LUxMDmJo8Hbn871EmCgsFRB+7gukju2J+UE+s3BgDHR0JRvu3Q0FBAQ6evAoA6O3rgby8fJyLfzpS3KlVY/Tt5ImRs9Zr4azpXTbu+034Y/dJrJ8/FCZGBuIfAzITAxga6MOyuqzEBfq1rKqKSZu3R0MEL96Gcd9vwtBeXigsFPDD2j3Q1dVFi6YN3vg50euRSFDi7UnUaV+ZvXWJWHp6erEr+IYOHYoffvgBI0aMQGBgIOLj4zF16lSMHTsWOjpPZ1erVq0KV1dXREREYOnSpQCAli1bomfPnsjLy1MaEQsKCkKzZs0QGBiIwYMHw9jYGJcuXUJUVJTYtjT8/Pwwb948dOnSBdOnT0etWrVw69YtbNmyBRMmTECtWrVQv359rFu3Dk2bNoVCocD48eNhaGhYbu+XOvr06YNvv/0WQ4cOxcSJE5GUlIT58+cD78BfHG87V0dbfOBiDwA4sy1EeV/nYNy+9xDXbqXgi7E/IWhIB+z5+RsUFgo4d/UOeoxchpQH/z/iNW5Qe9ham6OgoBBXb6Zg4P9+xl/7eVUsvVk/bz4IAPh0WKhS+Y/BfdGnU7NS9dGgjhV+W/gVvl+1C+0GLoCOjgSuDWrhj8Vfw6q6XCNxE71pb10iFh0djffff1+pbNCgQdi5cyfGjx+Pxo0bw9zcHIMGDcLkyZOV6nl5eSEuLk68OtLc3BzOzs5ISUmBo6OjWM/V1RUxMTH49ttv0aJFCwiCgHr16qFXr15qxWpkZIQDBw4gKCgI3bp1Q0ZGBmrWrInWrVuLI2Rr1qzB0KFD4e7uDltbW8yePbvYFOebIpPJsH37dgwfPhxubm5wcXFBcHAw+vTpo7RujN6MTs99QB0+fQ1VPwhUWR8Aoo9fQfTxKy/dv2HHMWzYcazcYiR6XY9OlP6PWlVtWnk4oZWHUzlFRdrwdESsLFOT5RrOW0ciPL/ghN45ERERGDBgANLT00s9UqdQKCCXyyF1GQKJLq9aosrpdRIJoopCoVDAspoc6enpL11aUx7HkMvlqDvyD+hKi6+DLq2CnCzcWNxDo7Fq01s3Ikaa9csvv6Bu3bqoWbMmzp49i6CgIPTs2VNr06VERETvMiZi75jk5GQEBwcjOTkZ1tbW+Pzzz1Xel4yIiKgseNWkakzE3jETJkzAhAkTtB0GERG9I3jVpGoV4oauRERERJURR8SIiIhIY3R0JCpvOv0qQhnaVgRMxIiIiEhjODWpGqcmiYiIiLSEI2JERESkMbxqUjUmYkRERKQxnJpUjYkYERERaQxHxFTjGjEiIiIiLeGIGBEREWkMR8RUYyJGREREGsM1YqpxapKIiIhIS5iIERERkcZIIBGnJ19rg3pDYsuXL4erqytkMhlkMhk8PT2xa9cucX92djYCAgJQrVo1mJiYoHv37khJSVHqIykpCb6+vjAyMoKFhQXGjx+P/Px8pTrR0dFwd3eHVCqFg4MDwsPDX+v9YSJGREREGlM0NVmWTR21atXCd999h1OnTuHkyZP45JNP0KVLF1y8eBEAMGbMGGzfvh2///47YmJicPfuXXTr1k1sX1BQAF9fX+Tm5uLIkSNYu3YtwsPDERwcLNZJTEyEr68vWrVqhbi4OIwePRqDBw/G7t271X9/BEEQ1G5F7zSFQgG5XA6pyxBIdPW1HQ6RRjw6sVTbIRBpjEKhgGU1OdLT0yGTyTR2DLlcDtdJf0HXwPi1+ynIzsK5OZ3LFKu5uTnmzZuHHj16oEaNGli/fj169OgBALhy5QqcnJwQGxuLZs2aYdeuXfj0009x9+5dWFpaAgBWrFiBoKAg3L9/H/r6+ggKCsKOHTtw4cIF8Ri9e/dGWloa/v77b7Vi44gYERERaUyZpiXLeMVlQUEBNmzYgKysLHh6euLUqVPIy8tDmzZtxDoNGzZE7dq1ERsbCwCIjY2Fi4uLmIQBgI+PDxQKhTiqFhsbq9RHUZ2iPtTBqyaJiIhIY8rrqkmFQqFULpVKIZVKS2xz/vx5eHp6Ijs7GyYmJti6dSucnZ0RFxcHfX19mJmZKdW3tLREcnIyACA5OVkpCSvaX7RPVR2FQoEnT57A0NCw1OfHETEiIiJ669na2kIul4vbnDlzXlrX0dERcXFxOHbsGIYPHw5/f39cunTpjcZbWhwRIyIiIo0prxu63r59W2mN2MtGwwBAX18fDg4OAIAmTZrgxIkTCA0NRa9evZCbm4u0tDSlUbGUlBRYWVkBAKysrHD8+HGl/oquqny+zotXWqakpEAmk6k1GgaOiBEREZEmlddVk0W3oyjaVCViLyosLEROTg6aNGkCPT097Nu3T9wXHx+PpKQkeHp6AgA8PT1x/vx5pKaminWioqIgk8ng7Ows1nm+j6I6RX2ogyNiREREpDFv+hFHkyZNQocOHVC7dm1kZGRg/fr1iI6Oxu7duyGXyzFo0CCMHTsW5ubmkMlkGDFiBDw9PdGsWTMAQLt27eDs7Iwvv/wSc+fORXJyMiZPnoyAgAAx+Rs2bBiWLl2KCRMmYODAgdi/fz82bdqEHTt2qH1+TMSIiIio0khNTUW/fv1w7969p7fPcHXF7t270bZtWwDAokWLoKOjg+7duyMnJwc+Pj5YtmyZ2F5XVxeRkZEYPnw4PD09YWxsDH9/f0yfPl2sY29vjx07dmDMmDEIDQ1FrVq1sHr1avj4+KgdL+8jRmrjfcToXcD7iFFl9ibvI9Zk6g5UKcN9xPKzs3Bqmq9GY9UmjogRERGRxrzpqcmKhov1iYiIiLSEI2JERESkMeV1Q9fKiokYERERaQynJlXj1CQRERGRlnBEjIiIiDSGU5OqMREjIiIijeHUpGqcmiQiIiLSEo6IERERkcZwREw1JmJERESkMVwjphoTMSIiItIYjoipxjViRERERFrCETEiIiLSGE5NqsZEjIiIiDSGU5OqcWqSiIiISEs4IkZEREQaIynj9GLlHg9jIkZEREQapCORQKcMmVhZ2lYEnJokIiIi0hKOiBEREZHG8KpJ1ZiIERERkcbwqknVmIgRERGRxuhInm5laV+ZcY0YERERkZZwRIyIiIg0R1LG6cVKPiLGRIyIiIg0hov1VePUJBEREZGWcESMiIiINEby7F9Z2ldmTMSIiIhIY3jVpGqcmiQiIiLSEo6IERERkcbwhq6qlSoR++uvv0rdYefOncsSDxEREVUivGpStVIlYl27di1VZxKJBAUFBWWNiYiIiOidUKpErLCwUPOREBERUaWjI5FApwzDWmVpWxGUaY1YdnY2DAwMyi8aIiIiqlQ4Nama2ldNFhQUYMaMGahZsyZMTExw48YNAMCUKVOwZs0aTcRIREREFVTRYv2ybJWZ2onYrFmzEB4ejrlz50JfX18sb9SoEVavXl3e8RERERFVWmonYr/88gtWrlwJPz8/6OrqiuWNGzfGlStXyjs+IiIiqsCKpibLsqljzpw5+OCDD2BqagoLCwt07doV8fHxSnW8vb2LjboNGzZMqU5SUhJ8fX1hZGQECwsLjB8/Hvn5+Up1oqOj4e7uDqlUCgcHB4SHh6v9/qidiP37779wcHAoVl5YWIi8vDy1AyAiIqLKq2ixflk2dcTExCAgIABHjx5FVFQU8vLy0K5dO2RlZSnVGzJkCO7duyduc+fOFfcVFBTA19cXubm5OHLkCNauXYvw8HAEBweLdRITE+Hr64tWrVohLi4Oo0ePxuDBg7F792614lV7sb6zszMOHjwIOzs7pfI//vgD77//vrrdEREREZWbv//+W+l1eHg4LCwscOrUKbRs2VIsNzIygpWVVYl97NmzB5cuXcLevXthaWkJNzc3zJgxA0FBQQgJCYG+vj5WrFgBe3t7LFiwAADg5OSEQ4cOYdGiRfDx8Sl1vGqPiAUHByMwMBDff/89CgsLsWXLFgwZMgSzZs1SyhSJiIiIJOWwlUV6ejoAwNzcXKk8IiIC1atXR6NGjTBp0iQ8fvxY3BcbGwsXFxdYWlqKZT4+PlAoFLh48aJYp02bNkp9+vj4IDY2Vq341B4R69KlC7Zv347p06fD2NgYwcHBcHd3x/bt29G2bVt1uyMiIqJKrLwecaRQKJTKpVIppFKpyraFhYUYPXo0mjdvjkaNGonlffr0gZ2dHWxsbHDu3DkEBQUhPj4eW7ZsAQAkJycrJWEAxNfJyckq6ygUCjx58gSGhoalOr/Xuo9YixYtEBUV9TpNiYiIiNRma2ur9Hrq1KkICQlR2SYgIAAXLlzAoUOHlMqHDh0qfu3i4gJra2u0bt0aCQkJqFevXjlHrtpr39D15MmTuHz5MvBs3ViTJk3KMy4iIiKqBHQkT7eytAeA27dvQyaTieWvGg0LDAxEZGQkDhw4gFq1aqms6+HhAQC4fv066tWrBysrKxw/flypTkpKCgCI68qsrKzEsufryGSyUo+G4XUSsTt37uCLL77A4cOHYWZmBgBIS0vDRx99hA0bNrzyZImIiOjdUV5TkzKZTCkRexlBEDBixAhs3boV0dHRsLe3f2WbuLg4AIC1tTUAwNPTE7NmzUJqaiosLCwAAFFRUZDJZHB2dhbr7Ny5U6mfqKgoeHp6qnV+ai/WHzx4MPLy8nD58mU8fPgQDx8+xOXLl1FYWIjBgwer2x0RERFRuQkICMCvv/6K9evXw9TUFMnJyUhOTsaTJ08AAAkJCZgxYwZOnTqFmzdv4q+//kK/fv3QsmVLuLq6AgDatWsHZ2dnfPnllzh79ix2796NyZMnIyAgQByJGzZsGG7cuIEJEybgypUrWLZsGTZt2oQxY8aoFa/aI2IxMTE4cuQIHB0dxTJHR0csWbIELVq0ULc7IiIiquTe5FOKli9fDjy7aevzwsLC0L9/f+jr62Pv3r344YcfkJWVBVtbW3Tv3h2TJ08W6+rq6iIyMhLDhw+Hp6cnjI2N4e/vj+nTp4t17O3tsWPHDowZMwahoaGoVasWVq9erdatK/A6iZitrW2JN24tKCiAjY2Nut0RERFRJVZeU5OlJQiCyv22traIiYl5ZT92dnbFph5f5O3tjTNnzqgV34vUnpqcN28eRowYgZMnT4plJ0+exKhRozB//vwyBUNERESVS9Fi/bJslVmpRsSqVq2qlJFmZWXBw8MDVao8bZ6fn48qVapg4MCB6Nq1q+aiJSIiIqpESpWI/fDDD5qPhIiIiCqdNz01WdGUKhHz9/fXfCRERERU6ZT1MUWVOw0rww1dASA7Oxu5ublKZaW5xwcRERERvUYilpWVhaCgIGzatAkPHjwotr+goKC8YiMiIqIKTkcigU4ZphfL0rYiUPuqyQkTJmD//v1Yvnw5pFIpVq9ejWnTpsHGxga//PKLZqIkIiKiCkkiKftWmak9IrZ9+3b88ssv8Pb2xoABA9CiRQs4ODjAzs4OERER8PPz00ykRERERJWM2iNiDx8+RN26dYFn68EePnwIAPj4449x4MCB8o+QiIiIKqyiqybLslVmaididevWRWJiIgCgYcOG2LRpE/BspKzoIeBERERE4NTkK6mdiA0YMABnz54FAEycOBE//vgjDAwMMGbMGIwfP14TMRIRERFVSmqvEXv+qeJt2rTBlStXcOrUKTg4OIhPLSciIiICr5p8pTLdRwzPHoppZ2dXPtEQERFRpVLW6cVKnoeVLhFbvHhxqTscOXJkWeIhIiKiSoSPOFKtVInYokWLStWZRCJhIkZERERUSqVKxIqukiR63um/ZsGUj7SiSur2g8faDoFIYzIz3tzPt87rXBn4QvvKrMxrxIiIiIhehlOTqlX2RJOIiIjorcURMSIiItIYiQTQ4VWTL8VEjIiIiDRGp4yJWFnaVgScmiQiIiLSktdKxA4ePIi+ffvC09MT//77LwBg3bp1OHToUHnHR0RERBUYH/qtmtqJ2ObNm+Hj4wNDQ0OcOXMGOTk5AID09HTMnj1bEzESERFRBVU0NVmWrTJTOxGbOXMmVqxYgVWrVkFPT08sb968OU6fPl3e8RERERFVWmov1o+Pj0fLli2LlcvlcqSlpZVXXERERFQJ8FmTqqk9ImZlZYXr168XKz906BDq1q1bXnERERFRJaAjkZR5q8zUTsSGDBmCUaNG4dixY5BIJLh79y4iIiIwbtw4DB8+XDNREhERUYWkUw5bZab21OTEiRNRWFiI1q1b4/Hjx2jZsiWkUinGjRuHESNGaCZKIiIiokpI7URMIpHg22+/xfjx43H9+nVkZmbC2dkZJiYmmomQiIiIKiyuEVPtte+sr6+vD2dn5/KNhoiIiCoVHZRtnZcOKncmpnYi1qpVK5U3V9u/f39ZYyIiIiJ6J6idiLm5uSm9zsvLQ1xcHC5cuAB/f//yjI2IiIgqOE5NqqZ2IrZo0aISy0NCQpCZmVkeMREREVElwYd+q1ZuV4X27dsXP//8c3l1R0RERFTpvfZi/RfFxsbCwMCgvLojIiKiSkAiQZkW61f2qUm1R8S6deumtH322Wdo1qwZBgwYgK+++kozURIREVGFVLRGrCybOubMmYMPPvgApqamsLCwQNeuXREfH69UJzs7GwEBAahWrRpMTEzQvXt3pKSkKNVJSkqCr68vjIyMYGFhgfHjxyM/P1+pTnR0NNzd3SGVSuHg4IDw8HC13x+1EzG5XK60mZubw9vbGzt37sTUqVPVDoCIiIiovMTExCAgIABHjx5FVFQU8vLy0K5dO2RlZYl1xowZg+3bt+P3339HTEwM7t69i27duon7CwoK4Ovri9zcXBw5cgRr165FeHg4goODxTqJiYnw9fVFq1atEBcXh9GjR2Pw4MHYvXu3WvFKBEEQSlu5oKAAhw8fhouLC6pWrarWgajyUCgUkMvluJiYClOZTNvhEGlEdl6BtkMg0pjMDAXc61sjPT0dMg39Hi/6rJj852kYGJu+dj/ZWRmY2cX9tWO9f/8+LCwsEBMTg5YtWyI9PR01atTA+vXr0aNHDwDAlStX4OTkhNjYWDRr1gy7du3Cp59+irt378LS0hIAsGLFCgQFBeH+/fvQ19dHUFAQduzYgQsXLojH6t27N9LS0vD333+XOj61RsR0dXXRrl07pKWlqdOMiIiI3lGScviHZ4nd81tOTk6pjp+eng4AMDc3BwCcOnUKeXl5aNOmjVinYcOGqF27NmJjY4Fn695dXFzEJAwAfHx8oFAocPHiRbHO830U1Snqo7TUnpps1KgRbty4oW4zIiIiegcV3b6iLBsA2NraKi2NmjNnziuPXVhYiNGjR6N58+Zo1KgRACA5ORn6+vowMzNTqmtpaYnk5GSxzvNJWNH+on2q6igUCjx58qTU74/aV03OnDkT48aNw4wZM9CkSRMYGxsr7dfUECcRERG9u27fvq2UY0il0le2CQgIwIULF3Do0CENR/f6Sp2ITZ8+Hd988w06duwIAOjcubPSo44EQYBEIkFBAddVEBER0VPldUNXmUym1mBPYGAgIiMjceDAAdSqVUsst7KyQm5uLtLS0pRGxVJSUmBlZSXWOX78uFJ/RVdVPl/nxSstU1JSIJPJYGhoWOo4S52ITZs2DcOGDcM///xT6s6JiIjo3SaRSFQ+o7o07dUhCAJGjBiBrVu3Ijo6Gvb29kr7mzRpAj09Pezbtw/du3cHAMTHxyMpKQmenp4AAE9PT8yaNQupqamwsLAAAERFRUEmk8HZ2Vmss3PnTqW+o6KixD5Kq9SJWNHFlV5eXmodgIiIiOhNCQgIwPr16/Hnn3/C1NRUXNMll8thaGgIuVyOQYMGYezYsTA3N4dMJsOIESPg6emJZs2aAQDatWsHZ2dnfPnll5g7dy6Sk5MxefJkBAQEiFOiw4YNw9KlSzFhwgQMHDgQ+/fvx6ZNm7Bjxw614lVrjVhZMloiIiJ697zpZ00uX74cAODt7a1UHhYWhv79+wPPnputo6OD7t27IycnBz4+Pli2bJlYV1dXF5GRkRg+fDg8PT1hbGwMf39/TJ8+Xaxjb2+PHTt2YMyYMQgNDUWtWrWwevVq+Pj4qBVvqe8jpqOjA7lc/spk7OHDh2oFQBUP7yNG7wLeR4wqszd5H7FZO+PKfB+xbzu6aTRWbVJrRGzatGmQy+Wai4aIiIjoHaJWIta7d29x0RoRERHRq+hIJGV66HdZ2lYEpU7EuD6MiIiI1PWm14hVNKW+s74aj6QkIiIiolIo9YhYYWGhZiMhIiKiykcClGlSrZKPiKn9iCMiIiKi0tKBBDplyKbK0rYiYCJGREREGiMp44hYZV+iXuo1YkRERERUvjgiRkRERBrDqyZVYyJGREREGsP7iKnGqUkiIiIiLeGIGBEREWkMF+urxkSMiIiINEYHZZyarOS3r+DUJBEREZGWcESMiIiINIZTk6oxESMiIiKN0Snj9Ftln7qr7OdHRERE9NbiiBgRERFpjEQigaQM84tlaVsRMBEjIiIijZE828rSvjJjIkZEREQawzvrq8Y1YkRERERawhExIiIi0qjKPaZVNkzEiIiISGN4HzHVODVJREREpCUcESMiIiKN4e0rVGMiRkRERBrDO+urVtnPj4iIiOitxRExIiIi0hhOTarGRIyIiIg0hnfWV41Tk0RERERawhExIiIi0hhOTarGRIyIiIg0hldNqsZEjIiIiDSGI2KqVfZEk4iIiOitxRExIiIi0hheNakaR8SIiIhIY4oe+l2WTR0HDhxAp06dYGNjA4lEgm3btint79+/vzhdWrS1b99eqc7Dhw/h5+cHmUwGMzMzDBo0CJmZmUp1zp07hxYtWsDAwAC2traYO3fua70/TMSIiIio0sjKykLjxo3x448/vrRO+/btce/ePXH77bfflPb7+fnh4sWLiIqKQmRkJA4cOIChQ4eK+xUKBdq1awc7OzucOnUK8+bNQ0hICFauXKl2vJyaJCIiIo3RgQQ6ZZhgVLdthw4d0KFDB5V1pFIprKysStx3+fJl/P333zhx4gSaNm0KAFiyZAk6duyI+fPnw8bGBhEREcjNzcXPP/8MfX19vPfee4iLi8PChQuVErbS4IgYERERaUx5TU0qFAqlLScn57Vjio6OhoWFBRwdHTF8+HA8ePBA3BcbGwszMzMxCQOANm3aQEdHB8eOHRPrtGzZEvr6+mIdHx8fxMfH49GjR2rFwkSMiIiI3nq2traQy+XiNmfOnNfqp3379vjll1+wb98+fP/994iJiUGHDh1QUFAAAEhOToaFhYVSmypVqsDc3BzJycliHUtLS6U6Ra+L6pQWpyaJiIhIYyTP/pWlPQDcvn0bMplMLJdKpa/VX+/evcWvXVxc4Orqinr16iE6OhqtW7d+7ThfF0fEiIiISGPKa2pSJpMpba+biL2obt26qF69Oq5fvw4AsLKyQmpqqlKd/Px8PHz4UFxXZmVlhZSUFKU6Ra9ftvbsZZiIERER0Tvrzp07ePDgAaytrQEAnp6eSEtLw6lTp8Q6+/fvR2FhITw8PMQ6Bw4cQF5enlgnKioKjo6OqFq1qlrHZyJGREREGiN5dtXk627qTmtmZmYiLi4OcXFxAIDExETExcUhKSkJmZmZGD9+PI4ePYqbN29i37596NKlCxwcHODj4wMAcHJyQvv27TFkyBAcP34chw8fRmBgIHr37g0bGxsAQJ8+faCvr49Bgwbh4sWL2LhxI0JDQzF27Fi13x+uESMiIiKNeZ2bsr7YXh0nT55Eq1atxNdFyZG/vz+WL1+Oc+fOYe3atUhLS4ONjQ3atWuHGTNmKE11RkREIDAwEK1bt4aOjg66d++OxYsXi/vlcjn27NmDgIAANGnSBNWrV0dwcLDat64AEzEiIiLSpDediHl7e0MQhJfu37179yv7MDc3x/r161XWcXV1xcGDB9ULrgScmiQiIiLSEo6IERERkcaU1+0rKismYkRERKQxOpKnW1naV2acmiQiIiLSEo6IERERkcZwalI1JmJERESkMW/6qsmKhlOTRERERFrCETEiIiLSGEkZpxcr+YAYEzEiIiLSHF41qRqnJomIiIi05K0fEQsPD8fo0aORlpZW6jb9+/dHWloatm3bptHYtC06OhqtWrXCo0ePYGZmpu1wSE3J99Mxf1UkDhy/gic5ubCrWR1zxveGi6OtWOf6rRTMXxWJ4+duoKCgEPXsLLF0qj9sLKsCADZExiJy/xlcvHYHWY9zcPLPmZCZGGrxrIieKigoxPJfoxC5/zQePMpAjWoydGnTFEP7tIbk2errZev24O+Ys0i+nwY9vSpwdqiJEf3bw7VhbbGfS9fu4Iefd+Hi1dvQ0dFBm48bYfzQTjAylKo4Or1NeNWkalpNxF6WMD2fYPTq1QsdO3bUWoxvs48++gj37t2DXC7XdiikpvSMx/hi1BJ4uDlg1XdDYC43xq1//4Pc9P+TqKS7/6HPqKXo0eFDjPT3gYmxAa7dTIZU////22bn5KHFB45o8YEjFqzeqaWzISru59+jsWlHLGZ+0wv17Cxx8dodBC/cBBNjA/h1/RgAYFerBv73dVfUsjZHdk4e1m09iGH/W43InyfA3MwEqQ/SMXTSKvh4Ncakr7sg63EO5v70FyYv2ISFk7/U9ilSKfGqSdXe+hExQ0NDGBpq/y/8goICSCQS6OhofjY3NzcX+vr6r6ynr68PKysrjcdD5W/lhv2wqmGG7yb0Fstsrasp1Vm4ZhdaejhhwledxLLaNtWV6vTv3hIAcCzuusZjJlLH2Us30arZe2jp4QQAqGlljl3RcbgQf1us49vqfaU244d2wtbdJ3A18R6avV8fB45dRpUquvg2oKv4u3fyiG7oMXwRku7+V+z/A72dJGVccF/J87C3f41YeHh4sWm3mTNnwsLCAqamphg8eDAmTpwINze3Ym3nz58Pa2trVKtWDQEBAcjLyxP35eTkYNy4cahZsyaMjY3h4eGB6OjoYsf966+/4OzsDKlUiqSkpBJjXL16NZycnGBgYICGDRti2bJlSvuDgoLQoEEDGBkZoW7dupgyZYpSLCEhIXBzc8Pq1athb28PAwMDAIBEIsHq1avx2WefwcjICPXr18dff/0ltouOjoZEIhGnbYti3r17N5ycnGBiYoL27dvj3r17Ypv8/HyMHDkSZmZmqFatGoKCguDv74+uXbuq9X2hstl/5BJcHG0xctpaNOs+FV2+WoCNO46K+wsLCxFz7DLsa9XAwKCf0Kz7VPQICEXUofNajZuotBo718GxuOu4eec+ACD+xl2cuXgTH3/gWGL9vLx8/LHrGEyNDeBY1wYAkJtXAL0qukp/ABtI9QAAZy7cfCPnQaRpb30i9qKIiAjMmjUL33//PU6dOoXatWtj+fLlxer9888/SEhIwD///IO1a9ciPDwc4eHh4v7AwEDExsZiw4YNOHfuHD7//HO0b98e165dE+s8fvwY33//PVavXo2LFy/CwsKixHiCg4Mxa9YsXL58GbNnz8aUKVOwdu1asY6pqSnCw8Nx6dIlhIaGYtWqVVi0aJFSP9evX8fmzZuxZcsWxMXFieXTpk1Dz549ce7cOXTs2BF+fn54+PDhS9+fx48fY/78+Vi3bh0OHDiApKQkjBs3Ttz//fffIyIiAmFhYTh8+DAUCsUr19Ll5ORAoVAobVQ2t+89wPq/jsCuZg38/N0QfNHpI8xcuhVbdp8AADxIy0TWkxys3LAfLT5oiJ+/H4q2HzdCYMhaHD+boO3wiV5pUE9vtPdujC5D5sPddyJ6BoSib9eP4fuJu1K9mGOX4NF1Mpp2/ha/bj2In2YPQVW5MQDgw8b18OBRBsJ+j0ZeXj4UGY/xw8+7AAD3H/L3UEWhAwl0JGXYKvmYmNanJiMjI2FiYqJUVlBQ8NL6S5YswaBBgzBgwAAAQHBwMPbs2YPMzEylelWrVsXSpUuhq6uLhg0bwtfXF/v27cOQIUOQlJSEsLAwJCUlwcbm6V9e48aNw99//42wsDDMnj0bAJCXl4dly5ahcePGL41n6tSpWLBgAbp16wYAsLe3x6VLl/DTTz/B398fADB58mSxfp06dTBu3Dhs2LABEyZMEMtzc3Pxyy+/oEaNGkr99+/fH1988QUAYPbs2Vi8eDGOHz+O9u3blxhPXl4eVqxYgXr16gHPEs7p06crvX+TJk3CZ599BgBYunQpdu5UvbZozpw5mDZtmso6pB5BENCoQS18M/jp+kfn+rVw7WYyNmyPRTefD1BYKAAAWn/0Hgb08Hpax6Emzly8id+2H8GHjetpNX6iV9l94Bx27D+D74K+QD07S8Qn3MXcn7Y/XbTftqlY74PGDvh92Wg8Ss/Cll3HMW72r4gIHYFqZiZwqGOFGeN6Yf7K7Vgc9jd0dCXo07k5qlU1gU5lv6dBJcKpSdW0noi1atWq2IjWsWPH0Ldv3xLrx8fH4+uvv1Yq+/DDD7F//36lsvfeew+6urria2tra5w//3Ra5/z58ygoKECDBg2U2uTk5KBatf9fp6Ovrw9XV1cAQFJSEpydncV9//vf/zBq1CgkJCRg0KBBGDJkiLgvPz9faQH9xo0bsXjxYiQkJCAzMxP5+fmQyWRKx7azsyuWhAEQjw8AxsbGkMlkSE1NLfG9AQAjIyMxCSs676L66enpSElJwYcffiju19XVRZMmTVBYWPjSPidNmoSxY8eKrxUKBWxtbV9an16thrkM9ewslcrq1bbE7gPnAABV5caooqsDhxLqnLqQ+EZjJXodC1fvwKCerdDB++mykQb21riXmoY1G/9RSsSMDPRR26Y6attUR2MnO3w68Hts/fs4Bvf+BHi2jsy31ft48CgDhgb6gESCdVsPopZVtZcem6gi0XoiZmxsDAcHB6WyO3fulLlfPT09pdcSiURMNjIzM6Grq4tTp04pJWsAlEbnDA0NxcusbWxslKYMzc3NxVG4VatWwcPDQ6mfon5jY2Ph5+eHadOmwcfHB3K5HBs2bMCCBQuU6hsbG6t9HqWtLwjCS+uXhlQqhVTKS8XLk3ujOki8fV+p7Oad+6j57LYU+npV4OJoixsv1Em8c1+8dQXR2yw7Jw+SF0atdHRe/fuoUBCQm5dfrLxaVVMAwNbdJ6CvVwXN3OuXc8SkMRwSU0nriZi6HB0dceLECfTr108sO3HihFp9vP/++ygoKEBqaipatGhRqjZVqlQpljDiWYJ248YN+Pn5ldjuyJEjsLOzw7fffiuW3bp1S614y4tcLoelpSVOnDiBli2fXm1XUFCA06dPl3ixA2lO/+4t0XvkEiyP2IuO3m44dyUJG3ccxYwxPcQ6g3q1wpgZ6/CBa100c3PAgRNX8E/sJaxbOFysc/+hAvcfZuDWv/8BAOJv3IOxkRQ2FlVhJjPSyrkRAYCXhxNWbdgP6xpmqGdniSsJd7Fu60F0bfcBAOBxdi5W/bYP3s2cUcNchjRFFjZsP4LU/xRo1+L/ZwJ+++swGjvZwchQiqOnr2Hhmh0YNaAD75dXgfA+YqpVuERsxIgRGDJkCJo2bYqPPvoIGzduxLlz51C3bt1S99GgQQP4+fmhX79+WLBgAd5//33cv38f+/btg6urK3x9fUvd17Rp0zBy5EjI5XK0b98eOTk5OHnyJB49eoSxY8eifv36SEpKwoYNG/DBBx9gx44d2Lp162uefdmNGDECc+bMgYODAxo2bIglS5bg0aNH4sgfvRmuDWvjx2kDsGDNDvy4Lgq1rM3xv6+7oHObJmKddh+7YNro7vjpt/2YuXQr7G0tsCTEH01d/v9n/bftsVj6yx7xtd+YHwEA343vhW7tPwSRtkz6uguW/rIHs37ciodpmahRTYYeHTwwzK8NAEBXR4Kbt+/jm73r8EiRBTNTI7zXwBbh84fDoc7/35bnfPxtLFsXhcfZObCvZYEpI7qh03P/T4gqugqXiPn5+eHGjRsYN24csrOz0bNnT/Tv3x/Hjx9Xq5+wsDDMnDkT33zzDf79919Ur14dzZo1w6effqpWP4MHD4aRkRHmzZuH8ePHw9jYGC4uLhg9ejQAoHPnzhgzZgwCAwORk5MDX19fTJkyBSEhIWodp7wEBQUhOTkZ/fr1g66uLoYOHQofH59iU7Skea08ndHK01llnR4dPNCjg8dL94/098FIfx8NREdUNsZGBgga1hlBwzqXuF+qr4dFwf1K3Pe82eN7v7IOveXKeEPXSj4gBolQ1gVEb4G2bdvCysoK69at03YoFU5hYSGcnJzQs2dPzJgxo1RtFAoF5HI5LiamwvSFiw6IKovsvJdfvU1U0WVmKOBe3xrp6enFLh4rL0WfFfvjkmBi+vrHyMxQ4BO32hqNVZsq3IjY48ePsWLFCnEU57fffsPevXsRFRWl7dAqhFu3bmHPnj3w8vJCTk4Oli5disTERPTp00fboREREb1zKlwiJpFIsHPnTsyaNQvZ2dlwdHTE5s2b0aZNG22HViHo6OggPDwc48aNe3ovq0aNsHfvXjg5OWk7NCIiqox41aRKFS4RMzQ0xN69e7UdRoVla2uLw4cPazsMIiJ6R/CqSdUqXCJGREREFYekjIv1K/tF/RXuWZNERERElQVHxIiIiEhjuERMNSZiREREpDnMxFTi1CQRERGRlnBEjIiIiDSGV02qxkSMiIiINIZXTarGqUkiIiIiLeGIGBEREWkM1+qrxkSMiIiINIeZmEqcmiQiIqJK48CBA+jUqRNsbGwgkUiwbds2pf2CICA4OBjW1tYwNDREmzZtcO3aNaU6Dx8+hJ+fH2QyGczMzDBo0CBkZmYq1Tl37hxatGgBAwMD2NraYu7cua8VLxMxIiIi0hhJOfxTR1ZWFho3bowff/yxxP1z587F4sWLsWLFChw7dgzGxsbw8fFBdna2WMfPzw8XL15EVFQUIiMjceDAAQwdOlTcr1Ao0K5dO9jZ2eHUqVOYN28eQkJCsHLlSrXfH05NEhERkca86asmO3TogA4dOpS4TxAE/PDDD5g8eTK6dOkCAPjll19gaWmJbdu2oXfv3rh8+TL+/vtvnDhxAk2bNgUALFmyBB07dsT8+fNhY2ODiIgI5Obm4ueff4a+vj7ee+89xMXFYeHChUoJW2lwRIyIiIg0RlIOG56NQj2/5eTkqB1LYmIikpOT0aZNG7FMLpfDw8MDsbGxAIDY2FiYmZmJSRgAtGnTBjo6Ojh27JhYp2XLltDX1xfr+Pj4ID4+Ho8ePVIrJiZiRERE9NaztbWFXC4Xtzlz5qjdR3JyMgDA0tJSqdzS0lLcl5ycDAsLC6X9VapUgbm5uVKdkvp4/hilxalJIiIi0pxyumry9u3bkMlkYrFUKi17bG8BjogRERGRxpTXYn2ZTKa0vU4iZmVlBQBISUlRKk9JSRH3WVlZITU1VWl/fn4+Hj58qFSnpD6eP0ZpMREjIiKid4K9vT2srKywb98+sUyhUODYsWPw9PQEAHh6eiItLQ2nTp0S6+zfvx+FhYXw8PAQ6xw4cAB5eXlinaioKDg6OqJq1apqxcREjIiIiDSm6KrJsmzqyMzMRFxcHOLi4oBnC/Tj4uKQlJQEiUSC0aNHY+bMmfjrr79w/vx59OvXDzY2NujatSsAwMnJCe3bt8eQIUNw/PhxHD58GIGBgejduzdsbGwAAH369IG+vj4GDRqEixcvYuPGjQgNDcXYsWPVfn+4RoyIiIg05k3fWP/kyZNo1aqV+LooOfL390d4eDgmTJiArKwsDB06FGlpafj444/x999/w8DAQGwTERGBwMBAtG7dGjo6OujevTsWL14s7pfL5dizZw8CAgLQpEkTVK9eHcHBwWrfugIAJIIgCGq3oneaQqGAXC7HxcRUmD63cJKoMsnOK9B2CEQak5mhgHt9a6SnpystgC9PRZ8Vx6/chYnp6x8jM0OBDxvaaDRWbeKIGBEREWkOnzWpEhMxIiIi0pjXeUzRi+0rMy7WJyIiItISjogRERGRxrzpZ01WNEzEiIiISGO4REw1JmJERESkOczEVOIaMSIiIiIt4YgYERERaQyvmlSNiRgRERFpThkX61fyPIxTk0RERETawhExIiIi0hiu1VeNiRgRERFpDjMxlTg1SURERKQlHBEjIiIijeFVk6oxESMiIiKN4SOOVOPUJBEREZGWcESMiIiINIZr9VVjIkZERESaw0xMJSZiREREpDFcrK8a14gRERERaQlHxIiIiEhjJGW88rFyj4cxESMiIiIN4hIx1Tg1SURERKQlHBEjIiIijeENXVVjIkZEREQaxMlJVTg1SURERKQlHBEjIiIijeHUpGpMxIiIiEhjODGpGqcmiYiIiLSEI2JERESkMZyaVI2JGBEREWkMnzWpGhMxIiIi0hwuElOJa8SIiIiItIQjYkRERKQxHBBTjSNiREREpDFFi/XLsqkjJCQEEolEaWvYsKG4Pzs7GwEBAahWrRpMTEzQvXt3pKSkKPWRlJQEX19fGBkZwcLCAuPHj0d+fn55vSVKOCJGRERElcp7772HvXv3iq+rVPn/dGfMmDHYsWMHfv/9d8jlcgQGBqJbt244fPgwAKCgoAC+vr6wsrLCkSNHcO/ePfTr1w96enqYPXt2ucfKRIyIiIg0RhtXTVapUgVWVlbFytPT07FmzRqsX78en3zyCQAgLCwMTk5OOHr0KJo1a4Y9e/bg0qVL2Lt3LywtLeHm5oYZM2YgKCgIISEh0NfXf+1zKQmnJomIiEhzJOWwqenatWuwsbFB3bp14efnh6SkJADAqVOnkJeXhzZt2oh1GzZsiNq1ayM2NhYAEBsbCxcXF1haWop1fHx8oFAocPHixfJ4R5RwRIyIiIjeegqFQum1VCqFVCotVs/DwwPh4eFwdHTEvXv3MG3aNLRo0QIXLlxAcnIy9PX1YWZmptTG0tISycnJAIDk5GSlJKxof9G+8sZEjIiIiDSmvK6atLW1VSqfOnUqQkJCitXv0KGD+LWrqys8PDxgZ2eHTZs2wdDQsAyRaAYTMSIiItKY8nrE0e3btyGTycTykkbDSmJmZoYGDRrg+vXraNu2LXJzc5GWlqY0KpaSkiKuKbOyssLx48eV+ii6qrKkdWdlxTViRERE9NaTyWRKW2kTsczMTCQkJMDa2hpNmjSBnp4e9u3bJ+6Pj49HUlISPD09AQCenp44f/48UlNTxTpRUVGQyWRwdnYu9/PiiBgRERFpUNmumlR3YnPcuHHo1KkT7OzscPfuXUydOhW6urr44osvIJfLMWjQIIwdOxbm5uaQyWQYMWIEPD090axZMwBAu3bt4OzsjC+//BJz585FcnIyJk+ejICAgFInf+pgIkZEREQaU15Tk6V1584dfPHFF3jw4AFq1KiBjz/+GEePHkWNGjUAAIsWLYKOjg66d++OnJwc+Pj4YNmyZWJ7XV1dREZGYvjw4fD09ISxsTH8/f0xffr01z8JFSSCIAga6ZkqLYVCAblcjouJqTB9br6eqDLJzivQdghEGpOZoYB7fWukp6crrbsqT0WfFTfvPSzTMRQKBepYm2s0Vm3iGjEiIiIiLeHUJBEREWnMm56arGiYiBEREZHGaOMRRxUJpyaJiIiItIQjYkRERKQxnJpUjYkYERERaUx5PeKosuLUJBEREZGWcESMiIiINIdDYioxESMiIiKN4VWTqnFqkoiIiEhLOCJGREREGsOrJlVjIkZEREQawyViqjERIyIiIs1hJqYS14gRERERaQlHxIiIiEhjeNWkakzEiIiISGO4WF81JmKkNkEQAACZGRnaDoVIY3LyC7QdApHGFP3+Lvp9rkkKhUKr7d92TMRIbRnP/gN7uNbTdihERFQGGRkZkMvlGulbX18fVlZWqG9vW+a+rKysoK+vXy5xvW0kwptIh6lSKSwsxN27d2FqagpJZR8zfksoFArY2tri9u3bkMlk2g6HqFzx5/vNEwQBGRkZsLGxgY6O5q7by87ORm5ubpn70dfXh4GBQbnE9LbhiBipTUdHB7Vq1dJ2GO8kmUzGDyqqtPjz/WZpaiTseQYGBpU2gSovvH0FERERkZYwESMiIiLSEiZiRBWAVCrF1KlTIZVKtR0KUbnjzze9y7hYn4iIiEhLOCJGREREpCVMxIiIiIi0hIkYERERkZYwESOiEnl7e2P06NHaDoPKQXh4OMzMzNRq079/f3Tt2lVjMb0toqOjIZFIkJaWpu1Q6B3Fxfr0zujfvz/S0tKwbds2bYdSITx8+BB6enowNTXVdiikwst+rqOjo9GqVSs8evQIUqkUGRkZsLCwKHO/lU1ubi4ePnwIS0tLPimEtIJ31id6C+Tm5r6x56jl5eVBT0/vlfXMzc3fSDykeYaGhjA0NNR2GCgoKIBEItHoI3WKlPb/VNHzEIm0hVOTRABiYmLw4YcfQiqVwtraGhMnTkR+fj4AIDIyEmZmZigoKAAAxMXFQSKRYOLEiWL7wYMHo2/fvuLrQ4cOoUWLFjA0NIStrS1GjhyJrKwscX+dOnUwY8YM9OvXDzKZDEOHDi0xrtu3b6Nnz54wMzODubk5unTpgps3b4r7T5w4gbZt26J69eqQy+Xw8vLC6dOnlfqQSCRYvnw5OnfuDGNjY8yaNQshISFwc3PDunXrUKdOHcjlcvTu3Vt8oDtKmJqsU6cOZs+ejYEDB8LU1BS1a9fGypUrlY515MgRuLm5wcDAAE2bNsW2bdsgkUgQFxf3Wt8XKh8lTU3OnDkTFhYWMDU1xeDBgzFx4kS4ubkVazt//nxYW1ujWrVqCAgIQF5enrgvJycH48aNQ82aNWFsbAwPDw9ER0cXO+5ff/0FZ2dnSKVSJCUllRjj6tWr4eTkBAMDAzRs2BDLli1T2h8UFIQGDRrAyMgIdevWxZQpU5RiKfqZXr16Nezt7cXH6kgkEqxevRqfffYZjIyMUL9+ffz1119iuxenJoti3r17N5ycnGBiYoL27dvj3r17Ypv8/HyMHDkSZmZmqFatGoKCguDv7/9OTOVS+WMiRu+8f//9Fx07dsQHH3yAs2fPYvny5VizZg1mzpwJAGjRogUyMjJw5swZ4FnSVr16daUPnJiYGHh7ewMAEhIS0L59e3Tv3h3nzp3Dxo0bcejQIQQGBiodd/78+WjcuDHOnDmDKVOmFIsrLy8PPj4+MDU1xcGDB3H48GHxQ6HoIboZGRnw9/fHoUOHcPToUdSvXx8dO3ZUSqjw7EPqs88+w/nz5zFw4EAxzm3btiEyMhKRkZGIiYnBd999p/K9WrBgAZo2bYozZ87g66+/xvDhwxEfHw88e3Bzp06d4OLigtOnT2PGjBkICgp6re8JaVZERARmzZqF77//HqdOnULt2rWxfPnyYvX++ecfJCQk4J9//sHatWsRHh6O8PBwcX9gYCBiY2OxYcMGnDt3Dp9//jnat2+Pa9euiXUeP36M77//HqtXr8bFixdLnB6NiIhAcHAwZs2ahcuXL2P27NmYMmUK1q5dK9YxNTVFeHg4Ll26hNDQUKxatQqLFi1S6uf69evYvHkztmzZopT8T5s2DT179sS5c+fQsWNH+Pn54eHDhy99fx4/foz58+dj3bp1OHDgAJKSkjBu3Dhx//fff4+IiAiEhYXh8OHDUCgUlX4KlzRIIHpH+Pv7C126dClW/r///U9wdHQUCgsLxbIff/xRMDExEQoKCgRBEAR3d3dh3rx5giAIQteuXYVZs2YJ+vr6QkZGhnDnzh0BgHD16lVBEARh0KBBwtChQ5WOcfDgQUFHR0d48uSJIAiCYGdnJ3Tt2lVlvOvWrSsWV05OjmBoaCjs3r27xDYFBQWCqampsH37drEMgDB69GilelOnThWMjIwEhUIhlo0fP17w8PAQX3t5eQmjRo0SX9vZ2Ql9+/YVXxcWFgoWFhbC8uXLBUEQhOXLlwvVqlUTz1EQBGHVqlUCAOHMmTMqz5Ven7+/v6CrqysYGxsrbQYGBgIA4dGjR0JYWJggl8vFNh4eHkJAQIBSP82bNxcaN26s1K+dnZ2Qn58vln3++edCr169BEEQhFu3bgm6urrCv//+q9RP69athUmTJgmCIAhhYWECACEuLk7lOdSrV09Yv369UtmMGTMET0/Pl7aZN2+e0KRJE/H11KlTBT09PSE1NVWpHgBh8uTJ4uvMzEwBgLBr1y5BEAThn3/+Ed+n52O+fv262ObHH38ULC0txdeWlpbi7wNBEIT8/Hyhdu3aJf5+IXoVjojRO+/y5cvw9PRUWqjbvHlzZGZm4s6dOwAALy8vREdHQxAEHDx4EN26dYOTkxMOHTqEmJgY2NjYoH79+gCAs2fPIjw8HCYmJuLm4+ODwsJCJCYmisdo2rSp+PWwYcOU6hf1c/36dZiamorl5ubmyM7ORkJCAgAgJSUFQ4YMQf369SGXyyGTyZCZmVls+uf5YxWpU6eO0kJ8a2trpKamqnyvXF1dxa8lEgmsrKzENvHx8XB1dRWnhADgww8/LMV3gMqqVatWiIuLU9pWr1790vrx8fHFvjclfa/ee+896Orqiq+f/xk5f/48CgoK0KBBA6Wf3ZiYGPHnE8/WYBX93CQlJSnVnT17NrKyspCQkIBBgwYp7Zs5c6ZSPxs3bkTz5s1hZWUFExMTTJ48udjPuZ2dHWrUqFHsPJ7/uTU2NoZMJlP5s25kZIR69eqVeN7p6elISUlRer90dXXRpEmTl/ZHpAoX6xOVgre3N37++WecPXsWenp6aNiwIby9vREdHY1Hjx7By8tLrJuZmYmvvvoKI0eOLNZP7dq1xa+NjY3Fr6dPn6409VHUT5MmTRAREVGsn6IPG39/fzx48AChoaGws7ODVCqFp6enOHVZ0rGKvLhgXyKRoLCwUOX78DptSPOMjY3h4OCgVFb0R0RZqPp+Z2ZmQldXF6dOnVJK1gCIf0zg2YUCRX/k2NjYKE0ZmpubIzMzEwCwatUqeHh4KPVT1G9sbCz8/Pwwbdo0+Pj4QC6XY8OGDViwYIFS/ZJ+zl91HqWtzxsMkKYwEaN3npOTEzZv3gxBEMQPjMOHD8PU1BS1atUCnlsntmjRIjHp8vb2xnfffYdHjx7hm2++Eftzd3fHpUuXin0wqmJhYVFs7Yy7uzs2btwICwsLyGSyEtsdPnwYy5YtQ8eOHYFni/v/+++/13gXys7R0RG//vorcnJyxIc3nzhxQiuxkGqOjo44ceIE+vXrJ5ap+716//33UVBQgNTUVLRo0aJUbapUqVLi/wsbGxvcuHEDfn5+JbY7cuQI7Ozs8O2334plt27dUive8iKXy2FpaYkTJ06gZcuWwLOrQU+fPl3ixQ5Er8KpSXqnpKenF5vCGTp0KG7fvo0RI0bgypUr+PPPPzF16lSMHTtWvMy+atWqcHV1RUREhLgov2XLljh9+jSuXr2qNCIWFBSEI0eOIDAwEHFxcbh27Rr+/PPPYov1X8XPzw/Vq1dHly5dcPDgQSQmJiI6OhojR44URzvq16+PdevW4fLlyzh27Bj8/Py0dpuCPn36oLCwEEOHDsXly5exe/duzJ8/H3g2okBvjxEjRmDNmjVYu3Ytrl27hpkzZ+LcuXNqfZ8aNGgAPz8/9OvXD1u2bEFiYiKOHz+OOXPmYMeOHWrFM23aNMyZMweLFy/G1atXcf78eYSFhWHhwoXAs5/zpKQkbNiwAQkJCVi8eDG2bt2q9nmXlxEjRmDOnDn4888/ER8fj1GjRuHRo0f8OafXwkSM3inR0dF4//33lbYZM2Zg586dOH78OBo3boxhw4Zh0KBBmDx5slJbLy8vFBQUiImYubk5nJ2dYWVlBUdHR7Geq6srYmJicPXqVbRo0QLvv/8+goODYWNjo1asRkZGOHDgAGrXri2uSRs0aBCys7PFEbI1a9bg0aNHcHd3x5dffomRI0eqddPO8iSTybB9+3bExcXBzc0N3377LYKDgwFAad0YaZ+fnx8mTZqEcePGwd3dHYmJiejfv7/a36ewsDD069cP33zzDRwdHdG1a1ecOHFCaQq+NAYPHozVq1cjLCwMLi4u8PLyQnh4OOzt7QEAnTt3xpgxYxAYGAg3NzccOXKkxCuN35SgoCB88cUX6NevHzw9PcV1oPw5p9fBO+sTkcZERERgwIABSE9PfytuKEov17ZtW1hZWWHdunXaDqXCKSwshJOTE3r27IkZM2ZoOxyqYLhGjIjKzS+//IK6deuiZs2aOHv2LIKCgtCzZ08mYW+Zx48fY8WKFfDx8YGuri5+++037N27F1FRUdoOrUK4desW9uzZAy8vL+Tk5GDp0qVITExEnz59tB0aVUBMxIio3CQnJyM4OBjJycmwtrbG559/jlmzZmk7LHqBRCLBzp07MWvWLGRnZ8PR0RGbN29GmzZttB1ahaCjo4Pw8HCMGzcOgiCgUaNG2Lt3L5ycnLQdGlVAnJokIiIi0hIu1iciIiLSEiZiRERERFrCRIyIiIhIS5iIEREREWkJEzEiqpD69++Prl27iq+9vb0xevToNx5HdHQ0JBIJ0tLSXlpHIpFg27Ztpe4zJCSkzI/LuXnzJiQSidKzHYno7cNEjIjKTf/+/SGRSCCRSKCvrw8HBwdMnz4d+fn5Gj/2li1bSn0zzdIkT0REbwLvI0ZE5ap9+/YICwtDTk4Odu7ciYCAAOjp6WHSpEnF6ubm5kJfX79cjmtubl4u/RARvUkcESOiciWVSmFlZQU7OzsMHz4cbdq0wV9//QU8N504a9Ys2NjYiM/ovH37Nnr27AkzMzOYm5ujS5cuuHnzpthnQUEBxo4dCzMzM1SrVg0TJkzAi7dAfHFqMicnB0FBQbC1tYVUKoWDgwPWrFmDmzdvolWrVsCzh7lLJBL0798fePaomjlz5sDe3h6GhoZo3Lgx/vjjD6Xj7Ny5Ew0aNIChoSFatWqlFGdpBQUFoUGDBjAyMkLdunUxZcoU5OXlFav3008/wdbWFkZGRujZsyfS09OV9q9evRpOTk4wMDBAw4YNsWzZMrVjISLtYiJGRBplaGiI3Nxc8fW+ffsQHx+PqKgoREZGIi8vDz4+PjA1NcXBgwdx+PBhmJiYoH379mK7BQsWIDw8HD///DMOHTqEhw8fYuvWrSqP269fP/z2229YvHgxLl++jJ9++gkmJiawtbXF5s2bAQDx8fG4d+8eQkNDAQBz5szBL7/8ghUrVuDixYsYM2YM+vbti5iYGOBZwtitWzd06tQJcXFxGDx4MCZOnKj2e2Jqaorw8HBcunQJoaGhWLVqFRYtWqRU5/r169i0aRO2b9+Ov//+G2fOnMHXX38t7o+IiEBwcDBmzZqFy5cvY/bs2ZgyZQrWrl2rdjxEpEUCEVE58ff3F7p06SIIgiAUFhYKUVFRglQqFcaNGyfut7S0FHJycsQ269atExwdHYXCwkKxLCcnRzA0NBR2794tCIIgWFtbC3PnzhX35+XlCbVq1RKPJQiC4OXlJYwaNUoQBEGIj48XAAhRUVElxvnPP/8IAIRHjx6JZdnZ2YKRkZFw5MgRpbqDBg0SvvjiC0EQBGHSpEmCs7Oz0v6goKBifb0IgLB169aX7p83b57QpEkT8fXUqVMFXV1d4c6dO2LZrl27BB0dHeHevXuCIAhCvXr1hPXr1yv1M2PGDMHT01MQBEFITEwUAAhnzpx56XGJSPu4RoyIylVkZCRMTEyQl5eHwsJC9OnTByEhIeJ+FxcXpXVhZ8+exfXr12FqaqrUT3Z2NhISEpCeno579+7Bw8ND3FelShU0bdq02PRkkbi4OOjq6sLLy6vUcV+/fh2PHz9G27Ztlcpzc3Px/vvvAwAuX76sFAcAeHp6lvoYRTZu3IjFixcjISEBmZmZyM/Ph0wmU6pTu3Zt1KxZU+k4hYWFiI+Ph6mpKRISEjBo0CAMGTJErJOfnw+5XK52PESkPUzEiKhctWrVCsuXL4e+vj5sbGxQpYryrxljY2Ol15mZmWjSpAkiIiKK9VWjRo3XisHQ0FDtNpmZmQCAHTt2KCVAeLburbzExsbCz88P06ZNg4+PD+RyOTZs2IAFCxaoHeuqVauKJYa6urrlFisRaR4TMSIqV8bGxnBwcCh1fXd3d2zcuBEWFhbFRoWKWFtb49ixY2jZsiXwbOTn1KlTcHd3L7G+i4sLCgsLERMTgzZt2hTbXzQiV1BQIJY5OztDKpUiKSnppSNpTk5O4oUHRY4ePVrqcwWAI0eOwM7ODt9++61YduvWrWL1kpKScPfuXdjY2IjH0dHRgaOjIywtLWFjY4MbN27Az89PreMT0duFi/WJSKv8/PxQvXp1dOnSBQcPHkRiYiKio6MxcuRI3LlzBwAwatQofPfdd9i2bRuuXLmCr7/+WuU9wOrUqQN/f38MHDgQ27ZtE/vctGkTAMDOzg4SiQSRkZG4f/8+MjMzYWpqinHjxmHMmDFYu3YtEhIScPr0aSxZskRcAD9s2DBcu3YN48ePR3x8PNavX4/w8HC1zrd+/fpISkrChg0bkJCQgMWLF5d44YGBgQH8/f1x9uxZHDx4ECNHjkTPnj1hZWUFAJg2bRrmzJmDxYsX4+rVqzh//jzCwsKwcOFCteIhIu1iIkZEWmVkZIQDBw6gdu3a6NatG5ycnDBo0CBkZ2eLI2TffPMNvvzyS/j7+8PT0xOmpqb47LPPVPa7fPly9OjRA19//TUaNmyIIUOGICsrCwBQs2ZNTJs2DRMnToSlpSUCAwMBADNmzMCUKVMwZ84cODk5oX379tixYwfs7e2BZ+u2Nm/ejG3btqFx48ZYsWIFZs+erdb5du7cGWPGjEFgYCDc3Nxw5MgRTJkypVg9BwcHdOvWDR07dkS7du3g6uqqdHuKwYMHY/Xq1QgLC4OLiwu8vLwQHh4uxkpEFYNEeNlqVyIiIiLSKI6IEREREWkJEzEiIiIiLWEiRkRERKQlTMSIiIiItISJGBEREZGWMBEjIiIi0hImYkRERERawkSMiIiISEuYiBERERFpCRMxIiIiIi1hIkZERESkJUzEiIiIiLTk/wBh4WGpAl9J/AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -534,21 +538,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "Classification Report:\n", - " precision recall f1-score support\n", + "Classification Report for Random Forest:\n", + " precision recall f1-score support\n", "\n", - " Poor 0.89 0.94 0.91 4533\n", - " Rich 0.77 0.63 0.70 1500\n", + " Lower-earning 0.89 0.94 0.91 4533\n", + "Higher-earning 0.77 0.63 0.70 1500\n", "\n", - " accuracy 0.86 6033\n", - " macro avg 0.83 0.79 0.80 6033\n", - "weighted avg 0.86 0.86 0.86 6033\n", + " accuracy 0.86 6033\n", + " macro avg 0.83 0.79 0.80 6033\n", + " weighted avg 0.86 0.86 0.86 6033\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAHHCAYAAAASxkpJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXv1JREFUeJzt3XlYVOX7P/D3sMywziAoDCgiiiIoamrpZO4kIpYmZqYluKaBJa5ZLogZpea+lgto+lHTMsUVxaUULUlKEUlRQ1MgFxhB2c/vD7+cnyM4MsOMIL1fXee6nOc85zn3GSbm5lnOkQiCIICIiIjIwEyqOgAiIiKqmZhkEBERkVEwySAiIiKjYJJBRERERsEkg4iIiIyCSQYREREZBZMMIiIiMgomGURERGQUTDKIiIjIKJhk0HNx6dIl9OjRAwqFAhKJBDt37jRo+9euXYNEIkFUVJRB232RdenSBV26dKnqMIzq6NGjkEgkOHr0aFWHQkTlYJLxH5KamooPPvgADRs2hIWFBeRyOTp06IDFixfj4cOHRj13UFAQzp07hzlz5mDjxo1o27atUc/3PAUHB0MikUAul5f7Pl66dAkSiQQSiQTz58/Xuf2bN28iPDwciYmJBohWf6XXULrJ5XJ07twZe/bsqdK4qpsn36fSTalUVnVo5dq7dy/Cw8OrOgyqocyqOgB6Pvbs2YO3334bMpkMQ4YMQfPmzVFQUIBffvkFkyZNQlJSEr755hujnPvhw4eIj4/HZ599htDQUKOcw83NDQ8fPoS5ublR2n8WMzMzPHjwALt378aAAQM09m3atAkWFhbIy8vTq+2bN29i1qxZaNCgAVq1alXh4w4ePKjX+bR5/fXXMWTIEAiCgL///hsrV67EG2+8gX379sHPz8/g53tRlb5Pj7O0tKyiaLTbu3cvli9fzkSDjIJJxn/A1atXMXDgQLi5uSEuLg7Ozs7ivpCQEFy+fNmof43++++/AAA7OzujnUMikcDCwsJo7T+LTCZDhw4d8L///a9MkrF582YEBARgx44dzyWWBw8ewMrKClKp1OBtN2nSBO+99574OjAwEN7e3li8eDGTjMc8+T4ZSlFREUpKSozysyUyBg6X/AfMnTsXOTk5WLt2rUaCUcrDwwMff/yx+LqoqAizZ89Go0aNIJPJ0KBBA3z66afIz8/XOK5Bgwbo3bs3fvnlF7zyyiuwsLBAw4YNsWHDBrFOeHg43NzcAACTJk2CRCJBgwYNADwaZij99+PCw8MhkUg0ymJjY/Haa6/Bzs4ONjY28PT0xKeffiruf9qcjLi4OHTs2BHW1taws7NDnz59kJycXO75Ll++jODgYNjZ2UGhUGDo0KF48ODB09/YJwwaNAj79u1DVlaWWPbbb7/h0qVLGDRoUJn6d+/excSJE+Hj4wMbGxvI5XL4+/vjjz/+EOscPXoUL7/8MgBg6NChYtd76XV26dIFzZs3R0JCAjp16gQrKyvxfXlyTkZQUBAsLCzKXL+fnx9q1aqFmzdvVvhaS3l5eaF27dpITU3VKP/pp58QEBAAFxcXyGQyNGrUCLNnz0ZxcbFGvdL4L1y4gK5du8LKygp169bF3Llzy5zrxo0b6Nu3L6ytreHo6IiwsLAyn8lS33//Pdq0aQNLS0vUrl0b7733Hv755x+NOsHBwbCxsUFaWhp69+4NGxsb1K1bF8uXLwcAnDt3Dt26dYO1tTXc3NywefNmnd+fp8nMzMTw4cPh5OQECwsLtGzZEtHR0Rp1Sj/T8+fPx6JFi8T/Hy9cuAAAuHjxIvr37w97e3tYWFigbdu22LVrl0YbhYWFmDVrFho3bgwLCws4ODjgtddeQ2xsrPgelF7v40M7RIbCnoz/gN27d6Nhw4Z49dVXK1R/xIgRiI6ORv/+/TFhwgScPn0akZGRSE5Oxo8//qhR9/Lly+jfvz+GDx+OoKAgrFu3DsHBwWjTpg2aNWuGfv36wc7ODmFhYXj33XfRq1cv2NjY6BR/UlISevfujRYtWiAiIgIymQyXL1/GiRMntB536NAh+Pv7o2HDhggPD8fDhw+xdOlSdOjQAb///nuZBGfAgAFwd3dHZGQkfv/9d6xZswaOjo746quvKhRnv379MHr0aPzwww8YNmwYgEe9GE2bNkXr1q3L1L9y5Qp27tyJt99+G+7u7sjIyMDq1avRuXNnXLhwAS4uLvDy8kJERARmzJiBUaNGoWPHjgCg8bO8c+cO/P39MXDgQLz33ntwcnIqN77FixcjLi4OQUFBiI+Ph6mpKVavXo2DBw9i48aNcHFxqdB1Pi47Oxv37t1Do0aNNMqjoqJgY2OD8ePHw8bGBnFxcZgxYwbUajXmzZunUffevXvo2bMn+vXrhwEDBmD79u2YMmUKfHx84O/vD+DRkFv37t2RlpaGjz76CC4uLti4cSPi4uLKxBQVFYWhQ4fi5ZdfRmRkJDIyMrB48WKcOHECZ8+e1ehRKy4uhr+/Pzp16oS5c+di06ZNCA0NhbW1NT777DMMHjwY/fr1w6pVqzBkyBCoVCq4u7s/833Jy8vD7du3NcpsbW0hk8nw8OFDdOnSBZcvX0ZoaCjc3d3x/fffIzg4GFlZWRoJPwCsX78eeXl5GDVqFGQyGezt7ZGUlIQOHTqgbt26+OSTT2BtbY1t27ahb9++2LFjB9566y0AjxLoyMhIjBgxAq+88grUajXOnDmD33//Ha+//jo++OAD3Lx5E7Gxsdi4ceMzr4tIZwLVaNnZ2QIAoU+fPhWqn5iYKAAQRowYoVE+ceJEAYAQFxcnlrm5uQkAhOPHj4tlmZmZgkwmEyZMmCCWXb16VQAgzJs3T6PNoKAgwc3NrUwMM2fOFB7/aC5cuFAAIPz7779Pjbv0HOvXrxfLWrVqJTg6Ogp37twRy/744w/BxMREGDJkSJnzDRs2TKPNt956S3BwcHjqOR+/Dmtra0EQBKF///5C9+7dBUEQhOLiYkGpVAqzZs0q9z3Iy8sTiouLy1yHTCYTIiIixLLffvutzLWV6ty5swBAWLVqVbn7OnfurFF24MABAYDw+eefC1euXBFsbGyEvn37PvMaBUEQAAjDhw8X/v33XyEzM1M4c+aM0LNnz3J/tg8ePChz/AcffCBYWVkJeXl5ZeLfsGGDWJafny8olUohMDBQLFu0aJEAQNi2bZtYlpubK3h4eAgAhCNHjgiCIAgFBQWCo6Oj0Lx5c+Hhw4di3ZiYGAGAMGPGDLEsKChIACB88cUXYtm9e/cES0tLQSKRCFu2bBHLL168KAAQZs6cWaH3qbyt9OdXei3fffedeExBQYGgUqkEGxsbQa1WC4Lw/z/TcrlcyMzM1DhH9+7dBR8fH433sqSkRHj11VeFxo0bi2UtW7YUAgICtMYbEhIi8KuAjIXDJTWcWq0G8OivqIrYu3cvAGD8+PEa5RMmTACAMnM3vL29xb+uAaBOnTrw9PTElStX9I75SaV/ef70008oKSmp0DG3bt1CYmIigoODYW9vL5a3aNECr7/+unidjxs9erTG644dO+LOnTvie1gRgwYNwtGjR5Geno64uDikp6eXO1QCPJrHYWLy6H/B4uJi3LlzRxwK+v333yt8TplMhqFDh1aobo8ePfDBBx8gIiIC/fr1g4WFBVavXl3hc61duxZ16tSBo6Mj2rZti8OHD2Py5MllPi+PT3K8f/8+bt++jY4dO+LBgwe4ePGiRl0bGxuN+QtSqRSvvPKKxmdo7969cHZ2Rv/+/cUyKysrjBo1SqOtM2fOIDMzEx9++KHGHJ2AgAA0bdq03LlHI0aMEP9tZ2cHT09PWFtba8yt8fT0hJ2dXYU/13369EFsbKzGVjpnZe/evVAqlXj33XfF+ubm5vjoo4+Qk5ODY8eOabQVGBiIOnXqiK/v3r2LuLg4DBgwQHxvb9++jTt37sDPzw+XLl0Sh4bs7OyQlJSES5cuVShuIkNjklHDyeVyAI9+0VfE33//DRMTE3h4eGiUK5VK2NnZ4e+//9Yor1+/fpk2atWqhXv37ukZcVnvvPMOOnTogBEjRsDJyQkDBw7Etm3btCYcpXF6enqW2efl5YXbt28jNzdXo/zJa6lVqxYA6HQtvXr1gq2tLbZu3YpNmzbh5ZdfLvNeliopKcHChQvRuHFjyGQy1K5dG3Xq1MGff/6J7OzsCp+zbt26Ok0EnD9/Puzt7ZGYmIglS5bA0dGxwseWfnnu2bNHnMvy4MEDMVkqlZSUhLfeegsKhQJyuRx16tQRE4knr61evXpl5gE8+Rn6+++/4eHhUabekz9fbT/3pk2blvn8WlhYaHyBA4BCoSg3JoVCUeHPQr169eDr66uxlc6H+vvvv9G4ceMy75mXl5fGNZR6cnjm8uXLEAQB06dPR506dTS2mTNnAng05wMAIiIikJWVhSZNmsDHxweTJk3Cn3/+WaFrIDIEzsmo4eRyOVxcXHD+/Hmdjqvo5C9TU9NyywVB0PscT04OtLS0xPHjx3HkyBHs2bMH+/fvx9atW9GtWzccPHjwqTHoqjLXUkomk6Ffv36Ijo7GlStXtC4L/OKLLzB9+nQMGzYMs2fPhr29PUxMTDBu3LgK99gAui+NPHv2rPgldO7cOY2/qJ+l9MsTeJRQ1a5dG6GhoejatSv69esHAMjKykLnzp0hl8sRERGBRo0awcLCAr///jumTJlS5toM8b7r62nnrsqYnvTkz7f0/Zs4ceJTV/SUJradOnVCamoqfvrpJxw8eBBr1qzBwoULsWrVKo0eHCJjYZLxH9C7d2988803iI+Ph0ql0lrXzc0NJSUluHTpkviXFQBkZGQgKytLXCliCLVq1dJYiVHqyb/kAMDExATdu3dH9+7dsWDBAnzxxRf47LPPcOTIEfFL78nrAICUlJQy+y5evIjatWvD2tq68hdRjkGDBmHdunUwMTHBwIEDn1pv+/bt6Nq1K9auXatRnpWVhdq1a4uvDTnbPzc3F0OHDoW3tzdeffVVzJ07F2+99Za4gkVXH3zwARYuXIhp06bhrbfeEu++eefOHfzwww/o1KmTWPfq1at6x+3m5obz589DEASN9+PJn+/jP/du3bpp7EtJSTHo51dfbm5u+PPPP1FSUqLRm1E6jPSsGBs2bAjg0RBLeZ/9J9nb22Po0KEYOnQocnJy0KlTJ4SHh4tJBleTkDFxuOQ/YPLkybC2tsaIESOQkZFRZn9qaioWL14M4NFfpwCwaNEijToLFiwA8Ghs21AaNWqE7Oxsje7bW7dulVnBcvfu3TLHlt6U6mlLGJ2dndGqVStER0drJDLnz5/HwYMHxes0hq5du2L27NlYtmyZ1rs8mpqalvnL+Pvvvy+z1LI0GSovIdPVlClTkJaWhujoaCxYsAANGjRAUFDQU9/HZzEzM8OECROQnJyMn376CcD/7wV4/NoKCgqwYsUKvePu1asXbt68ie3bt4tlDx48KHMDubZt28LR0RGrVq3SuKZ9+/YhOTnZoJ9fffXq1Qvp6enYunWrWFZUVISlS5fCxsYGnTt31nq8o6MjunTpgtWrV+PWrVtl9pfelwZ4tPLocTY2NvDw8NB4bwz5+SJ6Ensy/gMaNWqEzZs345133oGXl5fGHT9PnjwpLp8DgJYtWyIoKAjffPON2O3966+/Ijo6Gn379kXXrl0NFtfAgQMxZcoUvPXWW/joo4/w4MEDrFy5Ek2aNNGY+BgREYHjx48jICAAbm5uyMzMxIoVK1CvXj289tprT21/3rx58Pf3h0qlwvDhw8UlrAqFwqh3NzQxMcG0adOeWa93796IiIjA0KFD8eqrr+LcuXPYtGmT+JdqqUaNGsHOzg6rVq2Cra0trK2t0a5duwotpXxcXFwcVqxYgZkzZ4pLatevX48uXbpg+vTp5d6boiKCg4MxY8YMfPXVV+jbty9effVV1KpVC0FBQfjoo48gkUiwcePGSg01jBw5EsuWLcOQIUOQkJAAZ2dnbNy4EVZWVhr1zM3N8dVXX2Ho0KHo3Lkz3n33XXEJa4MGDRAWFqZ3DIYyatQorF69GsHBwUhISECDBg2wfft2nDhxAosWLarQJO3ly5fjtddeg4+PD0aOHImGDRsiIyMD8fHxuHHjhnivFW9vb3Tp0gVt2rSBvb09zpw5g+3bt2vcebdNmzYAgI8++gh+fn4wNTXV2gNHpJMqW9dCz91ff/0ljBw5UmjQoIEglUoFW1tboUOHDsLSpUs1lsIVFhYKs2bNEtzd3QVzc3PB1dVVmDp1qkYdQXi0hLW85XFPLp182hJWQRCEgwcPCs2bNxekUqng6ekpfPfdd2WWsB4+fFjo06eP4OLiIkilUsHFxUV49913hb/++qvMOZ5c5nno0CGhQ4cOgqWlpSCXy4U33nhDuHDhgkad0vM9uUR2/fr1AgDh6tWrT31PBUFzCevTPG0J64QJEwRnZ2fB0tJS6NChgxAfH1/u0tOffvpJ8Pb2FszMzDSus3PnzkKzZs3KPefj7ajVasHNzU1o3bq1UFhYqFEvLCxMMDExEeLj47VeAwAhJCSk3H3h4eEaS0lPnDghtG/fXrC0tBRcXFyEyZMni8tnS+toi7+85c1///238OabbwpWVlZC7dq1hY8//ljYv39/mTYFQRC2bt0qvPTSS4JMJhPs7e2FwYMHCzdu3ChzjvJ+bk+L6Wmf9ydpe59KZWRkCEOHDhVq164tSKVSwcfHp8xnV9v/N4IgCKmpqcKQIUMEpVIpmJubC3Xr1hV69+4tbN++Xazz+eefC6+88opgZ2cnWFpaCk2bNhXmzJkjFBQUiHWKioqEsWPHCnXq1BEkEgmXs5JBSQShCmYyERERUY3HORlERERkFEwyiIiIyCiYZBAREZFRMMkgIiIio2CSQUREREbBJIOIiIiMgjfjKkdJSQlu3rwJW1tb3nKXiOgFJAgC7t+/DxcXlzIPozOUvLw8FBQUGKQtqVSq8eTgmoJJRjlu3rwJV1fXqg6DiIgq6fr166hXr57B283Ly4OlrQNQ9MAg7SmVSly9erXGJRpMMspReltfqXcQJKYVf4Q20Ysk7ej8qg6ByGjuq9XwcHet0G3a9VFQUAAUPYDMOwio7PdEcQHSL0SjoKCAScZ/QekQicRUyiSDaiy5XF7VIRAZndGHvM0sKv09IUhq7vRIJhlERET6kgCobCJTg6f+MckgIiLSl8Tk0VbZNmqomntlREREVKXYk0FERKQvicQAwyU1d7yESQYREZG+OFyiVc29MiIiIqpS7MkgIiLSF4dLtGKSQUREpDcDDJfU4EGFmntlREREVKXYk0FERKQvDpdoxSSDiIhIX1xdolXNvTIiIiKqUuzJICIi0heHS7RikkFERKQvDpdoxSSDiIhIX+zJ0Krmpk9ERERUpZhkEBER6at0uKSym56+/PJLSCQSjBs3TizLy8tDSEgIHBwcYGNjg8DAQGRkZGgcl5aWhoCAAFhZWcHR0RGTJk1CUVGRRp2jR4+idevWkMlk8PDwQFRUlM7xMckgIiLSl0RigCRDv+GS3377DatXr0aLFi00ysPCwrB79258//33OHbsGG7evIl+/fqJ+4uLixEQEICCggKcPHkS0dHRiIqKwowZM8Q6V69eRUBAALp27YrExESMGzcOI0aMwIEDB3SKkUkGERHRCyYnJweDBw/Gt99+i1q1aonl2dnZWLt2LRYsWIBu3bqhTZs2WL9+PU6ePIlTp04BAA4ePIgLFy7gu+++Q6tWreDv74/Zs2dj+fLlKCgoAACsWrUK7u7u+Prrr+Hl5YXQ0FD0798fCxcu1ClOJhlERET6MpEYZtNRSEgIAgIC4Ovrq1GekJCAwsJCjfKmTZuifv36iI+PBwDEx8fDx8cHTk5OYh0/Pz+o1WokJSWJdZ5s28/PT2yjori6hIiISF8GXMKqVqs1imUyGWQyWZnqW7Zswe+//47ffvutzL709HRIpVLY2dlplDs5OSE9PV2s83iCUbq/dJ+2Omq1Gg8fPoSlpWWFLo09GURERNWAq6srFAqFuEVGRpapc/36dXz88cfYtGkTLCwsqiBK3bAng4iISF8GvE/G9evXIZfLxeLyejESEhKQmZmJ1q1bi2XFxcU4fvw4li1bhgMHDqCgoABZWVkavRkZGRlQKpUAAKVSiV9//VWj3dLVJ4/XeXJFSkZGBuRyeYV7MQD2ZBAREenPgEtY5XK5xlZektG9e3ecO3cOiYmJ4ta2bVsMHjxY/Le5uTkOHz4sHpOSkoK0tDSoVCoAgEqlwrlz55CZmSnWiY2NhVwuh7e3t1jn8TZK65S2UVHsySAiInpB2Nraonnz5hpl1tbWcHBwEMuHDx+O8ePHw97eHnK5HGPHjoVKpUL79u0BAD169IC3tzfef/99zJ07F+np6Zg2bRpCQkLExGb06NFYtmwZJk+ejGHDhiEuLg7btm3Dnj17dIqXSQYREZG+quFtxRcuXAgTExMEBgYiPz8ffn5+WLFihbjf1NQUMTExGDNmDFQqFaytrREUFISIiAixjru7O/bs2YOwsDAsXrwY9erVw5o1a+Dn56dTLBJBEASDXVkNoVaroVAoIPMZCYmptKrDITKKe78tq+oQiIxGrVbDyUGB7OxsjXkOhmxfoVBA1jUCErPKTcAUivKQf2SG0WKtSuzJICIi0lc17MmoTjjxk4iIiIyCPRlERET6MuDNuGoiJhlERET64nCJVjU3fSIiIqIqxZ4MIiIivRlguKQG/73PJIOIiEhfHC7RquamT0RERFSl2JNBRESkL4nEAKtLam5PBpMMIiIifXEJq1Y198qIiIioSrEng4iISF+c+KkVkwwiIiJ9cbhEKyYZRERE+mJPhlY1N30iIiKiKsWeDCIiIn1xuEQrJhlERET64nCJVjU3fSIiIqIqxZ4MIiIiPUkkEkjYk/FUTDKIiIj0xCRDOw6XEBERkVGwJ4OIiEhfkv/bKttGDcUkg4iISE8cLtGOwyVERERkFOzJICIi0hN7MrRjkkFERKQnJhnaMckgIiLSE5MM7Tgng4iIiIyCPRlERET64hJWrZhkEBER6YnDJdpxuISIiIiMgj0ZREREenr0pPfK9mQYJpbqiEkGERGRniQwwHBJDc4yOFxCRERERsGeDCIiIj1x4qd2TDKIiIj0xSWsWnG4hIiI6AWycuVKtGjRAnK5HHK5HCqVCvv27RP3d+nSRexhKd1Gjx6t0UZaWhoCAgJgZWUFR0dHTJo0CUVFRRp1jh49itatW0Mmk8HDwwNRUVE6x8qeDCIiIn0ZYLhE0PH4evXq4csvv0Tjxo0hCAKio6PRp08fnD17Fs2aNQMAjBw5EhEREeIxVlZW4r+Li4sREBAApVKJkydP4tatWxgyZAjMzc3xxRdfAACuXr2KgIAAjB49Gps2bcLhw4cxYsQIODs7w8/Pr8KxMskgIiLSkyHmZOh6/BtvvKHxes6cOVi5ciVOnTolJhlWVlZQKpXlHn/w4EFcuHABhw4dgpOTE1q1aoXZs2djypQpCA8Ph1QqxapVq+Du7o6vv/4aAODl5YVffvkFCxcu1CnJ4HAJERGRnp4cltB3AwC1Wq2x5efnP/P8xcXF2LJlC3Jzc6FSqcTyTZs2oXbt2mjevDmmTp2KBw8eiPvi4+Ph4+MDJycnsczPzw9qtRpJSUliHV9fX41z+fn5IT4+Xqf3hz0ZRERE1YCrq6vG65kzZyI8PLzcuufOnYNKpUJeXh5sbGzw448/wtvbGwAwaNAguLm5wcXFBX/++SemTJmClJQU/PDDDwCA9PR0jQQDgPg6PT1dax21Wo2HDx/C0tKyQtfEJIOIiEhfBlxdcv36dcjlcrFYJpM99RBPT08kJiYiOzsb27dvR1BQEI4dOwZvb2+MGjVKrOfj4wNnZ2d0794dqampaNSoUSWD1Q2HS4iIiPRkyOGS0tUipZu2JEMqlcLDwwNt2rRBZGQkWrZsicWLF5dbt127dgCAy5cvAwCUSiUyMjI06pS+Lp3H8bQ6crm8wr0YAJMMIiKiF15JSclT53AkJiYCAJydnQEAKpUK586dQ2ZmplgnNjYWcrlcHHJRqVQ4fPiwRjuxsbEa8z4qgsMlREREeqqK1SVTp06Fv78/6tevj/v372Pz5s04evQoDhw4gNTUVGzevBm9evWCg4MD/vzzT4SFhaFTp05o0aIFAKBHjx7w9vbG+++/j7lz5yI9PR3Tpk1DSEiI2HsyevRoLFu2DJMnT8awYcMQFxeHbdu2Yc+ePTrFyiSDiIhIT1WRZGRmZmLIkCG4desWFAoFWrRogQMHDuD111/H9evXcejQISxatAi5ublwdXVFYGAgpk2bJh5vamqKmJgYjBkzBiqVCtbW1ggKCtK4r4a7uzv27NmDsLAwLF68GPXq1cOaNWt0Wr4KMMkgIiJ6oaxdu/ap+1xdXXHs2LFntuHm5oa9e/dqrdOlSxecPXtW5/gexySDiIhIT1XRk/EiYZJBRESkLz4gTSuuLiEiIiKjYE8GERGRnjhcoh2TDCIiIj0xydCOSQYREZGemGRoxzkZREREZBTsySAiItIXV5doxSSDiIhITxwu0Y7DJURERGQU7MkggxsX9DpmhvbByv8dwacLdsBOboWpowLQtX1T1HOqhTtZOdhz9E98sSoG6tw88bh7vy0r09bwT9fjh9iEMuXtWjREzOqPkXzlFjoN/tKo10NUngXrDyDmyB+49HcGLGTmeKVFQ4SH9kHjBk4AgLSbd9Cyz8xyj10fOQx9fVsDAI79moI5q2KQnHoTVhZSDOzdDtPHvAEzM9Pndi2kP/ZkaFelSUZwcDCio6MBAObm5qhfvz6GDBmCTz/9FGZmzH9eRC9510fwWx1w/q8bYplzHQWUdRSYsfhHXLySDldneyz4ZCCUdRQI/kTzHvwfztqIw/EXxNfZ9x+WOYfcxhIrZ72PY7/9BUcHW+NdDJEWJ3+/jBFvd8JL3m4oKi7G7BW70W/sMpzaNg3WljLUdaqFi/u+0Dgm+scTWPrdIfi+2gwAcO6vGxgwbiUmDPXDqllDcCszC+O/3IKS4hLMHtevKi6LdCSBAZKMGjwpo8q/yXv27In169cjPz8fe/fuRUhICMzNzTF16lSDn6ugoABSqdTg7dIj1pZSfBMRjI+/+B8mDusplien3kLQlDXi62v/3MbnK3djdcQQmJqaoLi4RNyXff8hMu/c13qehVMHYvuBMyguFhDQpYXhL4SoArYvDdF4vWLme2jcYyoSk6+jQ2sPmJqawKm2XKNOzNE/0Ne3NWysHj1O+8fY39HMwwWTR/oDABq61kH42L4Y9uk6TB7ZC7bWFs/nYoiMpMrnZMhkMiiVSri5uWHMmDHw9fXFrl27cO/ePQwZMgS1atWClZUV/P39cenSJY1jd+zYgWbNmkEmk6FBgwb4+uuvNfY3aNAAs2fPxpAhQyCXyzFq1KjneWn/OfMmv4ODJ87j2K8pz6wrt7HA/dw8jQTjURsDcDn2SxyKmojBb7Qvc9ygN9rDra4Dvvp2n8HiJjIEdc6job9acqty9ycmp+HcXzfw3psqsaygoAgymblGPUuZOfLyC/HHxTTjBUsGUzpcUtmtpqryJONJlpaWKCgoQHBwMM6cOYNdu3YhPj4egiCgV69eKCwsBAAkJCRgwIABGDhwIM6dO4fw8HBMnz4dUVFRGu3Nnz8fLVu2xNmzZzF9+vQquKL/hn6vt0HLpq6IWL7rmXXtFdaYNNwf0T+e1CifsyoGw6auw1shy7A7LhHzp7yDUe90Fvc3dK2DmSFv4oMZG8okJ0RVqaSkBFMXbEe7lg3h7eFSbp2NP8XD012Jdi0bimXdVF749c8r/9czV4KbmVmYu/ZRAp1+W/1cYqdKkhhoq6GqfLiklCAIOHz4MA4cOAB/f3/s3LkTJ06cwKuvvgoA2LRpE1xdXbFz5068/fbbWLBgAbp37y4mDk2aNMGFCxcwb948BAcHi+1269YNEyZM0Hru/Px85Ofni6/Vav7PrYu6TnaInBCIfqHLkF9QpLWurbUFti4ag5Srt/DlN3s09s1fu1/897m/bsDKUoaP3vfFN1uPwcREgm8/D8aX3+xFalqmUa6DSF8T525Dcuot7Ps2rNz9D/MKsP3AGUwa3lOjvFt7L0R81BfjI7dg9MwNkJmbYeLwnog/mwqTGvzXLf13VHmSERMTAxsbGxQWFqKkpASDBg1Cv379EBMTg3bt2on1HBwc4OnpieTkZABAcnIy+vTpo9FWhw4dsGjRIhQXF8PU9NHM7LZt2z4zhsjISMyaNcuAV/Xf0rJpfTg6yHF04xSxzMzMFK++1Agj3+4Epw7jUFIiwMZKhu1LPkTOgzy8N+lbFD2jNyLh/DVMHuEPqbkZLGTmaO3thhZN6mHupLcBACYmEpiYmODf+MXoN3Y5fj7zl1Gvk6g8k+Zuw4Gfz2PvN+NQ16lWuXV+ikvEw7wCDAx4pcy+kMHd8eGgbki/nQ07Wyuk3bqLiOW70KBubWOHTgbA1SXaVXmS0bVrV6xcuRJSqRQuLi4wMzPDrl3P7nKvKGtr62fWmTp1KsaPHy++VqvVcHV1NVgMNd3x31Lw6sA5GmXLZryHS9cysHhDLEpKBNhaW2D7khAUFBZh0PjVz+zxAACfJvVwLzsXBYVFKCwqLnOO4f07omPbJgj+ZC3+/ueOQa+J6FkEQcDked9jz9E/sHvVx3DTkhR899NJ+HfyQe1a5a+GkkgkcK5jBwDYceAM6jrVQsum/B30ImCSoV2VJxnW1tbw8PDQKPPy8kJRURFOnz4tDpfcuXMHKSkp8Pb2FuucOHFC47gTJ06gSZMmYi9GRclkMshkskpcxX9bzoN8JKfe0ih78LAAd7NzkZx6C7bWFtixNARWFlJ8MCMatjYWsLV5NGv+9r0clJQI6NmxOerY2+LM+WvIyy9E13ZNETa0B5Z9dxjAo1/oT57j37s5yC8oKlNO9DxM/Gobth84g83zR8HGygIZ/zeHQm5jAUuL/7+K7cr1f3HybCq2LRpTbjtLNh5Cd5UXTCQmiDmSiEXRsVgfOQymptVuyhyVQyJ5tFW2jZqqypOM8jRu3Bh9+vTByJEjsXr1atja2uKTTz5B3bp1xSGSCRMm4OWXX8bs2bPxzjvvID4+HsuWLcOKFSuqOHp6UgtPV7zs4w4AOLszXHPfmzNw/dZdFBYVY8TbnTAnLBASiQRXb/yLaQt/QPTOk+W0SFT11u34GQDQe/RijfLlM97DoMdWRn23Kx4ujnbo1r5pue0cOnkBX687gILCIjRvXBeb5o/C6x2aGS9woudIIgiCUFUnDw4ORlZWFnbu3Flm37179/Dxxx9j165dKCgoQKdOnbB06VI0btxYrLNjxw7MmDEDly5dgrOzM8aOHYuJEyeK+xs0aIBx48Zh3LhxOsWlVquhUCgg8xkJiSnvq0E1U3l3WCWqKdRqNZwcFMjOzoZcLn/2AXq0r1Ao0HDsdpjInj0sr01Jfi6uLO1vtFirUpX2ZDy53PRxtWrVwoYNG7QeHxgYiMDAwKfuv3btmp6RERERVYABhktq8hJWDvoRERGRUVTLORlEREQvAq4u0Y5JBhERkZ64ukQ7DpcQERGRUbAng4iISE+P7jxcua4IoZLHV2dMMoiIiPTE4RLtOFxCRERERsGeDCIiIj1xdYl2TDKIiIj0xOES7ZhkEBER6Yk9GdpxTgYREREZBXsyiIiI9MSeDO2YZBAREemJczK043AJERHRC2TlypVo0aIF5HI55HI5VCoV9u3bJ+7Py8tDSEgIHBwcYGNjg8DAQGRkZGi0kZaWhoCAAFhZWcHR0RGTJk1CUVGRRp2jR4+idevWkMlk8PDw0Prk9KdhkkFERKQnCSTikInem47Peq9Xrx6+/PJLJCQk4MyZM+jWrRv69OmDpKQkAEBYWBh2796N77//HseOHcPNmzfRr18/8fji4mIEBASgoKAAJ0+eRHR0NKKiojBjxgyxztWrVxEQEICuXbsiMTER48aNw4gRI3DgwAHd3h9BEASdjvgPUKvVUCgUkPmMhMRUWtXhEBnFvd+WVXUIREajVqvh5KBAdnY25HK5UdpXKBRoMXUXTC2sK9VWcV4u/ox8s1Kx2tvbY968eejfvz/q1KmDzZs3o3///gCAixcvwsvLC/Hx8Wjfvj327duH3r174+bNm3BycgIArFq1ClOmTMG///4LqVSKKVOmYM+ePTh//rx4joEDByIrKwv79++vcFzsySAiInpBFRcXY8uWLcjNzYVKpUJCQgIKCwvh6+sr1mnatCnq16+P+Ph4AEB8fDx8fHzEBAMA/Pz8oFarxd6Q+Ph4jTZK65S2UVGc+ElERKQnQ64uUavVGuUymQwymazcY86dOweVSoW8vDzY2Njgxx9/hLe3NxITEyGVSmFnZ6dR38nJCenp6QCA9PR0jQSjdH/pPm111Go1Hj58CEtLywpdG3syiIiI9FS6uqSyGwC4urpCoVCIW2Rk5FPP6+npicTERJw+fRpjxoxBUFAQLly48JyuuuLYk0FERFQNXL9+XWNOxtN6MQBAKpXCw8MDANCmTRv89ttvWLx4Md555x0UFBQgKytLozcjIyMDSqUSAKBUKvHrr79qtFe6+uTxOk+uSMnIyIBcLq9wLwbAngwiIiK9VXplyWPDLaVLUks3bUnGk0pKSpCfn482bdrA3Nwchw8fFvelpKQgLS0NKpUKAKBSqXDu3DlkZmaKdWJjYyGXy+Ht7S3WebyN0jqlbVQUezKIiIj0VBU345o6dSr8/f1Rv3593L9/H5s3b8bRo0dx4MABKBQKDB8+HOPHj4e9vT3kcjnGjh0LlUqF9u3bAwB69OgBb29vvP/++5g7dy7S09Mxbdo0hISEiInN6NGjsWzZMkyePBnDhg1DXFwctm3bhj179ugUK5MMIiIiPVXFbcUzMzMxZMgQ3Lp169Ey2hYtcODAAbz++usAgIULF8LExASBgYHIz8+Hn58fVqxYIR5vamqKmJgYjBkzBiqVCtbW1ggKCkJERIRYx93dHXv27EFYWBgWL16MevXqYc2aNfDz89Pt2nifjLJ4nwz6L+B9Mqgme173yWgzY49B7pOREBFgtFirEnsyiIiI9GWA4RIdb/j5QmGSQUREpCc+hVU7ri4hIiIio2BPBhERkZ74qHftmGQQERHpicMl2nG4hIiIiIyCPRlERER64nCJdkwyiIiI9MThEu04XEJERERGwZ4MIiIiPbEnQzsmGURERHrinAztmGQQERHpiT0Z2nFOBhERERkFezKIiIj0xOES7ZhkEBER6YnDJdpxuISIiIiMgj0ZREREepLAAMMlBomkemKSQUREpCcTiQQmlcwyKnt8dcbhEiIiIjIK9mQQERHpiatLtGOSQUREpCeuLtGOSQYREZGeTCSPtsq2UVNxTgYREREZBXsyiIiI9CUxwHBHDe7JYJJBRESkJ0781I7DJURERGQU7MkgIiLSk+T//qtsGzUVkwwiIiI9cXWJdhwuISIiIqNgTwYREZGeeDMu7SqUZOzatavCDb755pt6B0NERPQi4eoS7SqUZPTt27dCjUkkEhQXF1cmHiIiIqohKpRklJSUGDsOIiKiFw4f9a5dpeZk5OXlwcLCwlCxEBERvVA4XKKdzqtLiouLMXv2bNStWxc2Nja4cuUKAGD69OlYu3atwQMkIiKqrkonflZ2q6l0TjLmzJmDqKgozJ07F1KpVCxv3rw51qxZY9DgiIiI6MWlc5KxYcMGfPPNNxg8eDBMTU3F8pYtW+LixYsGDY6IiKg6Kx0uqeymi8jISLz88suwtbWFo6Mj+vbti5SUFI06Xbp0KdNbMnr0aI06aWlpCAgIgJWVFRwdHTFp0iQUFRVp1Dl69Chat24NmUwGDw8PREVF6RSrzknGP//8Aw8PjzLlJSUlKCws1LU5IiKiF1bpxM/Kbro4duwYQkJCcOrUKcTGxqKwsBA9evRAbm6uRr2RI0fi1q1b4jZ37lxxX3FxMQICAlBQUICTJ08iOjoaUVFRmDFjhljn6tWrCAgIQNeuXZGYmIhx48ZhxIgROHDgQIVj1Xnip7e3N37++We4ublplG/fvh0vvfSSrs0RERGRDvbv36/xOioqCo6OjkhISECnTp3EcisrKyiVynLbOHjwIC5cuIBDhw7ByckJrVq1wuzZszFlyhSEh4dDKpVi1apVcHd3x9dffw0A8PLywi+//IKFCxfCz8+vQrHq3JMxY8YMhIaG4quvvkJJSQl++OEHjBw5EnPmzNHIgIiIiGo6iYE2AFCr1Rpbfn5+hWLIzs4GANjb22uUb9q0CbVr10bz5s0xdepUPHjwQNwXHx8PHx8fODk5iWV+fn5Qq9VISkoS6/j6+mq06efnh/j4+ArFBeiRZPTp0we7d+/GoUOHYG1tjRkzZiA5ORm7d+/G66+/rmtzRERELyxDri5xdXWFQqEQt8jIyGeev6SkBOPGjUOHDh3QvHlzsXzQoEH47rvvcOTIEUydOhUbN27Ee++9J+5PT0/XSDAAiK/T09O11lGr1Xj48GGF3h+97pPRsWNHxMbG6nMoERERleP69euQy+Xia5lM9sxjQkJCcP78efzyyy8a5aNGjRL/7ePjA2dnZ3Tv3h2pqalo1KiR4YJ+Br1vxnXmzBkkJycDeDRPo02bNgYLioiI6EVgyEe9y+VyjSTjWUJDQxETE4Pjx4+jXr16Wuu2a9cOAHD58mU0atQISqUSv/76q0adjIwMABDncSiVSrHs8TpyuRyWlpYVilHnJOPGjRt49913ceLECdjZ2QEAsrKy8Oqrr2LLli3PvFAiIqKaoiqewioIAsaOHYsff/wRR48ehbu7+zOPSUxMBAA4OzsDAFQqFebMmYPMzEw4OjoCAGJjYyGXy+Ht7S3W2bt3r0Y7sbGxUKlUFY5V5zkZI0aMQGFhIZKTk3H37l3cvXsXycnJKCkpwYgRI3RtjoiIiHQQEhKC7777Dps3b4atrS3S09ORnp4uzpNITU3F7NmzkZCQgGvXrmHXrl0YMmQIOnXqhBYtWgAAevToAW9vb7z//vv4448/cODAAUybNg0hISHiMM3o0aNx5coVTJ48GRcvXsSKFSuwbds2hIWFVThWnXsyjh07hpMnT8LT01Ms8/T0xNKlS9GxY0ddmyMiInqhPe+7gq9cuRLAoxtuPW79+vUIDg6GVCrFoUOHsGjRIuTm5sLV1RWBgYGYNm2aWNfU1BQxMTEYM2YMVCoVrK2tERQUhIiICLGOu7s79uzZg7CwMCxevBj16tXDmjVrKrx8FdAjyXB1dS33plvFxcVwcXHRtTkiIqIXVlUNl2jj6uqKY8eOPbMdNze3MsMhT+rSpQvOnj2rU3yP03m4ZN68eRg7dizOnDkjlp05cwYff/wx5s+fr3cgREREL5rSiZ+V3WqqCvVk1KpVSyPTys3NRbt27WBm9ujwoqIimJmZYdiwYejbt69RAiUiIqIXS4WSjEWLFhk5DCIiohdPVQyXvEgqlGQEBQUZOw4iIqIXzuO3Ba9MGzWV3jfjAoC8vDwUFBRolOlyIxEiIiKquXROMnJzczFlyhRs27YNd+7cKbO/uLjYIIERERFVd/o8qr28NmoqnVeXTJ48GXFxcVi5ciVkMhnWrFmDWbNmwcXFBRs2bDBGjERERNWSRGKYrabSuSdj9+7d2LBhA7p06YKhQ4eiY8eO8PDwgJubGzZt2oTBgwcbI04iIiJ6wejck3H37l00bNgQwKP5F3fv3gUAvPbaazh+/LhhoyMiIqrGDPmo95pI5ySjYcOGuHr1KgCgadOm2LZtG4BHPRylD0wjIiL6L+BwiXY6JxlDhw7FH3/8AQD45JNPsHz5clhYWCAsLAyTJk0yeIBERET0YtJ5TsbjT1/z9fXFxYsXkZCQAA8PD/HpbkRERP8FXF2iXaXukwE8esCKm5ubIWIhIiJ6oRhiuKMG5xgVSzKWLFlS4QY/+ugjvYMhIiJ6kfC24tpVKMlYuHBhhRqTSCRMMoiIiAhABZOM0tUk/zVJ+yJhy9ukUw11JTO3qkMgMpqc+8/n820CPVZQlNNGTVXpORlERET/VRwu0a4mJ1BERERUhdiTQUREpCeJBDDh6pKnYpJBRESkJxMDJBmVPb4643AJERERGYVeScbPP/+M9957DyqVCv/88w8AYOPGjfjll18MGhwREVF1xgekaadzkrFjxw74+fnB0tISZ8+eRX5+PgAgOzsbX3zxhcEDJCIiqq5Kh0squ9VUOicZn3/+OVatWoVvv/0W5ubmYnmHDh3w+++/GzQ4IiIienHpPPEzJSUFnTp1KlOuUCiQlZVliJiIiIheCHx2iXY692QolUpcvny5TPkvv/yChg0bGiQoIiKiF0HpU1gru9VUOicZI0eOxMcff4zTp09DIpHg5s2b2LRpEyZOnIgxY8YYI0YiIqJqycRAW02l83DJJ598gpKSEnTv3h0PHjxAp06dIJPJMHHiRIwdO9YYMRIREdELSOckQyKR4LPPPsOkSZNw+fJl5OTkwNvbGzY2NsaIj4iIqNrinAzt9L7jp1Qqhbe3tyFjISIieqGYoPJzKkxQc7MMnZOMrl27ar1xSFxcXKUCIiIioppB5ySjVatWGq8LCwuRmJiI8+fPIygoyFBxERERVXscLtFO5yRj4cKF5ZaHh4cjJyen0gERERG9KPiANO0MtnLmvffew7p16wzVHBEREb3gDPao9/j4eFhYWBiqOSIiompPIkGlJ37W5OESnXsy+vXrp7G99dZbaN++PYYOHYoPPvjAGDESERFVS6VzMiq76SIyMhIvv/wybG1t4ejoiL59+yIlJUWjTl5eHkJCQuDg4AAbGxsEBgYiIyNDo05aWhoCAgJgZWUFR0dHTJo0CUVFRRp1jh49itatW0Mmk8HDwwNRUVE6xapzkqFQKDQ2e3t7dOnSBXv37sXMmTN1bY6IiIh0cOzYMYSEhODUqVOIjY1FYWEhevTogdzcXLFOWFgYdu/eje+//x7Hjh3DzZs30a9fP3F/cXExAgICUFBQgJMnTyI6OhpRUVGYMWOGWOfq1asICAhA165dkZiYiHHjxmHEiBE4cOBAhWOVCIIgVLRycXExTpw4AR8fH9SqVavCJ3nRqNVqKBQKXL5xG7ZyeVWHQ2QUt+8XVHUIREaTc1+Ndk1dkJ2dDbkRfo+Xfk9M++l3WFjbVqqtvNz7+LxPa71j/ffff+Ho6Ihjx46hU6dOyM7ORp06dbB582b0798fAHDx4kV4eXkhPj4e7du3x759+9C7d2/cvHkTTk5OAIBVq1ZhypQp+PfffyGVSjFlyhTs2bMH58+fF881cOBAZGVlYf/+/RWKTaeeDFNTU/To0YNPWyUiIgIgMdB/lZGdnQ0AsLe3BwAkJCSgsLAQvr6+Yp2mTZuifv36iI+PB/BoHqWPj4+YYACAn58f1Go1kpKSxDqPt1Fap7SNitB54mfz5s1x5coVuLu763ooERFRjWLIJaxqtVqjXCaTQSaTaT22pKQE48aNQ4cOHdC8eXMAQHp6OqRSKezs7DTqOjk5IT09XazzeIJRur90n7Y6arUaDx8+hKWl5bOv7Zk1nvD5559j4sSJiImJwa1bt6BWqzU2IiIi0p2rq6vGnMfIyMhnHhMSEoLz589jy5YtzyFC3VW4JyMiIgITJkxAr169AABvvvmmxu3FBUGARCJBcXGx4aMkIiKqhgzZk3H9+nWNORnP6sUIDQ1FTEwMjh8/jnr16onlSqUSBQUFyMrK0ujNyMjIgFKpFOv8+uuvGu2Vrj55vM6TK1IyMjIgl8sr1IsB6JBkzJo1C6NHj8aRI0cqeggREVGNJpFItD7Pq6JtAIBcLq/QxE9BEDB27Fj8+OOPOHr0aJnpC23atIG5uTkOHz6MwMBAAEBKSgrS0tKgUqkAACqVCnPmzEFmZiYcHR0BALGxsZDL5eLDT1UqFfbu3avRdmxsrNhGRVQ4yShdhNK5c+cKN05ERESGFRISgs2bN+Onn36Cra2tOIdCoVDA0tISCoUCw4cPx/jx42Fvbw+5XI6xY8dCpVKhffv2AIAePXrA29sb77//PubOnYv09HRMmzYNISEhYg/K6NGjsWzZMkyePBnDhg1DXFwctm3bhj179lQ4Vp0mflY2WyMiIqpJquLZJStXrgQAdOnSRaN8/fr1CA4OBvDoOWMmJiYIDAxEfn4+/Pz8sGLFCrGuqakpYmJiMGbMGKhUKlhbWyMoKAgRERFiHXd3d+zZswdhYWFYvHgx6tWrhzVr1sDPz6/CsVb4PhkmJiZQKBTPTDTu3r1b4ZNXV7xPBv0X8D4ZVJM9r/tkzNmbaJD7ZHzWq5XRYq1KOvVkzJo1CwqFwlixEBERUQ2iU5IxcOBAcYIIERHRf52JRFLpB6RV9vjqrMJJBudjEBERaaqKORkvkgrfjEuHR5wQERERVbwno6SkxJhxEBERvXj0eFR7eW3UVDo/u4SIiIgeMYEEJpXMEip7fHXGJIOIiEhPEgP0ZNTkKY86PyCNiIiIqCLYk0FERKQnri7RjkkGERGRnnifDO04XEJERERGwZ4MIiIiPXHip3ZMMoiIiPRkAgMMl9TgJawcLiEiIiKjYE8GERGRnjhcoh2TDCIiIj2ZoPJDAjV5SKEmXxsRERFVIfZkEBER6UkikUBSyfGOyh5fnTHJICIi0pMElX+Ias1NMZhkEBER6Y13/NSOczKIiIjIKNiTQUREVAk1tx+i8phkEBER6Yn3ydCOwyVERERkFOzJICIi0hOXsGrHJIOIiEhPvOOndjX52oiIiKgKsSeDiIhITxwu0Y5JBhERkZ54x0/tOFxCRERERsGeDCIiIj1xuEQ7JhlERER64uoS7ZhkEBER6Yk9GdrV5ASKiIiIqhB7MoiIiPTE1SXaMckgIiLSEx+Qph2HS4iIiF4gx48fxxtvvAEXFxdIJBLs3LlTY39wcLA4V6R069mzp0adu3fvYvDgwZDL5bCzs8Pw4cORk5OjUefPP/9Ex44dYWFhAVdXV8ydO1fnWJlkEBER6ckEEoNsusjNzUXLli2xfPnyp9bp2bMnbt26JW7/+9//NPYPHjwYSUlJiI2NRUxMDI4fP45Ro0aJ+9VqNXr06AE3NzckJCRg3rx5CA8PxzfffKNTrBwuISIi0lNVDJf4+/vD399fax2ZTAalUlnuvuTkZOzfvx+//fYb2rZtCwBYunQpevXqhfnz58PFxQWbNm1CQUEB1q1bB6lUimbNmiExMRELFizQSEaehT0ZRERE1YBardbY8vPz9W7r6NGjcHR0hKenJ8aMGYM7d+6I++Lj42FnZycmGADg6+sLExMTnD59WqzTqVMnSKVSsY6fnx9SUlJw7969CsfBJIOIiEhPEgP9BwCurq5QKBTiFhkZqVdMPXv2xIYNG3D48GF89dVXOHbsGPz9/VFcXAwASE9Ph6Ojo8YxZmZmsLe3R3p6uljHyclJo07p69I6FcHhEiIiIj0Zcrjk+vXrkMvlYrlMJtOrvYEDB4r/9vHxQYsWLdCoUSMcPXoU3bt3r1SsumJPBhERUTUgl8s1Nn2TjCc1bNgQtWvXxuXLlwEASqUSmZmZGnWKiopw9+5dcR6HUqlERkaGRp3S10+b61EeJhlERER6khhgZUnpcImx3LhxA3fu3IGzszMAQKVSISsrCwkJCWKduLg4lJSUoF27dmKd48ePo7CwUKwTGxsLT09P1KpVq8LnZpJBRESkp9LhkspuusjJyUFiYiISExMBAFevXkViYiLS0tKQk5ODSZMm4dSpU7h27RoOHz6MPn36wMPDA35+fgAALy8v9OzZEyNHjsSvv/6KEydOIDQ0FAMHDoSLiwsAYNCgQZBKpRg+fDiSkpKwdetWLF68GOPHj9cpVs7JICIi0lNVLGE9c+YMunbtKr4u/eIPCgrCypUr8eeffyI6OhpZWVlwcXFBjx49MHv2bI3hl02bNiE0NBTdu3eHiYkJAgMDsWTJEnG/QqHAwYMHERISgjZt2qB27dqYMWOGTstXASYZREREL5QuXbpAEISn7j9w4MAz27C3t8fmzZu11mnRogV+/vlnneN7HJMMIiIiPUkMMKfC2HMyqhKTDCIiIj2ZSB5tlW2jpuLETyIiIjIK9mQQERHpicMl2jHJICIi0lNVrC55kXC4hIiIiIyCPRlERER6kqDywx01uCODSQYREZG+uLpEOw6XEBERkVFU+56Ma9euwd3dHWfPnkWrVq2eWT84OBhZWVnYuXOn0WOjp1u4bj8WRWneda5RfUfEfTcVAPDOR8twKjFVY//gN1X4YuIA8fXMxT/gzLmr+OvqLXi4OWHfuknGD5xIB7kP8rHyuwM4cjIJ97Jz4NnQBRM/eBPNmriWqfvFsh+wY99pTBjZG4P6dhTLky//g6Xr9yLp0g2Ympig26vNMX5kb1hZGuYJnGRcXF2iXZUnGcHBwYiOjgYAmJmZoV69enj77bcREREBCwsLuLq64tatW6hdu3YVR0q6auKuxKYFY8TXZqaaHWfvvtEe44f5i68tLaRl2hjQqx0Sk//GxdSbxguUSE+zl2xH6t/pmD3xHdSxl2PvkbMY89m32L5yAhxrK8R6cSfP49zFNNRxkGsc/+8dNT787Fu83qklJo/pi9wHefj6m90IX7gNcz99/3lfDumBq0u0qxbDJT179sStW7dw5coVLFy4EKtXr8bMmTMBAKamplAqlTAzq/J8iHRkZmoCRwe5uNnb2Wjst5RJNfbbWlto7J/1cT8E9XsN9Z0dnmfYRBWSl1+IuBPn8dHQXmjdvCFcXWrjg8Gvw9W5NrbvPSXWy7ydjXmrfsLnkwbCzNRUo42ff02GmZkpPhnTBw3q1UGzJq6YGvoWDp84j+s3bz/vSyI9SAy01VTVIsmQyWRQKpVwdXVF37594evri9jYWACPhkskEon4SFsASEpKQu/evSGXy2Fra4uOHTsiNVWz633+/PlwdnaGg4MDQkJCUFhY+DwviQBcvXEbL781E6+9MxsfRWzEPxn3NPbvjE1Aqzem4fWgr/DV6hg8zCuookiJdFdcXILikhLIpOYa5TKZORIvXAMAlJSUYPrXW/F+YGc0clOWaaOgsAjmZqYwMfn/v4ot/q+9s0nXjBY70fNS7boHzp8/j5MnT8LNza3c/f/88w86deqELl26IC4uDnK5HCdOnEBRUZFY58iRI3B2dsaRI0dw+fJlvPPOO2jVqhVGjhxZbpv5+fnIz88XX6vVasNe1H9QK283fD31XTSs74jMO2osWn8Ab4cuxcHoybCxskAf39aoq7SHk4Mcyam38OXq3UhNy8Q3c4ZVdehEFWJtJUOLpvWxZsthuLs6wt7OBgeOJeLcxb/h+n+9b1Hbj8HU1ATvvtmh3DZebtkIC9bEYMOOY3j3zQ54mFeApVH7AAC3791/btdC+jOBBCaVHO8wqcF9GdUiyYiJiYGNjQ2KioqQn58PExMTLFu2rNy6y5cvh0KhwJYtW2Bu/ijjb9KkiUadWrVqYdmyZTA1NUXTpk0REBCAw4cPPzXJiIyMxKxZswx7Uf9xXdt7if/2auSCVl5u6DAgAjFxiRjYuz0GvfmquL9pIxc4OsgxKGwF/v7nNtzqcv4NvRgiJg5ExKLv0XPIHJiamKCphwv8OrVC8uUbSL50A1t++gWblnwMyVO+hBq5KTFr/AAs/DYGy6L2w8REgoFvdoCDnU2lv7jo+TDEcEdN/klXiySja9euWLlyJXJzc7Fw4UKYmZkhMDCw3LqJiYno2LGjmGCUp1mzZjB9bOzT2dkZ586de2r9qVOnYvz48eJrtVoNV9eys8NJfwpbS7i71sHf/5Q/zvySd30AwDUmGfQCcXV2wLdfjcbDvALkPMhDHXs5PvlyE+oqHXA26SruZuciIDhSrF9cUoKFa/dg808nELP+EwCAf5eX4N/lJdy5dx+WFlJIJBJs2vkz6irtq+qyiAymWiQZ1tbW8PDwAACsW7cOLVu2xNq1azF8+PAydS0tLZ/Z3pMJiEQiQUlJyVPry2QyyGRcLmZMuQ/y8fc/d9Cvh7zc/UmX/wEAODqUv5+oOrO0kMLSQgr1/QeI//0vfDy0F7p1aI5XWjXWqBc6Yy16dW2NN19vW6YNh1q2AICfDv4GqbkZ2r/UuEwdqobYlaFVtUgyHmdiYoJPP/0U48ePx6BBg8rsb9GiBaKjo1FYWKi1N4Oq1ufLf4Jvh2ao62SPjNvZWLh+P0xNJHjTtzX+/uc2dh76Hd3ae8FObo2LqTcRsWwn2rVsBK9GLmIb1278i9yHBfj3rhp5+YVIuvQoEWncwAlS82r30aX/oJMJKYAAuNWrg+u3bmPx2r1oUK8O3ni9LczNTGEnt9aob2Zqitq1bNCgXh2xbOvuk2jh5QYrSylOn72ERev2YmywP2xtnv0HFVU93idDu2r5m/rtt9/GpEmTsHz5cvTv319jX2hoKJYuXYqBAwdi6tSpUCgUOHXqFF555RV4enpWUcT0pPR/szF21kZkqXNhb2eDl30aYueqcXCws0F+fiFOnPkL674/hod5BXCuYwf/zi0wdkgPjTamzN2qccOuXsPnAwB+2Todrs7sSqaql/MgD8ui9iPzdjbktlbo3qE5PhziB3Mz02cf/H+S/rqO1Zti8eBhPhq4OuKz0H4I6NbaiFETPT/VMskwMzNDaGgo5s6dC39/f419Dg4OiIuLw6RJk9C5c2eYmpqiVatW6NCh/NnbVDWWhQ956j4Xp1rYtjT0mW1sXfLsOkRVqUfHlujRsWWF65fOw3hcxIR3DBkSPW8GuBlXDe7IgEQQBKGqg6hu1Go1FAoFLt+4DVs55whQzXT7Pu9LQjVXzn012jV1QXZ2NuRG+D1e+j0Rl5gGG9vKtZ9zX41ureobLdaqVC1uxkVEREQ1T7UcLiEiInohcHWJVkwyiIiI9MTVJdoxySAiItITn8KqHedkEBERkVGwJ4OIiEhPnJKhHZMMIiIifTHL0IrDJURERGQU7MkgIiLSE1eXaMckg4iISE9cXaIdh0uIiIjIKNiTQUREpCfO+9SOSQYREZG+mGVoxeESIiIiMgomGURERHqSGOg/XRw/fhxvvPEGXFxcIJFIsHPnTo39giBgxowZcHZ2hqWlJXx9fXHp0iWNOnfv3sXgwYMhl8thZ2eH4cOHIycnR6POn3/+iY4dO8LCwgKurq6YO3euzu8PkwwiIiI9la4uqeymi9zcXLRs2RLLly8vd//cuXOxZMkSrFq1CqdPn4a1tTX8/PyQl5cn1hk8eDCSkpIQGxuLmJgYHD9+HKNGjRL3q9Vq9OjRA25ubkhISMC8efMQHh6Ob775RqdYOSeDiIhIT1UxJcPf3x/+/v7l7hMEAYsWLcK0adPQp08fAMCGDRvg5OSEnTt3YuDAgUhOTsb+/fvx22+/oW3btgCApUuXolevXpg/fz5cXFywadMmFBQUYN26dZBKpWjWrBkSExOxYMECjWTkWdiTQUREVENcvXoV6enp8PX1FcsUCgXatWuH+Ph4AEB8fDzs7OzEBAMAfH19YWJigtOnT4t1OnXqBKlUKtbx8/NDSkoK7t27V+F42JNBRESkLwN2ZajVao1imUwGmUymU1Pp6ekAACcnJ41yJycncV96ejocHR019puZmcHe3l6jjru7e5k2SvfVqlWrQvGwJ4OIiEhPhpz46erqCoVCIW6RkZFVfHWVx54MIiKiauD69euQy+Xia117MQBAqVQCADIyMuDs7CyWZ2RkoFWrVmKdzMxMjeOKiopw9+5d8XilUomMjAyNOqWvS+tUBHsyiIiI9GTI1SVyuVxj0yfJcHd3h1KpxOHDh8UytVqN06dPQ6VSAQBUKhWysrKQkJAg1omLi0NJSQnatWsn1jl+/DgKCwvFOrGxsfD09KzwUAnAJIOIiEhvEgNtusjJyUFiYiISExMBPJrsmZiYiLS0NEgkEowbNw6ff/45du3ahXPnzmHIkCFwcXFB3759AQBeXl7o2bMnRo4ciV9//RUnTpxAaGgoBg4cCBcXFwDAoEGDIJVKMXz4cCQlJWHr1q1YvHgxxo8fr1OsHC4hIiJ6gZw5cwZdu3YVX5d+8QcFBSEqKgqTJ09Gbm4uRo0ahaysLLz22mvYv38/LCwsxGM2bdqE0NBQdO/eHSYmJggMDMSSJUvE/QqFAgcPHkRISAjatGmD2rVrY8aMGTotXwUAiSAIQiWvt8ZRq9VQKBS4fOM2bB8bHyOqSW7fL6jqEIiMJue+Gu2auiA7O1tjnoOhlH5P/JpyEza2lWs/574ar3gaL9aqxJ4MIiIiPelzW/Dy2qipOCeDiIiIjII9GURERHrS59kj5bVRUzHJICIi0lNVPLvkRcIkg4iISF/MMrTinAwiIiIyCvZkEBER6YmrS7RjkkFERKQvA0z8rME5BodLiIiIyDjYk0FERKQnzvvUjkkGERGRvphlaMXhEiIiIjIK9mQQERHpiatLtGOSQUREpCfeVlw7DpcQERGRUbAng4iISE+c96kdkwwiIiJ9McvQikkGERGRnjjxUzvOySAiIiKjYE8GERGRniQwwOoSg0RSPTHJICIi0hOnZGjH4RIiIiIyCvZkEBER6Yk349KOSQYREZHeOGCiDYdLiIiIyCjYk0FERKQnDpdoxySDiIhITxws0Y7DJURERGQU7MkgIiLSE4dLtGOSQUREpCc+u0Q7JhlERET64qQMrTgng4iIiIyCPRlERER6YkeGdkwyiIiI9MSJn9pxuISIiIiMgj0ZREREeuLqEu3Yk0FERKQviYE2HYSHh0MikWhsTZs2Fffn5eUhJCQEDg4OsLGxQWBgIDIyMjTaSEtLQ0BAAKysrODo6IhJkyahqKhIjzdAO/ZkEBERvWCaNWuGQ4cOia/NzP7/13lYWBj27NmD77//HgqFAqGhoejXrx9OnDgBACguLkZAQACUSiVOnjyJW7duYciQITA3N8cXX3xh0DiZZBAREempqlaXmJmZQalUlinPzs7G2rVrsXnzZnTr1g0AsH79enh5eeHUqVNo3749Dh48iAsXLuDQoUNwcnJCq1atMHv2bEyZMgXh4eGQSqWVvKL/j8MlREREeipdXVLZDQDUarXGlp+f/9TzXrp0CS4uLmjYsCEGDx6MtLQ0AEBCQgIKCwvh6+sr1m3atCnq16+P+Ph4AEB8fDx8fHzg5OQk1vHz84NarUZSUpJB3x8mGURERNWAq6srFAqFuEVGRpZbr127doiKisL+/fuxcuVKXL16FR07dsT9+/eRnp4OqVQKOzs7jWOcnJyQnp4OAEhPT9dIMEr3l+4zJA6XEBER6a3yq0tKB0yuX78OuVwulspksnJr+/v7i/9u0aIF2rVrBzc3N2zbtg2WlpaVjMWw2JNBRESkJ0MOl8jlco3taUnGk+zs7NCkSRNcvnwZSqUSBQUFyMrK0qiTkZEhzuFQKpVlVpuUvi5vnkdlMMkgIiJ6geXk5CA1NRXOzs5o06YNzM3NcfjwYXF/SkoK0tLSoFKpAAAqlQrnzp1DZmamWCc2NhZyuRze3t4GjY3DJURERC+QiRMn4o033oCbmxtu3ryJmTNnwtTUFO+++y4UCgWGDx+O8ePHw97eHnK5HGPHjoVKpUL79u0BAD169IC3tzfef/99zJ07F+np6Zg2bRpCQkIq3HtSUUwyiIiI9FQVzy65ceMG3n33Xdy5cwd16tTBa6+9hlOnTqFOnToAgIULF8LExASBgYHIz8+Hn58fVqxYIR5vamqKmJgYjBkzBiqVCtbW1ggKCkJERETlLqQcEkEQBIO3+oJTq9VQKBS4fOM2bB+bhENUk9y+X1DVIRAZTc59Ndo1dUF2drbGZEpDKf2eSEu/V+n21Wo16itrGS3WqsQ5GURERGQUHC4hIiLSEx/1rh2TDCIiIj1V1W3FXxQcLiEiIiKjYE8GERGRvtiVoRWTDCIiIj1JDHBb8crflrz64nAJERERGQV7MoiIiPTE1SXaMckgIiLSE6dkaMckg4iISF/MMrTinAwiIiIyCvZkEBER6YmrS7RjkkFERKQnTvzUjklGOUofTHv//v0qjoTIeHJy+BRWqrlych79/jb2g8bVanW1aKO6YpJRjtLk4iUv9yqOhIiIKuP+/ftQKBQGb1cqlUKpVKKxu6tB2lMqlZBKpQZpqzqRCMZO815AJSUluHnzJmxtbSGpyf1Y1YRarYarqyuuX78OuVxe1eEQGRw/48+fIAi4f/8+XFxcYGJinDUOeXl5KCgwTI+gVCqFhYWFQdqqTtiTUQ4TExPUq1evqsP4z5HL5fwFTDUaP+PPlzF6MB5nYWFRIxMDQ+ISViIiIjIKJhlERERkFEwyqMrJZDLMnDkTMpmsqkMhMgp+xum/ihM/iYiIyCjYk0FERERGwSSDiIiIjIJJBhERERkFkwwiIgO7du0aJBIJEhMTK1Q/ODgYffv2NWpMRFWBSQYZVHBwMCQSCSQSCaRSKTw8PBAREYGioqKqDo3IYB7/nJubm8Pd3R2TJ09GXl4eAMDV1RW3bt1C8+bNqzhSoqrFO36SwfXs2RPr169Hfn4+9u7di5CQEJibm2Pq1KkGP1dBQUGNvN8/VX+ln/PCwkIkJCQgKCgIEokEX331FUxNTaFUKqs6RKIqx54MMjiZTAalUgk3NzeMGTMGvr6+2LVrF+7du4chQ4agVq1asLKygr+/Py5duqRx7I4dO9CsWTPIZDI0aNAAX3/9tcb+Bg0aYPbs2RgyZAjkcjlGjRr1PC+NSFT6OXd1dUXfvn3h6+uL2NhYAOUPlyQlJaF3796Qy+WwtbVFx44dkZqaqtHm/Pnz4ezsDAcHB4SEhKCwsPB5XhKRwTHJIKOztLREQUEBgoODcebMGezatQvx8fEQBAG9evUSf5EmJCRgwIABGDhwIM6dO4fw8HBMnz4dUVFRGu3Nnz8fLVu2xNmzZzF9+vQquCIiTefPn8fJkyef2qv2zz//oFOnTpDJZIiLi0NCQgKGDRumMYx45MgRpKam4siRI4iOjkZUVFSZzz7Ri4bDJWQ0giDg8OHDOHDgAPz9/bFz506cOHECr776KgBg06ZNcHV1xc6dO/H2229jwYIF6N69u5g4NGnSBBcuXMC8efMQHBwsttutWzdMmDChKi6JSBQTEwMbGxsUFRUhPz8fJiYmWLZsWbl1ly9fDoVCgS1btsDc3BzAo8/342rVqoVly5bB1NQUTZs2RUBAAA4fPoyRI0ca/VqIjIU9GWRwpb98LSws4O/vj3feeQfBwcEwMzNDu3btxHoODg7w9PREcnIyACA5ORkdOnTQaKtDhw64dOkSiouLxbK2bds+nwsh0qJr165ITEzE6dOnERQUhKFDhyIwMLDcuomJiejYsaOYYJSnWbNmMDU1FV87OzsjMzPT4HETPU9MMsjgSn/5Xrp0CQ8fPkR0dDQkEonB2re2tjZYW0T6sra2hoeHB1q2bIl169bh9OnTWLt2bbl1LS0tn9nekwmIRCJBSUmJQWIlqipMMsjgSn/51q9fH2Zmj0bkvLy8UFRUhNOnT4v17ty5g5SUFHh7e4t1Tpw4odHWiRMn0KRJE42/8IiqGxMTE3z66aeYNm0aHj58WGZ/ixYt8PPPP3MiJ/3nMMmg56Jx48bo06cPRo4ciV9++QV//PEH3nvvPdStWxd9+vQBAEyYMAGHDx/G7Nmz8ddffyE6OhrLli3DxIkTqzh6omd7++23YWpqiuXLl5fZFxoaCrVajYEDB+LMmTO4dOkSNm7ciJSUlCqIlOj5YZJBz8369evRpk0b9O7dGyqVCoIgYO/evWI3cevWrbFt2zZs2bIFzZs3x4wZMxAREaEx6ZOoujIzM0NoaCjmzp2L3NxcjX0ODg6Ii4tDTk4OOnfujDZt2uDbb7/VOkeDqCbgo96JiIjIKNiTQUREREbBJIOIiIiMgkkGERERGQWTDCIiIjIKJhlERERkFEwyiIiIyCiYZBAREZFRMMkgqqaCg4PRt29f8XWXLl0wbty45x7H0aNHIZFIkJWV9dQ6EokEO3furHCb4eHhaNWqVaXiunbtGiQSCRITEyvVDhEZD5MMIh0EBwdDIpFAIpFAKpXCw8MDERERKCoqMvq5f/jhB8yePbtCdSuSGBARGZtZVQdA9KLp2bMn1q9fj/z8fOzduxchISEwNzfH1KlTy9QtKCiAVCo1yHnt7e0N0g4R0fPCngwiHclkMiiVSri5uWHMmDHw9fXFrl27APz/IY45c+bAxcUFnp6eAIDr169jwIABsLOzg729Pfr06YNr166JbRYXF2P8+PGws7ODg4MDJk+ejCfv+P/kcEl+fj6mTJkCV1dXyGQyeHh4YO3atbh27Rq6du0KAKhVqxYkEon4/JeSkhJERkbC3d0dlpaWaNmyJbZv365xnr1796JJkyawtLRE165dNeKsqClTpqBJkyawsrJCw4YNMX369HKfQLp69Wq4urrCysoKAwYMQHZ2tsb+NWvWwMvLCxYWFmjatClWrFihcyxEVHWYZBBVkqWlJQoKCsTXhw8fRkpKCmJjYxETE4PCwkL4+fnB1tYWP//8M06cOAEbGxv07NlTPO7rr79GVFQU1q1bh19++QV3797Fjz/+qPW8Q4YMwf/+9z8sWbIEycnJWL16NWxsbODq6oodO3YAAFJSUnDr1i0sXrwYABAZGYkNGzZg1apVSEpKQlhYGN577z0cO3YMwKNkqF+/fnjjjTeQmJiIESNG4JNPPtH5PbG1tUVUVBQuXLiAxYsX49tvv8XChQs16ly+fBnbtm3D7t27sX//fpw9exYffvihuH/Tpk2YMWMG5syZg+TkZHzxxReYPn06oqOjdY6HiKqIQEQVFhQUJPTp00cQBEEoKSkRYmNjBZlMJkycOFHc7+TkJOTn54vHbNy4UfD09BRKSkrEsvz8fMHS0lI4cOCAIAiC4OzsLMydO1fcX1hYKNSrV088lyAIQufOnYWPP/5YEARBSElJEQAIsbGx5cZ55MgRAYBw7949sSwvL0+wsrISTp48qVF3+PDhwrvvvisIgiBMnTpV8Pb21tg/ZcqUMm09CYDw448/PnX/vHnzhDZt2oivZ86cKZiamgo3btwQy/bt2yeYmJgIt27dEgRBEBo1aiRs3rxZo53Zs2cLKpVKEARBuHr1qgBAOHv27FPPS0RVi3MyiHQUExMDGxsbFBYWoqSkBIMGDUJ4eLi438fHR2Mexh9//IHLly/D1tZWo528vDykpqYiOzsbt27dQrt27cR9ZmZmaNu2bZkhk1KJiYkwNTVF586dKxz35cuX8eDBA7z++usa5QUFBXjppZcAAMnJyRpxAIBKparwOUpt3boVS5YsQWpqKnJyclBUVAS5XK5Rp379+qhbt67GeUpKSpCSkgJbW1ukpqZi+PDhGDlypFinqKgICoVC53iIqGowySDSUdeuXbFy5UpIpVK4uLjAzEzzfyNra2uN1zk5OWjTpg02bdpUpq06deroFYOlpaXOx+Tk5AAA9uzZo/HlDjyaZ2Io8fHxGDx4MGbNmgU/Pz8oFAps2bIFX3/9tc6xfvvtt2WSHlNTU4PFSkTGxSSDSEfW1tbw8PCocP3WrVtj69atcHR0LPPXfClnZ2ecPn0anTp1AvDoL/aEhAS0bt263Po+Pj4oKSnBsWPH4OvrW2Z/aU9KcXGxWObt7Q2ZTIa0tLSn9oB4eXmJk1hLnTp16tkX+ZiTJ0/Czc0Nn332mVj2999/l6mXlpaGmzdvwsXFRTyPiYkJPD094eTkBBcXF1y5cgWDBw/W6fxEVH1w4ieRkQ0ePBi1a9dGnz598PPPP+Pq1as4evQoPvroI9y4cQMA8PHHH+PLL7/Ezp07cfHiRXz44Yda73HRoEEDBAUFYdiwYdi5c6fY5rZt2wAAbm5ukEgkiImJwb///oucnBzY2tpi4sSJCAsLQ3R0NFJTU/H7779j6dKl4mTK0aNH49KlS5g0aRJSUlKwefNmREVF6XS9jRs3RlpaGrZs2YLU1FQsWbKk3EmsFhYWCAoKwh9//IGff/4ZH330EQYMGAClUgkAmDVrFiIjI7FkyRL89ddfOHfuHNavX48FCxboFA8RVR0mGURGZmVlhePHj6N+/fro168fvLy8MHz4cOTl5Yk9GxMmTMD777+PoKAgqFQq2Nra4q233tLa7sqVK9G/f398+OGHaNq0KUaOHInc3FwAQN26dTFr1ix88skncHJyQmhoKABg9uzZmD59OiIjI+Hl5YWePXtiz549cHd3B/BonsSOHTuwc+dOtGzZEqtWrcIXX3yh0/W++eabCAsLQ2hoKFq1aoWTJ09i+vTpZep5eHigX79+6NWrF3r06IEWLVpoLFEdMWIE1qxZg/Xr18PHxwedO3dGVFSUGCsRVX8S4Wkzy4iIiIgqgT0ZREREZBRMMoiIiMgomGQQERGRUTDJICIiIqNgkkFERERGwSSDiIiIjIJJBhERERkFkwwiIiIyCiYZREREZBRMMoiIiMgomGQQERGRUTDJICIiIqP4f4KPfDP/4ystAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHHCAYAAAAcbzQmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcLVJREFUeJzt3Xtcjvf/B/DXXXR3vO+ETiQRqSkNG80ocwiZ42YmK4Sxcj7EdyQ5NKc5zGTDCsswNiaGHMqpzTGMNKWJUTnVLXS+fn9M18+t3Lqr2628nntcj0f35/pcn+t93d3rfvt8PtfnkgiCIICIiIiIXjkdbQdARERE9KZiIkZERESkJUzEiIiIiLSEiRgRERGRljARIyIiItISJmJEREREWsJEjIiIiEhLmIgRERERaQkTMSIiIiItYSJG9Bq4evUqunbtCrlcDolEgh07dlRq+//88w8kEgkiIiIqtd2qzMPDAx4eHtoOQ6NiYmIgkUgQExOj7VCI6AWYiBE9lZycjM8//xyNGjWCvr4+ZDIZ2rVrh+XLl+PJkycaPbevry8uXryIefPmYePGjWjdurVGz/cqDRkyBBKJBDKZrNT38erVq5BIJJBIJFi8eLHa7d+6dQvBwcGIj4+vpIjLp/gaijeZTAZ3d3fs3r1bq3G9bp5/n4o3S0tLbYdWqj179iA4OFjbYVA1VkPbARC9Dnbv3o2PP/4YUqkUPj4+aN68OfLy8nDs2DFMmTIFly5dwvfff6+Rcz958gRxcXH48ssvERAQoJFz2Nra4smTJ6hZs6ZG2n+ZGjVq4PHjx9i1axcGDBigtC8yMhL6+vrIyckpV9u3bt3C7Nmz0bBhQ7i6upb5uP3795frfKp06dIFPj4+EAQB169fR1hYGD788EP8/vvv8PT0rPTzVVXF79OzDAwMtBaPKnv27MG3337LZIw0hokYvfFSUlIwcOBA2Nra4tChQ7CyshL3+fv7IykpSaO9Gnfu3AEAmJqaauwcEokE+vr6Gmv/ZaRSKdq1a4effvqpRCK2adMmeHl5Yfv27a8klsePH8PQ0BB6enqV3nbTpk0xePBg8XX//v3h5OSE5cuXMxF7xvPvU2UpKChAUVGRRn63RJrCoUl64y1cuBDZ2dlYt26dUhJWzN7eHuPGjRNfFxQUYM6cOWjcuDGkUikaNmyI//3vf8jNzVU6rmHDhujZsyeOHTuGd999F/r6+mjUqBE2bNgg1gkODoatrS0AYMqUKZBIJGjYsCHwdEiv+OdnBQcHQyKRKJVFR0fj/fffh6mpKYyNjeHg4ID//e9/4v4XzRE7dOgQ2rdvDyMjI5iamqJ3795ISEgo9XxJSUkYMmQITE1NIZfLMXToUDx+/LjM7/OgQYPw+++/IzMzUyw7deoUrl69ikGDBpWof//+fUyePBnOzs4wNjaGTCZD9+7dcf78ebFOTEwM3nnnHQDA0KFDxWGu4uv08PBA8+bNcebMGXTo0AGGhobi+/L8HDFfX1/o6+uXuH5PT0/UqlULt27dKvO1FnN0dESdOnWQnJysVL5z5054eXnB2toaUqkUjRs3xpw5c1BYWKhUrzj+y5cvo2PHjjA0NES9evWwcOHCEue6efMm+vTpAyMjI5ibm2PChAklPpPFfv75Z7Rq1QoGBgaoU6cOBg8ejH///VepzpAhQ2BsbIzU1FT07NkTxsbGqFevHr799lsAwMWLF/HBBx/AyMgItra22LRpk9rvz4tkZGTAz88PFhYW0NfXR4sWLbB+/XqlOsWf6cWLF2PZsmXi/4+XL18GAFy5cgUfffQRzMzMoK+vj9atW+O3335TaiM/Px+zZ89GkyZNoK+vj9q1a+P9999HdHS0+B4UX++zw6hElYk9YvTG27VrFxo1aoT33nuvTPWHDx+O9evX46OPPsKkSZPw559/IjQ0FAkJCfj111+V6iYlJeGjjz6Cn58ffH198cMPP2DIkCFo1aoV3nrrLfTr1w+mpqaYMGECPv30U/To0QPGxsZqxX/p0iX07NkTLi4uCAkJgVQqRVJSEo4fP67yuAMHDqB79+5o1KgRgoOD8eTJE3zzzTdo164dzp49WyIJHDBgAOzs7BAaGoqzZ89i7dq1MDc3x4IFC8oUZ79+/TBq1Cj88ssvGDZsGPC0N6xZs2Zo2bJlifrXrl3Djh078PHHH8POzg7p6en47rvv4O7ujsuXL8Pa2hqOjo4ICQlBUFAQRo4cifbt2wOA0u/y3r176N69OwYOHIjBgwfDwsKi1PiWL1+OQ4cOwdfXF3FxcdDV1cV3332H/fv3Y+PGjbC2ti7TdT4rKysLDx48QOPGjZXKIyIiYGxsjIkTJ8LY2BiHDh1CUFAQFAoFFi1apFT3wYMH6NatG/r164cBAwZg27ZtCAwMhLOzM7p37w48Hd7u1KkTUlNTMXbsWFhbW2Pjxo04dOhQiZgiIiIwdOhQvPPOOwgNDUV6ejqWL1+O48eP49y5c0o9s4WFhejevTs6dOiAhQsXIjIyEgEBATAyMsKXX34Jb29v9OvXD6tXr4aPjw/c3NxgZ2f30vclJycHd+/eVSozMTGBVCrFkydP4OHhgaSkJAQEBMDOzg4///wzhgwZgszMTKV/FAFAeHg4cnJyMHLkSEilUpiZmeHSpUto164d6tWrh2nTpsHIyAhbt25Fnz59sH37dvTt2xd4+o+M0NBQDB8+HO+++y4UCgVOnz6Ns2fPokuXLvj8889x69YtREdHY+PGjWX6nROpTSB6g2VlZQkAhN69e5epfnx8vABAGD58uFL55MmTBQDCoUOHxDJbW1sBgHDkyBGxLCMjQ5BKpcKkSZPEspSUFAGAsGjRIqU2fX19BVtb2xIxzJo1S3j2f92lS5cKAIQ7d+68MO7ic4SHh4tlrq6ugrm5uXDv3j2x7Pz584KOjo7g4+NT4nzDhg1TarNv375C7dq1X3jOZ6/DyMhIEARB+Oijj4ROnToJgiAIhYWFgqWlpTB79uxS34OcnByhsLCwxHVIpVIhJCRELDt16lSJayvm7u4uABBWr15d6j53d3elsn379gkAhLlz5wrXrl0TjI2NhT59+rz0GgVBEAAIfn5+wp07d4SMjAzh9OnTQrdu3Ur93T5+/LjE8Z9//rlgaGgo5OTklIh/w4YNYllubq5gaWkp9O/fXyxbtmyZAEDYunWrWPbo0SPB3t5eACAcPnxYEARByMvLE8zNzYXmzZsLT548EetGRUUJAISgoCCxzNfXVwAgzJ8/Xyx78OCBYGBgIEgkEmHz5s1i+ZUrVwQAwqxZs8r0PpW2Ff/+iq/lxx9/FI/Jy8sT3NzcBGNjY0GhUAjCM59pmUwmZGRkKJ2jU6dOgrOzs9J7WVRUJLz33ntCkyZNxLIWLVoIXl5eKuP19/cX+FVJmsShSXqjKRQK4Om/xstiz549AICJEycqlU+aNAl4Oun/WU5OTmIvDQDUrVsXDg4OuHbtWoVjL1bcg7Fz504UFRWV6Zjbt28jPj4eQ4YMgZmZmVju4uKCLl26iNf5rFGjRim9bt++Pe7duye+h2UxaNAgxMTEIC0tDYcOHUJaWlqpw5J4Oq9MR+e/P1GFhYW4d++eOOx69uzZMp9TKpVi6NChZarbtWtXfP755wgJCUG/fv2gr6+P7777rsznWrduHerWrQtzc3O0bt0aBw8exNSpU0t8Xp6dmP7w4UPcvXsX7du3x+PHj3HlyhWlusbGxkrzqfT09PDuu+8qfYb27NkDKysrfPTRR2KZoaEhRo4cqdTW6dOnkZGRgS+++EJpzqCXlxeaNWtW6lzI4cOHiz+bmprCwcEBRkZGSnP9HBwcYGpqWubPde/evREdHa20Fc+h27NnDywtLfHpp5+K9WvWrImxY8ciOzsbsbGxSm31798fdevWFV/fv38fhw4dwoABA8T39u7du7h37x48PT1x9epVcRjW1NQUly5dwtWrV8sUN5EmMBGjN5pMJgOefhmWxfXr16GjowN7e3ulcktLS5iamuL69etK5Q0aNCjRRq1atfDgwYMKxf2sTz75BO3atcPw4cNhYWGBgQMHYuvWrSqTsuI4HRwcSuxzdHTE3bt38ejRI6Xy56+lVq1awNOhs7Lq0aMHTExMsGXLFkRGRuKdd94p8V4WKyoqwtKlS9GkSRNIpVLUqVMHdevWxYULF5CVlVXmc9arV0+tyduLFy+GmZkZ4uPjsWLFCpibm5f52OIEY/fu3eLcusePH4sJZbFLly6hb9++kMvlkMlkqFu3rphsPX9t9evXLzEv6fnP0PXr12Fvb1+i3vO/X1W/92bNmpX4/Orr6yslOQAgl8tLjUkul5f5s1C/fn107txZaSuen3n9+nU0adKkxHvm6OiodA3Fnh8KTUpKgiAImDlzJurWrau0zZo1C3g6Bw0AQkJCkJmZiaZNm8LZ2RlTpkzBhQsXynQNRJWFc8TojSaTyWBtbY2//vpLrePKOmFXV1e31PL/RmjKd47nJ3QbGBjgyJEjOHz4MHbv3o29e/diy5Yt+OCDD7B///4XxqCuilxLMalUin79+mH9+vW4du2ayiUB5s+fj5kzZ2LYsGGYM2cOzMzMoKOjg/Hjx5e55w/lWBbh3Llz4hf1xYsXlXpmXqY4wcDTpLNOnToICAhAx44d0a9fPwBAZmYm3N3dIZPJEBISgsaNG0NfXx9nz55FYGBgiWurjPe9vF50bm3G9Lznf7/F79/kyZNfeKdqcfLfoUMHJCcnY+fOndi/fz/Wrl2LpUuXYvXq1Uo9gUSaxESM3ng9e/bE999/j7i4OLi5uamsa2tri6KiIly9elX8FzoApKenIzMzU7wDsjLUqlVL6Q7DYs/3CACAjo4OOnXqhE6dOuHrr7/G/Pnz8eWXX+Lw4cNiYvD8dQBAYmJiiX1XrlxBnTp1YGRkVGnX8qxBgwbhhx9+gI6ODgYOHPjCetu2bUPHjh2xbt06pfLMzEzUqVNHfF2Zd7E9evQIQ4cOhZOTE9577z0sXLgQffv2Fe/MVNfnn3+OpUuXYsaMGejbt6+4yv29e/fwyy+/oEOHDmLdlJSUcsdta2uLv/76C4IgKL0fz/9+n/29f/DBB0r7EhMTK/XzW162tra4cOECioqKlHrFiodsXxZjo0aNgKfDmaV99p9nZmaGoUOHYujQocjOzkaHDh0QHBwsJmK8S5I0jUOT9MabOnUqjIyMMHz4cKSnp5fYn5ycjOXLlwNPezkAYNmyZUp1vv76a+DpXJvK0rhxY2RlZSkNldy+fbvEnZn3798vcWzxwqYvWr7AysoKrq6uWL9+vVKy99dff2H//v3idWpCx44dMWfOHKxcuVLlauq6urolelh+/vnnEsssFCeMpSWt6goMDERqairWr1+Pr7/+Gg0bNoSvr+8L38eXqVGjBiZNmoSEhATs3LkTeKY36dlry8vLw6pVq8odd48ePXDr1i1s27ZNLHv8+HGJRYhbt24Nc3NzrF69Wumafv/9dyQkJFTq57e8evTogbS0NGzZskUsKygowDfffANjY2O4u7urPN7c3BweHh747rvvcPv27RL7i9ftw9M7ap9lbGwMe3t7pfemMj9fRKVhjxi98Ro3boxNmzbhk08+gaOjo9LK+idOnBBvnQeAFi1awNfXF99//704xHTy5EmsX78effr0QceOHSstroEDByIwMBB9+/bF2LFj8fjxY4SFhaFp06ZKk9VDQkJw5MgReHl5wdbWFhkZGVi1ahXq16+P999//4XtL1q0CN27d4ebmxv8/PzE5SvkcrlGVxHX0dHBjBkzXlqvZ8+eCAkJwdChQ/Hee+/h4sWLiIyMFHs8ijVu3BimpqZYvXo1TExMYGRkhDZt2pRpGYVnHTp0CKtWrcKsWbPE5TTCw8Ph4eGBmTNnlrp2V1kMGTIEQUFBWLBgAfr06YP33nsPtWrVgq+vL8aOHQuJRIKNGzdWaFhvxIgRWLlyJXx8fHDmzBlYWVlh48aNMDQ0VKpXs2ZNLFiwAEOHDoW7uzs+/fRTcfmKhg0bYsKECeWOobKMHDkS3333HYYMGYIzZ86gYcOG2LZtG44fP45ly5aV6caab7/9Fu+//z6cnZ0xYsQINGrUCOnp6YiLi8PNmzfFteicnJzg4eGBVq1awczMDKdPn8a2bduUnnDRqlUrAMDYsWPh6ekJXV1dlT25RGrT9m2bRK+Lv//+WxgxYoTQsGFDQU9PTzAxMRHatWsnfPPNN0q3wefn5wuzZ88W7OzshJo1awo2NjbC9OnTleoIT5evKO3W+OeXTXjR8hWCIAj79+8XmjdvLujp6QkODg7Cjz/+WGL5ioMHDwq9e/cWrK2tBT09PcHa2lr49NNPhb///rvEOZ5f4uHAgQNCu3btBAMDA0EmkwkffvihcPnyZaU6xed7fnmM8PBwAYCQkpKi8n19dvmKF3nR8hWTJk0SrKysBAMDA6Fdu3ZCXFxcqctO7Ny5U3BychJq1KihdJ3u7u7CW2+9Veo5n21HoVAItra2QsuWLYX8/HylehMmTBB0dHSEuLg4ldcAQPD39y91X3BwsNIyEsePHxfatm0rGBgYCNbW1sLUqVPFpTOK66iKv7SlTa5fvy706tVLMDQ0FOrUqSOMGzdO2Lt3b4k2BUEQtmzZIrz99tuCVCoVzMzMBG9vb+HmzZslzlHa7+1FMb3o867O+1QsPT1dGDp0qFCnTh1BT09PcHZ2LvHZVfX/jSAIQnJysuDj4yNYWloKNWvWFOrVqyf07NlT2LZtm1hn7ty5wrvvviuYmpoKBgYGQrNmzYR58+YJeXl5Yp2CggJhzJgxQt26dQWJRMKlLKjSSQRtzK4kIiIiIs4RIyIiItIWJmJEREREWsJEjIiIiEhLmIgRERERaQkTMSIiIiItYSJGREREpCVc0JXUVlRUhFu3bsHExISP/yAiqoIEQcDDhw9hbW1d4gHrlSknJwd5eXkVbkdPTw/6+vqVEtPrhokYqe3WrVuwsbHRdhhERFRBN27cQP369TXSdk5ODgxMagMFjyvclqWlJVJSUqplMsZEjNRW/IgRPSdfSHT1tB0OkUakxizWdghEGvNQoYC9nU2ZHhlVXnl5eUDBY0idfIGKfFcU5iHt8nrk5eUxESMCIA5HSnT1mIhRtSWTybQdApHGvZLpJTX0K/RdIUiq93R2JmJERESkORIAFUn4qvlUZCZiREREpDkSnf+2ihxfjVXvqyMiIiJ6jbFHjIiIiDRHIqng0GT1HptkIkZERESaw6FJlar31RERERG9xtgjRkRERJrDoUmVmIgRERGRBlVwaLKaD95V76sjIiIieo2xR4yIiIg0h0OTKjERIyIiIs3hXZMqVe+rIyIiInqNsUeMiIiINIdDkyoxESMiIiLN4dCkSkzEiIiISHPYI6ZS9U4ziYiIiF5jTMSIiIhIc4qHJiuyVcBXX30FiUSC8ePHi2U5OTnw9/dH7dq1YWxsjP79+yM9PV3puNTUVHh5ecHQ0BDm5uaYMmUKCgoKlOrExMSgZcuWkEqlsLe3R0REhNrxMREjIiIizZFIKpiIlX9o8tSpU/juu+/g4uKiVD5hwgTs2rULP//8M2JjY3Hr1i3069dP3F9YWAgvLy/k5eXhxIkTWL9+PSIiIhAUFCTWSUlJgZeXFzp27Ij4+HiMHz8ew4cPx759+9SKkYkYERERVTvZ2dnw9vbGmjVrUKtWLbE8KysL69atw9dff40PPvgArVq1Qnh4OE6cOIE//vgDALB//35cvnwZP/74I1xdXdG9e3fMmTMH3377LfLy8gAAq1evhp2dHZYsWQJHR0cEBATgo48+wtKlS9WKk4kYERERaY6OpOJbOfj7+8PLywudO3dWKj9z5gzy8/OVyps1a4YGDRogLi4OABAXFwdnZ2dYWFiIdTw9PaFQKHDp0iWxzvNte3p6im2UFe+aJCIiIs2ppOUrFAqFUrFUKoVUKi31kM2bN+Ps2bM4depUiX1paWnQ09ODqampUrmFhQXS0tLEOs8mYcX7i/epqqNQKPDkyRMYGBiU6fLYI0ZERESvPRsbG8jlcnELDQ0ttd6NGzcwbtw4REZGQl9f/5XHqS72iBEREZHmVNI6Yjdu3IBMJhOLX9QbdubMGWRkZKBly5ZiWWFhIY4cOYKVK1di3759yMvLQ2ZmplKvWHp6OiwtLQEAlpaWOHnypFK7xXdVPlvn+Tst09PTIZPJytwbBvaIERERkUZV0vIVMplMaXtRItapUydcvHgR8fHx4ta6dWt4e3uLP9esWRMHDx4Uj0lMTERqairc3NwAAG5ubrh48SIyMjLEOtHR0ZDJZHBychLrPNtGcZ3iNsqKPWJERERUbZiYmKB58+ZKZUZGRqhdu7ZY7ufnh4kTJ8LMzAwymQxjxoyBm5sb2rZtCwDo2rUrnJyc8Nlnn2HhwoVIS0vDjBkz4O/vLyaAo0aNwsqVKzF16lQMGzYMhw4dwtatW7F792614mUiRkRERJrzGj7iaOnSpdDR0UH//v2Rm5sLT09PrFq1Styvq6uLqKgojB49Gm5ubjAyMoKvry9CQkLEOnZ2dti9ezcmTJiA5cuXo379+li7di08PT3VikUiCIJQqVdH1Z5CoYBcLofUeQQkunraDodIIx6cWqntEIg0RqFQwKK2HFlZWUrzrir7HHK5HNKOIZDUKP+keaEgB7mHgzQaqzaxR4yIiIg05zXsEXudcLI+ERERkZawR4yIiIg0p5IWdK2umIgRERGR5nBoUqXqnWYSERERvcbYI0ZEREQaVMGhyWreZ8REjIiIiDSHQ5MqVe80k4iIiOg1xh4xIiIi0hyJpIJ3TVbvHjEmYkRERKQ5XL5Cpep9dURERESvMfaIERERkeZwsr5KTMSIiIhIczg0qRITMSIiItIc9oipVL3TTCIiIqLXGHvEiIiISHM4NKkSEzEiIiLSHA5NqlS900wiIiKi1xh7xIiIiEhjJBIJJOwReyEmYkRERKQxTMRU49AkERERkZawR4yIiIg0R/J0q8jx1RgTMSIiItIYDk2qxqFJIiIiIi1hjxgRERFpDHvEVGMiRkRERBrDREw1JmJERESkMUzEVOMcMSIiIiItYY8YERERaQ6Xr1CJiRgRERFpDIcmVePQJBEREZGWsEeMiIiINEYiQQV7xCozmtcPEzEiIiLSGAkqODRZzTMxDk0SERERaQl7xIiIiEhjOFlfNSZiREREpDlcvkIlDk0SERFRtREWFgYXFxfIZDLIZDK4ubnh999/F/d7eHiIvXTF26hRo5TaSE1NhZeXFwwNDWFubo4pU6agoKBAqU5MTAxatmwJqVQKe3t7RERElCte9ogRERGR5lRwaFJQ89j69evjq6++QpMmTSAIAtavX4/evXvj3LlzeOuttwAAI0aMQEhIiHiMoaGh+HNhYSG8vLxgaWmJEydO4Pbt2/Dx8UHNmjUxf/58AEBKSgq8vLwwatQoREZG4uDBgxg+fDisrKzg6empVrxMxIiIiEhjKjpHTN1jP/zwQ6XX8+bNQ1hYGP744w8xETM0NISlpWWpx+/fvx+XL1/GgQMHYGFhAVdXV8yZMweBgYEIDg6Gnp4eVq9eDTs7OyxZsgQA4OjoiGPHjmHp0qVqJ2IcmiQiIiKNeX4YsDwbACgUCqUtNzf3pecuLCzE5s2b8ejRI7i5uYnlkZGRqFOnDpo3b47p06fj8ePH4r64uDg4OzvDwsJCLPP09IRCocClS5fEOp07d1Y6l6enJ+Li4tR+f9gjRkRERK89GxsbpdezZs1CcHBwqXUvXrwINzc35OTkwNjYGL/++iucnJwAAIMGDYKtrS2sra1x4cIFBAYGIjExEb/88gsAIC0tTSkJAyC+TktLU1lHoVDgyZMnMDAwKPN1MREjIiIizamkuyZv3LgBmUwmFkul0hce4uDggPj4eGRlZWHbtm3w9fVFbGwsnJycMHLkSLGes7MzrKys0KlTJyQnJ6Nx48YVCLR8ODRJREREGlNZQ5PFd0EWb6oSMT09Pdjb26NVq1YIDQ1FixYtsHz58lLrtmnTBgCQlJQEALC0tER6erpSneLXxfPKXlRHJpOp1RsGJmJERERU3RUVFb1wTll8fDwAwMrKCgDg5uaGixcvIiMjQ6wTHR0NmUwmDm+6ubnh4MGDSu1ER0crzUMrKw5NEhERkca86rsmp0+fju7du6NBgwZ4+PAhNm3ahJiYGOzbtw/JycnYtGkTevTogdq1a+PChQuYMGECOnToABcXFwBA165d4eTkhM8++wwLFy5EWloaZsyYAX9/f7EXbtSoUVi5ciWmTp2KYcOG4dChQ9i6dSt2796t9vUxESMiIiKNedWJWEZGBnx8fHD79m3I5XK4uLhg37596NKlC27cuIEDBw5g2bJlePToEWxsbNC/f3/MmDFDPF5XVxdRUVEYPXo03NzcYGRkBF9fX6V1x+zs7LB7925MmDABy5cvR/369bF27Vq1l64AEzEiIiKqTtatW/fCfTY2NoiNjX1pG7a2ttizZ4/KOh4eHjh37ly5YnwWEzEiIiLSmFfdI1bVMBEjIiIizeFDv1XiXZNEREREWsIeMSIiItIYDk2qxkSMiIiINIaJmGpMxIiIiEhjmIipxjliRERERFrCHjEiIiLSHN41qRITMSIiItIYDk2qxqFJIiIiIi1hj1gV5uHhAVdXVyxbtkzboZCaxvt2wayA3gj76TD+9/V2mMoMMX2kFzq2bYb6FrVwLzMbu2MuYP7qKCge5YjHPTi1skRbfv8Lxy/RZ0qUt3FphKjvxiHh2m108P5K49dE9Kyvw/ch6vB5XL2eDn1pTbzr0gjBAb3RpKEFACD11j206D2r1GPDQ4ehT+eWAIDYk4mYtzoKCcm3YKivh4E922Dm6A9Ro4buK70eKj/2iKn2WiViQ4YMQWZmJnbs2KHtUKqEX375BTVr1tR2GKSmt50aYEjfdvjr75timVVdOSzryhG0/FdcuZYGGyszfD1tICzryjFkmvJz076YvREH4y6Lr7MePilxDpmxAcJmf4bYU3/DvLaJhq+IqKQTZ5Mw/OMOeNvJFgWFhZizahf6jVmJP7bOgJGBFPUsauHK7/OVjln/63F88+MBdH7vLQDAxb9vYsD4MEwa6onVs31wOyMTE7/ajKLCIswZ309LV0bqkqCCiVg1nyT2WiVir7O8vDzo6em9knPl5+eXKcEyMzN7JfFQ5TEy0MP3IUMwbv5PmDysm1iekHwbvoFrxdf//HsXc8N24bsQH+jq6qCwsEjcl/XwCTLuPVR5nqXTB2LbvtMoLBTg5eGioasherFt3/grvV41azCadJ2O+IQbaNfSHrq6OrCoI1OqExVzHn06t4SxoRQA8Gv0Wbxlb42pI7oDABrZ1EXwmD4Y9r8fMHVED5gY6b/CKyLSjCozRyw2NhbvvvsupFIprKysMG3aNBQUFAAAoqKiYGpqisLCQgBAfHw8JBIJpk2bJh4/fPhwDB48WHx97NgxtG/fHgYGBrCxscHYsWPx6NEjcX/Dhg0xZ84c+Pj4QCaTYeTIkaXGdePGDQwYMACmpqYwMzND79698c8//4j7T506hS5duqBOnTqQy+Vwd3fH2bNnldqQSCQICwtDr169YGRkhHnz5iE4OBiurq7YuHEjGjZsCLlcjoEDB+Lhw///Avbw8MD48eOVYp4/fz6GDRsGExMTNGjQAN9//73SuU6cOAFXV1fo6+ujdevW2LFjByQSCeLj48v1eyH1LJr6CfYf/wuxJxNfWldmrI+Hj3KUkrD/2hiApOivcCBiMrw/bFviuEEftoVtvdpYsOb3So2dqCIU2f8NsdeSGZa6Pz4hFRf/vonBvdzEsry8Akilyv8oNZDWRE5uPs5fSdVwxFRZiocmK7JVZ1UiEfv333/Ro0cPvPPOOzh//jzCwsKwbt06zJ07FwDQvn17PHz4EOfOnQOeJm116tRBTEyM2EZsbCw8PDwAAMnJyejWrRv69++PCxcuYMuWLTh27BgCAgKUzrt48WK0aNEC586dw8yZM0vElZ+fD09PT5iYmODo0aM4fvw4jI2N0a1bN+Tl5QEAHj58CF9fXxw7dgx//PEHmjRpgh49eiglVAAQHByMvn374uLFixg2bJgY544dOxAVFYWoqCjExsbiq69Uz/VZsmQJWrdujXPnzuGLL77A6NGjkZj435e+QqHAhx9+CGdnZ5w9exZz5sxBYGBguX4npL5+XVqhRTMbhHz720vrmsmNMMWvO9b/ekKpfN7qKAyb/gP6+q/ErkPxWBz4CUZ+4i7ub2RTF7P8e+HzoA0lEjgibSkqKsL0r7ehTYtGcLK3LrXOxp1xcLCzRJsWjcSyD9wccfLCtae9u0W4lZGJhev++wdG2l3FK4ufKkhSCVs1ViWGJletWgUbGxusXLkSEokEzZo1w61btxAYGIigoCDI5XK4uroiJiYGrVu3RkxMDCZMmIDZs2cjOzsbWVlZSEpKgrv7f19YoaGh8Pb2FnuTmjRpghUrVsDd3R1hYWHQ1/+vu/uDDz7ApEmTXhjXli1bUFRUhLVr14oZe3h4OExNTRETE4OuXbvigw8+UDrm+++/h6mpKWJjY9GzZ0+xfNCgQRg6dKhS3aKiIkRERMDE5L85Pp999hkOHjyIefPmvTCmHj164IsvvgAABAYGYunSpTh8+DAcHBywadMmSCQSrFmzBvr6+nBycsK///6LESNGqHz/c3NzkZubK75WKPgHUF31LEwROqk/+gWsRG5egcq6Jkb62LJsNBJTbuOr73cr7Vu8bq/488W/b8LQQIqxn3XG91tioaMjwZq5Q/DV93uQnJqhsWshUtfkhVuRkHwbv6+ZUOr+Jzl52LbvNKb4dVMq/6CtI0LG9sHE0M0YNWsDpDVrYLJfN8SdS4ZONe8loTdHlegRS0hIgJubm1L3ZLt27ZCdnY2bN/+b8Ozu7o6YmBgIgoCjR4+iX79+cHR0xLFjxxAbGwtra2s0adIEAHD+/HlERETA2NhY3Dw9PVFUVISUlBTxHK1btxZ/HjVqlFL94naSkpJgYmIilpuZmSEnJwfJyckAgPT0dIwYMQJNmjSBXC6HTCZDdnY2UlOVu9WfPVexhg0bikkYAFhZWSEjQ/UXrIvL/88HkkgksLS0FI9JTEyEi4uLmGgCwLvvvvvS9z80NBRyuVzcbGxsXnoMKWvRrAHMa8sQszEQd+KW407ccrzfqgk+/8Qdd+KWQ0fnv8+2saEU21Z8gezHORg8ZQ0KXtKrdeavf1DPohb0ataAsaE+WjrZYuGUj8VzTB3eDc5N6+NO3HK0b930FV0t0f+bsnAr9h39C7vCxqKeRa1S6+w8FI8nOXkY6FXy75G/dydcP7wIF3eFICn6K/Rw/+9vXMN6dTQeO1UODk2qViV6xMrCw8MDP/zwA86fP4+aNWuiWbNm8PDwQExMDB48eCD2hgFAdnY2Pv/8c4wdO7ZEOw0aNBB/NjIyEn8OCQnB5MmTlepmZ2ejVatWiIyMLNFO3bp1AQC+vr64d+8eli9fDltbW0ilUri5uYlDl6Wdq9jzE/YlEgmKilR/MZfnmJeZPn06Jk6cKL5WKBRMxtR05FQi3huo3JO5Mmgwrv6TjuUbolFUJMDESB/bVvgjL78AgyZ+99KeMwBwblofD7IeIS+/APkFhSXO4fdRe7Rv3RRDpq3D9X/vVfp1Eb2IIAiYuuhn7I45j12rx8FWReL0484T6N7BGXVqlX6Hr0QigVVdUwDA9n2nUc+iFlo049+gqoLLV6hWJRIxR0dHbN++HYIgiL+Q48ePw8TEBPXr1weemSe2dOlSMeny8PDAV199hQcPHigNMbZs2RKXL1+Gvb19mWMwNzeHubm5UlnLli2xZcsWmJubQyaTlXrc8ePHsWrVKvTo0QN4Orn/7t275XgXKs7BwQE//vgjcnNzIZX+d1fSqVOnXnqcVCoV61P5ZD/ORULybaWyx0/ycD/rERKSb8PESB/bv/GHob4ePg9aDxNjfZgY/9dzefdBNoqKBHRr3xx1zUxw+q9/kJObj45tmmHC0K5Y+eNB4OkX3/PnuHM/G7l5BSXKiTRt8oKt2LbvNDYtHgljQ32kP53TJTPWh4H+/9+Bfu3GHZw4l4yty0aX2s6KjQfQyc0ROhIdRB2Ox7L10QgPHQZd3SoxoEMAJJL/toocX529dolYVlZWiTv4Ro4ciWXLlmHMmDEICAhAYmIiZs2ahYkTJ0JH57//GWvVqgUXFxdERkZi5cr/Fr3s0KEDBgwYgPz8fKUescDAQLRt2xYBAQEYPnw4jIyMcPnyZURHR4vHloW3tzcWLVqE3r17IyQkBPXr18f169fxyy+/YOrUqahfvz6aNGmCjRs3onXr1lAoFJgyZQoMDAwq7f1Sx6BBg/Dll19i5MiRmDZtGlJTU7F48WLgDfgXx+vOxcEG7zjbAQDO7QhW3tcrCDdu30d+QSGGf9wB8yb0h0QiQcrNO5ix9Bes33HiBa0Sac8P248CAHqOWq5U/m3QYAx65m7fH3+Lg7W5KT5o26zUdg6cuIwlP+xDXn4Bmjeph8jFI9Gl3Vsajp7o1XntErGYmBi8/fbbSmV+fn7Ys2cPpkyZghYtWsDMzAx+fn6YMWOGUj13d3fEx8eLd0eamZnByckJ6enpcHBwEOu5uLggNjYWX375Jdq3bw9BENC4cWN88sknasVqaGiII0eOIDAwEP369cPDhw9Rr149dOrUSewhW7duHUaOHImWLVvCxsYG8+fPLzHE+arIZDLs2rULo0ePhqurK5ydnREUFIRBgwYpzRujV+PDZ76gjp+9ilrvBKisfzAuAQfjEtQ6x4I1e7BgzZ5yx0hUXqU9BaI0Qf69EOTf64X7fwsrOYWEqpb/esQqMjRZqeG8diSCIAjaDoK0JzIyEkOHDkVWVlaZe+oUCgXkcjmkziMg0X01i9wSvWplTSSIqiKFQgGL2nJkZWW9cGpNZZxDLpej0dht0JWWnAddVoW5j3BtxUcajVWbXrseMdKsDRs2oFGjRqhXrx7Onz+PwMBADBgwQGvDpURERG8yJmJvmLS0NAQFBSEtLQ1WVlb4+OOPVa5LRkREVBG8a1I1JmJvmKlTp2Lq1KnaDoOIiN4QvGtSNd7/S0RERKQl7BEjIiIijdHRkYhPDykPoQLHVgVMxIiIiEhjODSpGocmiYiIiLSEPWJERESkMbxrUjUmYkRERKQxHJpUjYkYERERaQx7xFTjHDEiIiIiLWGPGBEREWkMe8RUYyJGREREGsM5YqpxaJKIiIiqjbCwMLi4uEAmk0Emk8HNzQ2///67uD8nJwf+/v6oXbs2jI2N0b9/f6Snpyu1kZqaCi8vLxgaGsLc3BxTpkxBQUGBUp2YmBi0bNkSUqkU9vb2iIiIKFe8TMSIiIhIYySQiMOT5dqgXpdY/fr18dVXX+HMmTM4ffo0PvjgA/Tu3RuXLl0CAEyYMAG7du3Czz//jNjYWNy6dQv9+vUTjy8sLISXlxfy8vJw4sQJrF+/HhEREQgKChLrpKSkwMvLCx07dkR8fDzGjx+P4cOHY9++feq/P4IgCGofRW80hUIBuVwOqfMISHT1tB0OkUY8OLVS2yEQaYxCoYBFbTmysrIgk8k0dg65XA6X6b9BV9+o3O0U5jzChdBeFYrVzMwMixYtwkcffYS6deti06ZN+OijjwAAV65cgaOjI+Li4tC2bVv8/vvv6NmzJ27dugULCwsAwOrVqxEYGIg7d+5AT08PgYGB2L17N/766y/xHAMHDkRmZib27t2rVmzsESMiIqJqqbCwEJs3b8ajR4/g5uaGM2fOID8/H507dxbrNGvWDA0aNEBcXBwAIC4uDs7OzmISBgCenp5QKBRir1pcXJxSG8V1ittQByfrExERkcZU1l2TCoVCqVwqlUIqlZZ6zMWLF+Hm5oacnBwYGxvj119/hZOTE+Lj46GnpwdTU1Ol+hYWFkhLSwMApKWlKSVhxfuL96mqo1Ao8OTJExgYGJT5+tgjRkRERBpTfNdkRTYAsLGxgVwuF7fQ0NAXntPBwQHx8fH4888/MXr0aPj6+uLy5cuv7qLVwB4xIiIieu3duHFDaY7Yi3rDAEBPTw/29vYAgFatWuHUqVNYvnw5PvnkE+Tl5SEzM1OpVyw9PR2WlpYAAEtLS5w8eVKpveK7Kp+t8/ydlunp6ZDJZGr1hoE9YkRERKRJFbpj8plhzeLlKIo3VYnY84qKipCbm4tWrVqhZs2aOHjwoLgvMTERqampcHNzAwC4ubnh4sWLyMjIEOtER0dDJpPByclJrPNsG8V1ittQB3vEiIiISGNe9YKu06dPR/fu3dGgQQM8fPgQmzZtQkxMDPbt2we5XA4/Pz9MnDgRZmZmkMlkGDNmDNzc3NC2bVsAQNeuXeHk5ITPPvsMCxcuRFpaGmbMmAF/f38x+Rs1ahRWrlyJqVOnYtiwYTh06BC2bt2K3bt3q319TMSIiIhIY171I44yMjLg4+OD27dv/7d8hosL9u3bhy5dugAAli5dCh0dHfTv3x+5ubnw9PTEqlWrxON1dXURFRWF0aNHw83NDUZGRvD19UVISIhYx87ODrt378aECROwfPly1K9fH2vXroWnp6f618d1xEhdXEeM3gRcR4yqs1e5jliroN0VXkfsTIiXRmPVJvaIERERkeZUcGhSzYX1qxwmYkRERKQxr3posqrhXZNEREREWsIeMSIiItKYV33XZFXDRIyIiIg0hkOTqnFokoiIiEhL2CNGREREGsOhSdWYiBEREZHGcGhSNQ5NEhEREWkJe8SIiIhIY9gjphoTMSIiItIYzhFTjYkYERERaQx7xFTjHDEiIiIiLWGPGBEREWkMhyZVYyJGREREGsOhSdU4NElERESkJewRIyIiIo2RVHB4sXr3hzERIyIiIg3SkUigU4FMrCLHVgUcmiQiIiLSEvaIERERkcbwrknVmIgRERGRxvCuSdWYiBEREZHG6Ej+2ypyfHXGOWJEREREWsIeMSIiItIcSQWHF6t5jxgTMSIiItIYTtZXjUOTRERERFrCHjEiIiLSGMnT/ypyfHXGRIyIiIg0hndNqsahSSIiIiItYY8YERERaQwXdFWtTInYb7/9VuYGe/XqVZF4iIiIqBrhXZOqlSkR69OnT5kak0gkKCwsrGhMRERERG+EMiViRUVFmo+EiIiIqh0diQQ6FejWqsixVUGF5ojl5ORAX1+/8qIhIiKiaoVDk6qpfddkYWEh5syZg3r16sHY2BjXrl0DAMycORPr1q3TRIxERERURRVP1q/IVp2pnYjNmzcPERERWLhwIfT09MTy5s2bY+3atZUdHxEREVG1pXYitmHDBnz//ffw9vaGrq6uWN6iRQtcuXKlsuMjIiKiKqx4aLIimzpCQ0PxzjvvwMTEBObm5ujTpw8SExOV6nh4eJTodRs1apRSndTUVHh5ecHQ0BDm5uaYMmUKCgoKlOrExMSgZcuWkEqlsLe3R0REhNrvj9qJ2L///gt7e/sS5UVFRcjPz1c7ACIiIqq+iifrV2RTR2xsLPz9/fHHH38gOjoa+fn56Nq1Kx49eqRUb8SIEbh9+7a4LVy4UNxXWFgILy8v5OXl4cSJE1i/fj0iIiIQFBQk1klJSYGXlxc6duyI+Ph4jB8/HsOHD8e+ffvUilftyfpOTk44evQobG1tlcq3bduGt99+W93miIiIiCrN3r17lV5HRETA3NwcZ86cQYcOHcRyQ0NDWFpaltrG/v37cfnyZRw4cAAWFhZwdXXFnDlzEBgYiODgYOjp6WH16tWws7PDkiVLAACOjo44duwYli5dCk9PzzLHq3aPWFBQEAICArBgwQIUFRXhl19+wYgRIzBv3jylTJGIiIhIUgkbACgUCqUtNze3TOfPysoCAJiZmSmVR0ZGok6dOmjevDmmT5+Ox48fi/vi4uLg7OwMCwsLsczT0xMKhQKXLl0S63Tu3FmpTU9PT8TFxan1/qidiPXu3Ru7du3CgQMHYGRkhKCgICQkJGDXrl3o0qWLus0RERFRNVZZd03a2NhALpeLW2ho6EvPXVRUhPHjx6Ndu3Zo3ry5WD5o0CD8+OOPOHz4MKZPn46NGzdi8ODB4v60tDSlJAyA+DotLU1lHYVCgSdPnpT5/SnXOmLt27dHdHR0eQ4lIiIiUtuNGzcgk8nE11Kp9KXH+Pv746+//sKxY8eUykeOHCn+7OzsDCsrK3Tq1AnJyclo3LhxJUeuWrkXdD19+jQSEhKAp/PGWrVqVZlxERERUTWgI/lvq8jxACCTyZQSsZcJCAhAVFQUjhw5gvr166us26ZNGwBAUlISGjduDEtLS5w8eVKpTnp6OgCI88osLS3FsmfryGQyGBgYlDlOtROxmzdv4tNPP8Xx48dhamoKAMjMzMR7772HzZs3v/RiiYiI6M1R0UVZ1T1WEASMGTMGv/76K2JiYmBnZ/fSY+Lj4wEAVlZWAAA3NzfMmzcPGRkZMDc3BwBER0dDJpPByclJrLNnzx6ldqKjo+Hm5qZWvGrPERs+fDjy8/ORkJCA+/fv4/79+0hISEBRURGGDx+ubnNERERElcbf3x8//vgjNm3aBBMTE6SlpSEtLU2ct5WcnIw5c+bgzJkz+Oeff/Dbb7/Bx8cHHTp0gIuLCwCga9eucHJywmeffYbz589j3759mDFjBvz9/cUh0VGjRuHatWuYOnUqrly5glWrVmHr1q2YMGGCWvGq3SMWGxuLEydOwMHBQSxzcHDAN998g/bt26vbHBEREVVzr/IpRWFhYcDTRVufFR4ejiFDhkBPTw8HDhzAsmXL8OjRI9jY2KB///6YMWOGWFdXVxdRUVEYPXo03NzcYGRkBF9fX4SEhIh17OzssHv3bkyYMAHLly9H/fr1sXbtWrWWrkB5EjEbG5tSF24tLCyEtbW1us0RERFRNaaNoUlVbGxsEBsb+9J2bG1tSww9Ps/DwwPnzp1TK77nqT00uWjRIowZMwanT58Wy06fPo1x48Zh8eLFFQqGiIiIqpfiyfoV2aqzMvWI1apVSykjffToEdq0aYMaNf47vKCgADVq1MCwYcPQp08fzUVLREREVI2UKRFbtmyZ5iMhIiKiaudVD01WNWVKxHx9fTUfCREREVU7zz6mqLzHV2flXtAVAHJycpCXl6dUps5ia0RERERvMrUTsUePHiEwMBBbt27FvXv3SuwvLCysrNiIiIioitORSKBTgeHFihxbFah91+TUqVNx6NAhhIWFQSqVYu3atZg9ezasra2xYcMGzURJREREVZJEUvGtOlO7R2zXrl3YsGEDPDw8MHToULRv3x729vawtbVFZGQkvL29NRMpERERUTWjdo/Y/fv30ahRI+DpfLD79+8DAN5//30cOXKk8iMkIiKiKqv4rsmKbNWZ2olYo0aNkJKSAgBo1qwZtm7dCjztKSt+CDgRERERODT5UmonYkOHDsX58+cBANOmTcO3334LfX19TJgwAVOmTNFEjERERETVktpzxJ59qnjnzp1x5coVnDlzBvb29uJTy4mIiIjAuyZfqkLriOHpQzFtbW0rJxoiIiKqVio6vFjN87CyJWIrVqwoc4Njx46tSDxERERUjfARR6qVKRFbunRpmRqTSCRMxIiIiIjKqEyJWPFdkkTPuvR7KEz4SCuqpq5lPNJ2CEQak/3w1X2+dcpzZ+Bzx1dnFZ4jRkRERPQiHJpUrbonmkRERESvLfaIERERkcZIJIAO75p8ISZiREREpDE6FUzEKnJsVcChSSIiIiItKVcidvToUQwePBhubm74999/AQAbN27EsWPHKjs+IiIiqsL40G/V1E7Etm/fDk9PTxgYGODcuXPIzc0FAGRlZWH+/PmaiJGIiIiqqOKhyYps1ZnaidjcuXOxevVqrFmzBjVr1hTL27Vrh7Nnz1Z2fERERETVltqT9RMTE9GhQ4cS5XK5HJmZmZUVFxEREVUDfNakamr3iFlaWiIpKalE+bFjx9CoUaPKiouIiIiqAR2JpMJbdaZ2IjZixAiMGzcOf/75JyQSCW7duoXIyEhMnjwZo0eP1kyUREREVCXpVMJWnak9NDlt2jQUFRWhU6dOePz4MTp06ACpVIrJkydjzJgxmomSiIiIqBpSOxGTSCT48ssvMWXKFCQlJSE7OxtOTk4wNjbWTIRERERUZXGOmGrlXllfT08PTk5OlRsNERERVSs6qNg8Lx1U70xM7USsY8eOKhdXO3ToUEVjIiIiInojqJ2Iubq6Kr3Oz89HfHw8/vrrL/j6+lZmbERERFTFcWhSNbUTsaVLl5ZaHhwcjOzs7MqIiYiIiKoJPvRbtUq7K3Tw4MH44YcfKqs5IiIiomqv3JP1nxcXFwd9ff3Kao6IiIiqAYkEFZqsX92HJtXuEevXr5/S1rdvX7Rt2xZDhw7F559/rpkoiYiIqEoqniNWkU0doaGheOedd2BiYgJzc3P06dMHiYmJSnVycnLg7++P2rVrw9jYGP3790d6erpSndTUVHh5ecHQ0BDm5uaYMmUKCgoKlOrExMSgZcuWkEqlsLe3R0REhNrvj9qJmFwuV9rMzMzg4eGBPXv2YNasWWoHQERERFRZYmNj4e/vjz/++APR0dHIz89H165d8ejRI7HOhAkTsGvXLvz888+IjY3FrVu30K9fP3F/YWEhvLy8kJeXhxMnTmD9+vWIiIhAUFCQWCclJQVeXl7o2LEj4uPjMX78eAwfPhz79u1TK16JIAhCWSsXFhbi+PHjcHZ2Rq1atdQ6EVUfCoUCcrkcSTfvwkQm03Y4RBpx92GetkMg0pjshwq0aWaNrKwsyDT0d7z4u2LGzrPQNzIpdzs5jx5ibu+W5Y71zp07MDc3R2xsLDp06ICsrCzUrVsXmzZtwkcffQQAuHLlChwdHREXF4e2bdvi999/R8+ePXHr1i1YWFgAAFavXo3AwEDcuXMHenp6CAwMxO7du/HXX3+J5xo4cCAyMzOxd+/eMsenVo+Yrq4uunbtiszMTHUOIyIiojeUpBL+q4isrCwAgJmZGQDgzJkzyM/PR+fOncU6zZo1Q4MGDRAXFwc8nffu7OwsJmEA4OnpCYVCgUuXLol1nm2juE5xG2Wl9mT95s2b49q1a7Czs1P3UCIiInrDVNbyFQqFQqlcKpVCKpWqPLaoqAjjx49Hu3bt0Lx5cwBAWloa9PT0YGpqqlTXwsICaWlpYp1nk7Di/cX7VNVRKBR48uQJDAwMynZ9Zar1jLlz52Ly5MmIiorC7du3oVAolDYiIiKiymZjY6M0Rz00NPSlx/j7++Ovv/7C5s2bX0mM5VHmHrGQkBBMmjQJPXr0AAD06tVL6VFHgiBAIpGgsLBQM5ESERFRlVNZPWI3btxQmiP2st6wgIAAREVF4ciRI6hfv75Ybmlpiby8PGRmZir1iqWnp8PS0lKsc/LkSaX2iu+qfLbO83dapqenQyaTlbk3DOokYrNnz8aoUaNw+PDhMjdOREREbzaJRKLyGdVlOR4AZDJZmSbrC4KAMWPG4Ndff0VMTEyJqVStWrVCzZo1cfDgQfTv3x8AkJiYiNTUVLi5uQEA3NzcMG/ePGRkZMDc3BwAEB0dDZlMBicnJ7HOnj17lNqOjo4W2yirMidixTdXuru7q3UCIiIiolfF398fmzZtws6dO2FiYiLO6ZLL5TAwMIBcLoefnx8mTpwIMzMzyGQyjBkzBm5ubmjbti0AoGvXrnBycsJnn32GhQsXIi0tDTNmzIC/v7/YEzdq1CisXLkSU6dOxbBhw3Do0CFs3boVu3fvVitetSbrVySjJSIiojfPq37WZFhYGADAw8NDqTw8PBxDhgwBnj43W0dHB/3790dubi48PT2xatUqsa6uri6ioqIwevRouLm5wcjICL6+vggJCRHr2NnZYffu3ZgwYQKWL1+O+vXrY+3atfD09FQr3jKvI6ajowO5XP7SZOz+/ftqBUBVD9cRozcB1xGj6uxVriM2b098hdcR+7KHq0Zj1Sa1esRmz54NuVyuuWiIiIiI3iBqJWIDBw4UJ60RERERvYyORFKhh35X5NiqoMyJGOeHERERkbpe9RyxqqbMC7qq8UhKIiIiIiqDMveIFRUVaTYSIiIiqn4kQIUG1ap5j5jaz5okIiIiKisdSKBTgWyqIsdWBUzEiIiISGMkFewRq+5T1NV+6DcRERERVQ72iBEREZHG8K5J1ZiIERERkcZwHTHVODRJREREpCXsESMiIiKN4WR91ZiIERERkcbooIJDk9V8+QoOTRIRERFpCXvEiIiISGM4NKkaEzEiIiLSGJ0KDr9V96G76n59RERERK8t9ogRERGRxkgkEkgqML5YkWOrAiZiREREpDGSp1tFjq/OmIgRERGRxnBlfdU4R4yIiIhIS9gjRkRERBpVvfu0KoaJGBEREWkM1xFTjUOTRERERFrCHjEiIiLSGC5foRoTMSIiItIYrqyvWnW/PiIiIqLXFnvEiIiISGM4NKkaEzEiIiLSGK6srxqHJomIiIi0hD1iREREpDEcmlSNiRgRERFpDO+aVI2JGBEREWkMe8RUq+6JJhEREdFriz1iREREpDG8a1I1JmJERESkMXzot2ocmiQiIqJq48iRI/jwww9hbW0NiUSCHTt2KO0fMmSIOG+teOvWrZtSnfv378Pb2xsymQympqbw8/NDdna2Up0LFy6gffv20NfXh42NDRYuXFiueJmIERERkcboQFLhTR2PHj1CixYt8O23376wTrdu3XD79m1x++mnn5T2e3t749KlS4iOjkZUVBSOHDmCkSNHivsVCgW6du0KW1tbnDlzBosWLUJwcDC+//57td8fDk0SERGRxrzqocnu3buje/fuKutIpVJYWlqWui8hIQF79+7FqVOn0Lp1awDAN998gx49emDx4sWwtrZGZGQk8vLy8MMPP0BPTw9vvfUW4uPj8fXXXyslbGXBHjEiIiJ67SkUCqUtNze33G3FxMTA3NwcDg4OGD16NO7duyfui4uLg6mpqZiEAUDnzp2ho6ODP//8U6zToUMH6OnpiXU8PT2RmJiIBw8eqBULEzEiIiLSGEkl/AcANjY2kMvl4hYaGlqueLp164YNGzbg4MGDWLBgAWJjY9G9e3cUFhYCANLS0mBubq50TI0aNWBmZoa0tDSxjoWFhVKd4tfFdcqKQ5NERESkMZU1NHnjxg3IZDKxXCqVlqu9gQMHij87OzvDxcUFjRs3RkxMDDp16lT+QMuJPWJERET02pPJZEpbeROx5zVq1Ah16tRBUlISAMDS0hIZGRlKdQoKCnD//n1xXpmlpSXS09OV6hS/ftHcsxdhIkZEREQaI6ngHZMSDS/pevPmTdy7dw9WVlYAADc3N2RmZuLMmTNinUOHDqGoqAht2rQR6xw5cgT5+flinejoaDg4OKBWrVpqnZ+JGBEREWlM8dBkRTZ1ZGdnIz4+HvHx8QCAlJQUxMfHIzU1FdnZ2ZgyZQr++OMP/PPPPzh48CB69+4Ne3t7eHp6AgAcHR3RrVs3jBgxAidPnsTx48cREBCAgQMHwtraGgAwaNAg6Onpwc/PD5cuXcKWLVuwfPlyTJw4Ue33h3PEiIiISGNe9fIVp0+fRseOHcXXxcmRr68vwsLCcOHCBaxfvx6ZmZmwtrZG165dMWfOHKWhzsjISAQEBKBTp07Q0dFB//79sWLFCnG/XC7H/v374e/vj1atWqFOnToICgpSe+kKMBEjIiKi6sTDwwOCILxw/759+17ahpmZGTZt2qSyjouLC44ePVquGJ/FRIyIiIg0RlLBeV6aniOmbUzEiIiISGN0JP9tFTm+OuNkfSIiIiItYY8YERERaQyHJlVjIkZEREQa86rvmqxqODRJREREpCXsESMiIiKNkVRweLGad4gxESMiIiLN4V2TqnFokoiIiEhLXvsesYiICIwfPx6ZmZllPmbIkCHIzMzEjh07NBqbtsXExKBjx4548OABTE1NtR0OqWnpD3uxLEJ5hefGDcxx6MfpAIBPxq7EH/HJSvu9e7lh/uQB4utZy3/B6Ysp+DvlNuxtLfD7D1NeUfREL/focS7CftyHwycu4UFWNhwaWWPy573wVlObEnXnr/wF23//E5NG9MSgPu3F8oSkf/FN+B5cunoTujo6+OC95pg4oicMDaQl2qDXE++aVE2ridiLEqZnE4xPPvkEPXr00FqMr7P33nsPt2/fhlwu13YoVE5N7SwR+fVo8XUNXeVO6k8/bIuJw7qLrw309Uq0MaBHG8QnXMeV5FsajpZIPXNWbEPy9TTMmfwJ6prJsOfwOYz+cg22hU2CeZ3//7t16MRfuHglFXVry5SOv3NPgS++XIMuHVpg6ug+ePQ4B0u+34XgpVux8H+faeGKqDx416Rqr/3QpIGBAczNzbUdBgoLC1FUVPRKzpWXl1emenp6erC0tISkun9Kq7Eaujowry0TNzNTY6X9BlI9pf0mRvpK+2eP6wfffu+jgVXtVxw5kWo5ufk4dPwvjB3aAy2bN4KNdR187t0FNlZ1sG3PH2K9jLtZWLR6J+ZOGYgaurpKbRw9mYAaNXQxbXRvNKxfF281tcH0gL44ePwv3Lh1VwtXReUhqYStOnvtE7GIiIgSw25z586Fubk5TExMMHz4cEybNg2urq4ljl28eDGsrKxQu3Zt+Pv7Iz8/X9yXm5uLyZMno169ejAyMkKbNm0QExNT4ry//fYbnJycIJVKkZqaWmqMa9euhaOjI/T19dGsWTOsWrVKaX9gYCCaNm0KQ0NDNGrUCDNnzlSKJTg4GK6urli7di3s7Oygr//fl61EIsHatWvRt29fGBoaokmTJvjtt9/E42JiYiCRSMRh2+KY9+3bB0dHRxgbG6Nbt264ffu2eExBQQHGjh0LU1NT1K5dG4GBgfD19UWfPn3U+r1Q5Ui5eRfv9J2F9z+Zg7EhG/Fv+gOl/Tuiz8D1wxno4rsAC76LwpOcsiXpRNpWWFiEwqIiSPVqKpVLpTURf/kfAEBRURFmLtmCz/q7o7GtZYk28vILULOGLnR0/v+rSv9pe+cu/aPxayB6FV77ROx5kZGRmDdvHhYsWIAzZ86gQYMGCAsLK1Hv8OHDSE5OxuHDh7F+/XpEREQgIiJC3B8QEIC4uDhs3rwZFy5cwMcff4xu3brh6tWrYp3Hjx9jwYIFWLt2LS5dulRqz1xkZCSCgoIwb948JCQkYP78+Zg5cybWr18v1jExMUFERAQuX76M5cuXY82aNVi6dKlSO0lJSdi+fTt++eUXxMfHi+WzZ8/GgAEDcOHCBfTo0QPe3t64f//+C9+fx48fY/Hixdi4cSOOHDmC1NRUTJ48Wdy/YMECREZGIjw8HMePH4dCoXjpXLrc3FwoFAqljSrO1ckWS6Z/ig2LP8e8SR/jxu37+DjgG2Q/zgEA9O7cEstmDsbmZV/gC+/O+GX/aYyb86O2wyYqEyNDKVyaNcDazQdx554ChYVF2HPoLC5euY679//7GxKxLRa6ujr4tFe7Utt4p0Vj3H3wEBu2xyI/vwCKh4/xTcTvAIC7Dx6+0uuh8tOBBDqSCmzVvE9M65P1o6KiYGysPBxTWFj4wvrffPMN/Pz8MHToUABAUFAQ9u/fj+zsbKV6tWrVwsqVK6Grq4tmzZrBy8sLBw8exIgRI5Camorw8HCkpqbC2toaADB58mTs3bsX4eHhmD9/PgAgPz8fq1atQosWLV4Yz6xZs7BkyRL069cPAGBnZ4fLly/ju+++g6+vLwBgxowZYv2GDRti8uTJ2Lx5M6ZOnSqW5+XlYcOGDahbt65S+0OGDMGnn34KAJg/fz5WrFiBkydPolu3bqXGk5+fj9WrV6Nx48bA04QzJCRE6f2bPn06+vbtCwBYuXIl9uzZ88LrA4DQ0FDMnj1bZR1SX8e2juLPjo2t4epoi3YDQhB1KB4De7bFoF7vifubNbaGeW0ZBk1Yhev/3oVtvTpaipqo7EImD0TIsp/RzWcedHV00MzeGp4dXJGQdBMJV29i885jiFwx7oXTKxrbWmL2xAFYuiYKKyP2QkdHgoG92qG2qTF0OCWjyqjo8GJ1/01rPRHr2LFjiR6tP//8E4MHDy61fmJiIr744gulsnfffReHDh1SKnvrrbeg+8x8AysrK1y8eBEAcPHiRRQWFqJp06ZKx+Tm5qJ27f+fa6OnpwcXFxcAQGpqKpycnMR9//vf/zBu3DgkJyfDz88PI0aMEPcVFBQoTaDfsmULVqxYgeTkZGRnZ6OgoAAymfKkVFtb2xJJGADx/ABgZGQEmUyGjIyMUt8bADA0NBSTsOLrLq6flZWF9PR0vPvuu+J+XV1dtGrVSuX8t+nTp2PixInia4VCARubknc9UcXITQxgZ1MX1/8tfe7L204NAAD/MBGjKsLGqjbWLBiFJzl5yH6cg7pmMkz7KhL1LGvj3KUU3M96BK8hoWL9wqIiLF23G5t2HkdU+DQAQHePt9Hd423ce/AQBvp6kEgkiNxxFPUszbR4ZUSVR+uJmJGREezt7ZXKbt68WeF2a9ZUnpcgkUjEZCM7Oxu6uro4c+aMUrIGQKl3zsDAQPyXmrW1tdKQoZmZmdgLt2bNGrRp00apneJ24+Li4O3tjdmzZ8PT0xNyuRybN2/GkiVLlOobGRmpfR1lrS8Iwgvrl4VUKoVUylvFNe3R41xc//ce+nWVlbr/UtK/AADz2qXvJ3pdGejrwUBfD4qHjxF39m+MG9oDH7RrjnddmyjVCwhahx4dW6JXl9Yl2qhdywQAsHP/KejVrIG2bzcpUYdeU+wSU0nriZi6HBwccOrUKfj4+Ihlp06dUquNt99+G4WFhcjIyED79u3LcARQo0aNEgkjniZo165dg7e3d6nHnThxAra2tvjyyy/FsuvXr6sVb2WRy+WwsLDAqVOn0KFDB+DpMPDZs2dLvdmBNGvutzvRud1bqGdhhvS7WVgavhe6OhL06twS1/+9ix0HzuKDto4wlRnhSvIthKzcgTYtGsOxsbXYxj837+DRkzzcua9ATm4+Ll39L1lr0tACejWr3P/eVM2cOJMICIBt/bq4cfsulq/bg4b16+LDLq1Rs4YuTGXK/wCtoauLOrWM0bD+/48ObNl1Ai6OtjA00MOf565i2Q97MGZId5gYG2jhiqg8uI6YalXuL/WYMWMwYsQItG7dGu+99x62bNmCCxcuoFGjRmVuo2nTpvD29oaPjw+WLFmCt99+G3fu3MHBgwfh4uICLy+vMrc1e/ZsjB07FnK5HN26dUNubi5Onz6NBw8eYOLEiWjSpAlSU1OxefNmvPPOO9i9ezd+/fXXcl59xY0ZMwahoaGwt7dHs2bN8M033+DBgwdcAkML0u5kYczsjchUPIKZqTHecW6EHavHo7apMXJz83H89N/44edYPMnJg1VdU3R3d8EYn65KbQQu3KK06GsPv8UAgGNbZsLGikM3pF3Zj3OwMmIvMu5mQWZiiE7tmuMLH0/UrKFbhqP/c+nvG/guMhqPn+SioY05vgzoB68PWmo0bqJXqcolYt7e3rh27RomT56MnJwcDBgwAEOGDMHJkyfVaic8PBxz587FpEmT8O+//6JOnTpo27YtevbsqVY7w4cPh6GhIRYtWoQpU6bAyMgIzs7OGD9+PACgV69emDBhAgICApCbmwsvLy/MnDkTwcHBap2nsgQGBiItLQ0+Pj7Q1dXFyJEj4enpWWKIljRvZbDPC/dZW9TC1m8CXtrGlhUvr0OkLV3bt0DX9i++2el5xfPCnhUy6ZNKjopeuQou6FrNO8QgESo6geg10KVLF1haWmLjxo3aDqXKKSoqgqOjIwYMGIA5c+aU6RiFQgG5XI6km3dhIuN8Jaqe7j7kmm1UfWU/VKBNM2tkZWWVuHmsshR/VxyKT4WxSfnPkf1QgQ9cG2g0Vm2qcj1ijx8/xurVq8VenJ9++gkHDhxAdHS0tkOrEq5fv479+/fD3d0dubm5WLlyJVJSUjBo0CBth0ZERPTGqXKJmEQiwZ49ezBv3jzk5OTAwcEB27dvR+fOnbUdWpWgo6ODiIgITJ48GYIgoHnz5jhw4AAcHR3LcDQREZGaeNekSlUuETMwMMCBAwe0HUaVZWNjg+PHj2s7DCIiekPwrknVqlwiRkRERFWHpIKT9av7Tf1V7lmTRERERNUFe8SIiIhIYzhFTDUmYkRERKQ5zMRU4tAkERERkZawR4yIiIg0hndNqsZEjIiIiDSGd02qxqFJIiIiIi1hjxgRERFpDOfqq8ZEjIiIiDSHmZhKHJokIiIi0hImYkRERKQxkkr4Tx1HjhzBhx9+CGtra0gkEuzYsUNpvyAICAoKgpWVFQwMDNC5c2dcvXpVqc79+/fh7e0NmUwGU1NT+Pn5ITs7W6nOhQsX0L59e+jr68PGxgYLFy4s1/vDRIyIiIg0pviuyYps6nj06BFatGiBb7/9ttT9CxcuxIoVK7B69Wr8+eefMDIygqenJ3JycsQ63t7euHTpEqKjoxEVFYUjR45g5MiR4n6FQoGuXbvC1tYWZ86cwaJFixAcHIzvv/9e7feHc8SIiIhIY171FLHu3buje/fupe4TBAHLli3DjBkz0Lt3bwDAhg0bYGFhgR07dmDgwIFISEjA3r17cerUKbRu3RoA8M0336BHjx5YvHgxrK2tERkZiby8PPzwww/Q09PDW2+9hfj4eHz99ddKCVtZsEeMiIiI3ggpKSlIS0tD586dxTK5XI42bdogLi4OABAXFwdTU1MxCQOAzp07Q0dHB3/++adYp0OHDtDT0xPreHp6IjExEQ8ePFArJvaIERERkeZUUpeYQqFQKpZKpZBKpWo1lZaWBgCwsLBQKrewsBD3paWlwdzcXGl/jRo1YGZmplTHzs6uRBvF+2rVqlXmmNgjRkRERBpTWZP1bWxsIJfLxS00NFTbl1Yp2CNGREREr70bN25AJpOJr9XtDQMAS0tLAEB6ejqsrKzE8vT0dLi6uop1MjIylI4rKCjA/fv3xeMtLS2Rnp6uVKf4dXGdsmKPGBEREWlMZd01KZPJlLbyJGJ2dnawtLTEwYMHxTKFQoE///wTbm5uAAA3NzdkZmbizJkzYp1Dhw6hqKgIbdq0EescOXIE+fn5Yp3o6Gg4ODioNSwJJmJERESkSZJK2NSRnZ2N+Ph4xMfHA08n6MfHxyM1NRUSiQTjx4/H3Llz8dtvv+HixYvw8fGBtbU1+vTpAwBwdHREt27dMGLECJw8eRLHjx9HQEAABg4cCGtrawDAoEGDoKenBz8/P1y6dAlbtmzB8uXLMXHiRLXfHw5NEhERUbVx+vRpdOzYUXxdnBz5+voiIiICU6dOxaNHjzBy5EhkZmbi/fffx969e6Gvry8eExkZiYCAAHTq1Ak6Ojro378/VqxYIe6Xy+XYv38//P390apVK9SpUwdBQUFqL10BABJBEIQKXzW9URQKBeRyOZJu3oXJM+P1RNXJ3Yd52g6BSGOyHyrQppk1srKylOZdVabi74qTibdgbFL+c2Q/VOBdB83Gqk3sESMiIiKNKc9jip4/vjrjHDEiIiIiLWGPGBEREWlMeZ4X+fzx1RkTMSIiItKYV/2syaqGiRgRERFpDjMxlThHjIiIiEhL2CNGREREGsO7JlVjIkZERESaU8HJ+tU8D+PQJBEREZG2sEeMiIiINIZz9VVjIkZERESaw0xMJQ5NEhEREWkJe8SIiIhIY3jXpGpMxIiIiEhj+Igj1Tg0SURERKQl7BEjIiIijeFcfdWYiBEREZHmMBNTiYkYERERaQwn66vGOWJEREREWsIeMSIiItIYSQXvfKze/WFMxIiIiEiDOEVMNQ5NEhEREWkJe8SIiIhIY7igq2pMxIiIiEiDODipCocmiYiIiLSEPWJERESkMRyaVI2JGBEREWkMByZV49AkERERkZawR4yIiIg0hkOTqjERIyIiIo3hsyZVYyJGREREmsNJYipxjhgRERGRlrBHjIiIiDSGHWKqMREjIiIijeFkfdU4NElERESkJewRIyIiIo3hXZOqsUeMiIiINEdSCZsagoODIZFIlLZmzZqJ+3NycuDv74/atWvD2NgY/fv3R3p6ulIbqamp8PLygqGhIczNzTFlyhQUFBRU1juihD1iREREVK289dZbOHDggPi6Ro3/T3cmTJiA3bt34+eff4ZcLkdAQAD69euH48ePAwAKCwvh5eUFS0tLnDhxArdv34aPjw9q1qyJ+fPnV3qsTMSIiIhIY7Rx12SNGjVgaWlZojwrKwvr1q3Dpk2b8MEHHwAAwsPD4ejoiD/++ANt27bF/v37cfnyZRw4cAAWFhZwdXXFnDlzEBgYiODgYOjp6VXgakri0CQRERFpTPFdkxXZAEChUChtubm5Lzzn1atXYW1tjUaNGsHb2xupqakAgDNnziA/Px+dO3cW6zZr1gwNGjRAXFwcACAuLg7Ozs6wsLAQ63h6ekKhUODSpUuV/v4wESMiIqLXno2NDeRyubiFhoaWWq9NmzaIiIjA3r17ERYWhpSUFLRv3x4PHz5EWloa9PT0YGpqqnSMhYUF0tLSAABpaWlKSVjx/uJ9lY1Dk0RERKRBFbtrsnhw8saNG5DJZGKpVCottXb37t3Fn11cXNCmTRvY2tpi69atMDAwqEAcmsEeMSIiItKYyhqalMlkStuLErHnmZqaomnTpkhKSoKlpSXy8vKQmZmpVCc9PV2cU2ZpaVniLsri16XNO6soJmJERERUbWVnZyM5ORlWVlZo1aoVatasiYMHD4r7ExMTkZqaCjc3NwCAm5sbLl68iIyMDLFOdHQ0ZDIZnJycKj0+Dk0SERFRtTF58mR8+OGHsLW1xa1btzBr1izo6uri008/hVwuh5+fHyZOnAgzMzPIZDKMGTMGbm5uaNu2LQCga9eucHJywmeffYaFCxciLS0NM2bMgL+/f5l74dTBRIyIiIg05lU/a/LmzZv49NNPce/ePdStWxfvv/8+/vjjD9StWxcAsHTpUujo6KB///7Izc2Fp6cnVq1aJR6vq6uLqKgojB49Gm5ubjAyMoKvry9CQkLKfxEqSARBEDTSMlVbCoUCcrkcSTfvwuSZiZNE1cndh3naDoFIY7IfKtCmmTWysrKUJsBXpuLvitS0BxU6h0KhQAPLWhqNVZs4R4yIiIhISzg0SURERBrzqocmqxomYkRERKQx2njEUVXCoUkiIiIiLWGPGBEREWkOu8RUYiJGREREGiOp4COOKvZ4pNcfhyaJiIiItIQ9YkRERKQxvGtSNSZiREREpDGcIqYaEzEiIiLSHGZiKnGOGBEREZGWsEeMiIiINIZ3TarGRIyIiIg0hpP1VWMiRmoTBAEA8PDhQ22HQqQx2dl52g6BSGOys//7+13891yTFAqFVo9/3TERI7UVJ2BvO9ppOxQiIqqAhw8fQi6Xa6RtPT09WFpaoomdTYXbsrS0hJ6eXqXE9bqRCK8iHaZqpaioCLdu3YKJiQkk1b3P+DWhUChgY2ODGzduQCaTaTscokrFz/erJwgCHj58CGtra+joaO6+vZycHOTlVbx3WU9PD/r6+pUS0+uGPWKkNh0dHdSvX1/bYbyRZDIZv6io2uLn+9XSVE/Ys/T19attAlVZuHwFERERkZYwESMiIiLSEiZiRFWAVCrFrFmzIJVKtR0KUaXj55veZJysT0RERKQl7BEjIiIi0hImYkRERERawkSMiIiISEuYiBFRqTw8PDB+/Hhth0GVICIiAqampmodM2TIEPTp00djMb0uYmJiIJFIkJmZqe1Q6A3Fyfr0xhgyZAgyMzOxY8cObYdSJdy/fx81a9aEiYmJtkMhFV70uY6JiUHHjh3x4MEDSKVSPHz4EObm5hVut7rJy8vD/fv3YWFhwSeFkFZwZX2i10BeXt4re45afn4+atas+dJ6ZmZmryQe0jwDAwMYGBhoOwwUFhZCIpFo9JE6xcr6/1Tx8xCJtIVDk0QAYmNj8e6770IqlcLKygrTpk1DQUEBACAqKgqmpqYoLCwEAMTHx0MikWDatGni8cOHD8fgwYPF18eOHUP79u1hYGAAGxsbjB07Fo8ePRL3N2zYEHPmzIGPjw9kMhlGjhxZalw3btzAgAEDYGpqCjMzM/Tu3Rv//POPuP/UqVPo0qUL6tSpA7lcDnd3d5w9e1apDYlEgrCwMPTq1QtGRkaYN28egoOD4erqio0bN6Jhw4aQy+UYOHCg+EB3lDI02bBhQ8yfPx/Dhg2DiYkJGjRogO+//17pXCdOnICrqyv09fXRunVr7NixAxKJBPHx8eX6vVDlKG1ocu7cuTA3N4eJiQmGDx+OadOmwdXVtcSxixcvhpWVFWrXrg1/f3/k5+eL+3JzczF58mTUq1cPRkZGaNOmDWJiYkqc97fffoOTkxOkUilSU1NLjXHt2rVwdHSEvr4+mjVrhlWrVintDwwMRNOmTWFoaIhGjRph5syZSrEUf6bXrl0LOzs78bE6EokEa9euRd++fWFoaIgmTZrgt99+E497fmiyOOZ9+/bB0dERxsbG6NatG27fvi0eU1BQgLFjx8LU1BS1a9dGYGAgfH1934ihXKp8TMTojffvv/+iR48eeOedd3D+/HmEhYVh3bp1mDt3LgCgffv2ePjwIc6dOwc8Tdrq1Kmj9IUTGxsLDw8PAEBycjK6deuG/v3748KFC9iyZQuOHTuGgIAApfMuXrwYLVq0wLlz5zBz5swSceXn58PT0xMmJiY4evQojh8/Ln4pFD9E9+HDh/D19cWxY8fwxx9/oEmTJujRo4dSQoWnX1J9+/bFxYsXMWzYMDHOHTt2ICoqClFRUYiNjcVXX32l8r1asmQJWrdujXPnzuGLL77A6NGjkZiYCDx9cPOHH34IZ2dnnD17FnPmzEFgYGC5fiekWZGRkZg3bx4WLFiAM2fOoEGDBggLCytR7/Dhw0hOTsbhw4exfv16REREICIiQtwfEBCAuLg4bN68GRcuXMDHH3+Mbt264erVq2Kdx48fY8GCBVi7di0uXbpU6vBoZGQkgoKCMG/ePCQkJGD+/PmYOXMm1q9fL9YxMTFBREQELl++jOXLl2PNmjVYunSpUjtJSUnYvn07fvnlF6Xkf/bs2RgwYAAuXLiAHj16wNvbG/fv33/h+/P48WMsXrwYGzduxJEjR5CamorJkyeL+xcsWIDIyEiEh4fj+PHjUCgU1X4IlzRIIHpD+Pr6Cr179y5R/r///U9wcHAQioqKxLJvv/1WMDY2FgoLCwVBEISWLVsKixYtEgRBEPr06SPMmzdP0NPTEx4+fCjcvHlTACD8/fffgiAIgp+fnzBy5Eilcxw9elTQ0dERnjx5IgiCINja2gp9+vRRGe/GjRtLxJWbmysYGBgI+/btK/WYwsJCwcTERNi1a5dYBkAYP368Ur1Zs2YJhoaGgkKhEMumTJkitGnTRnzt7u4ujBs3Tnxta2srDB48WHxdVFQkmJubC2FhYYIgCEJYWJhQu3Zt8RoFQRDWrFkjABDOnTun8lqp/Hx9fQVdXV3ByMhIadPX1xcACA8ePBDCw8MFuVwuHtOmTRvB399fqZ127doJLVq0UGrX1tZWKCgoEMs+/vhj4ZNPPhEEQRCuX78u6OrqCv/++69SO506dRKmT58uCIIghIeHCwCE+Ph4ldfQuHFjYdOmTUplc+bMEdzc3F54zKJFi4RWrVqJr2fNmiXUrFlTyMjIUKoHQJgxY4b4Ojs7WwAg/P7774IgCMLhw4fF9+nZmJOSksRjvv32W8HCwkJ8bWFhIf49EARBKCgoEBo0aFDq3xeil2GPGL3xEhIS4ObmpjRRt127dsjOzsbNmzcBAO7u7oiJiYEgCDh69Cj69esHR0dHHDt2DLGxsbC2tkaTJk0AAOfPn0dERASMjY3FzdPTE0VFRUhJSRHP0bp1a/HnUaNGKdUvbicpKQkmJiZiuZmZGXJycpCcnAwASE9Px4gRI9CkSRPI5XLIZDJkZ2eXGP559lzFGjZsqDQR38rKChkZGSrfKxcXF/FniUQCS0tL8ZjExES4uLiIQ0IA8O6775bhN0AV1bFjR8THxytta9eufWH9xMTEEr+b0n5Xb731FnR1dcXXz35GLl68iMLCQjRt2lTpsxsbGyt+PvF0Dlbx5yY1NVWp7vz58/Ho0SMkJyfDz89Pad/cuXOV2tmyZQvatWsHS0tLGBsbY8aMGSU+57a2tqhbt26J63j2c2tkZASZTKbys25oaIjGjRuXet1ZWVlIT09Xer90dXXRqlWrF7ZHpAon6xOVgYeHB3744QecP38eNWvWRLNmzeDh4YGYmBg8ePAA7u7uYt3s7Gx8/vnnGDt2bIl2GjRoIP5sZGQk/hwSEqI09FHcTqtWrRAZGVmineIvG19fX9y7dw/Lly+Hra0tpFIp3NzcxKHL0s5V7PkJ+xKJBEVFRSrfh/IcQ5pnZGQEe3t7pbLif0RUhKrfd3Z2NnR1dXHmzBmlZA2A+I8JPL1RoPgfOdbW1kpDhmZmZsjOzgYArFmzBm3atFFqp7jduLg4eHt7Y/bs2fD09IRcLsfmzZuxZMkSpfqlfc5fdh1lrc8FBkhTmIjRG8/R0RHbt2+HIAjiF8bx48dhYmKC+vXrA8/ME1u6dKmYdHl4eOCrr77CgwcPMGnSJLG9li1b4vLlyyW+GFUxNzcvMXemZcuW2LJlC8zNzSGTyUo97vjx41i1ahV69OgBPJ3cf/fu3XK8CxXn4OCAH3/8Ebm5ueLDm0+dOqWVWEg1BwcHnDp1Cj4+PmKZur+rt99+G4WFhcjIyED79u3LdEyNGjVK/f/C2toa165dg7e3d6nHnThxAra2tvjyyy/FsuvXr6sVb2WRy+WwsLDAqVOn0KFDB+Dp3aBnz54t9WYHopfh0CS9UbKyskoM4YwcORI3btzAmDFjcOXKFezcuROzZs3CxIkTxdvsa9WqBRcXF0RGRoqT8jt06ICzZ8/i77//VuoRCwwMxIkTJxAQEID4+HhcvXoVO3fuLDFZ/2W8vb1Rp04d9O7dG0ePHkVKSgpiYmIwduxYsbejSZMm2LhxIxISEvDnn3/C29tba8sUDBo0CEVFRRg5ciQSEhKwb98+LF68GHjao0CvjzFjxmDdunVYv349rl69irlz5+LChQtq/Z6aNm0Kb29v+Pj44JdffkFKSgpOnjyJ0NBQ7N69W614Zs+ejdDQUKxYsQJ///03Ll68iPDwcHz99dfA0895amoqNm/ejOTkZKxYsQK//vqr2tddWcaMGYPQ0FDs3LkTiYmJGDduHB48eMDPOZULEzF6o8TExODtt99W2ubMmYM9e/bg5MmTaNGiBUaNGgU/Pz/MmDFD6Vh3d3cUFhaKiZiZmRmcnJxgaWkJBwcHsZ6LiwtiY2Px999/o3379nj77bcRFBQEa2trtWI1NDTEkSNH0KBBA3FOmp+fH3JycsQesnXr1uHBgwdo2bIlPvvsM4wdO1atRTsrk0wmw65duxAfHw9XV1d8+eWXCAoKAgCleWOkfd7e3pg+fTomT56Mli1bIiUlBUOGDFH79xQeHg4fHx9MmjQJDg4O6NOnD06dOqU0BF8Ww4cPx9q1axEeHg5nZ2e4u7sjIiICdnZ2AIBevXphwoQJCAgIgKurK06cOFHqncavSmBgID799FP4+PjAzc1NnAfKzzmVB1fWJyKNiYyMxNChQ5GVlfVaLChKL9alSxdYWlpi48aN2g6lyikqKoKjoyMGDBiAOXPmaDscqmI4R4yIKs2GDRvQqFEj1KtXD+fPn0dgYCAGDBjAJOw18/jxY6xevRqenp7Q1dXFTz/9hAMHDiA6OlrboVUJ169fx/79++Hu7o7c3FysXLkSKSkpGDRokLZDoyqIiRgRVZq0tDQEBQUhLS0NVlZW+PjjjzFv3jxth0XPkUgk2LNnD+bNm4ecnBw4ODhg+/bt6Ny5s7ZDqxJ0dHQQERGByZMnQxAENG/eHAcOHICjo6O2Q6MqiEOTRERERFrCyfpEREREWsJEjIiIiEhLmIgRERERaQkTMSIiIiItYSJGRFXSkCFD0KdPH/G1h4cHxo8f/8rjiImJgUQiQWZm5gvrSCQS7Nixo8xtBgcHV/hxOf/88w8kEonSsx2J6PXDRIyIKs2QIUMgkUggkUigp6cHe3t7hISEoKCgQOPn/uWXX8q8mGZZkicioleB64gRUaXq1q0bwsPDkZubiz179sDf3x81a9bE9OnTS9TNy8uDnp5epZzXzMysUtohInqV2CNGRJVKKpXC0tIStra2GD16NDp37ozffvsNeGY4cd68ebC2thaf0Xnjxg0MGDAApqamMDMzQ+/evfHPP/+IbRYWFmLixIkwNTVF7dq1MXXqVDy/BOLzQ5O5ubkIDAyEjY0NpFIp7O3tsW7dOvzzzz/o2LEj8PRh7hKJBEOGDAGePqomNDQUdnZ2MDAwQIsWLbBt2zal8+zZswdNmzaFgYEBOnbsqBRnWQUGBqJp06YwNDREo0aNMHPmTOTn55eo991338HGxgaGhoYYMGAAsrKylPavXbsWjo6O0NfXR7NmzbBq1Sq1YyEi7WIiRkQaZWBggLy8PPH1wYMHkZiYiOjoaERFRSE/Px+enp4wMTHB0aNHcfz4cRgbG6Nbt27icUuWLEFERAR++OEHHDt2DPfv38evv/6q8rw+Pj746aefsGLFCiQkJOC7776DsbExbGxssH37dgBAYmIibt++jeXLlwMAQkNDsWHDBqxevRqXLl3ChAkTMHjwYMTGxgJPE8Z+/frhww8/RHx8PIYPH45p06ap/Z6YmJggIiICly9fxvLly7FmzRosXbpUqU5SUhK2bt2KXbt2Ye/evTh37hy++OILcX9kZCSCgoIwb948JCQkYP78+Zg5cybWr1+vdjxEpEUCEVEl8fX1FXr37i0IgiAUFRUJ0dHRglQqFSZPnizut7CwEHJzc8VjNm7cKDg4OAhFRUViWW5urmBgYCDs27dPEARBsLKyEhYuXCjuz8/PF+rXry+eSxAEwd3dXRg3bpwgCIKQmJgoABCio6NLjfPw4cMCAOHBgwdiWU5OjmBoaCicOHFCqa6fn5/w6aefCoIgCNOnTxecnJyU9gcGBpZo63kAhF9//fWF+xctWiS0atVKfD1r1ixBV1dXuHnzplj2+++/Czo6OsLt27cFQRCExo0bC5s2bVJqZ86cOYKbm5sgCIKQkpIiABDOnTv3wvMSkfZxjhgRVaqoqCgYGxsjPz8fRUVFGDRoEIKDg8X9zs7OSvPCzp8/j6SkJJiYmCi1k5OTg+TkZGRlZeH27dto06aNuK9GjRpo3bp1ieHJYvHx8dDV1YW7u3uZ405KSsLjx4/RpUsXpfK8vDy8/fbbAICEhASlOADAzc2tzOcotmXLFqxYsQLJycnIzs5GQUEBZDKZUp0GDRqgXr16SucpKipCYmIiTExMkJycDD8/P4wYMUKsU1BQALlcrnY8RKQ9TMSIqFJ17NgRYWFh0NPTg7W1NWrUUP4zY2RkpPQ6OzsbrVq1QmRkZIm26tatW64YDAwM1D4mOzsbALB7926lBAhP571Vlri4OHh7e2P27Nnw9PSEXC7H5s2bsWTJErVjXbNmTYnEUFdXt9JiJSLNYyJGRJXKyMgI9vb2Za7fsmVLbNmyBebm5iV6hYpZWVnhzz//RIcOHYCnPT9nzpxBy5YtS63v7OyMoqIixMbGonPnziX2F/fIFRYWimVOTk6QSqVITU19YU+ao6OjeONBsT/++KPM1woAJ06cgK2tLb788kux7Pr16yXqpaam4tatW7C2thbPo6OjAwcHB1hYWMDa2hrXrl2Dt7e3WucnotcLJ+sTkVZ5e3ujTp066N27N44ePYqUlBTExMRg7NixuHnzJgBg3Lhx+Oqrr7Bjxw5cuXIFX3zxhco1wBo2bAhfX18MGzYMO3bsENvcunUrAMDW1hYSiQRRUVG4c+cOsrOzYWJigsmTJ2PChAlYv349kpOTcfbsWXzzzTfiBPhRo0bh6tWrmDJlChITE7Fp0yZERESodb1NmjRBamoqNm/ejOTkZKxYsaLUGw/09fXh6+uL8+fP4+jRoxg7diwGDBgAS0tLAMDs2bMRGhqKFStW4O+//8bFixcRHh6Or7/+Wq14iEi7mIgRkVYZGhriyJEjaNCgAfr16wdHR0f4+fkhJydH7CGbNGkSPvvsM/j6+sLNzQ0mJibo27evynbDwsLw0Ucf4YsvvkCzZs0wYsQIPHr0CABQr149zJ49G9OmTYOFhQUCAgIAAHPmzMHMmTMRGhoKR0dHdOvWDbt374adnR3wdN7W9u3bsWPHDrRo0QKrV6/G/Pnz1breXr16YcKECQgICICrqytOnDiBmTNnlqhnb2+Pfv36oUePHujatStcXFyUlqcYPnw41q5di/DwcDg7O8Pd3R0RERFirERUNUiEF812JSIiIiKNYo8YERERkZYwESMiIiLSEiZiRERERFrCRIyIiIhIS5iIEREREWkJEzEiIiIiLWEiRkRERKQlTMSIiIiItISJGBEREZGWMBEjIiIi0hImYkRERERawkSMiIiISEv+DwwcqRKDIsTvAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -560,21 +564,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "Classification Report:\n", - " precision recall f1-score support\n", + "Classification Report For XGBoost:\n", + " precision recall f1-score support\n", "\n", - " Poor 0.89 0.94 0.91 4533\n", - " Rich 0.77 0.66 0.71 1500\n", + " Lower-earning 0.89 0.94 0.91 4533\n", + "Higher-earning 0.77 0.66 0.71 1500\n", "\n", - " accuracy 0.87 6033\n", - " macro avg 0.83 0.80 0.81 6033\n", - "weighted avg 0.86 0.87 0.86 6033\n", + " accuracy 0.87 6033\n", + " macro avg 0.83 0.80 0.81 6033\n", + " weighted avg 0.86 0.87 0.86 6033\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAHHCAYAAAASxkpJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXRRJREFUeJzt3XlcVFX/B/DPDDDDOgOoMKCIKIrgmtqj5J4IIpU+YmmaQm6PBpa7Wa6Q2aOmuWtpYqaZZZqhqSRuKW4kuUZKGJaApsIIyn5+f/hwf47gyAwzIfR597qvl3Pvued+LxJ8/Z5z7pUJIQSIiIiITExe1QEQERFRzcQkg4iIiMyCSQYRERGZBZMMIiIiMgsmGURERGQWTDKIiIjILJhkEBERkVkwySAiIiKzYJJBREREZsEkg2qUy5cvIzAwEGq1GjKZDDt27DBp/1evXoVMJkNMTIxJ+63OunXrhm7dulV1GET0FGKSQSaXkpKC//znP2jYsCGsra2hUqnQsWNHLFmyBPfv3zfrtcPCwnDu3DnMnTsXGzduRLt27cx6vb9TeHg4ZDIZVCpVuV/Hy5cvQyaTQSaTYeHChQb3f/36dcyePRtJSUkmiNY4cXFxkMlkmDNnTpljqampsLW1Rf/+/cscO3LkCF555RXUrVsXCoUCarUa7du3R1RUFDIzM3XaduvWTfo6yWQyKBQKeHl5YdSoUbh27ZrZ7q2ijh07htmzZyMrK6uqQyGqPEFkQrGxscLGxkY4OjqKN998U3z88cdi+fLlYuDAgcLKykqMHDnSbNe+d++eACDeffdds12jpKRE3L9/XxQVFZntGo8TFhYmLC0thYWFhfjyyy/LHJ81a5awtrYWAMSCBQsM7v/UqVMCgFi/fr1B5+Xn54v8/HyDr/c4gwYNEkqlUiQnJ+vs79Wrl1CpVOLPP//U2T9jxgwBQDRs2FC88847Yu3atWL58uXi9ddfFyqVSjRs2FCnfdeuXUW9evXExo0bxcaNG8W6devExIkThZ2dnahfv77Izc012b0YY8GCBQKASE1NrdI4iEzBskozHKpRUlNTMXDgQHh6eiI+Ph5ubm7SsYiICFy5cgW7du0y2/Vv3rwJAHB0dDTbNWQyGaytrc3W/5MolUp07NgRX3zxBV555RWdY5s3b0ZISAi2bdv2t8Ry79492NraQqFQmLTfxYsX4/vvv8fo0aMRHx8PANiyZQv27NmDpUuXwt3dXWr75ZdfIjo6Gq+88go2btxYJpbFixdj8eLFZa6hVqvx2muv6ezz8vJCZGQkjh49ip49e5r0noj+sao6y6GaY/To0QKAOHr0aIXaFxYWiqioKNGwYUOhUCiEp6enmDZtmsjLy9Np5+npKUJCQsSRI0fEs88+K5RKpfDy8hIbNmyQ2syaNUsA0Nk8PT2FEA8qAKV/fljpOQ/bt2+f6Nixo1Cr1cLOzk40adJETJs2TTqemppa7r/29+/fLzp16iRsbW2FWq0WL730krh48WK517t8+bIICwsTarVaqFQqER4eXqF/PYeFhQk7OzsRExMjlEqluHPnjnTs5MmTAoDYtm1bmUrGrVu3xMSJE0Xz5s2FnZ2dcHBwEL169RJJSUlSmwMHDpT5+j18n127dhXNmjUTp0+fFp07dxY2Njbirbfeko517dpV6mvo0KFCqVSWuf/AwEDh6OhYphJRno8//lgAEDExMeLOnTtCo9GIZ599VhQXF+u0a9Kkiahdu7a4e/fuE/ssVXovj/r6668FABEfH6+z/6effhK9evUSDg4Ows7OTjz//PMiISGhzPkpKSmif//+wsnJSdjY2Ij27duL2NjYMu2WLl0q/Pz8pIpf27ZtxaZNm4QQ5X8fg1UNqsaYZJDJ1K1bt0xpWp+wsDABQPTv31+sWLFCDB06VAAQffv21Wnn6ekpfHx8hKurq3jnnXfE8uXLRZs2bYRMJhPnz58XQgjx888/i8WLFwsA4tVXXxUbN24U27dvl65TkSTj/PnzQqFQiHbt2oklS5aI1atXi0mTJokuXbpIbcpLMuLi4oSlpaVo0qSJmD9/vpgzZ46oXbu2cHJy0vnlUHq9Z555RvTr10+sXLlSjBgxQgAQU6ZMqdDXy87OTmi1WmFtbS3WrVsnHRs3bpxo2rSpFN/DScapU6dEo0aNxNtvvy3WrFkjoqKiRN26dYVarZZ+4WdkZIioqCgBQIwaNUoaSkhJSRFCPPjFrNFoRJ06dcTYsWPFmjVrxI4dO6RjDycZd+7cEfXq1RPPPvusNKy0evVqAUBs3LjxifcpxINhqY4dO4ratWuLV199VVhYWIiffvpJp01ycrIAIEaMGFGhPkt17dpVNG3aVNy8eVPcvHlTXL9+Xezfv180a9ZMeHt76wz9nD9/XtjZ2Qk3NzcRHR0tPvjgA+Hl5SWUSqU4fvy41C4jI0O4uroKBwcH8e6774pFixaJVq1aCblcLr755hupXWny1L9/f7FmzRqxZMkSMXz4cPHmm28KIR58H7/66qsCgFi8eLH095CTk2PQPRI9LZhkkElkZ2cLAKJPnz4Vap+UlFTuL4hJkyaV+dekp6enACAOHz4s7btx44ZQKpVi4sSJ0r7yfsEKUfEkozRJuXnz5mPjLi/JaN26tXBxcRG3bt2S9v38889CLpeLoUOHlrnesGHDdPr897//LWrVqvXYaz58H3Z2dkIIIfr37y969OghhBCiuLhYaDQaMWfOnHK/Bnl5eWUqAKmpqUKpVIqoqChpn745GV27dhUAxOrVq8s99nCSIYQQe/fuFQDEe++9J3777Tdhb29fJnl8kvPnzwsrKysBQIwbN67M8W+//VYAEB999JHO/pKSEimBKN0KCwvL3Mujm6+vr/jtt990+urbt69QKBRSsiWEENevXxcODg46yee4ceMEAHHkyBFp3927d4WXl5do0KCB9PXv06dPuVWUh3FOBtUkXF1CJqHVagEADg4OFWq/e/duAMCECRN09k+cOBEAyszd8PPzQ+fOnaXPderUgY+PD3777TejY35U6VyOb7/9FiUlJRU6Jz09HUlJSQgPD4ezs7O0v2XLlujZs6d0nw8bPXq0zufOnTvj1q1b0tewIgYNGoSDBw8iIyMD8fHxyMjIwKBBg8ptq1QqIZc/+F+9uLgYt27dgr29PXx8fPDTTz9V+JpKpRKvv/56hdoGBgbiP//5D6KiotCvXz9YW1tjzZo1Fb4WAKhUKmmORWBgYJnjpV8ve3t7nf3Z2dmoU6eOzvboipkGDRogLi4OcXFx+P777/HRRx8hOzsbwcHB0tye4uJi7Nu3D3379kXDhg2lc93c3DBo0CD8+OOPUgy7d+/Gv/71L3Tq1ElqZ29vj1GjRuHq1au4ePEigAffY3/88QdOnTpl0NeCqLpikkEmoVKpAAB3796tUPvff/8dcrkc3t7eOvs1Gg0cHR3x+++/6+yvX79+mT6cnJxw584dIyMua8CAAejYsSNGjBgBV1dXDBw4EFu3btWbcJTG6ePjU+aYr68v/vrrL+Tm5ursf/RenJycAMCge+nduzccHBzw5ZdfYtOmTXj22WfLfC1LlZSUYPHixWjcuDGUSiVq166NOnXq4OzZs8jOzq7wNUuXh1bUwoUL4ezsjKSkJCxduhQuLi4VPhcAIiMjIZfL4enpiYkTJ6KwsFDneGlCm5OTo7Pf3t5eSiAmT55cbt92dnYICAhAQEAAevXqhbfeegs7d+5EcnIyPvjgAwAPJhLfu3fvsX+3JSUl0pLX33///bHtSo8DwNSpU2Fvb49//etfaNy4MSIiInD06FFDvixE1QqTDDIJlUoFd3d3nD9/3qDzZDJZhdpZWFiUu18IYfQ1iouLdT7b2Njg8OHD+OGHHzBkyBCcPXsWAwYMQM+ePcu0rYzK3EsppVKJfv36YcOGDdi+fftjqxgA8P7772PChAno0qULPv/8c+zduxdxcXFo1qxZhSs2wIOvjyHOnDmDGzduAADOnTtn0LnffPMNdu7ciejoaKxcuRKXLl3CggULdNo0bdoUAMp8z1laWkoJhJ+fX4Wv2bZtW6jVahw+fNigWA3h6+uL5ORkbNmyBZ06dcK2bdvQqVMnzJo1y2zXJKpKTDLIZF544QWkpKQgISHhiW09PT1RUlKCy5cv6+zPzMxEVlYWPD09TRaXk5NTuQ82erRaAgByuRw9evTAokWLcPHiRcydOxfx8fE4cOBAuX2XxpmcnFzm2C+//ILatWvDzs6ucjfwGIMGDcKZM2dw9+5dDBw48LHtvv76a3Tv3h3r1q3DwIEDERgYiICAgDJfk4omfBWRm5uL119/HX5+fhg1ahTmz59f4SGCu3fv4s0330SbNm0QGRmJ3r17IzQ0FO+99x5SU1Oldj4+PmjcuDF27NhRplpkrOLiYqkyUqdOHdja2j7271Yul8PDwwPAg++Dx7UrPV7Kzs4OAwYMwPr165GWloaQkBDMnTsXeXl5AEz790BU1ZhkkMlMmTIFdnZ2GDFiRJmnLAIPngS6ZMkSAA/K/QDw0Ucf6bRZtGgRACAkJMRkcTVq1AjZ2dk4e/astC89PR3bt2/XaXf79u0y57Zu3RoAkJ+fX27fbm5uaN26NTZs2KDzS/v8+fPYt2+fdJ/m0L17d0RHR2P58uXQaDSPbWdhYVGmSvLVV1/hzz//1NlXmgyZ4kmTU6dORVpaGjZs2IBFixahQYMGCAsLe+zX8WHTp09Heno61qxZI1V9lixZAgsLC0RGRuq0nT17Nv766y+MHDmyzHAKYFh16MCBA8jJyUGrVq0APPi6BQYG4ttvv8XVq1eldpmZmdi8eTM6deokDRP27t0bJ0+e1Emwc3Nz8fHHH6NBgwZSReXWrVs611QoFPDz84MQQorflH8PRFWND+Mik2nUqBE2b96MAQMGwNfXF0OHDkXz5s1RUFCAY8eO4auvvkJ4eDgAoFWrVggLC8PHH3+MrKwsdO3aFSdPnsSGDRvQt29fdO/e3WRxDRw4EFOnTsW///1vvPnmm7h37x5WrVqFJk2a6Ex8jIqKwuHDhxESEgJPT0/cuHEDK1euRL169XQm9D1qwYIFCA4Ohr+/P4YPH4779+9j2bJlUKvVmD17tsnu41FyuRzTp09/YrsXXngBUVFReP311/Hcc8/h3Llz2LRpk85kRuDB35+joyNWr14NBwcH2NnZoX379vDy8jIorvj4eKxcuRKzZs1CmzZtAADr169Ht27dMGPGDMyfP/+x5yYmJmLFihWIiIjQeSR83bp1ERUVhQkTJmDbtm0IDQ0F8KCac/78ecybNw8nT57EwIED4eXlhdzcXJw/fx5ffPEFHBwcpHkvpbKzs/H5558DAIqKipCcnIxVq1bBxsYGb7/9ttTuvffeQ1xcHDp16oQ33ngDlpaWWLNmDfLz83Xu4+2338YXX3yB4OBgvPnmm3B2dsaGDRuQmpqKbdu2SRNvAwMDodFo0LFjR7i6uuLSpUtYvnw5QkJCpDkmbdu2BQC8++67GDhwIKysrPDiiy+arSJGZFZVuraFaqRff/1VjBw5UjRo0EAoFArh4OAgOnbsKJYtW6bzoK3CwkIxZ84c4eXlJaysrISHh4feh3E96tGlk49bwirEg4dsNW/eXCgUCuHj4yM+//zzMktY9+/fL/r06SPc3d2FQqEQ7u7u4tVXXxW//vprmWs8uszzhx9+EB07dhQ2NjZCpVKJF1988bEP43p0iez69esrtGTx4SWsj/O4JawTJ04Ubm5uwsbGRnTs2FEkJCSUu/T022+/FX5+fsLS0rLch3GV5+F+tFqt8PT0FG3atNFZNiqEEOPHjxdyubzcB1kJIURRUZFo06aNcHd3F9nZ2eUeb926tahXr16Zh28dPHhQ9O/fX7i5uQkrKyuhUqlEu3btxKxZs0R6enqZePHQ0lWZTCacnZ3FSy+9JBITE8tc96effhJBQUHC3t5e2Nraiu7du4tjx46VaVf6MC5HR0dhbW0t/vWvf5V5GNeaNWtEly5dRK1atYRSqRSNGjUSkydPLnO/0dHRom7dukIul3M5K1VrMiEMqCcSERERVRDnZBAREZFZMMkgIiIis2CSQURERGbBJIOIiIjMgkkGERERmQWTDCIiIjILPoyrHCUlJbh+/TocHBz4iF8iompICIG7d+/C3d1dehiaqeXl5aGgoMAkfSkUClhbW5ukr6cJk4xyXL9+XXonARERVV/Xrl1DvXr1TN5vXl4ebBxqAUX3TNKfRqNBampqjUs0mGSUo/Txvgq/MMgsKv5qa6LqJO3gwqoOgchs7mq18PbykH6em1pBQQFQdA9KvzCgsr8niguQcXEDCgoKmGT8E5QOkcgsFEwyqMYqfbkXUU1m9iFvS+tK/54Qspo7PZJJBhERkbFkACqbyNTgqX9MMoiIiIwlkz/YKttHDVVz74yIiIiqFCsZRERExpLJTDBcUnPHS5hkEBERGYvDJXrV3DsjIiKiKsVKBhERkbE4XKIXkwwiIiKjmWC4pAYPKtTcOyMiIqIqxUoGERGRsThcoheTDCIiImNxdYleNffOiIiIqEqxkkFERGQsDpfoxSSDiIjIWBwu0YtJBhERkbFYydCr5qZPRERENdwHH3wAmUyGcePGSfvy8vIQERGBWrVqwd7eHqGhocjMzNQ5Ly0tDSEhIbC1tYWLiwsmT56MoqIinTYHDx5EmzZtoFQq4e3tjZiYGIPjY5JBRERkrNLhkspuRjh16hTWrFmDli1b6uwfP348vvvuO3z11Vc4dOgQrl+/jn79+knHi4uLERISgoKCAhw7dgwbNmxATEwMZs6cKbVJTU1FSEgIunfvjqSkJIwbNw4jRozA3r17DYqRSQYREZGxZDITJBmGD5fk5ORg8ODB+OSTT+Dk5CTtz87Oxrp167Bo0SI8//zzaNu2LdavX49jx47h+PHjAIB9+/bh4sWL+Pzzz9G6dWsEBwcjOjoaK1asQEFBAQBg9erV8PLywocffghfX19ERkaif//+WLx4sUFxMskgIiKqZiIiIhASEoKAgACd/YmJiSgsLNTZ37RpU9SvXx8JCQkAgISEBLRo0QKurq5Sm6CgIGi1Wly4cEFq82jfQUFBUh8VxYmfRERExpLLHmyV7QOAVqvV2a1UKqFUKss037JlC3766SecOnWqzLGMjAwoFAo4Ojrq7Hd1dUVGRobU5uEEo/R46TF9bbRaLe7fvw8bG5uK3VqFWhEREVFZJpyT4eHhAbVaLW3z5s0rc7lr167hrbfewqZNm2Btbf13363BWMkgIiJ6Cly7dg0qlUr6XF4VIzExETdu3ECbNm2kfcXFxTh8+DCWL1+OvXv3oqCgAFlZWTrVjMzMTGg0GgCARqPByZMndfotXX3ycJtHV6RkZmZCpVJVuIoBsJJBRERkvNLnZFR2A6BSqXS28pKMHj164Ny5c0hKSpK2du3aYfDgwdKfrayssH//fumc5ORkpKWlwd/fHwDg7++Pc+fO4caNG1KbuLg4qFQq+Pn5SW0e7qO0TWkfFcVKBhERkbH+5id+Ojg4oHnz5jr77OzsUKtWLWn/8OHDMWHCBDg7O0OlUmHs2LHw9/dHhw4dAACBgYHw8/PDkCFDMH/+fGRkZGD69OmIiIiQEpvRo0dj+fLlmDJlCoYNG4b4+Hhs3boVu3btMujWmGQQERHVIIsXL4ZcLkdoaCjy8/MRFBSElStXSsctLCwQGxuLMWPGwN/fH3Z2dggLC0NUVJTUxsvLC7t27cL48eOxZMkS1KtXD2vXrkVQUJBBsciEEMJkd1ZDaLVaqNVqKFuMhMxCUdXhEJnFnVPLqzoEIrPRarVwraVGdna2zjwHU/avVquh7DYbMsvKTcAURXnIPzjbbLFWJVYyiIiIjMUXpOnFJIOIiMhYfEGaXjU3fSIiIqIqxUoGERGRsThcoheTDCIiImNxuESvmps+ERERUZViJYOIiMhoJhguqcH/3meSQUREZCwOl+hVc9MnIiIiqlKsZBARERlLJjPB6pKaW8lgkkFERGQsLmHVq+beGREREVUpVjKIiIiMxYmfejHJICIiMhaHS/RikkFERGQsVjL0qrnpExEREVUpVjKIiIiMxeESvZhkEBERGYvDJXrV3PSJiIiIqhQrGUREREaSyWSQsZLxWEwyiIiIjMQkQz8OlxAREZFZsJJBRERkLNn/tsr2UUMxySAiIjISh0v043AJERERmQUrGUREREZiJUM/JhlERERGYpKhH5MMIiIiIzHJ0I9zMoiIiMgsWMkgIiIyFpew6sUkg4iIyEgcLtGPwyVERERkFqxkEBERGenBm94rW8kwTSxPIyYZRERERpLBBMMlNTjL4HAJERERmQUrGUREREbixE/9WMkgIiIylsxEmwFWrVqFli1bQqVSQaVSwd/fH99//710vFu3blLyU7qNHj1ap4+0tDSEhITA1tYWLi4umDx5MoqKinTaHDx4EG3atIFSqYS3tzdiYmIMCxSsZBAREVUr9erVwwcffIDGjRtDCIENGzagT58+OHPmDJo1awYAGDlyJKKioqRzbG1tpT8XFxcjJCQEGo0Gx44dQ3p6OoYOHQorKyu8//77AIDU1FSEhIRg9OjR2LRpE/bv348RI0bAzc0NQUFBFY6VSQYREZGxTDBcIgw8/8UXX9T5PHfuXKxatQrHjx+XkgxbW1toNJpyz9+3bx8uXryIH374Aa6urmjdujWio6MxdepUzJ49GwqFAqtXr4aXlxc+/PBDAICvry9+/PFHLF682KAkg8MlRERERnp0WMLYzVjFxcXYsmULcnNz4e/vL+3ftGkTateujebNm2PatGm4d++edCwhIQEtWrSAq6urtC8oKAharRYXLlyQ2gQEBOhcKygoCAkJCQbFx0oGERGRkUwx8bP0fK1Wq7NfqVRCqVSWe865c+fg7++PvLw82NvbY/v27fDz8wMADBo0CJ6ennB3d8fZs2cxdepUJCcn45tvvgEAZGRk6CQYAKTPGRkZettotVrcv38fNjY2Fbo3JhlERERPAQ8PD53Ps2bNwuzZs8tt6+Pjg6SkJGRnZ+Prr79GWFgYDh06BD8/P4waNUpq16JFC7i5uaFHjx5ISUlBo0aNzHkLZTDJICIiMpYJX5B27do1qFQqaffjqhgAoFAo4O3tDQBo27YtTp06hSVLlmDNmjVl2rZv3x4AcOXKFTRq1AgajQYnT57UaZOZmQkA0jwOjUYj7Xu4jUqlqnAVA+CcDCIiIqOZck5G6ZLU0k1fkvGokpIS5Ofnl3ssKSkJAODm5gYA8Pf3x7lz53Djxg2pTVxcHFQqlTTk4u/vj/379+v0ExcXpzPvoyJYySAiIqpGpk2bhuDgYNSvXx93797F5s2bcfDgQezduxcpKSnYvHkzevfujVq1auHs2bMYP348unTpgpYtWwIAAgMD4efnhyFDhmD+/PnIyMjA9OnTERERISU2o0ePxvLlyzFlyhQMGzYM8fHx2Lp1K3bt2mVQrEwyiIiIjGTKiZ8VdePGDQwdOhTp6elQq9Vo2bIl9u7di549e+LatWv44Ycf8NFHHyE3NxceHh4IDQ3F9OnTpfMtLCwQGxuLMWPGwN/fH3Z2dggLC9N5roaXlxd27dqF8ePHY8mSJahXrx7Wrl1r0PJVgEkGERGR0aoiyVi3bt1jj3l4eODQoUNP7MPT0xO7d+/W26Zbt244c+aMQbE9inMyiIiIyCxYySAiIjJSVVQyqhMmGURERMYy4RLWmojDJURERGQWrGQQEREZicMl+jHJICIiMhKTDP2YZBARERmJSYZ+nJNBREREZsFKBhERkbG4ukQvJhlERERG4nCJfhwuISIiIrNgJYNMblxYT8yK7INVXxzAO4u2wVFli2mjQtC9Q1PUc3XCrawc7Dp4Fu+vjoU2N6/M+U5qOxzZ9DbqujrBs/tkaHPuAwBe6N4Kw0I7o0WTulBYWeKX3zLw3092I/74pb/7FomwaP1exB74GZd/z4S10gr/atkQsyP7oHEDV6lN6h83MWPJdhxP+g0FhUXo4e+L/056GS61VFKbhZ/uwb4fL+D8r3/AysoSvx9YUBW3Q0ZiJUO/Kq1khIeHS39BCoUC3t7eiIqKQlFRUVWGRZXwjF99hP+7I87/+oe0z62OGpo6asxcsh3PDXwfb8z5HD38/bB0xuBy+1g2fRAuXrleZv9zz3jj4Ilf8Mq4Veg+dD5+TPwVXyz6D1o0qWe2+yF6nGM/XcGIl7tg36eT8M3ySBQWFaPf2OXIvZ8PAMi9n49+kSsggwzfrhqL79eOR0FhMV6dsAYlJSVSP4WFxegb8AyGhXauqluhSpBBJv0eM3qrwZMyqryS0atXL6xfvx75+fnYvXs3IiIiYGVlhWnTppn8WgUFBVAoFCbvlx6ws1Hg46hwvPX+F5g0rJe0/1JKOsKmrpU+X/3zL7y36jusiRoKCws5iov//wfusNBOUDvYYv7a79GzYzOd/t9ZtE3nc/TK7xDctSV6dWmOcw8lNUR/h6+XReh8XjnrNTQOnIakS9fQsY03Tvz8G9LSb+HQ51Ohsrd50Gb2EHg9PwWHT/2Kbu2bAgCm/ScEALD5u+N/7w0Q/Q2qfE6GUqmERqOBp6cnxowZg4CAAOzcuRN37tzB0KFD4eTkBFtbWwQHB+Py5cs6527btg3NmjWDUqlEgwYN8OGHH+ocb9CgAaKjozF06FCoVCqMGjXq77y1f5wFUwZg39HzOHQy+YltVfbWuJubp5Ng+HhpMHlEMMbM+gwlJeKJfchkMjjYKpGVfa9ScROZgjbnwdCfk8oWAJBfUASZTAal4v//LWetsIRcLsPxn1OqJEYyvUpXMUww3PI0q/Ik41E2NjYoKChAeHg4Tp8+jZ07dyIhIQFCCPTu3RuFhYUAgMTERLzyyisYOHAgzp07h9mzZ2PGjBmIiYnR6W/hwoVo1aoVzpw5gxkzZlTBHf0z9OvZFq2aeiBqxc4ntnVW22Hy8GBs2H5M2qewssTa98Ixa+kO/JF5p0LXHPtaD9jZKLH9h5+MjpvIFEpKSjBt0ddo36oh/LzdAQDPtmgAW2sFZi/7FvfyCpB7Px8zlmxHcXEJMv7SVnHEZDIyE201VJUPl5QSQmD//v3Yu3cvgoODsWPHDhw9ehTPPfccAGDTpk3w8PDAjh078PLLL2PRokXo0aOHlDg0adIEFy9exIIFCxAeHi71+/zzz2PixIl6r52fn4/8/Hzps1bLHwCGqOvqiHkTQ9EvcjnyC/TPp3Gws8aXH41Bcmo6Pvh4l7R/ZsRL+PVqJrZ+f6pC1+wf1A5TRgZj8KSP8dednErFT1RZk+ZvxaWUdHz/yXhpX20nB8R8MBwTP/gSa748BLlchtDAB8m4XF6Df6sQPaTKk4zY2FjY29ujsLAQJSUlGDRoEPr164fY2Fi0b99ealerVi34+Pjg0qUHKwkuXbqEPn366PTVsWNHfPTRRyguLoaFhQUAoF27dk+MYd68eZgzZ44J7+qfpVXT+nCppcLBjVOlfZaWFnjumUYY+XIXuHYch5ISAXtbJb5e+gZy7uXhtcmfoOihoZIuzzaBXyN3vPR8awD/P9s6Je4DfLh+Lz74eLfUtl/PtlgyfRBef3tdhYZmiMxp8vyt2HvkPHZ/PA51XZ10jj3fwRdndszGrawcWFrIoXawhU/QNDQIbFtF0ZKpcXWJflWeZHTv3h2rVq2CQqGAu7s7LC0tsXPnk0vuFWVnZ/fENtOmTcOECROkz1qtFh4eHiaLoaY7fCoZzw2cq7Nv+czXcPlqJpZ8FoeSEgEHO2t8vTQCBYVFGDRhTZmKx9Apa2FjbSV9fsbPEytmvobeoz5C6h83pf2hgW2xbMZgDH93PfYdvWDeGyPSQwiBKQu+wq6DP+O71W/Bs27tx7at5WgP4MH/Kzfv5CC4c4u/K0wyMyYZ+lV5kmFnZwdvb2+dfb6+vigqKsKJEyek4ZJbt24hOTkZfn5+UpujR4/qnHf06FE0adJEqmJUlFKphFKprMRd/LPl3MvHpZR0nX337hfgdnYuLqWkw8HOGtuWRcDWWoH/zNwAB3trONhbAwD+upODkhKBq3/+pXO+s/rBD+Xk1AzpORn9g9ph5ewhmPbh10i8cBUutRwAAHl5heU+b4PInCb9dyu+3nsamxeOgr2tNTL/N89CZW8NG+sHq9g27UxAEy8NajvZ4+TZVExb9DXeeLW7zrM0rmXcRlb2PfyRcQclJSU4l/xgpZSXRx3Y2/Ln0tNOJnuwVbaPmqrKk4zyNG7cGH369MHIkSOxZs0aODg44O2330bdunWlIZKJEyfi2WefRXR0NAYMGICEhAQsX74cK1eurOLo6VEtfTzwbAsvAMCZHbN1j700E9fSb1eon7B/d4SVpQUWTh2AhVMHSPs3xx5HxJzPTRYvUUV8uu0IAOCF0Ut09q+Y+RoGvdgBAHD59xuIWrETd7T3UN/dGRNfD8Ibg57XaT9v9S58seuE9LnLax8AAL5b/SY6tW1izlsgMjuZEOLJawXNJDw8HFlZWdixY0eZY3fu3MFbb72FnTt3oqCgAF26dMGyZcvQuHFjqc22bdswc+ZMXL58GW5ubhg7diwmTZokHW/QoAHGjRuHcePGGRSXVquFWq2GssVIyCz4XA2qme6cWl7VIRCZjVarhWstNbKzs6FSqZ58ghH9q9VqNBz7NeTKJw/L61OSn4vflvU3W6xVqUorGY8uN32Yk5MTPvvsM73nh4aGIjQ09LHHr169amRkREREFWCC4ZKavIT1qXtOBhEREdUMT+WcDCIiouqAq0v0Y5JBRERkJK4u0Y/DJURERGQWrGQQEREZSS6XVfox8aIGP2aeSQYREZGROFyiH4dLiIiIyCxYySAiIjISV5foxySDiIjISBwu0Y9JBhERkZFYydCPczKIiIjILFjJICIiMhIrGfoxySAiIjIS52Tox+ESIiKiamTVqlVo2bIlVCoVVCoV/P398f3330vH8/LyEBERgVq1asHe3h6hoaHIzMzU6SMtLQ0hISGwtbWFi4sLJk+ejKKiIp02Bw8eRJs2baBUKuHt7a33zemPwySDiIjISDLIpCETozcD3/Ver149fPDBB0hMTMTp06fx/PPPo0+fPrhw4QIAYPz48fjuu+/w1Vdf4dChQ7h+/Tr69esnnV9cXIyQkBAUFBTg2LFj2LBhA2JiYjBz5kypTWpqKkJCQtC9e3ckJSVh3LhxGDFiBPbu3WvY10cIIQw64x9Aq9VCrVZD2WIkZBaKqg6HyCzunFpe1SEQmY1Wq4VrLTWys7OhUqnM0r9arUbLaTthYW1Xqb6K83Jxdt5LlYrV2dkZCxYsQP/+/VGnTh1s3rwZ/fv3BwD88ssv8PX1RUJCAjp06IDvv/8eL7zwAq5fvw5XV1cAwOrVqzF16lTcvHkTCoUCU6dOxa5du3D+/HnpGgMHDkRWVhb27NlT4bhYySAiInoKaLVanS0/P/+J5xQXF2PLli3Izc2Fv78/EhMTUVhYiICAAKlN06ZNUb9+fSQkJAAAEhIS0KJFCynBAICgoCBotVqpGpKQkKDTR2mb0j4qikkGERGRkSo9VPLQ6hQPDw+o1Wppmzdv3mOve+7cOdjb20OpVGL06NHYvn07/Pz8kJGRAYVCAUdHR532rq6uyMjIAABkZGToJBilx0uP6Wuj1Wpx//79Cn99uLqEiIjISKZcXXLt2jWd4RKlUvnYc3x8fJCUlITs7Gx8/fXXCAsLw6FDhyoXiBkwySAiInoKlK4WqQiFQgFvb28AQNu2bXHq1CksWbIEAwYMQEFBAbKysnSqGZmZmdBoNAAAjUaDkydP6vRXuvrk4TaPrkjJzMyESqWCjY1Nhe+JwyVERERGMuVwSWWUlJQgPz8fbdu2hZWVFfbv3y8dS05ORlpaGvz9/QEA/v7+OHfuHG7cuCG1iYuLg0qlgp+fn9Tm4T5K25T2UVGsZBARERmpKh7GNW3aNAQHB6N+/fq4e/cuNm/ejIMHD2Lv3r1Qq9UYPnw4JkyYAGdnZ6hUKowdOxb+/v7o0KEDACAwMBB+fn4YMmQI5s+fj4yMDEyfPh0RERHSEM3o0aOxfPlyTJkyBcOGDUN8fDy2bt2KXbt2GRQrkwwiIiIjVcVjxW/cuIGhQ4ciPT39wTLali2xd+9e9OzZEwCwePFiyOVyhIaGIj8/H0FBQVi5cqV0voWFBWJjYzFmzBj4+/vDzs4OYWFhiIqKktp4eXlh165dGD9+PJYsWYJ69eph7dq1CAoKMuze+JyMsvicDPon4HMyqCb7u56T0XbmLpM8JyMxKsRssVYlVjKIiIiMZYLhEgMf+FmtMMkgIiIyEt/Cqh9XlxAREZFZsJJBRERkJL7qXT8mGUREREbicIl+HC4hIiIis2Alg4iIyEgcLtGPSQYREZGROFyiH4dLiIiIyCxYySAiIjISKxn6MckgIiIyEudk6Mckg4iIyEisZOjHORlERERkFqxkEBERGYnDJfoxySAiIjISh0v043AJERERmQUrGUREREaSwQTDJSaJ5OnEJIOIiMhIcpkM8kpmGZU9/2nG4RIiIiIyC1YyiIiIjMTVJfoxySAiIjISV5foxySDiIjISHLZg62yfdRUnJNBREREZsFKBhERkbFkJhjuqMGVDCYZRERERuLET/04XEJERERmwUoGERGRkWT/+6+yfdRUTDKIiIiMxNUl+nG4hIiIiMyClQwiIiIj8WFc+lUoydi5c2eFO3zppZeMDoaIiKg64eoS/SqUZPTt27dCnclkMhQXF1cmHiIiIqohKpRklJSUmDsOIiKiaoevetevUnMy8vLyYG1tbapYiIiIqhUOl+hn8OqS4uJiREdHo27durC3t8dvv/0GAJgxYwbWrVtn8gCJiIieVqUTPyu71VQGJxlz585FTEwM5s+fD4VCIe1v3rw51q5da9LgiIiIqPoyOMn47LPP8PHHH2Pw4MGwsLCQ9rdq1Qq//PKLSYMjIiJ6mpUOl1R2M8S8efPw7LPPwsHBAS4uLujbty+Sk5N12nTr1q1MtWT06NE6bdLS0hASEgJbW1u4uLhg8uTJKCoq0mlz8OBBtGnTBkqlEt7e3oiJiTEoVoOTjD///BPe3t5l9peUlKCwsNDQ7oiIiKqt0omfld0McejQIUREROD48eOIi4tDYWEhAgMDkZubq9Nu5MiRSE9Pl7b58+dLx4qLixESEoKCggIcO3YMGzZsQExMDGbOnCm1SU1NRUhICLp3746kpCSMGzcOI0aMwN69eyscq8ETP/38/HDkyBF4enrq7P/666/xzDPPGNodERERGWDPnj06n2NiYuDi4oLExER06dJF2m9rawuNRlNuH/v27cPFixfxww8/wNXVFa1bt0Z0dDSmTp2K2bNnQ6FQYPXq1fDy8sKHH34IAPD19cWPP/6IxYsXIygoqEKxGlzJmDlzJiIjI/Hf//4XJSUl+OabbzBy5EjMnTtXJwMiIiKq6WQm2gBAq9XqbPn5+RWKITs7GwDg7Oyss3/Tpk2oXbs2mjdvjmnTpuHevXvSsYSEBLRo0QKurq7SvqCgIGi1Wly4cEFqExAQoNNnUFAQEhISKhQXYESS0adPH3z33Xf44YcfYGdnh5kzZ+LSpUv47rvv0LNnT0O7IyIiqrZMubrEw8MDarVa2ubNm/fE65eUlGDcuHHo2LEjmjdvLu0fNGgQPv/8cxw4cADTpk3Dxo0b8dprr0nHMzIydBIMANLnjIwMvW20Wi3u379foa+PUc/J6Ny5M+Li4ow5lYiIiMpx7do1qFQq6bNSqXziORERETh//jx+/PFHnf2jRo2S/tyiRQu4ubmhR48eSElJQaNGjUwX9BMY/TCu06dP49KlSwAezNNo27atyYIiIiKqDkz5qneVSqWTZDxJZGQkYmNjcfjwYdSrV09v2/bt2wMArly5gkaNGkGj0eDkyZM6bTIzMwFAmseh0WikfQ+3UalUsLGxqVCMBicZf/zxB1599VUcPXoUjo6OAICsrCw899xz2LJlyxNvlIiIqKaoirewCiEwduxYbN++HQcPHoSXl9cTz0lKSgIAuLm5AQD8/f0xd+5c3LhxAy4uLgCAuLg4qFQq+Pn5SW12796t009cXBz8/f0rHKvBczJGjBiBwsJCXLp0Cbdv38bt27dx6dIllJSUYMSIEYZ2R0RERAaIiIjA559/js2bN8PBwQEZGRnIyMiQ5kmkpKQgOjoaiYmJuHr1Knbu3ImhQ4eiS5cuaNmyJQAgMDAQfn5+GDJkCH7++Wfs3bsX06dPR0REhDRMM3r0aPz222+YMmUKfvnlF6xcuRJbt27F+PHjKxyrwZWMQ4cO4dixY/Dx8ZH2+fj4YNmyZejcubOh3REREVVrf/dTwVetWgXgwQO3HrZ+/XqEh4dDoVDghx9+wEcffYTc3Fx4eHggNDQU06dPl9paWFggNjYWY8aMgb+/P+zs7BAWFoaoqCipjZeXF3bt2oXx48djyZIlqFevHtauXVvh5auAEUmGh4dHuQ/dKi4uhru7u6HdERERVVtVNVyij4eHBw4dOvTEfjw9PcsMhzyqW7duOHPmjEHxPczg4ZIFCxZg7NixOH36tLTv9OnTeOutt7Bw4UKjAyEiIqpuSid+VnarqSpUyXByctLJtHJzc9G+fXtYWj44vaioCJaWlhg2bBj69u1rlkCJiIioeqlQkvHRRx+ZOQwiIqLqpyqGS6qTCiUZYWFh5o6DiIio2nn4seCV6aOmMvphXACQl5eHgoICnX2GPEiEiIiIai6Dk4zc3FxMnToVW7duxa1bt8ocLy4uNklgRERETztjXtVeXh81lcGrS6ZMmYL4+HisWrUKSqUSa9euxZw5c+Du7o7PPvvMHDESERE9lWQy02w1lcGVjO+++w6fffYZunXrhtdffx2dO3eGt7c3PD09sWnTJgwePNgccRIREVE1Y3Al4/bt22jYsCGAB/Mvbt++DQDo1KkTDh8+bNroiIiInmKmfNV7TWRwktGwYUOkpqYCAJo2bYqtW7cCeFDhKH1hGhER0T8Bh0v0MzjJeP311/Hzzz8DAN5++22sWLEC1tbWGD9+PCZPnmzyAImIiKh6MnhOxsNvXwsICMAvv/yCxMREeHt7S293IyIi+ifg6hL9KvWcDODBC1Y8PT1NEQsREVG1YorhjhqcY1QsyVi6dGmFO3zzzTeNDoaIiKg64WPF9atQkrF48eIKdSaTyZhkEBEREYAKJhmlq0n+aX7Z8wEc+Jh0qqFSMnOqOgQis8m5+/d8f8thxAqKcvqoqSo9J4OIiOifisMl+tXkBIqIiIiqECsZRERERpLJADlXlzwWkwwiIiIjyU2QZFT2/KcZh0uIiIjILIxKMo4cOYLXXnsN/v7++PPPPwEAGzduxI8//mjS4IiIiJ5mfEGafgYnGdu2bUNQUBBsbGxw5swZ5OfnAwCys7Px/vvvmzxAIiKip1XpcEllt5rK4CTjvffew+rVq/HJJ5/AyspK2t+xY0f89NNPJg2OiIiIqi+DJ34mJyejS5cuZfar1WpkZWWZIiYiIqJqge8u0c/gSoZGo8GVK1fK7P/xxx/RsGFDkwRFRERUHZS+hbWyW01lcJIxcuRIvPXWWzhx4gRkMhmuX7+OTZs2YdKkSRgzZow5YiQiInoqyU201VQGD5e8/fbbKCkpQY8ePXDv3j106dIFSqUSkyZNwtixY80RIxEREVVDBicZMpkM7777LiZPnowrV64gJycHfn5+sLe3N0d8RERETy3OydDP6Cd+KhQK+Pn5mTIWIiKiakWOys+pkKPmZhkGJxndu3fX++CQ+Pj4SgVERERENYPBSUbr1q11PhcWFiIpKQnnz59HWFiYqeIiIiJ66nG4RD+Dk4zFixeXu3/27NnIycmpdEBERETVBV+Qpp/JVs689tpr+PTTT03VHREREVVzJnvVe0JCAqytrU3VHRER0VNPJkOlJ35yuOQh/fr10/kshEB6ejpOnz6NGTNmmCwwIiKipx3nZOhn8HCJWq3W2ZydndGtWzfs3r0bs2bNMkeMRERE9D/z5s3Ds88+CwcHB7i4uKBv375ITk7WaZOXl4eIiAjUqlUL9vb2CA0NRWZmpk6btLQ0hISEwNbWFi4uLpg8eTKKiop02hw8eBBt2rSBUqmEt7c3YmJiDIrVoEpGcXExXn/9dbRo0QJOTk4GXYiIiKimqYqJn4cOHUJERASeffZZFBUV4Z133kFgYCAuXrwIOzs7AMD48eOxa9cufPXVV1Cr1YiMjES/fv1w9OhRAA9+n4eEhECj0eDYsWNIT0/H0KFDYWVlhffffx8AkJqaipCQEIwePRqbNm3C/v37MWLECLi5uSEoKKhCscqEEMKQm7O2tsalS5fg5eVlyGnVilarhVqtRuqft+CgUlV1OERmkZGdV9UhEJlNzl0tOvjWRXZ2NlRm+Dle+ntixrdnYG3nUKm+8nLvIrrPM0bHevPmTbi4uODQoUPo0qULsrOzUadOHWzevBn9+/cHAPzyyy/w9fVFQkICOnTogO+//x4vvPACrl+/DldXVwDA6tWrMXXqVNy8eRMKhQJTp07Frl27cP78eelaAwcORFZWFvbs2VOh2AweLmnevDl+++03Q08jIiKqcUorGZXdgAeJy8Nbfn5+hWLIzs4GADg7OwMAEhMTUVhYiICAAKlN06ZNUb9+fSQkJAB4sFijRYsWUoIBAEFBQdBqtbhw4YLU5uE+StuU9lGhr0+FW/7Pe++9h0mTJiE2Nhbp6ellvihERERkOA8PD505j/PmzXviOSUlJRg3bhw6duyI5s2bAwAyMjKgUCjg6Oio09bV1RUZGRlSm4cTjNLjpcf0tdFqtbh//36F7qnCczKioqIwceJE9O7dGwDw0ksv6TxeXAgBmUyG4uLiinZJRERUrZlyTsa1a9d0hkuUSuUTz42IiMD58+fx448/Vi4IM6lwkjFnzhyMHj0aBw4cMGc8RERE1YZMJtP7Pq+K9gEAKpXKoDkZkZGRiI2NxeHDh1GvXj1pv0ajQUFBAbKysnSqGZmZmdBoNFKbkydP6vRXuvrk4TaPrkjJzMyESqWCjY1NhWKscJJROj+0a9euFT2FiIiITEwIgbFjx2L79u04ePBgmYUYbdu2hZWVFfbv34/Q0FAAQHJyMtLS0uDv7w8A8Pf3x9y5c3Hjxg24uLgAAOLi4qBSqaQ3rPv7+2P37t06fcfFxUl9VIRBS1grm60RERHVJFWxhDUiIgKbN2/Gt99+CwcHB2kOhVqtho2NDdRqNYYPH44JEybA2dkZKpUKY8eOhb+/Pzp06AAACAwMhJ+fH4YMGYL58+cjIyMD06dPR0REhDRMM3r0aCxfvhxTpkzBsGHDEB8fj61bt2LXrl0VjtWgJKNJkyZPTDRu375tSJdERETVVlU88XPVqlUAgG7duunsX79+PcLDwwE8eJmpXC5HaGgo8vPzERQUhJUrV0ptLSwsEBsbizFjxsDf3x92dnYICwtDVFSU1MbLywu7du3C+PHjsWTJEtSrVw9r166t8DMyAAOTjDlz5kCtVhtyChEREZlQRR5vZW1tjRUrVmDFihWPbePp6VlmOORR3bp1w5kzZwyOsZRBScbAgQOlsRsiIqJ/OrlMVukXpFX2/KdZhZMMzscgIiLSVRVzMqqTCj+My8CnjxMREdE/XIUrGSUlJeaMg4iIqPoxwcRP1OBKhkFzMoiIiOj/ySGDvJJZQmXPf5oxySAiIjJSVSxhrU4MfkEaERERUUWwkkFERGQkri7Rj0kGERGRkficDP04XEJERERmwUoGERGRkTjxUz8mGUREREaSwwTDJTV4CSuHS4iIiMgsWMkgIiIyEodL9GOSQUREZCQ5Kj8kUJOHFGryvREREVEVYiWDiIjISDKZDLJKjndU9vynGZMMIiIiI8lQ+Zeo1twUg0kGERGR0fjET/04J4OIiIjMgpUMIiKiSqi5dYjKY5JBRERkJD4nQz8OlxAREZFZsJJBRERkJC5h1Y9JBhERkZH4xE/9avK9ERERURViJYOIiMhIHC7Rj0kGERGRkfjET/04XEJERERmwUoGERGRkThcoh+TDCIiIiNxdYl+TDKIiIiMxEqGfjU5gSIiIqIqxEoGERGRkbi6RD8mGUREREbiC9L043AJERFRNXL48GG8+OKLcHd3h0wmw44dO3SOh4eHS3NFSrdevXrptLl9+zYGDx4MlUoFR0dHDB8+HDk5OTptzp49i86dO8Pa2hoeHh6YP3++wbEyySAiIjKSHDKTbIbIzc1Fq1atsGLFise26dWrF9LT06Xtiy++0Dk+ePBgXLhwAXFxcYiNjcXhw4cxatQo6bhWq0VgYCA8PT2RmJiIBQsWYPbs2fj4448NipXDJUREREaqiuGS4OBgBAcH622jVCqh0WjKPXbp0iXs2bMHp06dQrt27QAAy5YtQ+/evbFw4UK4u7tj06ZNKCgowKeffgqFQoFmzZohKSkJixYt0klGnoSVDCIiohrm4MGDcHFxgY+PD8aMGYNbt25JxxISEuDo6CglGAAQEBAAuVyOEydOSG26dOkChUIhtQkKCkJycjLu3LlT4ThYySAiIjKS7H//VbYP4MEQxcOUSiWUSqXB/fXq1Qv9+vWDl5cXUlJS8M477yA4OBgJCQmwsLBARkYGXFxcdM6xtLSEs7MzMjIyAAAZGRnw8vLSaePq6iodc3JyqlAsTDKIiIiMZMrhEg8PD539s2bNwuzZsw3ub+DAgdKfW7RogZYtW6JRo0Y4ePAgevToUZlQDcYkg4iI6Clw7do1qFQq6bMxVYzyNGzYELVr18aVK1fQo0cPaDQa3LhxQ6dNUVERbt++Lc3j0Gg0yMzM1GlT+vlxcz3KwzkZRERERpKZYGVJ6XCJSqXS2UyVZPzxxx+4desW3NzcAAD+/v7IyspCYmKi1CY+Ph4lJSVo37691Obw4cMoLCyU2sTFxcHHx6fCQyUAkwwiIiKjlQ6XVHYzRE5ODpKSkpCUlAQASE1NRVJSEtLS0pCTk4PJkyfj+PHjuHr1Kvbv348+ffrA29sbQUFBAABfX1/06tULI0eOxMmTJ3H06FFERkZi4MCBcHd3BwAMGjQICoUCw4cPx4ULF/Dll19iyZIlmDBhgkGxcriEiIjISFWxhPX06dPo3r279Ln0F39YWBhWrVqFs2fPYsOGDcjKyoK7uzsCAwMRHR2tUxnZtGkTIiMj0aNHD8jlcoSGhmLp0qXScbVajX379iEiIgJt27ZF7dq1MXPmTIOWrwJMMoiIiKqVbt26QQjx2ON79+59Yh/Ozs7YvHmz3jYtW7bEkSNHDI7vYUwyiIiIjGTKJaw1EZMMIiIiI8llD7bK9lFTceInERERmQUrGUREREbicIl+TDKIiIiMVBWrS6oTDpcQERGRWbCSQUREZCQZKj/cUYMLGUwyiIiIjMXVJfpxuISIiIjM4qmvZFy9ehVeXl44c+YMWrdu/cT24eHhyMrKwo4dO8weGz3eh59+j8XrdZ8616i+Cw5tegcA8PnOY9gRl4jzv/6BnHv5uLD7fagdbMvtK7+gCC/+ZxEuXrmOvZ9OQrPG9cweP1FF5N7Lx+rP9+FAwgXcyc6BT0N3TBz1Ipo1efDK7nv387EsZg8OHb+A7Lv34O7qjAEvPof+vTvo9HP20u9YuXEvzidfg4VcjiYN3bAsajislVZVcVtkAK4u0a/Kk4zw8HBs2LABAGBpaYl69erh5ZdfRlRUFKytreHh4YH09HTUrl27iiMlQ/l4afDF4jekz5YW/184y8srQLf2vujW3hcfrInV28/cVTvhWluNi1eumy1WImO8t2wbUn7PQNTEV1DHWYXdB87gjelr8dXKCXCprcbitbtw6mwKoiYOgLurE46fuYz/rvwWdWqp0LW9H4AHCcbYWZ/i9Ze7Y/J/+sDCQo7LqemQ1+Qaeg3C1SX6VXmSAQC9evXC+vXrUVhYiMTERISFhUEmk+G///0vLCwsDHp3PT09LCzkcKmlKvfYiFe6AQCOnbmst4/44xdx+NQv+Dh6GA4cv2TqEImMlpdfiPij5/HhjKFo07whAOA/g3viyMlf8PX3x/HGkCD8fOl3vPB8G7Rr2QgA0K9Xe3zz/Ulc+PWalGQsWhuLgS92RPjL3aS+G9Sr87ffDxlHhspP3KzBOcbTMSdDqVRCo9HAw8MDffv2RUBAAOLi4gA8GC6RyWTSK20B4MKFC3jhhRegUqng4OCAzp07IyUlRafPhQsXws3NDbVq1UJERAQKCwv/zlsiAKl//IW2fWfiuVeiERm1EX9m3jHo/Ju372LK/C+xZPprsLFm2ZieLsXFJSguKYHCSvffakqlJZIuXAUAtPL1xOGTl3Djr2wIIXD6bArSrt9Eh2caAwBuZ+XgfPI1ODnaYdiklQh87T2MenuNdD5RdfdUVDIedv78eRw7dgyenp7lHv/zzz/RpUsXdOvWDfHx8VCpVDh69CiKioqkNgcOHICbmxsOHDiAK1euYMCAAWjdujVGjhxZbp/5+fnIz8+XPmu1WtPe1D/QM36eWPzOIDT0cMGNW9lYHLMX/SKWYv9nU2Fva/3E84UQGP/+Jgzp0xGtmtbHtfRbf0PURBVnZ6tEy6b1sXbLfnh5uMDZ0R57D/+Mc7+koZ5bLQDA5NEvYe6yb9A7fB4sLOSQy2R4d2w/qfLxZ8ZtAMAnm/fjrWG90aShG3bF/4Qx736CL1eMR/26HCZ+2skhg7yS4x3yGlzLeCqSjNjYWNjb26OoqAj5+fmQy+VYvnx5uW1XrFgBtVqNLVu2wMrqwb9umzRpotPGyckJy5cvh4WFBZo2bYqQkBDs37//sUnGvHnzMGfOHNPe1D/c8x38pD/7ebvjGT9PdHg5Ct/FJ+HVFzroOfOBT7cdRu69fES+FmDOMIkqJWriAEQt+RrBYe/DQi6HTyN3BHVphUtX/gQAfPndMZxLTsOiGUPh5uKEn86nYv7qB3My2rdujJL/va67X69/4aWe7QAATRvVxamfU7Az7jQiw3tV2b1RxXC4RL+nIsno3r07Vq1ahdzcXCxevBiWlpYIDQ0tt21SUhI6d+4sJRjladasGSwsLKTPbm5uOHfu3GPbT5s2DRMmTJA+a7VaeHh4GHEn9DhqB1s09KiDq3/crFD7Y4mXkXjhKhr2mKSzv/fIRfh3z7b46N3B5giTyCD13Grh4w/+g/t5Bci9l4fazipM++9m1NU4Iy+/ECs+24uF7w5Bp2ebAgAae7nh19Tr+PybI2jfujFqOzkAALzqu+r06+XhgoybWX/37RCZ3FORZNjZ2cHb2xsA8Omnn6JVq1ZYt24dhg8fXqatjY3NE/t7NAGRyWQoKSl5bHulUgmlUmlg1GSI3Hv5uPrnLfQLKn8i6KOixoVi8sgQ6XPmX9kYPHE1Vs4OwzN+5Q+lEVUVG2sFbKwV0ObcQ8JPv+LN14NRVFyMoqJiyB4ppcvlcqmC4e7qhDrOKvz+SPL9+5830bGtz98WP1UCSxl6PRVJxsPkcjneeecdTJgwAYMGDSpzvGXLltiwYQMKCwv1VjOoakWv+BYBzzVDPY0TMv/S4sNPv4eFXIa+PdoCAG7c0uLmbS2u/vEXAOCX39Jhb6uEu6sTnFR2qOvqpNOfnY0CANCgbi24uzj+rfdC9DgJib9CQMCzbh1cS7+FpZ/uRoN6dfBSQDtYWlqgTXMvLPl0N5QKy/8Nl/yG3fE/YfyIFwA8+AfQkNAuWLMpDo293ODT0A2x+3/C73/cxPxpr1Xx3VFF8DkZ+j11SQYAvPzyy5g8eTJWrFiB/v376xyLjIzEsmXLMHDgQEybNg1qtRrHjx/Hv/71L/j4MPN/WqTfyELknM9wR5sLZ0d7/KtFQ+xcMx61nOwBABu/ParzsK7QyGUAgEXTXsUrvdtXScxEhsq5l4flG/bgxl/ZUDnY4vnnmiNiaBAsLR8M174/dRBWbNiDGQu/hDbnHjQuThgzJAihwf//PT6oTycUFBRh8dpYZN+9hyZeblgRPUKaPEpUnT2VSYalpSUiIyMxf/58BAcH6xyrVasW4uPjMXnyZHTt2hUWFhZo3bo1OnbsWEXRUnlWzgnTe3zisGBMHBast83DPNxq4Y8jH1UyKiLT6tm5JXp2bvnY47WdHDBr3MtP7Cf85W46z8mgasQED+OqwYUMyIT43+AgSbRaLdRqNVL/vAUHVcXmEBBVNxnZeVUdApHZ5NzVooNvXWRnZ0Nlhp/jpb8n4pPSYO9Quf5z7mrxfOv6Zou1Kj0VD+MiIiKimuepHC4hIiKqFri6RC8mGUREREbi6hL9mGQQEREZiW9h1Y9zMoiIiMgsWMkgIiIyEqdk6Mckg4iIyFjMMvTicAkRERGZBSsZRERERuLqEv2YZBARERmJq0v043AJERERmQUrGUREREbivE/9mGQQEREZi1mGXhwuISIiIrNgJYOIiMhIXF2iHysZRERERipdXVLZzRCHDx/Giy++CHd3d8hkMuzYsUPnuBACM2fOhJubG2xsbBAQEIDLly/rtLl9+zYGDx4MlUoFR0dHDB8+HDk5OTptzp49i86dO8Pa2hoeHh6YP3++wV8fJhlERERGkploM0Rubi5atWqFFStWlHt8/vz5WLp0KVavXo0TJ07Azs4OQUFByMvLk9oMHjwYFy5cQFxcHGJjY3H48GGMGjVKOq7VahEYGAhPT08kJiZiwYIFmD17Nj7++GODYuVwCRERUTUSHByM4ODgco8JIfDRRx9h+vTp6NOnDwDgs88+g6urK3bs2IGBAwfi0qVL2LNnD06dOoV27doBAJYtW4bevXtj4cKFcHd3x6ZNm1BQUIBPP/0UCoUCzZo1Q1JSEhYtWqSTjDwJKxlERETGMmEpQ6vV6mz5+fkGh5OamoqMjAwEBARI+9RqNdq3b4+EhAQAQEJCAhwdHaUEAwACAgIgl8tx4sQJqU2XLl2gUCikNkFBQUhOTsadO3cqHA+TDCIiIiPJTPQfAHh4eECtVkvbvHnzDI4nIyMDAODq6qqz39XVVTqWkZEBFxcXneOWlpZwdnbWaVNeHw9foyI4XEJERPQUuHbtGlQqlfRZqVRWYTSmwUoGERGRkUy5ukSlUulsxiQZGo0GAJCZmamzPzMzUzqm0Whw48YNneNFRUW4ffu2Tpvy+nj4GhXBJIOIiMhIVbG6RB8vLy9oNBrs379f2qfVanHixAn4+/sDAPz9/ZGVlYXExESpTXx8PEpKStC+fXupzeHDh1FYWCi1iYuLg4+PD5ycnCocD5MMIiKiaiQnJwdJSUlISkoC8GCyZ1JSEtLS0iCTyTBu3Di899572LlzJ86dO4ehQ4fC3d0dffv2BQD4+vqiV69eGDlyJE6ePImjR48iMjISAwcOhLu7OwBg0KBBUCgUGD58OC5cuIAvv/wSS5YswYQJEwyKlXMyiIiIjFUF7y45ffo0unfvLn0u/cUfFhaGmJgYTJkyBbm5uRg1ahSysrLQqVMn7NmzB9bW1tI5mzZtQmRkJHr06AG5XI7Q0FAsXbpUOq5Wq7Fv3z5ERESgbdu2qF27NmbOnGnQ8lUAkAkhhGG3V/NptVqo1Wqk/nkLDg9NwiGqSTKy857ciKiayrmrRQffusjOztaZTGkqpb8nTiWnw96hcv3n3NXiWR83s8ValThcQkRERGbB4RIiIiIjGfPukfL6qKmYZBARERmpCqZkVCtMMoiIiIzFLEMvzskgIiIis2Alg4iIyEgPv3ukMn3UVEwyiIiIjGWCiZ81OMfgcAkRERGZBysZRERERuK8T/2YZBARERmLWYZeHC4hIiIis2Alg4iIyEhcXaIfkwwiIiIj8bHi+nG4hIiIiMyClQwiIiIjcd6nfkwyiIiIjMUsQy8mGUREREbixE/9OCeDiIiIzIKVDCIiIiPJYILVJSaJ5OnEJIOIiMhInJKhH4dLiIiIyCxYySAiIjISH8alH5MMIiIio3HARB8OlxAREZFZsJJBRERkJA6X6Mckg4iIyEgcLNGPwyVERERkFqxkEBERGYnDJfoxySAiIjIS312iH5MMIiIiY3FShl6ck0FERERmwUoGERGRkVjI0I9JBhERkZE48VM/DpcQERGRWbCSQUREZCSuLtGPSQYREZGxOClDLw6XEBERVSOzZ8+GTCbT2Zo2bSodz8vLQ0REBGrVqgV7e3uEhoYiMzNTp4+0tDSEhITA1tYWLi4umDx5MoqKikweKysZRERERqqqQkazZs3www8/SJ8tLf//1/n48eOxa9cufPXVV1Cr1YiMjES/fv1w9OhRAEBxcTFCQkKg0Whw7NgxpKenY+jQobCyssL7779fybvRxSSDiIjISFW1usTS0hIajabM/uzsbKxbtw6bN2/G888/DwBYv349fH19cfz4cXTo0AH79u3DxYsX8cMPP8DV1RWtW7dGdHQ0pk6ditmzZ0OhUFTuhh7C4RIiIqKngFar1dny8/Mf2/by5ctwd3dHw4YNMXjwYKSlpQEAEhMTUVhYiICAAKlt06ZNUb9+fSQkJAAAEhIS0KJFC7i6ukptgoKCoNVqceHCBZPeE5MMIiIio8kq/V/pgImHhwfUarW0zZs3r9wrtm/fHjExMdizZw9WrVqF1NRUdO7cGXfv3kVGRgYUCgUcHR11znF1dUVGRgYAICMjQyfBKD1eesyUOFxCRERkJFMOl1y7dg0qlUrar1Qqy20fHBws/blly5Zo3749PD09sXXrVtjY2FQuGBNjJYOIiOgpoFKpdLbHJRmPcnR0RJMmTXDlyhVoNBoUFBQgKytLp01mZqY0h0Oj0ZRZbVL6ubx5HpXBJIOIiKgay8nJQUpKCtzc3NC2bVtYWVlh//790vHk5GSkpaXB398fAODv749z587hxo0bUpu4uDioVCr4+fmZNDYOlxARERmpKlaXTJo0CS+++CI8PT1x/fp1zJo1CxYWFnj11VehVqsxfPhwTJgwAc7OzlCpVBg7diz8/f3RoUMHAEBgYCD8/PwwZMgQzJ8/HxkZGZg+fToiIiIqXD2pKCYZRERERqqKx4r/8ccfePXVV3Hr1i3UqVMHnTp1wvHjx1GnTh0AwOLFiyGXyxEaGor8/HwEBQVh5cqV0vkWFhaIjY3FmDFj4O/vDzs7O4SFhSEqKqpS91EemRBCmLzXak6r1UKtViP1z1tweGgSDlFNkpGdV9UhEJlNzl0tOvjWRXZ2ts5kSlMp/T2RlnGn0v1rtVrU1ziZLdaqxEoGERGRkfiqd/2YZBARERmJ70fTj6tLiIiIyCxYySAiIjIWSxl6MckgIiIyUlWsLqlOOFxCREREZsFKBhERkZG4ukQ/JhlERERG4pQM/ZhkEBERGYtZhl6ck0FERERmwUoGERGRkbi6RD8mGUREREbixE/9mGSUo/SdcXfvaqs4EiLzybnLF6RRzZWbcxfA//88NxettvK/J0zRx9OKSUY57t598M3ZsqlXFUdCRESVcffuXajVapP3q1AooNFo0NjLwyT9aTQaKBQKk/T1NOGr3stRUlKC69evw8HBAbKaXMd6Smi1Wnh4eODatWs17jXHRAC/x6uCEAJ3796Fu7s75HLzrHHIy8tDQUGBSfpSKBSwtrY2SV9PE1YyyiGXy1GvXr2qDuMfR6VS8Qcw1Wj8Hv97maOC8TBra+samRiYEpewEhERkVkwySAiIiKzYJJBVU6pVGLWrFlQKpVVHQqRWfB7nP6pOPGTiIiIzIKVDCIiIjILJhlERERkFkwyiIiIyCyYZBARmdjVq1chk8mQlJRUofbh4eHo27evWWMiqgpMMsikwsPDIZPJIJPJoFAo4O3tjaioKBQVFVV1aEQm8/D3uZWVFby8vDBlyhTk5T14H4yHhwfS09PRvHnzKo6UqGrxiZ9kcr169cL69euRn5+P3bt3IyIiAlZWVpg2bZrJr1VQUFAjn/dPT7/S7/PCwkIkJiYiLCwMMpkM//3vf2FhYQGNRlPVIRJVOVYyyOSUSiU0Gg08PT0xZswYBAQEYOfOnbhz5w6GDh0KJycn2NraIjg4GJcvX9Y5d9u2bWjWrBmUSiUaNGiADz/8UOd4gwYNEB0djaFDh0KlUmHUqFF/560RSUq/zz08PNC3b18EBAQgLi4OQPnDJRcuXMALL7wAlUoFBwcHdO7cGSkpKTp9Lly4EG5ubqhVqxYiIiJQWFj4d94SkckxySCzs7GxQUFBAcLDw3H69Gns3LkTCQkJEEKgd+/e0g/SxMREvPLKKxg4cCDOnTuH2bNnY8aMGYiJidHpb+HChWjVqhXOnDmDGTNmVMEdEek6f/48jh079tiq2p9//okuXbpAqVQiPj4eiYmJGDZsmM4w4oEDB5CSkoIDBw5gw4YNiImJKfO9T1TdcLiEzEYIgf3792Pv3r0IDg7Gjh07cPToUTz33HMAgE2bNsHDwwM7duzAyy+/jEWLFqFHjx5S4tCkSRNcvHgRCxYsQHh4uNTv888/j4kTJ1bFLRFJYmNjYW9vj6KiIuTn50Mul2P58uXltl2xYgXUajW2bNkCKysrAA++vx/m5OSE5cuXw8LCAk2bNkVISAj279+PkSNHmv1eiMyFlQwyudIfvtbW1ggODsaAAQMQHh4OS0tLtG/fXmpXq1Yt+Pj44NKlSwCAS5cuoWPHjjp9dezYEZcvX0ZxcbG0r127dn/PjRDp0b17dyQlJeHEiRMICwvD66+/jtDQ0HLbJiUloXPnzlKCUZ5mzZrBwsJC+uzm5oYbN26YPG6ivxOTDDK50h++ly9fxv3797FhwwbIZDKT9W9nZ2eyvoiMZWdnB29vb7Rq1QqffvopTpw4gXXr1pXb1sbG5on9PZqAyGQylJSUmCRWoqrCJINMrvSHb/369WFp+WBEztfXF0VFRThx4oTU7tatW0hOToafn5/U5ujRozp9HT16FE2aNNH5Fx7R00Yul+Odd97B9OnTcf/+/TLHW7ZsiSNHjnAiJ/3jMMmgv0Xjxo3Rp08fjBw5Ej/++CN+/vlnvPbaa6hbty769OkDAJg4cSL279+P6Oho/Prrr9iwYQOWL1+OSZMmVXH0RE/28ssvw8LCAitWrChzLDIyElqtFgMHDsTp06dx+fJlbNy4EcnJyVUQKdHfh0kG/W3Wr1+Ptm3b4oUXXoC/vz+EENi9e7dUJm7Tpg22bt2KLVu2oHnz5pg5cyaioqJ0Jn0SPa0sLS0RGRmJ+fPnIzc3V+dYrVq1EB8fj5ycHHTt2hVt27bFJ598oneOBlFNwFe9ExERkVmwkkFERERmwSSDiIiIzIJJBhEREZkFkwwiIiIyCyYZREREZBZMMoiIiMgsmGQQERGRWTDJIHpKhYeHo2/fvtLnbt26Ydy4cX97HAcPHoRMJkNWVtZj28hkMuzYsaPCfc6ePRutW7euVFxXr16FTCZDUlJSpfohIvNhkkFkgPDwcMhkMshkMigUCnh7eyMqKgpFRUVmv/Y333yD6OjoCrWtSGJARGRullUdAFF106tXL6xfvx75+fnYvXs3IiIiYGVlhWnTppVpW1BQAIVCYZLrOjs7m6QfIqK/CysZRAZSKpXQaDTw9PTEmDFjEBAQgJ07dwL4/yGOuXPnwt3dHT4+PgCAa9eu4ZVXXoGjoyOcnZ3Rp08fXL16VeqzuLgYEyZMgKOjI2rVqoUpU6bg0Sf+Pzpckp+fj6lTp8LDwwNKpRLe3t5Yt24drl69iu7duwMAnJycIJPJpPe/lJSUYN68efDy8oKNjQ1atWqFr7/+Wuc6u3fvRpMmTWBjY4Pu3bvrxFlRU6dORZMmTWBra4uGDRtixowZ5b6BdM2aNfDw8ICtrS1eeeUVZGdn6xxfu3YtfH19YW1tjaZNm2LlypUGx0JEVYdJBlEl2djYoKCgQPq8f/9+JCcnIy4uDrGxsSgsLERQUBAcHBxw5MgRHD16FPb29ujVq5d03ocffoiYmBh8+umn+PHHH3H79m1s375d73WHDh2KL774AkuXLsWlS5ewZs0a2Nvbw8PDA9u2bQMAJCcnIz09HUuWLAEAzJs3D5999hlWr16NCxcuYPz48Xjttddw6NAhAA+SoX79+uHFF19EUlISRowYgbffftvgr4mDgwNiYmJw8eJFLFmyBJ988gkWL16s0+bKlSvYunUrvvvuO+zZswdnzpzBG2+8IR3ftGkTZs6ciblz5+LSpUt4//33MWPGDGzYsMHgeIioiggiqrCwsDDRp08fIYQQJSUlIi4uTiiVSjFp0iTpuKurq8jPz5fO2bhxo/Dx8RElJSXSvvz8fGFjYyP27t0rhBDCzc1NzJ8/XzpeWFgo6tWrJ11LCCG6du0q3nrrLSGEEMnJyQKAiIuLKzfOAwcOCADizp070r68vDxha2srjh07ptN2+PDh4tVXXxVCCDFt2jTh5+enc3zq1Kll+noUALF9+/bHHl+wYIFo27at9HnWrFnCwsJC/PHHH9K+77//XsjlcpGeni6EEKJRo0Zi8+bNOv1ER0cLf39/IYQQqampAoA4c+bMY69LRFWLczKIDBQbGwt7e3sUFhaipKQEgwYNwuzZs6XjLVq00JmH8fPPP+PKlStwcHDQ6ScvLw8pKSnIzs5Geno62rdvLx2ztLREu3btygyZlEpKSoKFhQW6du1a4bivXLmCe/fuoWfPnjr7CwoK8MwzzwAALl26pBMHAPj7+1f4GqW+/PJLLF26FCkpKcjJyUFRURFUKpVOm/r166Nu3bo61ykpKUFycjIcHByQkpKC4cOHY+TIkVKboqIiqNVqg+MhoqrBJIPIQN27d8eqVaugUCjg7u4OS0vd/43s7Ox0Pufk5KBt27bYtGlTmb7q1KljVAw2NjYGn5OTkwMA2LVrl84vd+DBPBNTSUhIwODBgzFnzhwEBQVBrVZjy5Yt+PDDDw2O9ZNPPimT9FhYWJgsViIyLyYZRAays7ODt7d3hdu3adMGX375JVxcXMr8a76Um5sbTpw4gS5dugB48C/2xMREtGnTptz2LVq0QElJCQ4dOoSAgIAyx0srKcXFxdI+Pz8/KJVKpKWlPbYC4uvrK01iLXX8+PEn3+RDjh07Bk9PT7z77rvSvt9//71Mu7S0NFy/fh3u7u7SdeRyOXx8fODq6gp3d3f89ttvGDx4sEHXJ6KnByd+EpnZ4MGDUbt2bfTp0wdHjhxBamoqDh48iDfffBN//PEHAOCtt97CBx98gB07duCXX37BG2+8ofcZFw0aNEBYWBiGDRuGHTt2SH1u3boVAODp6QmZTIbY2FjcvHkTOTk5cHBwwKRJkzB+/Hhs2LABKSkp+Omnn7Bs2TJpMuXo0aNx+fJlTJ48GcnJydi8eTNiYmIMut/GjRsjLS0NW7ZsQUpKCpYuXVruJFZra2uEhYXh559/xpEjR/Dmm2/ilVdegUajAQDMmTMH8+bNw9KlS/Hrr7/i3LlzWL9+PRYtWmRQPERUdZhkEJmZra0tDh8+jPr166Nfv37w9fXF8OHDkZeXJ1U2Jk6ciCFDhiAsLAz+/v5wcHDAv//9b739rlq1Cv3798cbb7yBpk2bYuTIkcjNzQUA1K1bF3PmzMHbb78NV1dXREZGAgCio6MxY8YMzJs3D76+vujVqxd27doFLy8vAA/mSWzbtg07duxAq1atsHr1arz//vsG3e9LL72E8ePHIzIyEq1bt8axY8cwY8aMMu28vb3Rr18/9O7dG4GBgWjZsqXOEtURI0Zg7dq1WL9+PVq0aIGuXbsiJiZGipWInn4y8biZZURERESVwEoGERERmQWTDCIiIjILJhlERERkFkwyiIiIyCyYZBAREZFZMMkgIiIis2CSQURERGbBJIOIiIjMgkkGERERmQWTDCIiIjILJhlERERkFkwyiIiIyCz+D6OTsXMKWXfzAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHHCAYAAAAcbzQmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbwBJREFUeJzt3Xtcjvf/B/DXXerueN8JnUhySo002WiGzCE0h2FmQs5j5XyI70gKmeOYs7Yyy7AZI4YcyiljkWMLiRwq5tBd0fn6/TFdP7dy61a3W3k997gej+7r+lyf633dNb17fz7X55YIgiCAiIiIiN44HW0HQERERPSuYiJGREREpCVMxIiIiIi0hIkYERERkZYwESMiIiLSEiZiRERERFrCRIyIiIhIS5iIEREREWkJEzEiIiIiLWEiRvSOuXr1Kjp16gS5XA6JRIIdO3aUa/83btyARCJBWFhYufZbkbm7u8Pd3V3bYRDRW4iJGJEWJCYm4quvvkLdunVhYGAAmUyGVq1aYdmyZXj69KlGr+3t7Y0LFy5g7ty52LhxI5o3b67R671JgwcPhkQigUwmK/F9vHr1KiQSCSQSCRYtWqR2/3fv3kVAQADi4uLKKWL1RUZGQiKRYPbs2cWOJSUlwcjICH369Cl27OjRo+jbty9q1qwJfX19yOVytGjRAoGBgUhLS1Nq6+7uLr5PEokE+vr6sLe3x8iRI3Hr1i2N3l9pnDhxAgEBAXj8+LG2QyEqsyraDoDoXbN79258/vnnkEqlGDRoEBo3bozc3FwcO3YMU6ZMwaVLl7Bu3TqNXPvp06eIiYnBN998A19fX41cw87ODk+fPoWenp5G+n+VKlWq4MmTJ9i1axf69u2rdCw8PBwGBgbIzs5+rb7v3r2L2bNno06dOnBxcSn1efv373+t65WkY8eO6N+/P4KDg/Hll1+iYcOG4rGvv/4aenp6WL58udI5/v7+CAoKQt26dTF48GDUrVsX2dnZiI2NxeLFi7FhwwYkJiYqnVOrVi0EBwcDAHJzc3H58mWsWbMG+/btQ3x8PIyMjMrtntR14sQJzJ49G4MHD4aZmZnW4iAqD0zEiN6gpKQk9OvXD3Z2djh06BCsra3FYz4+Prh27Rp2796tsevfv38fADT6y0sikcDAwEBj/b+KVCpFq1at8MsvvxRLxDZt2gRPT09s27btjcTy5MkTGBkZQV9fv1z7Xbp0Kf7880+MGjUKhw4dAgBs3rwZe/fuxfLly2FjYyO23bJlC4KCgtC3b19s3LixWCxLly7F0qVLi11DLpdjwIABSvvs7e3h6+uL48ePo2PHjuV6T0TvLIGI3phRo0YJAITjx4+Xqn1eXp4QGBgo1K1bV9DX1xfs7OyE6dOnC9nZ2Urt7OzsBE9PT+Ho0aPCBx98IEilUsHe3l7YsGGD2GbWrFkCAKXNzs5OEARB8Pb2Fr9+XtE5z9u/f7/QqlUrQS6XC8bGxkLDhg2F6dOni8eTkpIEAEJoaKjSeQcPHhQ+/vhjwcjISJDL5UL37t2Fy5cvl3i9q1evCt7e3oJcLhdkMpkwePBgISsr65Xvl7e3t2BsbCyEhYUJUqlUePTokXjs1KlTAgBh27ZtAgBh4cKF4rEHDx4IkyZNEho3biwYGxsLpqamQufOnYW4uDixzeHDh4u9f8/fZ9u2bYX33ntP+Pvvv4XWrVsLhoaGwrhx48Rjbdu2FfsaNGiQIJVKi91/p06dBDMzM+HOnTuvvNd169YJAISwsDDh0aNHgpWVlfDBBx8IBQUFSu0aNmwoVK9eXcjIyHhln0WK7uVFv/32mwBAOHTokNL+M2fOCJ07dxZMTU0FY2Nj4ZNPPhFiYmKKnZ+YmCj06dNHqFq1qmBoaCi0aNFCiIiIKNZu+fLlgpOTk2BoaCiYmZkJrq6uQnh4uCC85OcYgJCUlFTq+yN6m7AiRvQG7dq1C3Xr1sVHH31UqvbDhw/Hhg0b0KdPH0yaNAl//fUXgoODER8fj+3btyu1vXbtGvr06YNhw4bB29sbP/74IwYPHgxXV1e899576NWrF8zMzDBhwgR8+eWX6Nq1K0xMTNSK/9KlS/j000/h7OyMwMBASKVSXLt2DcePH1d53oEDB9ClSxfUrVsXAQEBePr0Kb7//nu0atUKZ86cQZ06dZTa9+3bF/b29ggODsaZM2cQEhICCwsLfPvtt6WKs1evXhg1ahR+//13DB06FHhWDWvUqBGaNWtWrP3169exY8cOfP7557C3t0daWhrWrl2Ltm3b4vLly7CxsYGjoyMCAwPh7++PkSNHonXr1gCg9L188OABunTpgn79+mHAgAGwtLQsMb5ly5bh0KFD8Pb2RkxMDHR1dbF27Vrs378fGzduVKpovUzRz8bkyZOxb98+3L9/H3v27IGOzv9P/b1y5QquXLmC4cOHq/29LigowL///gsAyMvLQ3x8PGbNmoX69eujVatWYrtLly6hdevWkMlkmDp1KvT09LB27Vq4u7sjOjoaLVq0AACkpaXho48+wpMnTzB27FhUq1YNGzZsQPfu3fHbb7/hs88+AwCsX78eY8eORZ8+fTBu3DhkZ2fj/Pnz+Ouvv9C/f3/06tULV65cwS+//IKlS5eievXqAIAaNWqodX9Ebw1tZ4JE74r09HQBgNCjR49StY+LixMACMOHD1faP3ny5GJVCTs7OwGAcOTIEXHfvXv3BKlUKkyaNEncV1Ster4aJKhREVu6dKkAQLh///5L4y6pIubi4iJYWFgIDx48EPedO3dO0NHREQYNGlTsekOHDlXq87PPPhOqVav20ms+fx/GxsaCIAhCnz59hPbt2wuCIAgFBQWClZWVMHv27BLfg+zs7GKVpKSkJEEqlQqBgYHivtOnT5dY7ROeVZEACGvWrCnx2PMVMUEQhH379gkAhDlz5gjXr18XTExMhJ49e77yHp938eJFQU9PTwAgjB8/vtjxP/74QwAgfPfdd0r7CwsLhfv37ytteXl5xe7lxc3R0VG4fv26Ul89e/YU9PX1hcTERHHf3bt3BVNTU6FNmzbivvHjxwsAhKNHj4r7MjIyBHt7e6FOnTri+9+jR48Sq3HPW7hwIatgVGnwqUmiN0ShUAAATE1NS9V+z549AICJEycq7Z80aRLwbNL/85ycnMQqDZ5VCBwcHHD9+vUyx16kaG7ZH3/8gcLCwlKdk5KSgri4OAwePBjm5ubifmdnZ3Ts2FG8z+eNGjVK6XXr1q3x4MED8T0sjf79+yMqKgqpqak4dOgQUlNT0b9//xLbSqVSsZJUUFCABw8ewMTEBA4ODjhz5kyprymVSjFkyJBSte3UqRO++uorBAYGolevXjAwMMDatWtLfS0AkMlk4pyvTp06FTte9H69WA1LT09HjRo1lLYXnwStU6cOIiMjERkZiT///BPfffcd0tPT0aVLF3GuYUFBAfbv34+ePXuibt264rnW1tbo378/jh07JsawZ88efPjhh/j444/FdiYmJhg5ciRu3LiBy5cvA89+xm7fvo3Tp0+r9V4QVVRMxIjeEJlMBgDIyMgoVfubN29CR0cH9evXV9pvZWUFMzMz3Lx5U2l/7dq1i/VRtWpVPHr0qExxP++LL75Aq1atMHz4cFhaWqJfv37YunWryqSsKE4HB4dixxwdHfHvv/8iKytLaf+L91K1alUAUOteunbtClNTU2zZsgXh4eH44IMPir2XRQoLC7F06VI0aNAAUqkU1atXR40aNXD+/Hmkp6eX+ppFS0OU1qJFi2Bubo64uDgsX74cFhYWpT4XAHx9faGjowM7OztMmjQJeXl5SseLkv7MzEyl/SYmJmKSNWXKlBL7NjY2RocOHdChQwd07twZ48aNw86dO5GQkID58+cDzx7+ePLkyUu/t4WFheJyFzdv3nxpOzz3c+Ln5wcTExN8+OGHaNCgAXx8fF459E1UkTERI3pDZDIZbGxscPHiRbXOk0gkpWqnq6tb4n5BEF77GgUFBUqvDQ0NceTIERw4cAADBw7E+fPn8cUXX6Bjx47F2pZFWe6liFQqRa9evbBhwwZs3779pdUwAJg3bx4mTpyINm3a4Oeff8a+ffsQGRmJ9957r9SVPzx7f9Rx9uxZ3Lt3DwBw4cIFtc79/fffsXPnTgQFBWHVqlWIj4/HwoULldo0atQIAIr9zFWpUkVMspycnEp9TVdXV8jlchw5ckStWNXh6OiIhIQEbN68GR9//DG2bduGjz/+GLNmzdLYNYm0iYkY0Rv06aefIjExETExMa9sa2dnh8LCQly9elVpf1paGh4/fgw7O7tyi6tq1aolLo75YtUNAHR0dNC+fXssWbIEly9fxty5c3Ho0CEcPnz4pfcBAAkJCcWO/fPPP6hevTqMjY3L5T5e1L9/f5w9exYZGRno16/fS9v99ttvaNeuHX744Qf069cPnTp1QocOHYq9J6VNiksjKysLQ4YMgZOTE0aOHIkFCxaUejguIyMDY8eORbNmzeDr64uuXbuid+/emDNnDpKSksR2Dg4OaNCgAXbs2FGs6vi6CgoKxApbjRo1YGRk9NLvrY6ODmxtbYFnPwcva4fnfk7wrBr3xRdfIDQ0FMnJyfD09MTcuXPF9d/K8/tApG1MxIjeoKlTp8LY2BjDhw8vtpo5nq24v2zZMuDZ0BoAfPfdd0ptlixZAgDw9PQst7jq1auH9PR0nD9/XtyXkpJS7MnMhw8fFju3aGHTnJycEvu2traGi4sLNmzYoJTYXLx4Efv37xfvUxPatWuHoKAgrFixAlZWVi9tp6urW6za9uuvv+LOnTtK+4oSxvJY0d3Pzw/JycnYsGEDlixZgjp16sDb2/ul7+PzZsyYgZSUFKxdu1asHi5btgy6urrFFuoNCAjAv//+ixEjRhQbuoSaVcbDhw8jMzMTTZs2BZ69b506dcIff/yBGzduiO3S0tKwadMmfPzxx+KQfNeuXXHq1CmlP0KysrKwbt061KlTR6zMPXjwQOma+vr6cHJygiAIYvzl+X0g0jYuX0H0BtWrVw+bNm3CF198AUdHR6WV9U+cOIFff/0VgwcPBgA0bdoU3t7eWLduHR4/foy2bdvi1KlT2LBhA3r27Il27dqVW1z9+vWDn58fPvvsM4wdOxZPnjzB6tWr0bBhQ6XJ6oGBgThy5Ag8PT1hZ2eHe/fuYdWqVahVq5bSJOwXLVy4EF26dIGbmxuGDRsmLl8hl8sREBBQbvfxIh0dHcyYMeOV7T799FMEBgZiyJAh+Oijj3DhwgWEh4crTUDHs++fmZkZ1qxZA1NTUxgbG6NFixawt7dXK65Dhw5h1apVmDVrlricRmhoKNzd3TFz5kwsWLDgpefGxsZi5cqV8PHxUfp4qpo1ayIwMBATJ07Etm3b0Lt3b+BZVfDixYsIDg7GqVOn0K9fP9jb2yMrKwsXL17EL7/8AlNTU3EeXpH09HT8/PPPAID8/HwkJCRg9erVMDQ0xLRp08R2c+bMQWRkJD7++GN8/fXXqFKlCtauXYucnByl+5g2bRp++eUXdOnSBWPHjoW5uTk2bNiApKQkbNu2TXxYolOnTrCyskKrVq1gaWmJ+Ph4rFixAp6enuKcN1dXVwDAN998g379+kFPTw/dunXTWGWVSKO0/dgm0bvoypUrwogRI4Q6deoI+vr6gqmpqdCqVSvh+++/V1qsNS8vT5g9e7Zgb28v6OnpCba2tioXdH3Ri8smvGz5CuHZQq2NGzcW9PX1BQcHB+Hnn38utnzFwYMHhR49egg2NjaCvr6+YGNjI3z55ZfClStXil3jxSUeDhw4ILRq1UowNDQUZDKZ0K1bt5cu6Pri8hihoaGlWq7g+eUrXuZly1dMmjRJsLa2FgwNDYVWrVoJMTExJS478ccffwhOTk5ClSpVSlzQtSTP96NQKAQ7OzuhWbNmSktGCIIgTJgwQdDR0SlxMVRBEIT8/HyhWbNmgo2NjZCenl7icRcXF6FWrVrFFnCNiooS+vTpI1hbWwt6enqCTCYTmjdvLsyaNUtISUkpFu/zy1ZIJBLB3Nxc6N69uxAbG1vsumfOnBE8PDwEExMTwcjISGjXrp1w4sSJYu2KFnQ1MzMTDAwMhA8//LDYgq5r164V2rRpI1SrVk2QSqVCvXr1hClTphS736CgIKFmzZqCjo4Ol7KgCk0iqFOXJiIiIqJywzliRERERFrCRIyIiIhIS5iIEREREWkJEzEiIiIiLWEiRkRERKQlTMSIiIiItIQLupLaCgsLcffuXZiamvKjRoiIKiBBEJCRkQEbGxtxMV1NyM7ORm5ubpn70dfXh4GBQbnE9LZhIkZqu3v3rvj5cUREVHHdunULtWrV0kjf2dnZMDStBuQ/KXNfVlZWSEpKqpTJGBMxUlvRx4zoO3lDoquv7XCINCI5apG2QyDSmAyFAvXtbcV/zzUhNzcXyH8CqZM3UJbfFQW5SL28Abm5uUzEiACIw5ESXX0mYlRpFX1YNVFl9kaml1QxKNPvCkFSuaezMxEjIiIizZEAKEvCV8mnIjMRIyIiIs2R6Py3leX8Sqxy3x0RERHRW4wVMSIiItIciaSMQ5OVe2ySiRgRERFpDocmVarcd0dERET0FmNFjIiIiDSHQ5MqMREjIiIiDSrj0GQlH7yr3HdHRERE9BZjRYyIiIg0h0OTKjERIyIiIs3hU5MqVe67IyIiInqLsSJGREREmsOhSZWYiBEREZHmcGhSJSZiREREpDmsiKlUudNMIiIieqfNnz8fEokE48ePF/dlZ2fDx8cH1apVg4mJCXr37o20tDSl85KTk+Hp6QkjIyNYWFhgypQpyM/PV2oTFRWFZs2aQSqVon79+ggLC1M7PiZiREREpDlFQ5Nl2V7T6dOnsXbtWjg7OyvtnzBhAnbt2oVff/0V0dHRuHv3Lnr16iUeLygogKenJ3Jzc3HixAls2LABYWFh8Pf3F9skJSXB09MT7dq1Q1xcHMaPH4/hw4dj3759asXIRIyIiIg0RyIpYyL2ekOTmZmZ8PLywvr161G1alVxf3p6On744QcsWbIEn3zyCVxdXREaGooTJ07g5MmTAID9+/fj8uXL+Pnnn+Hi4oIuXbogKCgIK1euRG5uLgBgzZo1sLe3x+LFi+Ho6AhfX1/06dMHS5cuVStOJmJERERU6fj4+MDT0xMdOnRQ2h8bG4u8vDyl/Y0aNULt2rURExMDAIiJiUGTJk1gaWkptvHw8IBCocClS5fENi/27eHhIfZRWpysT0RERJqjI/lvK8v5ABQKhdJuqVQKqVRa4imbN2/GmTNncPr06WLHUlNToa+vDzMzM6X9lpaWSE1NFds8n4QVHS86pqqNQqHA06dPYWhoWLrbK1UrIiIiotdRTnPEbG1tIZfLxS04OLjEy926dQvjxo1DeHg4DAwM3vDNqo8VMSIiInrr3bp1CzKZTHz9smpYbGws7t27h2bNmon7CgoKcOTIEaxYsQL79u1Dbm4uHj9+rFQVS0tLg5WVFQDAysoKp06dUuq36KnK59u8+KRlWloaZDJZqathYEWMiIiINKpoHbGybABkMpnS9rJErH379rhw4QLi4uLErXnz5vDy8hK/1tPTw8GDB8VzEhISkJycDDc3NwCAm5sbLly4gHv37oltIiMjIZPJ4OTkJLZ5vo+iNkV9lBYrYkRERKQ5b3hlfVNTUzRu3Fhpn7GxMapVqybuHzZsGCZOnAhzc3PIZDKMGTMGbm5uaNmyJQCgU6dOcHJywsCBA7FgwQKkpqZixowZ8PHxERPAUaNGYcWKFZg6dSqGDh2KQ4cOYevWrdi9e7da8TIRIyIionfK0qVLoaOjg969eyMnJwceHh5YtWqVeFxXVxcREREYPXo03NzcYGxsDG9vbwQGBopt7O3tsXv3bkyYMAHLli1DrVq1EBISAg8PD7VikQiCIJTr3VGlp1AoIJfLIW0yAhJdfW2HQ6QRj06v0HYIRBqjUChgWU2O9PR0pXlX5X0NuVwOqXsAJFVef9K8kJ+NnKgAjcaqTayIERERkebwQ79VYiJGREREmsMP/VapcqeZRERERG8xVsSIiIhIczg0qRITMSIiItIcDk2qVLnTTCIiIqK3GCtiREREpEFlHJqs5DUjJmJERESkORyaVKlyp5lEREREbzFWxIiIiEhzJJIyPjVZuStiTMSIiIhIc7h8hUqV++6IiIiI3mKsiBEREZHmcLK+SkzEiIiISHM4NKkSEzEiIiLSHFbEVKrcaSYRERHRW4wVMSIiItIcDk2qxESMiIiINIdDkypV7jSTiIiI6C3GihgRERFpjEQigYQVsZdiIkZEREQaw0RMNQ5NEhEREWkJK2JERESkOZJnW1nOr8SYiBEREZHGcGhSNQ5NEhEREWkJK2JERESkMayIqcZEjIiIiDSGiZhqTMSIiIhIY5iIqcY5YkRERERawooYERERaQ6Xr1CJiRgRERFpDIcmVePQJBEREZGWsCJGREREGiORoIwVsfKM5u3DRIyIiIg0RoIyDk1W8kyMQ5NEREREWsKKGBEREWkMJ+urxooYERERaY6kHDY1rF69Gs7OzpDJZJDJZHBzc8Off/4pHnd3dxeTw6Jt1KhRSn0kJyfD09MTRkZGsLCwwJQpU5Cfn6/UJioqCs2aNYNUKkX9+vURFhb2Wm8PK2JERERUadSqVQvz589HgwYNIAgCNmzYgB49euDs2bN47733AAAjRoxAYGCgeI6RkZH4dUFBATw9PWFlZYUTJ04gJSUFgwYNgp6eHubNmwcASEpKgqenJ0aNGoXw8HAcPHgQw4cPh7W1NTw8PNSKl4kYERERaU4ZhyYFNc/t1q2b0uu5c+di9erVOHnypJiIGRkZwcrKqsTz9+/fj8uXL+PAgQOwtLSEi4sLgoKC4Ofnh4CAAOjr62PNmjWwt7fH4sWLAQCOjo44duwYli5dqnYixqFJIiIi0pgXhwFfZ3tdBQUF2Lx5M7KysuDm5ibuDw8PR/Xq1dG4cWNMnz4dT548EY/FxMSgSZMmsLS0FPd5eHhAoVDg0qVLYpsOHTooXcvDwwMxMTFqx8iKGBEREWlMWZOponMVCoXSfqlUCqlUWuI5Fy5cgJubG7Kzs2FiYoLt27fDyckJANC/f3/Y2dnBxsYG58+fh5+fHxISEvD7778DAFJTU5WSMADi69TUVJVtFAoFnj59CkNDw1LfHxMxIiIieuvZ2toqvZ41axYCAgJKbOvg4IC4uDikp6fjt99+g7e3N6Kjo+Hk5ISRI0eK7Zo0aQJra2u0b98eiYmJqFevnsbv40VMxIiIiEhzyulDv2/dugWZTCbuflk1DAD09fVRv359AICrqytOnz6NZcuWYe3atcXatmjRAgBw7do11KtXD1ZWVjh16pRSm7S0NAAQ55VZWVmJ+55vI5PJ1KqGgXPEiIiISJPKa45Y0XIURZuqROxFhYWFyMnJKfFYXFwcAMDa2hoA4ObmhgsXLuDevXtim8jISMhkMnF4083NDQcPHlTqJzIyUmkeWmmxIkZERESVxvTp09GlSxfUrl0bGRkZ2LRpE6KiorBv3z4kJiZi06ZN6Nq1K6pVq4bz589jwoQJaNOmDZydnQEAnTp1gpOTEwYOHIgFCxYgNTUVM2bMgI+Pj5j8jRo1CitWrMDUqVMxdOhQHDp0CFu3bsXu3bvVjpeJGBEREWlMeU3WL6179+5h0KBBSElJgVwuh7OzM/bt24eOHTvi1q1bOHDgAL777jtkZWXB1tYWvXv3xowZM8TzdXV1ERERgdGjR8PNzQ3Gxsbw9vZWWnfM3t4eu3fvxoQJE7Bs2TLUqlULISEhai9dASZiREREpElvOhH74YcfXnrM1tYW0dHRr+zDzs4Oe/bsUdnG3d0dZ8+eVSu2knCOGBEREZGWsCJGREREGvOmK2IVDRMxIiIi0pxyWr6isuLQJBEREZGWsCJGREREGsOhSdWYiBEREZHGMBFTjYkYERERaQwTMdU4R4yIiIhIS1gRIyIiIs3hU5MqMREjIiIijeHQpGocmiQiIiLSElbEKjB3d3e4uLjgu+++03YopKbx3h0xy7cHVv9yGP9bsg1mMiNMH+mJdi0boZZlVTx4nIndUecxb00EFFnZxc6vKjfG0fBpqGlZFXbtpkCR+RQA8Gm7phjauzWaNKwJfb0q+Od6Kr5dvweHTsZr4S7pXbYkdB8iDp/D1ZtpMJDq4UPnugjw7YEGdSzFNkm372Pmsu04GXcduXn5aO/miG8nfw6LajKxzaIf92L/sUu4eOU29PSq4ObhhVq6I3pdrIip9lZVxAYPHoyePXtqO4wK4/fff0dQUJC2wyA1ve9UG4M/a4WLV26L+6xryGFVQw7/ZdvxUb95+Hr2z2jv5oTlM71K7OP7Gf1x+drdYvs/er8+ov76B33Hr0a7QQtwLPYKflnyFZo0rKXReyJ60Ykz1zD88zbY/+Nk/L7CF3n5Beg1ZgWynuYAALKe5qCX70pIIMEfq8fgz5AJyM0rwJcT16KwsFDsJy+vAD07vI+hvVtr8W6oLCSQiMnYa22VfJIYK2KllJubC319/Tdyrby8POjp6b2ynbm5+RuJh8qPsaE+1gUOxrh5v2Dy0M7i/vjEFHj7hYivb9z5F3NW78LawEHQ1dVBQcH//2Ia2vtjyE2NsCDkT3Rs9Z5S//9bsk3pddCqXejS1hmd2zTGhecSPyJN++17H6XXq2YNQINO0xEXfwutmtXHX+euIznlAaJ/9oPMxPC/NgEDYf/JVBw5fQXuLRoBAKZ/5QkA2LTrpBbugkjz3qqKmCrR0dH48MMPIZVKYW1tjWnTpiE/Px8AEBERATMzMxQUFAAA4uLiIJFIMG3aNPH84cOHY8CAAeLrY8eOoXXr1jA0NIStrS3Gjh2LrKws8XidOnUQFBSEQYMGQSaTYeTIkSXGdevWLfTt2xdmZmYwNzdHjx49cOPGDfH46dOn0bFjR1SvXh1yuRxt27bFmTNnlPqQSCRYvXo1unfvDmNjY8ydOxcBAQFwcXHBxo0bUadOHcjlcvTr1w8ZGRniee7u7hg/frxSzPPmzcPQoUNhamqK2rVrY926dUrXOnHiBFxcXGBgYIDmzZtjx44dkEgkiIuLe63vC6ln4dQvsP/4RUSfSnhlW5mJATKyspWSMAd7K0wZ3gWjZ/2EwkLhlX1IJBKYGknxOP1JmWMnKgtF5n9D7FVlRgCAnNx8SCQSSPX/vx5goF8FOjoSnDyXqLU4qfyVqRpWxmHNiqBCJGJ37txB165d8cEHH+DcuXNYvXo1fvjhB8yZMwcA0Lp1a2RkZODs2bPAs6StevXqiIqKEvuIjo6Gu7s7ACAxMRGdO3dG7969cf78eWzZsgXHjh2Dr6+v0nUXLVqEpk2b4uzZs5g5c2axuPLy8uDh4QFTU1McPXoUx48fh4mJCTp37ozc3FwAQEZGBry9vXHs2DGcPHkSDRo0QNeuXZUSKgAICAjAZ599hgsXLmDo0KFinDt27EBERAQiIiIQHR2N+fPnq3yvFi9ejObNm+Ps2bP4+uuvMXr0aCQk/PdLX6FQoFu3bmjSpAnOnDmDoKAg+Pn5vdb3hNTXq6MrmjayReDKna9say43xpRhXbBh+wlxn75eFYTMGYxZy3fgdtqjUl1zzID2MDaUYvuBM6VoTaQZhYWFmL7kN7RoWhdO9W0AAB80qQMjA30EfP8HnmTnIutpDmYu246CgkKk/qvQdshUniTlsFViFWJoctWqVbC1tcWKFSsgkUjQqFEj3L17F35+fvD394dcLoeLiwuioqLQvHlzREVFYcKECZg9ezYyMzORnp6Oa9euoW3btgCA4OBgeHl5idWkBg0aYPny5Wjbti1Wr14NAwMDAMAnn3yCSZMmvTSuLVu2oLCwECEhIWLGHhoaCjMzM0RFRaFTp0745JNPlM5Zt24dzMzMEB0djU8//VTc379/fwwZMkSpbWFhIcLCwmBqagoAGDhwIA4ePIi5c+e+NKauXbvi66+/BgD4+flh6dKlOHz4MBwcHLBp0yZIJBKsX78eBgYGcHJywp07dzBixAiV739OTg5ycnLE1woF/5FUV01LMwRP6o1eviuQk5uvsq2psQG2fDcaCUkpmL9ut7jf36c7rtxIw9Y/T5fqmn08mmPqiC7wmrwO/z7KLPM9EL2uyQu2Ij4xBX+unyDuq17VFGHzh2HS/C1YuyUaOjoS9O703x8rOjqV/Dcv0XMqRCIWHx8PNzc3pfJkq1atkJmZidu3b6N27dpo27YtoqKiMGnSJBw9ehTBwcHYunUrjh07hocPH8LGxgYNGjQAAJw7dw7nz59HeHi42J8gCCgsLERSUhIcHR0BAM2bNxePjxo1Cj///LP4OjMzE+fOncO1a9fERKlIdnY2EhP/K62npaVhxowZiIqKwr1791BQUIAnT54gOTlZ6Zznr1WkTp06Sn1bW1vj3r17Kt8rZ2dn8WuJRAIrKyvxnISEBDg7O4uJJgB8+OGHKvvDs8R19uzZr2xHL9e0UW1YVJMhauP/VyCrVNHFR+/Xw4jP28Cy1XgUFgowMZLit+VfI/NJNgZMWY/854Yl23zQEE71bND9ExfguSeJEiPnY3HoPsxft0ds26ujK5bN6I8h034o1TAokaZMWbAV+45exJ5141HTsqrSsU9aOuLsjgA8eJyJKro6kJsawcFjOup0ctVavFT++NSkahUiESsNd3d3/Pjjjzh37hz09PTQqFEjuLu7IyoqCo8ePRKrYXiWRH311VcYO3ZssX5q164tfm1sbCx+HRgYiMmTJyu1zczMhKurq1JCV6RGjRoAAG9vbzx48ADLli2DnZ0dpFIp3NzcxKHLkq5V5MUJ+xKJROlpopK8zjmvMn36dEycOFF8rVAoYGtrW6Y+3zVHTifgo37KlcwV/gNw9UYalv0UicJCAabGBvhtuQ9y8/LRf+LaYpWzQVNDYGjw/9/f953ssNJ/ALqO/A5Jt++L+3t3csX3M70w7JtQ7D9+6Q3cHVFxgiBg6sJfsTvqHHatGQe7mtVf2raamQnw7P+T+48y0aV1kzcYKWkaEzHVKkQi5ujoiG3btkEQBPEbcvz4cZiamqJWrf8eyy+aJ7Z06VIx6XJ3d8f8+fPx6NEjpSHGZs2a4fLly6hfv36pY7CwsICFhYXSvmbNmmHLli2wsLCATCYr8bzjx49j1apV6Nq1K/Bscv+///77Gu9C2Tk4OODnn39GTk4OpFIp8OxhgleRSqVie3o9mU9yEJ+YorTvydNcPEzPQnxiCkyNDbDtex8YGejjK/8NMDUxgKnJf5XLfx9lorBQwI07yj835vL/fnklJKWK64j18WiOVQEDMX3xb4i9dAMW1f6rqGZn55W4HhmRpkz+dit+2/c3Ni0aCRMjA6Q9m/clMzGAocF/T6CH74xBQ3srVK9qglPnkzB9yW/4+st2SmuN3Up9iMfpT3A79REKCwtxIeG/p3/tbWvAxIj/LlUEEsl/W1nOr8zeukQsPT292BN8I0eOxHfffYcxY8bA19cXCQkJmDVrFiZOnAgdnf+eN6hatSqcnZ0RHh6OFStWAADatGmDvn37Ii8vT6ki5ufnh5YtW8LX1xfDhw+HsbExLl++jMjISPHc0vDy8sLChQvRo0cPBAYGolatWrh58yZ+//13TJ06FbVq1UKDBg2wceNGNG/eHAqFAlOmTIGhoWG5vV/q6N+/P7755huMHDkS06ZNQ3JyMhYtWgS8A39xvO2cHWzxQRN7AMDZHQHKx7r741bKw1L14/1ZK+hV0cUivy+wyO8Lcf+miJPwmf2zynOJytOP244CAD4dtUxp/0r/AejfrSUA4OrNewhcuROPFE9Q28Yck4Z44Ov+yvNqg9fsxi+7/xJftxnw3wNLu9aMxceuDd/AnRBp1luXiEVFReH9999X2jds2DDs2bMHU6ZMQdOmTWFubo5hw4ZhxowZSu3atm2LuLg48elIc3NzODk5IS0tDQ4ODmI7Z2dnREdH45tvvkHr1q0hCALq1auHL774AuowMjLCkSNH4Ofnh169eiEjIwM1a9ZE+/btxQrZDz/8gJEjR6JZs2awtbXFvHnzig1xvikymQy7du3C6NGj4eLigiZNmsDf3x/9+/dXmjdGb0a3535BHT9zFVU/8FXZ/kUlndPthV96RNry6PSr/6gNGNMDAWN6qGyzKmAgVgUMLMfI6E37ryJWlqHJcg3nrSMRBOHVixFRpRUeHo4hQ4YgPT291JU6hUIBuVwOaZMRkOi+mUVuid600iQSRBWVQqGAZTU50tPTXzq1pjyuIZfLUXfsb9CVFp8HXVoFOVm4vryPRmPVpreuIkaa9dNPP6Fu3bqoWbMmzp07Bz8/P/Tt21drw6VERETvMiZi75jU1FT4+/sjNTUV1tbW+Pzzz1WuS0ZERFQWfGpSNSZi75ipU6di6tSp2g6DiIjeEXxqUrUK8RFHRERERJURK2JERESkMTo6kjJ9bJVQyT/yiokYERERaQyHJlXj0CQRERGRlrAiRkRERBrDpyZVYyJGREREGsOhSdWYiBEREZHGsCKmGueIEREREWkJK2JERESkMayIqcZEjIiIiDSGc8RU49AkERERVRqrV6+Gs7MzZDIZZDIZ3Nzc8Oeff4rHs7Oz4ePjg2rVqsHExAS9e/dGWlqaUh/Jycnw9PSEkZERLCwsMGXKFOTn5yu1iYqKQrNmzSCVSlG/fn2EhYW9VrxMxIiIiEhjJJCIw5OvtUG9klitWrUwf/58xMbG4u+//8Ynn3yCHj164NKlSwCACRMmYNeuXfj1118RHR2Nu3fvolevXuL5BQUF8PT0RG5uLk6cOIENGzYgLCwM/v7+YpukpCR4enqiXbt2iIuLw/jx4zF8+HDs27dP/fdHEARB7bPonaZQKCCXyyFtMgISXX1th0OkEY9Or9B2CEQao1AoYFlNjvT0dMhkMo1dQy6Xw3n6TugaGL92PwXZWTgf3L1MsZqbm2PhwoXo06cPatSogU2bNqFPnz4AgH/++QeOjo6IiYlBy5Yt8eeff+LTTz/F3bt3YWlpCQBYs2YN/Pz8cP/+fejr68PPzw+7d+/GxYsXxWv069cPjx8/xt69e9WKjRUxIiIieuspFAqlLScn55XnFBQUYPPmzcjKyoKbmxtiY2ORl5eHDh06iG0aNWqE2rVrIyYmBgAQExODJk2aiEkYAHh4eEChUIhVtZiYGKU+itoU9aEOJmJERESkMWUalnzuiUtbW1vI5XJxCw4Ofuk1L1y4ABMTE0ilUowaNQrbt2+Hk5MTUlNToa+vDzMzM6X2lpaWSE1NBQCkpqYqJWFFx4uOqWqjUCjw9OlTtd4fPjVJREREGlNeT03eunVLaWhSKpW+9BwHBwfExcUhPT0dv/32G7y9vREdHf36QWgQEzEiIiJ66xU9BVka+vr6qF+/PgDA1dUVp0+fxrJly/DFF18gNzcXjx8/VqqKpaWlwcrKCgBgZWWFU6dOKfVX9FTl821efNIyLS0NMpkMhoaGat0XhyaJiIhIY8praLIsCgsLkZOTA1dXV+jp6eHgwYPisYSEBCQnJ8PNzQ0A4ObmhgsXLuDevXtim8jISMhkMjg5OYltnu+jqE1RH+pgRYyIiIg05k0v6Dp9+nR06dIFtWvXRkZGBjZt2oSoqCjs27cPcrkcw4YNw8SJE2Fubg6ZTIYxY8bAzc0NLVu2BAB06tQJTk5OGDhwIBYsWIDU1FTMmDEDPj4+4nDoqFGjsGLFCkydOhVDhw7FoUOHsHXrVuzevVvt+2MiRkRERBrzpj/i6N69exg0aBBSUlL+Wz7D2Rn79u1Dx44dAQBLly6Fjo4OevfujZycHHh4eGDVqlXi+bq6uoiIiMDo0aPh5uYGY2NjeHt7IzAwUGxjb2+P3bt3Y8KECVi2bBlq1aqFkJAQeHh4qH9/XEeM1MV1xOhdwHXEqDJ7k+uIufrvLvM6YrGBnhqNVZtYESMiIiLNKePQpJoL61c4TMSIiIhIY9700GRFw6cmiYiIiLSEFTEiIiLSmDf91GRFw0SMiIiINIZDk6pxaJKIiIhIS1gRIyIiIo3h0KRqTMSIiIhIYzg0qRqHJomIiIi0hBUxIiIi0hhWxFRjIkZEREQawzliqjERIyIiIo1hRUw1zhEjIiIi0hJWxIiIiEhjODSpGhMxIiIi0hgOTarGoUkiIiIiLWFFjIiIiDRGUsbhxcpdD2MiRkRERBqkI5FApwyZWFnOrQg4NElERESkJayIERERkcbwqUnVmIgRERGRxvCpSdWYiBEREZHG6Ej+28pyfmXGOWJEREREWsKKGBEREWmOpIzDi5W8IsZEjIiIiDSGk/VV49AkERERkZawIkZEREQaI3n2X1nOr8yYiBEREZHG8KlJ1Tg0SURERKQlrIgRERGRxnBBV9VKlYjt3Lmz1B127969LPEQERFRJcKnJlUrVSLWs2fPUnUmkUhQUFBQ1piIiIiI3gmlSsQKCws1HwkRERFVOjoSCXTKUNYqy7kVQZnmiGVnZ8PAwKD8oiEiIqJKhUOTqqn91GRBQQGCgoJQs2ZNmJiY4Pr16wCAmTNn4ocfftBEjERERFRBFU3WL8tWmamdiM2dOxdhYWFYsGAB9PX1xf2NGzdGSEhIecdHREREVGmpnYj99NNPWLduHby8vKCrqyvub9q0Kf7555/yjo+IiIgqsKKhybJs6ggODsYHH3wAU1NTWFhYoGfPnkhISFBq4+7uXqzqNmrUKKU2ycnJ8PT0hJGRESwsLDBlyhTk5+crtYmKikKzZs0glUpRv359hIWFqf3+qJ2I3blzB/Xr1y+2v7CwEHl5eWoHQERERJVX0WT9smzqiI6Oho+PD06ePInIyEjk5eWhU6dOyMrKUmo3YsQIpKSkiNuCBQvEYwUFBfD09ERubi5OnDiBDRs2ICwsDP7+/mKbpKQkeHp6ol27doiLi8P48eMxfPhw7Nu3T6141Z6s7+TkhKNHj8LOzk5p/2+//Yb3339f3e6IiIiIys3evXuVXoeFhcHCwgKxsbFo06aNuN/IyAhWVlYl9rF//35cvnwZBw4cgKWlJVxcXBAUFAQ/Pz8EBARAX18fa9asgb29PRYvXgwAcHR0xLFjx7B06VJ4eHiUOl61K2L+/v7w9fXFt99+i8LCQvz+++8YMWIE5s6dq5QpEhEREUnKYQMAhUKhtOXk5JTq+unp6QAAc3Nzpf3h4eGoXr06GjdujOnTp+PJkyfisZiYGDRp0gSWlpbiPg8PDygUCly6dEls06FDB6U+PTw8EBMTo9b7o3Yi1qNHD+zatQsHDhyAsbEx/P39ER8fj127dqFjx47qdkdERESVWHk9NWlrawu5XC5uwcHBr7x2YWEhxo8fj1atWqFx48bi/v79++Pnn3/G4cOHMX36dGzcuBEDBgwQj6empiolYQDE16mpqSrbKBQKPH36tNTvz2utI9a6dWtERka+zqlEREREart16xZkMpn4WiqVvvIcHx8fXLx4EceOHVPaP3LkSPHrJk2awNraGu3bt0diYiLq1atXzpGr9toLuv7999+Ij48Hns0bc3V1Lc+4iIiIqBLQkfy3leV8AJDJZEqJ2Kv4+voiIiICR44cQa1atVS2bdGiBQDg2rVrqFevHqysrHDq1CmlNmlpaQAgziuzsrIS9z3fRiaTwdDQsNRxqp2I3b59G19++SWOHz8OMzMzAMDjx4/x0UcfYfPmza+8WSIiInp3lHVRVnXPFQQBY8aMwfbt2xEVFQV7e/tXnhMXFwcAsLa2BgC4ublh7ty5uHfvHiwsLAAAkZGRkMlkcHJyEtvs2bNHqZ/IyEi4ubmpFa/ac8SGDx+OvLw8xMfH4+HDh3j48CHi4+NRWFiI4cOHq9sdERERUbnx8fHBzz//jE2bNsHU1BSpqalITU0V520lJiYiKCgIsbGxuHHjBnbu3IlBgwahTZs2cHZ2BgB06tQJTk5OGDhwIM6dO4d9+/ZhxowZ8PHxEYdER40ahevXr2Pq1Kn4559/sGrVKmzduhUTJkxQK161K2LR0dE4ceIEHBwcxH0ODg74/vvv0bp1a3W7IyIiokruTX5K0erVq4Fni7Y+LzQ0FIMHD4a+vj4OHDiA7777DllZWbC1tUXv3r0xY8YMsa2uri4iIiIwevRouLm5wdjYGN7e3ggMDBTb2NvbY/fu3ZgwYQKWLVuGWrVqISQkRK2lK/A6iZitrW2JC7cWFBTAxsZG3e6IiIioEtPG0KQqtra2iI6OfmU/dnZ2xYYeX+Tu7o6zZ8+qFd+L1B6aXLhwIcaMGYO///5b3Pf3339j3LhxWLRoUZmCISIiosqlaLJ+WbbKrFQVsapVqyplpFlZWWjRogWqVPnv9Pz8fFSpUgVDhw5Fz549NRctERERUSVSqkTsu+++03wkREREVOm86aHJiqZUiZi3t7fmIyEiIqJK5/mPKXrd8yuz117QFQCys7ORm5urtE+dxdaIiIiI3mVqJ2JZWVnw8/PD1q1b8eDBg2LHCwoKyis2IiIiquB0JBLolGF4sSznVgRqPzU5depUHDp0CKtXr4ZUKkVISAhmz54NGxsb/PTTT5qJkoiIiCokiaTsW2WmdkVs165d+Omnn+Du7o4hQ4agdevWqF+/Puzs7BAeHg4vLy/NREpERERUyahdEXv48CHq1q0LPJsP9vDhQwDAxx9/jCNHjpR/hERERFRhFT01WZatMlM7Eatbty6SkpIAAI0aNcLWrVuBZ5Wyog8BJyIiIgKHJl9J7URsyJAhOHfuHABg2rRpWLlyJQwMDDBhwgRMmTJFEzESERERVUpqzxF7/lPFO3TogH/++QexsbGoX7+++KnlREREROBTk69UpnXE8OxDMe3s7MonGiIiIqpUyjq8WMnzsNIlYsuXLy91h2PHji1LPERERFSJ8COOVCtVIrZ06dJSdSaRSJiIEREREZVSqRKxoqckiZ73z975MOVHWlEllZiWqe0QiDQmM+PN/XzrvM6TgS+cX5mVeY4YERER0ctwaFK1yp5oEhEREb21WBEjIiIijZFIAB0+NflSTMSIiIhIY3TKmIiV5dyKgEOTRERERFryWonY0aNHMWDAALi5ueHOnTsAgI0bN+LYsWPlHR8RERFVYPzQb9XUTsS2bdsGDw8PGBoa4uzZs8jJyQEApKenY968eZqIkYiIiCqooqHJsmyVmdqJ2Jw5c7BmzRqsX78eenp64v5WrVrhzJkz5R0fERERUaWl9mT9hIQEtGnTpth+uVyOx48fl1dcREREVAnwsyZVU7siZmVlhWvXrhXbf+zYMdStW7e84iIiIqJKQEciKfNWmamdiI0YMQLjxo3DX3/9BYlEgrt37yI8PByTJ0/G6NGjNRMlERERVUg65bBVZmoPTU6bNg2FhYVo3749njx5gjZt2kAqlWLy5MkYM2aMZqIkIiIiqoTUTsQkEgm++eYbTJkyBdeuXUNmZiacnJxgYmKimQiJiIiowuIcMdVee2V9fX19ODk5lW80REREVKnooGzzvHRQuTMxtROxdu3aqVxc7dChQ2WNiYiIiOidoHYi5uLiovQ6Ly8PcXFxuHjxIry9vcszNiIiIqrgODSpmtqJ2NKlS0vcHxAQgMzMzPKIiYiIiCoJfui3auX2VOiAAQPw448/lld3RERERJXea0/Wf1FMTAwMDAzKqzsiIiKqBCQSlGmyPocmX9CrVy+l14IgICUlBX///TdmzpxZnrERERFRBcc5YqqpPTQpl8uVNnNzc7i7u2PPnj2YNWuWZqIkIiIiKoXg4GB88MEHMDU1hYWFBXr27ImEhASlNtnZ2fDx8UG1atVgYmKC3r17Iy0tTalNcnIyPD09YWRkBAsLC0yZMgX5+flKbaKiotCsWTNIpVLUr18fYWFhaserVkWsoKAAQ4YMQZMmTVC1alW1L0ZERETvljc9WT86Oho+Pj744IMPkJ+fj//973/o1KkTLl++DGNjYwDAhAkTsHv3bvz666+Qy+Xw9fVFr169cPz4ceBZvuPp6QkrKyucOHECKSkpGDRoEPT09DBv3jwAQFJSEjw9PTFq1CiEh4fj4MGDGD58OKytreHh4VHqeCWCIAjq3KCBgQHi4+Nhb2+v3jtDlYZCoYBcLkfSnQcwlcm0HQ6RRqSmZ2s7BCKNycxQoKVjTaSnp0OmoX/Hi35XzPzjLAyMTV+7n+ysDAT1eP+1Y71//z4sLCwQHR2NNm3aID09HTVq1MCmTZvQp08fAMA///wDR0dHxMTEoGXLlvjzzz/x6aef4u7du7C0tAQArFmzBn5+frh//z709fXh5+eH3bt34+LFi+K1+vXrh8ePH2Pv3r2ljk/tocnGjRvj+vXr6p5GRERE76CiilhZNjxL7J7fcnJySnX99PR0AIC5uTkAIDY2Fnl5eejQoYPYplGjRqhduzZiYmKAZw8gNmnSREzCAMDDwwMKhQKXLl0S2zzfR1Gboj5K/f6o1RrAnDlzMHnyZERERCAlJaXYG0NERERU3mxtbZXmqAcHB7/ynMLCQowfPx6tWrVC48aNAQCpqanQ19eHmZmZUltLS0ukpqaKbZ5PwoqOFx1T1UahUODp06elvq9SzxELDAzEpEmT0LVrVwBA9+7dlT7qSBAESCQSFBQUlPriREREVLmV1xyxW7duKQ1NSqXSV57r4+ODixcv4tixY68fgIaVOhGbPXs2Ro0ahcOHD2s2IiIiIqo0JBKJys+oLs35ACCTydSaI+br64uIiAgcOXIEtWrVEvdbWVkhNzcXjx8/VqqKpaWlwcrKSmxz6tQppf6Knqp8vs2LT1qmpaVBJpPB0NCw1HGWOhErmtPftm3bUndORERE9CYJgoAxY8Zg+/btiIqKKvZwoaurK/T09HDw4EH07t0bAJCQkIDk5GS4ubkBANzc3DB37lzcu3cPFhYWAIDIyEjIZDI4OTmJbfbs2aPUd2RkpNhHaam1fEVZMloiIiJ697zp5St8fHywadMm/PHHHzA1NRXndMnlchgaGkIul2PYsGGYOHEizM3NIZPJMGbMGLi5uaFly5YAgE6dOsHJyQkDBw7EggULkJqaihkzZsDHx0ccEh01ahRWrFiBqVOnYujQoTh06BC2bt2K3bt3qxWvWolYw4YNX5mMPXz4UK0AiIiIqPJ60yvrr169GgDg7u6utD80NBSDBw8GACxduhQ6Ojro3bs3cnJy4OHhgVWrVoltdXV1ERERgdGjR8PNzQ3Gxsbw9vZGYGCg2Mbe3h67d+/GhAkTsGzZMtSqVQshISFqrSEGdROx2bNnQy6Xq3UBIiIiojelNMujGhgYYOXKlVi5cuVL29jZ2RUbenyRu7s7zp49+1pxFlErEevXr584VkpERET0KjoSSZk+9Lss51YEpU7EOD+MiIiI1PWm54hVNKVe0FXNT0IiIiIiolcodUWssLBQs5EQERFR5VPGyfqo5BUxteaIEREREalDBxLolCGbKsu5FQETMSIiItKYN718RUWj9od+ExEREVH5YEWMiIiINIZPTarGRIyIiIg0huuIqcahSSIiIiItYUWMiIiINIaT9VVjIkZEREQao4MyDk1W8uUrODRJREREpCWsiBEREZHGcGhSNSZiREREpDE6ZRx+q+xDd5X9/oiIiIjeWqyIERERkcZIJBJIyjC+WJZzKwImYkRERKQxkmdbWc6vzJiIERERkcZwZX3VOEeMiIiISEtYESMiIiKNqtw1rbJhIkZEREQaw3XEVOPQJBEREZGWsCJGREREGsPlK1RjIkZEREQaw5X1Vavs90dERET01mJFjIiIiDSGQ5OqMREjIiIijeHK+qpxaJKIiIhIS1gRIyIiIo3h0KRqTMSIiIhIY/jUpGpMxIiIiEhjWBFTrbInmkRERERvLVbEiIiISGP41KRqTMSIiIhIY/ih36pxaJKIiIgqjSNHjqBbt26wsbGBRCLBjh07lI4PHjxYnLdWtHXu3FmpzcOHD+Hl5QWZTAYzMzMMGzYMmZmZSm3Onz+P1q1bw8DAALa2tliwYMFrxctEjIiIiDRGB5Iyb+rIyspC06ZNsXLlype26dy5M1JSUsTtl19+UTru5eWFS5cuITIyEhEREThy5AhGjhwpHlcoFOjUqRPs7OwQGxuLhQsXIiAgAOvWrVP7/eHQJBEREWnMmx6a7NKlC7p06aKyjVQqhZWVVYnH4uPjsXfvXpw+fRrNmzcHAHz//ffo2rUrFi1aBBsbG4SHhyM3Nxc//vgj9PX18d577yEuLg5LlixRSthKgxUxIiIieqdERUXBwsICDg4OGD16NB48eCAei4mJgZmZmZiEAUCHDh2go6ODv/76S2zTpk0b6Ovri208PDyQkJCAR48eqRULK2JERESkMZJn/5XlfDwbDnyeVCqFVCpVu7/OnTujV69esLe3R2JiIv73v/+hS5cuiImJga6uLlJTU2FhYaF0TpUqVWBubo7U1FQAQGpqKuzt7ZXaWFpaiseqVq1a6niYiBEREZHGlNfQpK2trdL+WbNmISAgQO3++vXrJ37dpEkTODs7o169eoiKikL79u1fP9DXxESMiIiI3nq3bt2CTCYTX79ONawkdevWRfXq1XHt2jW0b98eVlZWuHfvnlKb/Px8PHz4UJxXZmVlhbS0NKU2Ra9fNvfsZThHjIiIiDRGUsYnJouGJmUymdJWXonY7du38eDBA1hbWwMA3Nzc8PjxY8TGxoptDh06hMLCQrRo0UJsc+TIEeTl5YltIiMj4eDgoNawJJiIERERkSYVDU2WZVNHZmYm4uLiEBcXBwBISkpCXFwckpOTkZmZiSlTpuDkyZO4ceMGDh48iB49eqB+/frw8PAAADg6OqJz584YMWIETp06hePHj8PX1xf9+vWDjY0NAKB///7Q19fHsGHDcOnSJWzZsgXLli3DxIkT1X5/ODRJREREGvOml6/4+++/0a5dO/F1UXLk7e2N1atX4/z589iwYQMeP34MGxsbdOrUCUFBQUoVtvDwcPj6+qJ9+/bQ0dFB7969sXz5cvG4XC7H/v374ePjA1dXV1SvXh3+/v5qL10BJmJERERUmbi7u0MQhJce37dv3yv7MDc3x6ZNm1S2cXZ2xtGjR18rxucxESMiIiKNKa/lKyorJmJERESkMTqS/7aynF+ZcbI+ERERkZawIkZEREQaw6FJ1ZiIERERkca86acmKxoOTRIRERFpCStiREREpDGSMg4vVvKCGBMxIiIi0hw+NakahyaJiIiItOStr4iFhYVh/PjxePz4canPGTx4MB4/fowdO3ZoNDZti4qKQrt27fDo0SOYmZlpOxxS0+If/8TSUOUVnuvVtkB0+P8AAD/vPIEdkbG4eOU2Mp/k4NKeeZCbGpXYV05uPrp9tQSXr93Fvh8n470Gtd7IPRCpkvUkB2t+3o/DMZfwKD0TDnVtMGlkN7zX0BYA8ORpDr4P24vok5eQnvEENpbm+KLbR+jTtaVSP+fjb2LVxn24mHALujo6aFjXGt8HDoOBVE9Ld0bq4FOTqmk1EXtZwvR8gvHFF1+ga9euWovxbfbRRx8hJSUFcrlc26HQa3Kwt8IvS78WX1fR/f8idXZ2LtxbOMK9hSPmr41Q2c/c1TthWV2Oy9fuajReInXM+X4bEm+mInBSX9Qwl2HP4bP4ekYIfl01ERbV5VgashunzycicNIXsLGsipNnr+LbVX+gRjUZ2rZwAp4lYWNm/Yghn7fDlK96QFdXB1eTUqBT2cerKhE+NanaW18RMzQ0hKGhobbDQEFBASQSCXR0ND+am5ubC319/Ve209fXh5WVlcbjIc3R1dWBRTVZiceG93UHAJw4e1VlH4dOXsaR0/9gXdBQHD4Zr5E4idSVnZOHQ8cvYvHMQWjWuC4A4Cuvjjh66h/89udJfD3QA+fib+LTT5qhuXM9AECvzi3w+5+ncOnKLTERWxISgX7dWmHw5+5i33Vq1dDSXdHrkJRxwn0lz8Pe/jliYWFhxYbd5syZAwsLC5iammL48OGYNm0aXFxcip27aNEiWFtbo1q1avDx8UFeXp54LCcnB5MnT0bNmjVhbGyMFi1aICoqqth1d+7cCScnJ0ilUiQnJ5cYY0hICBwdHWFgYIBGjRph1apVSsf9/PzQsGFDGBkZoW7dupg5c6ZSLAEBAXBxcUFISAjs7e1hYGAAAJBIJAgJCcFnn30GIyMjNGjQADt37hTPi4qKgkQiEYdti2Let28fHB0dYWJigs6dOyMlJUU8Jz8/H2PHjoWZmRmqVasGPz8/eHt7o2fPnmp9X6h8JN3+F649/fFR3yD4Bm7EnbRHap1//2EGpi7YgmUzBsDQgMM09PYoKChEQWEh9PWU/96XSqsg7tINAEBTRzscORWPe/+mQxAE/H0+Ecl376Pl+w0AAA8fZ+Jiwi1UNTPG0Mmr0GnAHIyctlY8n6gyeOsTsReFh4dj7ty5+PbbbxEbG4vatWtj9erVxdodPnwYiYmJOHz4MDZs2ICwsDCEhYWJx319fRETE4PNmzfj/Pnz+Pzzz9G5c2dcvfr/1YcnT57g22+/RUhICC5dugQLC4sS4/H398fcuXMRHx+PefPmYebMmdiwYYPYxtTUFGFhYbh8+TKWLVuG9evXY+nSpUr9XLt2Ddu2bcPvv/+OuLg4cf/s2bPRt29fnD9/Hl27doWXlxcePnz40vfnyZMnWLRoETZu3IgjR44gOTkZkydPFo9/++23CA8PR2hoKI4fPw6FQvHKuXQ5OTlQKBRKG5Xd+052WPq//ti4aBTmTeqDWykP0MtnOTKfZJfqfEEQMGFeOAb2aIWmjWprPF4idRgbSeHcqDZCNh/E/QcKFBQUYs/hs7jwTzL+fZQBAJgyqjvsbS3QdXAwWvb8BmP8f8TUUT3ECtqd1P/+rVu/6SB6enyI5bOHwKGeDUZ/sx7Jd/7V6v1R6elAAh1JGbZKXhPT+tBkREQETExMlPYVFBS8tP3333+PYcOGYciQIQAAf39/7N+/H5mZmUrtqlatihUrVkBXVxeNGjWCp6cnDh48iBEjRiA5ORmhoaFITk6GjY0NAGDy5MnYu3cvQkNDMW/ePABAXl4eVq1ahaZNm740nlmzZmHx4sXo1asXAMDe3h6XL1/G2rVr4e3tDQCYMWOG2L5OnTqYPHkyNm/ejKlTp4r7c3Nz8dNPP6FGDeWS++DBg/Hll18CAObNm4fly5fj1KlT6Ny5c4nx5OXlYc2aNahX779Sv6+vLwIDA5Xev+nTp+Ozzz4DAKxYsQJ79ux56f0BQHBwMGbPnq2yDanvk5ZO4tdO9W3wvpMdWn4eiF2H4vDlpy1VngsAP247gqwnOfAd0EHDkRK9nsBJXyBw2W/o4j0Pujo6cKhnA482TRF/7Q4AYMuuE7iQkIwlMwfB2qIqzlxMwoI1/80Ra+HSAIWCAADo1flDdO/YHADQqF5NnD6XiJ2Rf8N3cMn/DtLbhUOTqmk9EWvXrl2xitZff/2FAQMGlNg+ISEBX3/9tdK+Dz/8EIcOHVLa995770FXV1d8bW1tjQsXLgAALly4gIKCAjRs2FDpnJycHFSrVk18ra+vD2dnZwBAcnIynJz+/xfn//73P4wbNw6JiYkYNmwYRowYIR7Lz89XmkC/ZcsWLF++HImJicjMzER+fj5kMuV5QXZ2dsWSMADi9QHA2NgYMpkM9+7dK/G9AQAjIyMxCSu676L26enpSEtLw4cffige19XVhaurKwoLC1/a5/Tp0zFx4kTxtUKhgK2t7Uvb0+uRmxqhrm0N3Lh9v1TtT8ReReylG6jbfrLS/q4jluCzjq747hsvDUVKVDq1rKth3fyv8DQ7F1lPslHdXIbp325CTStzZOfkYeVP+7Dom4H4+INGAIAG9ta4knQXP/9+FC1cGqB6VVMAgH1tS6V+7W0tkHq/9E/SE73NtJ6IGRsbo379+kr7bt++XeZ+9fSU58tIJBIx2cjMzISuri5iY2OVkjUAStU5Q0NDSJ49rmFjY6M0ZGhubi5W4davX48WLVoo9VPUb0xMDLy8vDB79mx4eHhALpdj8+bNWLx4sVJ7Y2Njte+jtO2FZ39Vvi6pVAqpVFqmPujVsp7k4MadB+jlUfLk/RcFju+NKSM8xddp/6bDa9IarArwxvtOdhqMlEg9hgb6MDTQhyLzCWLOXMHYIV2QX1CA/PwC8d/YIjo6OmIlzMayKmqYy3DzhT9Obt65j1auDm/0HqgMWBJTSeuJmLocHBxw+vRpDBo0SNx3+vRptfp4//33UVBQgHv37qF169alOqdKlSrFEkY8S9CuX78OL6+Sqw8nTpyAnZ0dvvnmG3HfzZs31Yq3vMjlclhaWuL06dNo06YN8GwY+MyZMyU+7ECaFbTyD3T46D3UsqqKtH8VWPzjn9DVkaBne1cAwL0HCtx/qMCN2//NhfnnegpMjKSwsayKqjJj1LSsqtSfseF/T9rWqVkNNhZcV460Lyb2CgQIsKtZA7dSHmD5j3tQp1YNdO/QHFWq6KJZY3ss+3EPpPpVng1NXseeQ2cwYfinwLM/JAf2boO14ZFoYG8Nh7rWiDh4Bjdv38eC6SWPmtDbh+uIqVbhErExY8ZgxIgRaN68OT766CNs2bIF58+fR926dUvdR8OGDeHl5YVBgwZh8eLFeP/993H//n0cPHgQzs7O8PT0LEUv/5k9ezbGjh0LuVyOzp07IycnB3///TcePXqEiRMnokGDBkhOTsbmzZvxwQcfYPfu3di+fftr3n3ZjRkzBsHBwahfvz4aNWqE77//Ho8ePSr2VylpXsq9x/Cd/RMeKbJgbmaCD5vUxc61E1Ct6n9V2Y1/HFda8LW37/cAgCXTv0Tfri1e2i/R2yLzSTZWbNiLe/+mQ2ZqhE8+agyfQR6oUuW/EYN5fv2xcsNezFy0BYrMJ7CyqIrRAz3Qu8v//3z37/ExcnPzsTQkAukZT9DQ3horg4ajlnU1FVcmqjgqXCLm5eWF69evY/LkycjOzkbfvn0xePBgnDp1Sq1+QkNDMWfOHEyaNAl37txB9erV0bJlS3z66adq9TN8+HAYGRlh4cKFmDJlCoyNjdGkSROMHz8eANC9e3dMmDABvr6+yMnJgaenJ2bOnImAgAC1rlNe/Pz8kJqaikGDBkFXVxcjR46Eh4dHsSFa0rxVs71VHp80tAsmDe1S6v5sravh9tHvyiEyovLRsbUzOrZ2funx6lVNMWv856/sZ/Dn7krriFEFU8YFXSt5QQwSoawTiN4CHTt2hJWVFTZu3KjtUCqcwsJCODo6om/fvggKCirVOQqFAnK5HEl3HsBUVrr5TEQVTWp66ZYRIaqIMjMUaOlYE+np6cUeHisvRb8rDsUlw8T09a+RmaHAJy61NRqrNlW4itiTJ0+wZs0asYrzyy+/4MCBA4iMjNR2aBXCzZs3sX//frRt2xY5OTlYsWIFkpKS0L9/f22HRkRE9M6pcImYRCLBnj17MHfuXGRnZ8PBwQHbtm1Dhw5cS6k0dHR0EBYWhsmTJ0MQBDRu3BgHDhyAo6OjtkMjIqLKiE9NqlThEjFDQ0McOHBA22FUWLa2tjh+/Li2wyAioncEn5pUrcIlYkRERFRxSMo4Wb+yP9Rf4T5rkoiIiKiyYEWMiIiINIZTxFRjIkZERESaw0xMJQ5NEhEREWkJK2JERESkMXxqUjUmYkRERKQxfGpSNQ5NEhEREWkJK2JERESkMZyrrxoTMSIiItIcZmIqcWiSiIiISEtYESMiIiKN4VOTqrEiRkRERBpT9NRkWTZ1HDlyBN26dYONjQ0kEgl27NihdFwQBPj7+8Pa2hqGhobo0KEDrl69qtTm4cOH8PLygkwmg5mZGYYNG4bMzEylNufPn0fr1q1hYGAAW1tbLFiw4LXeHyZiREREpDGSctjUkZWVhaZNm2LlypUlHl+wYAGWL1+ONWvW4K+//oKxsTE8PDyQnZ0ttvHy8sKlS5cQGRmJiIgIHDlyBCNHjhSPKxQKdOrUCXZ2doiNjcXChQsREBCAdevWqf3+cGiSiIiIKo0uXbqgS5cuJR4TBAHfffcdZsyYgR49egAAfvrpJ1haWmLHjh3o168f4uPjsXfvXpw+fRrNmzcHAHz//ffo2rUrFi1aBBsbG4SHhyM3Nxc//vgj9PX18d577yEuLg5LlixRSthKgxUxIiIi0pxyKokpFAqlLScnR+1QkpKSkJqaig4dOoj75HI5WrRogZiYGABATEwMzMzMxCQMADp06AAdHR389ddfYps2bdpAX19fbOPh4YGEhAQ8evRIrZiYiBEREZHGSMrhPwCwtbWFXC4Xt+DgYLVjSU1NBQBYWloq7be0tBSPpaamwsLCQul4lSpVYG5urtSmpD6ev0ZpcWiSiIiI3nq3bt2CTCYTX0ulUq3GU15YESMiIiKNKa+nJmUymdL2OomYlZUVACAtLU1pf1pamnjMysoK9+7dUzqen5+Phw8fKrUpqY/nr1FaTMSIiIhIY970U5Oq2Nvbw8rKCgcPHhT3KRQK/PXXX3BzcwMAuLm54fHjx4iNjRXbHDp0CIWFhWjRooXY5siRI8jLyxPbREZGwsHBAVWrVlUrJiZiREREVGlkZmYiLi4OcXFxwLMJ+nFxcUhOToZEIsH48eMxZ84c7Ny5ExcuXMCgQYNgY2ODnj17AgAcHR3RuXNnjBgxAqdOncLx48fh6+uLfv36wcbGBgDQv39/6OvrY9iwYbh06RK2bNmCZcuWYeLEiWrHyzliREREpDlv+LMm//77b7Rr1058XZQceXt7IywsDFOnTkVWVhZGjhyJx48f4+OPP8bevXthYGAgnhMeHg5fX1+0b98eOjo66N27N5YvXy4el8vl2L9/P3x8fODq6orq1avD399f7aUrAEAiCIKg9ln0TlMoFJDL5Ui68wCmz02cJKpMUtOzS9GKqGLKzFCgpWNNpKenK02AL09FvytOJ6TAxPT1r5GZocAHDtYajVWbODRJREREpCUcmiQiIiKNeZ3Pi3zx/MqMiRgRERFpzBueIlbhMBEjIiIizWEmphLniBERERFpCStiREREpDHPf17k655fmTERIyIiIs0p42T9Sp6HcWiSiIiISFtYESMiIiKN4Vx91ZiIERERkeYwE1OJQ5NEREREWsKKGBEREWkMn5pUjYkYERERaQw/4kg1Dk0SERERaQkrYkRERKQxnKuvGhMxIiIi0hxmYioxESMiIiKN4WR91ThHjIiIiEhLWBEjIiIijZGU8cnHyl0PYyJGREREGsQpYqpxaJKIiIhIS1gRIyIiIo3hgq6qMREjIiIiDeLgpCocmiQiIiLSElbEiIiISGM4NKkaEzEiIiLSGA5MqsahSSIiIiItYUWMiIiINIZDk6oxESMiIiKN4WdNqsZEjIiIiDSHk8RU4hwxIiIiIi1hRYyIiIg0hgUx1ZiIERERkcZwsr5qHJokIiIi0hJWxIiIiEhj+NSkakzEiIiISHM4SUwlDk0SERFRpREQEACJRKK0NWrUSDyenZ0NHx8fVKtWDSYmJujduzfS0tKU+khOToanpyeMjIxgYWGBKVOmID8/XyPxsiJGREREGqONgth7772HAwcOiK+rVPn/dGfChAnYvXs3fv31V8jlcvj6+qJXr144fvw4AKCgoACenp6wsrLCiRMnkJKSgkGDBkFPTw/z5s0rw52UjIkYERERaYw2npqsUqUKrKysiu1PT0/HDz/8gE2bNuGTTz4BAISGhsLR0REnT55Ey5YtsX//fly+fBkHDhyApaUlXFxcEBQUBD8/PwQEBEBfX//1b6YEHJokIiKit55CoVDacnJyXtr26tWrsLGxQd26deHl5YXk5GQAQGxsLPLy8tChQwexbaNGjVC7dm3ExMQAAGJiYtCkSRNYWlqKbTw8PKBQKHDp0qVyvy8mYkRERKRBkjL9VzQ4aWtrC7lcLm7BwcElXq1FixYICwvD3r17sXr1aiQlJaF169bIyMhAamoq9PX1YWZmpnSOpaUlUlNTAQCpqalKSVjR8aJj5Y1Dk0RERKQx5TU0eevWLchkMnG/VCotsX2XLl3Er52dndGiRQvY2dlh69atMDQ0fP1ANIQVMSIiInrryWQype1lidiLzMzM0LBhQ1y7dg1WVlbIzc3F48ePldqkpaWJc8qsrKyKPUVZ9LqkeWdlxUSMiIiIKq3MzEwkJibC2toarq6u0NPTw8GDB8XjCQkJSE5OhpubGwDAzc0NFy5cwL1798Q2kZGRkMlkcHJyKvf4ODRJREREGvOmn5qcPHkyunXrBjs7O9y9exezZs2Crq4uvvzyS8jlcgwbNgwTJ06Eubk5ZDIZxowZAzc3N7Rs2RIA0KlTJzg5OWHgwIFYsGABUlNTMWPGDPj4+JS6CqcOJmJERESkMW/6I45u376NL7/8Eg8ePECNGjXw8ccf4+TJk6hRowYAYOnSpdDR0UHv3r2Rk5MDDw8PrFq1SjxfV1cXERERGD16NNzc3GBsbAxvb28EBga+9j2oIhEEQdBIz1RpKRQKyOVyJN15ANPnJk4SVSap6dnaDoFIYzIzFGjpWBPp6elKE+DLU9HviuTUR2W6hkKhQG2rqhqNVZtYESMiIiKN0caCrhUJEzEiIiLSGH7mt2p8apKIiIhIS1gRIyIiIs1hSUwlJmJERESkMW/6qcmKhkOTRERERFrCihgRERFpDJ+aVI2JGBEREWkMp4ipxkSMiIiINIeZmEqcI0ZERESkJayIERERkcbwqUnVmIgRERGRxnCyvmpMxEhtRZ8Tn5Gh0HYoRBqTmcEP/abKKyszA3ju33NNUijK9ruirOe/7ZiIkdoyMv77H9i5kb22QyEiojLIyMiAXC7XSN/6+vqwsrJCA3vbMvdlZWUFfX39conrbSMR3kQ6TJVKYWEh7t69C1NTU0gqe834LaFQKGBra4tbt25BJpNpOxyicsWf7zdPEARkZGTAxsYGOjqae24vOzsbubm5Ze5HX18fBgYG5RLT24YVMVKbjo4OatWqpe0w3kkymYy/qKjS4s/3m6WpStjzDAwMKm0CVV64fAURERGRljARIyIiItISJmJEFYBUKsWsWbMglUq1HQpRuePPN73LOFmfiIiISEtYESMiIiLSEiZiRERERFrCRIyIiIhIS5iIEVGJ3N3dMX78eG2HQeUgLCwMZmZmap0zePBg9OzZU2MxvS2ioqIgkUjw+PFjbYdC7yhO1qd3xuDBg/H48WPs2LFD26FUCA8fPoSenh5MTU21HQqp8LKf66ioKLRr1w6PHj2CVCpFRkYGLCwsytxvZZObm4uHDx/C0tKSnxRCWsGV9YneArm5uW/sc9Ty8vKgp6f3ynbm5uZvJB7SPENDQxgaGmo7DBQUFEAikWj0I3WKlPb/qaLPQyTSFg5NEgGIjo7Ghx9+CKlUCmtra0ybNg35+fkAgIiICJiZmaGgoAAAEBcXB4lEgmnTponnDx8+HAMGDBBfHzt2DK1bt4ahoSFsbW0xduxYZGVlicfr1KmDoKAgDBo0CDKZDCNHjiwxrlu3bqFv374wMzODubk5evTogRs3bojHT58+jY4dO6J69eqQy+Vo27Ytzpw5o9SHRCLB6tWr0b17dxgbG2Pu3LkICAiAi4sLNm7ciDp16kAul6Nfv37iB7qjhKHJOnXqYN68eRg6dChMTU1Ru3ZtrFu3TulaJ06cgIuLCwwMDNC8eXPs2LEDEokEcXFxr/V9ofJR0tDknDlzYGFhAVNTUwwfPhzTpk2Di4tLsXMXLVoEa2trVKtWDT4+PsjLyxOP5eTkYPLkyahZsyaMjY3RokULREVFFbvuzp074eTkBKlUiuTk5BJjDAkJgaOjIwwMDNCoUSOsWrVK6bifnx8aNmwIIyMj1K1bFzNnzlSKpehnOiQkBPb29uLH6kgkEoSEhOCzzz6DkZERGjRogJ07d4rnvTg0WRTzvn374OjoCBMTE3Tu3BkpKSniOfn5+Rg7dizMzMxQrVo1+Pn5wdvb+50YyqXyx0SM3nl37txB165d8cEHH+DcuXNYvXo1fvjhB8yZMwcA0Lp1a2RkZODs2bPAs6StevXqSr9woqOj4e7uDgBITExE586d0bt3b5w/fx5btmzBsWPH4Ovrq3TdRYsWoWnTpjh79ixmzpxZLK68vDx4eHjA1NQUR48exfHjx8VfCkUfopuRkQFvb28cO3YMJ0+eRIMGDdC1a1elhArPfkl99tlnuHDhAoYOHSrGuWPHDkRERCAiIgLR0dGYP3++yvdq8eLFaN68Oc6ePYuvv/4ao0ePRkJCAvDsg5u7deuGJk2a4MyZMwgKCoKfn99rfU9Is8LDwzF37lx8++23iI2NRe3atbF69epi7Q4fPozExEQcPnwYGzZsQFhYGMLCwsTjvr6+iImJwebNm3H+/Hl8/vnn6Ny5M65evSq2efLkCb799luEhITg0qVLJQ6PhoeHw9/fH3PnzkV8fDzmzZuHmTNnYsOGDWIbU1NThIWF4fLly1i2bBnWr1+PpUuXKvVz7do1bNu2Db///rtS8j979mz07dsX58+fR9euXeHl5YWHDx++9P158uQJFi1ahI0bN+LIkSNITk7G5MmTxePffvstwsPDERoaiuPHj0OhUFT6IVzSIIHoHeHt7S306NGj2P7//e9/goODg1BYWCjuW7lypWBiYiIUFBQIgiAIzZo1ExYuXCgIgiD07NlTmDt3rqCvry9kZGQIt2/fFgAIV65cEQRBEIYNGyaMHDlS6RpHjx4VdHR0hKdPnwqCIAh2dnZCz549Vca7cePGYnHl5OQIhoaGwr59+0o8p6CgQDA1NRV27dol7gMgjB8/XqndrFmzBCMjI0GhUIj7pkyZIrRo0UJ83bZtW2HcuHHiazs7O2HAgAHi68LCQsHCwkJYvXq1IAiCsHr1aqFatWriPQqCIKxfv14AIJw9e1blvdLr8/b2FnR1dQVjY2OlzcDAQAAgPHr0SAgNDRXkcrl4TosWLQQfHx+lflq1aiU0bdpUqV87OzshPz9f3Pf5558LX3zxhSAIgnDz5k1BV1dXuHPnjlI/7du3F6ZPny4IgiCEhoYKAIS4uDiV91CvXj1h06ZNSvuCgoIENze3l56zcOFCwdXVVXw9a9YsQU9PT7h3755SOwDCjBkzxNeZmZkCAOHPP/8UBEEQDh8+LL5Pz8d87do18ZyVK1cKlpaW4mtLS0vx3wNBEIT8/Hyhdu3aJf77QvQqrIjROy8+Ph5ubm5KE3VbtWqFzMxM3L59GwDQtm1bREVFQRAEHD16FL169YKjoyOOHTuG6Oho2NjYoEGDBgCAc+fOISwsDCYmJuLm4eGBwsJCJCUliddo3ry5+PWoUaOU2hf1c+3aNZiamor7zc3NkZ2djcTERABAWloaRowYgQYNGkAul0MmkyEzM7PY8M/z1ypSp04dpYn41tbWuHfvnsr3ytnZWfxaIpHAyspKPCchIQHOzs7ikBAAfPjhh6X4DlBZtWvXDnFxcUpbSEjIS9snJCQU+96U9L167733oKurK75+/mfkwoULKCgoQMOGDZV+dqOjo8WfTzybg1X0c5OcnKzUdt68ecjKykJiYiKGDRumdGzOnDlK/WzZsgWtWrWClZUVTExMMGPGjGI/53Z2dqhRo0ax+3j+59bY2BgymUzlz7qRkRHq1atX4n2np6cjLS1N6f3S1dWFq6vrS/sjUoWT9YlKwd3dHT/++CPOnTsHPT09NGrUCO7u7oiKisKjR4/Qtm1bsW1mZia++uorjB07tlg/tWvXFr82NjYWvw4MDFQa+ijqx9XVFeHh4cX6Kfpl4+3tjQcPHmDZsmWws7ODVCqFm5ubOHRZ0rWKvDhhXyKRoLCwUOX78DrnkOYZGxujfv36SvuK/ogoC1Xf78zMTOjq6iI2NlYpWQMg/jGBZw8KFP2RY2NjozRkaG5ujszMTADA+vXr0aJFC6V+ivqNiYmBl5cXZs+eDQ8PD8jlcmzevBmLFy9Wal/Sz/mr7qO07bnAAGkKEzF65zk6OmLbtm0QBEH8hXH8+HGYmpqiVq1awHPzxJYuXSomXe7u7pg/fz4ePXqESZMmif01a9YMly9fLvaLURULC4tic2eaNWuGLVu2wMLCAjKZrMTzjh8/jlWrVqFr167As8n9//7772u8C2Xn4OCAn3/+GTk5OeKHN58+fVorsZBqDg4OOH36NAYNGiTuU/d79f7776OgoAD37t1D69atS3VOlSpVSvz/wsbGBtevX4eXl1eJ5504cQJ2dnb45ptvxH03b95UK97yIpfLYWlpidOnT6NNmzbAs6dBz5w5U+LDDkSvwqFJeqekp6cXG8IZOXIkbt26hTFjxuCff/7BH3/8gVmzZmHixIniY/ZVq1aFs7MzwsPDxUn5bdq0wZkzZ3DlyhWlipifnx9OnDgBX19fxMXF4erVq/jjjz+KTdZ/FS8vL1SvXh09evTA0aNHkZSUhKioKIwdO1asdjRo0AAbN25EfHw8/vrrL3h5eWltmYL+/fujsLAQI0eORHx8PPbt24dFixYBzyoK9PYYM2YMfvjhB2zYsAFXr17FnDlzcP78ebW+Tw0bNoSXlxcGDRqE33//HUlJSTh16hSCg4Oxe/duteKZPXs2goODsXz5cly5cgUXLlxAaGgolixZAjz7OU9OTsbmzZuRmJiI5cuXY/v27Wrfd3kZM2YMgoOD8ccffyAhIQHjxo3Do0eP+HNOr4WJGL1ToqKi8P777yttQUFB2LNnD06dOoWmTZti1KhRGDZsGGbMmKF0btu2bVFQUCAmYubm5nBycoKVlRUcHBzEds7OzoiOjsaVK1fQunVrvP/++/D394eNjY1asRoZGeHIkSOoXbu2OCdt2LBhyM7OFitkP/zwAx49eoRmzZph4MCBGDt2rFqLdpYnmUyGXbt2IS4uDi4uLvjmm2/g7+8PAErzxkj7vLy8MH36dEyePBnNmjVDUlISBg8erPb3KTQ0FIMGDcKkSZPg4OCAnj174vTp00pD8KUxfPhwhISEIDQ0FE2aNEHbtm0RFhYGe3t7AED37t0xYcIE+Pr6wsXFBSdOnCjxSeM3xc/PD19++SUGDRoENzc3cR4of87pdXBlfSLSmPDwcAwZMgTp6elvxYKi9HIdO3aElZUVNm7cqO1QKpzCwkI4Ojqib9++CAoK0nY4VMFwjhgRlZuffvoJdevWRc2aNXHu3Dn4+fmhb9++TMLeMk+ePMGaNWvg4eEBXV1d/PLLLzhw4AAiIyO1HVqFcPPmTezfvx9t27ZFTk4OVqxYgaSkJPTv31/boVEFxESMiMpNamoq/P39kZqaCmtra3z++eeYO3eutsOiF0gkEuzZswdz585FdnY2HBwcsG3bNnTo0EHboVUIOjo6CAsLw+TJkyEIAho3bowDBw7A0dFR26FRBcShSSIiIiIt4WR9IiIiIi1hIkZERESkJUzEiIiIiLSEiRgRERGRljARI6IKafDgwejZs6f42t3dHePHj3/jcURFRUEikeDx48cvbSORSLBjx45S9xkQEFDmj8u5ceMGJBKJ0mc7EtHbh4kYEZWbwYMHQyKRQCKRQF9fH/Xr10dgYCDy8/M1fu3ff/+91ItpliZ5IiJ6E7iOGBGVq86dOyM0NBQ5OTnYs2cPfHx8oKenh+nTpxdrm5ubC319/XK5rrm5ebn0Q0T0JrEiRkTlSiqVwsrKCnZ2dhg9ejQ6dOiAnTt3As8NJ86dOxc2NjbiZ3TeunULffv2hZmZGczNzdGjRw/cuHFD7LOgoAATJ06EmZkZqlWrhqlTp+LFJRBfHJrMycmBn58fbG1tIZVKUb9+ffzwww+4ceMG2rVrBzz7MHeJRILBgwcDzz6qJjg4GPb29jA0NETTpk3x22+/KV1nz549aNiwIQwNDdGuXTulOEvLz88PDRs2hJGREerWrYuZM2ciLy+vWLu1a9fC1tYWRkZG6Nu3L9LT05WOh4SEwNHREQYGBmjUqBFWrVqldixEpF1MxIhIowwNDZGbmyu+PnjwIBISEhAZGYmIiAjk5eXBw8MDpqamOHr0KI4fPw4TExN07txZPG/x4sUICwvDjz/+iGPHjuHhw4fYvn27yusOGjQIv/zyC5YvX474+HisXbsWJiYmsLW1xbZt2wAACQkJSElJwbJlywAAwcHB+Omnn7BmzRpcunQJEyZMwIABAxAdHQ08Sxh79eqFbt26IS4uDsOHD8e0adPUfk9MTU0RFhaGy5cvY9myZVi/fj2WLl2q1ObatWvYunUrdu3ahb179+Ls2bP4+uuvxePh4eHw9/fH3LlzER8fj3nz5mHmzJnYsGGD2vEQkRYJRETlxNvbW+jRo4cgCIJQWFgoREZGClKpVJg8ebJ43NLSUsjJyRHP2bhxo+Dg4CAUFhaK+3JycgRDQ0Nh3759giAIgrW1tbBgwQLxeF5enlCrVi3xWoIgCG3bthXGjRsnCIIgJCQkCACEyMjIEuM8fPiwAEB49OiRuC87O1swMjISTpw4odR22LBhwpdffikIgiBMnz5dcHJyUjru5+dXrK8XARC2b9/+0uMLFy4UXF1dxdezZs0SdHV1hdu3b4v7/vzzT0FHR0dISUkRBEEQ6tWrJ2zatEmpn6CgIMHNzU0QBEFISkoSAAhnz5596XWJSPs4R4yIylVERARMTEyQl5eHwsJC9O/fHwEBAeLxJk2aKM0LO3fuHK5duwZTU1OlfrKzs5GYmIj09HSkpKSgRYsW4rEqVaqgefPmxYYni8TFxUFXVxdt27YtddzXrl3DkydP0LFjR6X9ubm5eP/99wEA8fHxSnEAgJubW6mvUWTLli1Yvnw5EhMTkZmZifz8fMhkMqU2tWvXRs2aNZWuU1hYiISEBJiamiIxMRHDhg3DiBEjxDb5+fmQy+Vqx0NE2sNEjIjKVbt27bB69Wro6+vDxsYGVaoo/zNjbGys9DozMxOurq4IDw8v1leNGjVeKwZDQ0O1z8nMzAQA7N69WykBwrN5b+UlJiYGXl5emD17Njw8PCCXy7F582YsXrxY7VjXr19fLDHU1dUtt1iJSPOYiBFRuTI2Nkb9+vVL3b5Zs2bYsmULLCwsilWFilhbW+Ovv/5CmzZtgGeVn9jYWDRr1qzE9k2aNEFhYSGio6PRoUOHYseLKnIFBQXiPicnJ0ilUiQnJ7+0kubo6Cg+eFDk5MmTpb5XADhx4gTs7OzwzTffiPtu3rxZrF1ycjLu3r0LGxsb8To6OjpwcHCApaUlbGxscP36dXh5eal1fSJ6u3CyPhFplZeXF6pXr44ePXrg6NGjSEpKQlRUFMaOHYvbt28DAMaNG4f58+djx44d+Oeff/D111+rXAOsTp068Pb2xtChQ7Fjxw6xz61btwIA7OzsIJFIEBERgfv37yMzMxOmpqaYPHkyJkyYgA0bNiAxMRFnzpzB999/L06AHzVqFK5evYopU6YgISEBmzZtQlhYmFr326BBAyQnJ2Pz5s1ITEzE8uXLS3zwwMDAAN7e3jh37hyOHj2KsWPHom/fvrCysgIAzJ49G8HBwVi+fDmuXLmCCxcuIDQ0FEuWLFErHiLSLiZiRKRVRkZGOHLkCGrXro1evXrB0dERw4YNQ3Z2tlghmzRpEgYOHAhvb2+4ubnB1NQUn332mcp+V69ejT59+uDrr79Go0aNMGLECGRlZQEAatasidmzZ2PatGmwtLSEr68vACAoKAgzZ85EcHAwHB0d0blzZ+zevRv29vbAs3lb27Ztw44dO9C0aVOsWbMG8+bNU+t+u3fvjgkTJsDX1xcuLi44ceIEZs6cWaxd/fr10atXL3Tt2hWdOnWCs7Oz0vIUw4cPR0hICEJDQ9GkSRO0bdsWYWFhYqxEVDFIhJfNdiUiIiIijWJFjIiIiEhLmIgRERERaQkTMSIiIiItYSJGREREpCVMxIiIiIi0hIkYERERkZYwESMiIiLSEiZiRERERFrCRIyIiIhIS5iIEREREWkJEzEiIiIiLWEiRkRERKQl/webY7gs2/mYDAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -584,63 +588,57 @@ } ], "source": [ - "# ---------------------------- Decision Tree ----------------------------\n", - "dt = Pipeline([\n", - " ('dt', DecisionTreeClassifier(max_depth=8, min_samples_split=4, random_state=42)) \n", - "])\n", + "# --------------------------------------- Decision Tree ---------------------------------------\n", + "dt = DecisionTreeClassifier(max_depth=8, min_samples_split=4, random_state=42)\n", "\n", "# Train the model\n", "dt.fit(X_train_val, y_train_val)\n", "y_pred_dt = dt.predict(X_test)\n", "\n", "# Classification Report\n", - "print(\"Classification Report:\")\n", - "print(classification_report(y_test, y_pred_dt, target_names=[\"Poor\", \"Rich\"]))\n", + "print(\"Classification Report for Decision Tree:\")\n", + "print(classification_report(y_test, y_pred_dt, target_names=[\"Lower-earning\", \"Higher-earning\"]))\n", "\n", "CM = confusion_matrix(y_test, y_pred_dt)\n", - "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Poor\", \"Rich\"])\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Lower-earning\", \"Higher-earning\"])\n", "disp.plot(cmap=\"Blues\")\n", "plt.title(\"Confusion Matrix (dt)\")\n", "plt.savefig('./Report/CM_dt.png', format='png', dpi=300)\n", "plt.show() \n", "\n", "\n", - "# ---------------------------- Random Forest ----------------------------\n", - "rf = Pipeline([\n", - " ('rf', RandomForestClassifier(max_depth=20, min_samples_split=10, n_estimators=100, bootstrap=True, random_state=42))\n", - "])\n", + "# --------------------------------------- Random Forest ---------------------------------------\n", + "rf = RandomForestClassifier(max_depth=20, min_samples_split=10, n_estimators=100, bootstrap=True, random_state=42)\n", "\n", "# Train the model\n", "rf.fit(X_train_val, y_train_val)\n", "y_pred_rf = rf.predict(X_test)\n", "\n", "# Classification Report\n", - "print(\"Classification Report:\")\n", - "print(classification_report(y_test, y_pred_rf, target_names=[\"Poor\", \"Rich\"]))\n", + "print(\"Classification Report for Random Forest:\")\n", + "print(classification_report(y_test, y_pred_rf, target_names=[\"Lower-earning\", \"Higher-earning\"]))\n", "\n", "CM = confusion_matrix(y_test, y_pred_rf)\n", - "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Poor\", \"Rich\"])\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Lower-earning\", \"Higher-earning\"])\n", "disp.plot(cmap=\"Blues\")\n", "plt.title(\"Confusion Matrix Random Forest\")\n", "plt.savefig('./Report/CM_rf.png', format='png', dpi=300)\n", "plt.show() \n", "\n", "\n", - "# ---------------------------- XGBoost ----------------------------\n", - "xgb = Pipeline([\n", - " ('xgb', XGBClassifier(learning_rate=0.15, max_depth=5, n_estimators=100, random_state=42))\n", - "])\n", + "# --------------------------------------- XGBoost ---------------------------------------\n", + "xgb = XGBClassifier(learning_rate=0.15, max_depth=5, n_estimators=100, random_state=42)\n", "\n", "# Train the model\n", "xgb.fit(X_train_val, y_train_val)\n", "y_pred_xgb = xgb.predict(X_test)\n", "\n", "# Classification Report\n", - "print(\"Classification Report:\")\n", - "print(classification_report(y_test, y_pred_xgb, target_names=[\"Poor\", \"Rich\"]))\n", + "print(\"Classification Report For XGBoost:\")\n", + "print(classification_report(y_test, y_pred_xgb, target_names=[\"Lower-earning\", \"Higher-earning\"]))\n", "\n", "CM = confusion_matrix(y_test, y_pred_xgb)\n", - "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Poor\", \"Rich\"])\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=CM, display_labels=[\"Lower-earning\", \"Higher-earning\"])\n", "disp.plot(cmap=\"Blues\")\n", "plt.title(\"Confusion Matrix XGBoost\")\n", "plt.savefig('./Report/CM_xgb.png', format='png', dpi=300)\n", @@ -664,7 +662,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.12" + "version": "3.13.7" } }, "nbformat": 4, diff --git a/Report/CM_dt.png b/Report/CM_dt.png index 865a200e..2bc15340 100644 Binary files a/Report/CM_dt.png and b/Report/CM_dt.png differ diff --git a/Report/CM_rf.png b/Report/CM_rf.png index f67ec1cc..e0385c15 100644 Binary files a/Report/CM_rf.png and b/Report/CM_rf.png differ diff --git a/Report/CM_xgb.png b/Report/CM_xgb.png index 52db6612..94e9a89f 100644 Binary files a/Report/CM_xgb.png and b/Report/CM_xgb.png differ diff --git a/Report/MLPproject.aux b/Report/MLPproject.aux index f2e57c6a..cf3e1c43 100644 --- a/Report/MLPproject.aux +++ b/Report/MLPproject.aux @@ -23,49 +23,52 @@ \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Handling missing values}{2}{subsection.2.3}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Training, validation and test sets}{2}{subsection.2.4}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {3}Model selection}{2}{section.3}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Data cleaning and feature engineering}{2}{subsection.3.1}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Handling missing values}{2}{subsection.3.2}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Training, validation and test sets}{2}{subsection.3.3}\protected@file@percent } -\@writefile{toc}{\contentsline {section}{\numberline {4}Model selection}{2}{section.4}\protected@file@percent } -\@writefile{toc}{\contentsline {section}{\numberline {5}Model Training and Hyperparameter Tuning}{3}{section.5}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Models and methods used}{3}{subsection.5.1}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Caveats and restrictions}{3}{subsection.5.2}\protected@file@percent } -\@writefile{toc}{\contentsline {section}{\numberline {6}Model Evaluations}{3}{section.6}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Analyzing the Confusion Matricies}{3}{subsection.6.1}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {4}Model Training and Hyperparameter Tuning}{2}{section.4}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Models and methods used}{2}{subsection.4.1}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Validation Results}{2}{subsection.4.2}\protected@file@percent } +\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces The weighted averages of the performance metrics of the models on the validation data.\relax }}{2}{table.caption.1}\protected@file@percent } \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} -\newlabel{fig:featureImportanceDT}{{1(a)}{4}{\relax }{figure.caption.1}{}} -\newlabel{fig:featureImportanceDT@cref}{{[subfigure][1][1]1(a)}{[1][3][]4}} -\newlabel{sub@fig:featureImportanceDT}{{(a)}{4}{\relax }{figure.caption.1}{}} -\newlabel{sub@fig:featureImportanceDT@cref}{{[subfigure][1][1]1(a)}{[1][3][]4}} -\newlabel{fig:featureImportanceRF}{{1(b)}{4}{\relax }{figure.caption.1}{}} -\newlabel{fig:featureImportanceRF@cref}{{[subfigure][2][1]1(b)}{[1][3][]4}} -\newlabel{sub@fig:featureImportanceRF}{{(b)}{4}{\relax }{figure.caption.1}{}} -\newlabel{sub@fig:featureImportanceRF@cref}{{[subfigure][2][1]1(b)}{[1][3][]4}} -\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The confusion matricies of the Decision Tree model and the Random Forest model on the test data.\relax }}{4}{figure.caption.1}\protected@file@percent } -\newlabel{fig:}{{1}{4}{The confusion matricies of the Decision Tree model and the Random Forest model on the test data.\relax }{figure.caption.1}{}} -\newlabel{fig:@cref}{{[figure][1][]1}{[1][3][]4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Analyzing Weighted Performance Metrics}{4}{subsection.6.2}\protected@file@percent } -\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces The performance metrics of the models on the validation data.\relax }}{4}{table.caption.2}\protected@file@percent } -\newlabel{perfmetric}{{1}{4}{The performance metrics of the models on the validation data.\relax }{table.caption.2}{}} -\newlabel{perfmetric@cref}{{[table][1][]1}{[1][3][]4}} -\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces The performance metrics of the models on the test data.\relax }}{4}{table.caption.3}\protected@file@percent } -\newlabel{perfmetrictest}{{2}{4}{The performance metrics of the models on the test data.\relax }{table.caption.3}{}} -\newlabel{perfmetrictest@cref}{{[table][2][]2}{[1][3][]4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Analyzing the Performance}{4}{subsection.6.3}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Overfitting and Underfitting}{5}{subsection.6.4}\protected@file@percent } -\newlabel{fig:featureImportanceDT}{{2(a)}{5}{\relax }{figure.caption.4}{}} -\newlabel{fig:featureImportanceDT@cref}{{[subfigure][1][2]2(a)}{[1][5][]5}} -\newlabel{sub@fig:featureImportanceDT}{{(a)}{5}{\relax }{figure.caption.4}{}} -\newlabel{sub@fig:featureImportanceDT@cref}{{[subfigure][1][2]2(a)}{[1][5][]5}} -\newlabel{fig:featureImportanceRF}{{2(b)}{5}{\relax }{figure.caption.4}{}} -\newlabel{fig:featureImportanceRF@cref}{{[subfigure][2][2]2(b)}{[1][5][]5}} -\newlabel{sub@fig:featureImportanceRF}{{(b)}{5}{\relax }{figure.caption.4}{}} -\newlabel{sub@fig:featureImportanceRF@cref}{{[subfigure][2][2]2(b)}{[1][5][]5}} -\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The feature importance graphs for the Decision Tree model and the Random Forest model.\relax }}{5}{figure.caption.4}\protected@file@percent } -\newlabel{fig:}{{2}{5}{The feature importance graphs for the Decision Tree model and the Random Forest model.\relax }{figure.caption.4}{}} -\newlabel{fig:@cref}{{[figure][2][]2}{[1][5][]5}} -\@writefile{toc}{\contentsline {subsection}{\numberline {6.5}Feature Importance}{5}{subsection.6.5}\protected@file@percent } -\@writefile{toc}{\contentsline {section}{\numberline {7}Summary}{5}{section.7}\protected@file@percent } +\newlabel{perfmetric}{{1}{2}{The weighted averages of the performance metrics of the models on the validation data.\relax }{table.caption.1}{}} +\newlabel{perfmetric@cref}{{[table][1][]1}{[1][2][]2}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Caveats and restrictions}{2}{subsection.4.3}\protected@file@percent } +\newlabel{fig:featureImportanceDT}{{1(a)}{3}{\relax }{figure.caption.2}{}} +\newlabel{fig:featureImportanceDT@cref}{{[subfigure][1][1]1(a)}{[1][3][]3}} +\newlabel{sub@fig:featureImportanceDT}{{(a)}{3}{\relax }{figure.caption.2}{}} +\newlabel{sub@fig:featureImportanceDT@cref}{{[subfigure][1][1]1(a)}{[1][3][]3}} +\newlabel{fig:featureImportanceRF}{{1(b)}{3}{\relax }{figure.caption.2}{}} +\newlabel{fig:featureImportanceRF@cref}{{[subfigure][2][1]1(b)}{[1][3][]3}} +\newlabel{sub@fig:featureImportanceRF}{{(b)}{3}{\relax }{figure.caption.2}{}} +\newlabel{sub@fig:featureImportanceRF@cref}{{[subfigure][2][1]1(b)}{[1][3][]3}} +\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The confusion matricies of the Decision Tree model and the Random Forest model on the test data.\relax }}{3}{figure.caption.2}\protected@file@percent } +\newlabel{fig:}{{1}{3}{The confusion matricies of the Decision Tree model and the Random Forest model on the test data.\relax }{figure.caption.2}{}} +\newlabel{fig:@cref}{{[figure][1][]1}{[1][3][]3}} +\@writefile{toc}{\contentsline {section}{\numberline {5}Model Evaluations}{3}{section.5}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Analyzing the Confusion Matricies}{3}{subsection.5.1}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Analyzing Weighted Performance Metrics}{3}{subsection.5.2}\protected@file@percent } +\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces The weighted averages of the performance metrics of the models on the test data.\relax }}{3}{table.caption.3}\protected@file@percent } +\newlabel{perfmetrictest}{{2}{3}{The weighted averages of the performance metrics of the models on the test data.\relax }{table.caption.3}{}} +\newlabel{perfmetrictest@cref}{{[table][2][]2}{[1][3][]3}} +\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Analyzing the Performance}{4}{subsection.5.3}\protected@file@percent } +\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Class-wise performance metrics of the Decision Tree.\relax }}{4}{table.caption.4}\protected@file@percent } +\newlabel{dt_metrics}{{3}{4}{Class-wise performance metrics of the Decision Tree.\relax }{table.caption.4}{}} +\newlabel{dt_metrics@cref}{{[table][3][]3}{[1][4][]4}} +\@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Class-wise performance metrics of the Random Forest.\relax }}{4}{table.caption.5}\protected@file@percent } +\newlabel{rf_metrics}{{4}{4}{Class-wise performance metrics of the Random Forest.\relax }{table.caption.5}{}} +\newlabel{rf_metrics@cref}{{[table][4][]4}{[1][4][]4}} +\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Overfitting and Underfitting}{4}{subsection.5.4}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {5.5}Feature Importance}{4}{subsection.5.5}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {6}Summary}{4}{section.6}\protected@file@percent } +\newlabel{fig:featureImportanceDT}{{2(a)}{5}{\relax }{figure.caption.6}{}} +\newlabel{fig:featureImportanceDT@cref}{{[subfigure][1][2]2(a)}{[1][4][]5}} +\newlabel{sub@fig:featureImportanceDT}{{(a)}{5}{\relax }{figure.caption.6}{}} +\newlabel{sub@fig:featureImportanceDT@cref}{{[subfigure][1][2]2(a)}{[1][4][]5}} +\newlabel{fig:featureImportanceRF}{{2(b)}{5}{\relax }{figure.caption.6}{}} +\newlabel{fig:featureImportanceRF@cref}{{[subfigure][2][2]2(b)}{[1][4][]5}} +\newlabel{sub@fig:featureImportanceRF}{{(b)}{5}{\relax }{figure.caption.6}{}} +\newlabel{sub@fig:featureImportanceRF@cref}{{[subfigure][2][2]2(b)}{[1][4][]5}} +\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The feature importance graphs for the Decision Tree model and the Random Forest model based on the validation data.\relax }}{5}{figure.caption.6}\protected@file@percent } +\newlabel{fig:}{{2}{5}{The feature importance graphs for the Decision Tree model and the Random Forest model based on the validation data.\relax }{figure.caption.6}{}} +\newlabel{fig:@cref}{{[figure][2][]2}{[1][4][]5}} \ttl@finishall \newlabel{LastPage}{{}{5}{}{page.5}{}} \xdef\lastpage@lastpage{5} diff --git a/Report/MLPproject.fdb_latexmk b/Report/MLPproject.fdb_latexmk index b9f5e1ff..edf98ffc 100644 --- a/Report/MLPproject.fdb_latexmk +++ b/Report/MLPproject.fdb_latexmk @@ -1,7 +1,7 @@ # Fdb version 4 -["pdflatex"] 1761826831.99817 "/home/jaknyst/Documents/MLPproject/Report/MLPproject.tex" "MLPproject.pdf" "MLPproject" 1761826834.06411 0 - "/home/jaknyst/Documents/MLPproject/Report/MLPproject.tex" 1761826831.67703 25484 b909380ef4186262cc37c215d1d67a9a "" - "/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc" 1721433600 4850 80dc9bab7f31fb78a000ccfed0e27cab "" +["pdflatex"] 1761920867.71702 "/home/petrus/Documents/MLP/Projects/MLPproject/Report/MLPproject.tex" "MLPproject.pdf" "MLPproject" 1761920868.83079 0 + "/home/petrus/Documents/MLP/Projects/MLPproject/Report/MLPproject.tex" 1761920867.50658 24533 58032bad0234d994ba6556d7acc5212e "" + "/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc" 1737590400 4850 80dc9bab7f31fb78a000ccfed0e27cab "" "/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 "" "/usr/share/texlive/texmf-dist/fonts/tfm/adobe/helvetic/phvb7t.tfm" 1136768653 2240 eb56c13537f4d8a0bd3fafc25572b1bd "" "/usr/share/texlive/texmf-dist/fonts/tfm/adobe/helvetic/phvb8r.tfm" 1136768653 4484 b828043cbd581d289d955903c1339981 "" @@ -29,7 +29,7 @@ "/usr/share/texlive/texmf-dist/fonts/vf/adobe/helvetic/phvro7t.vf" 1136768653 1372 9948cedecdb0445a3b5cf1b8a8082ab8 "" "/usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmr7t.vf" 1136768653 1380 0ea3a3370054be6da6acd929ec569f06 "" "/usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmr8c.vf" 1136768653 3556 8a9a6dcbcd146ef985683f677f4758a6 "" - "/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1721433600 71627 94eb9990bed73c364d7f53f960cc8c5b "" + "/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1737590400 71627 94eb9990bed73c364d7f53f960cc8c5b "" "/usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty" 1575674566 24708 5584a51a7101caf7e6bbf1fc27d8f7b1 "" "/usr/share/texlive/texmf-dist/tex/generic/babel-english/english.ldf" 1496785618 7008 9ff5fdcc865b01beca2b0fe4a46231d4 "" "/usr/share/texlive/texmf-dist/tex/generic/babel/babel.sty" 1676321701 151363 1f5971af3ef874d432e8fb43e0edb71d "" @@ -59,13 +59,13 @@ "/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty" 1654720880 2444 70065bddd85997dc1fd0bb7ae634e5fa "" "/usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty" 1576191570 19336 ce7ae9438967282886b3b036cfad1e4d "" "/usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty" 1576625391 3935 57aa3c3e203a5c2effb4d2bd2efbc323 "" - "/usr/share/texlive/texmf-dist/tex/latex/base/article.cls" 1721433600 20144 d5ecf0a5140c8d8d8b72cbe86e320eff "" - "/usr/share/texlive/texmf-dist/tex/latex/base/atbegshi-ltx.sty" 1721433600 3052 30236f0cc243a8651b82240dfd2e8b9d "" - "/usr/share/texlive/texmf-dist/tex/latex/base/atveryend-ltx.sty" 1721433600 2462 8ce5f9a9c63002f2c1af03c262cf29af "" - "/usr/share/texlive/texmf-dist/tex/latex/base/fleqn.clo" 1721433600 4807 d162528c27809003cc96755db6ca2bef "" - "/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty" 1721433600 5319 48d7f3cfa322abd2788e3c09d624b922 "" - "/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty" 1721433600 5048 84b05796b49b69e2d4257d537721c960 "" - "/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo" 1721433600 8448 c33a4e1cb35cee9b33c2b21033b73e39 "" + "/usr/share/texlive/texmf-dist/tex/latex/base/article.cls" 1737590400 20144 d5ecf0a5140c8d8d8b72cbe86e320eff "" + "/usr/share/texlive/texmf-dist/tex/latex/base/atbegshi-ltx.sty" 1737590400 3052 30236f0cc243a8651b82240dfd2e8b9d "" + "/usr/share/texlive/texmf-dist/tex/latex/base/atveryend-ltx.sty" 1737590400 2462 8ce5f9a9c63002f2c1af03c262cf29af "" + "/usr/share/texlive/texmf-dist/tex/latex/base/fleqn.clo" 1737590400 4807 d162528c27809003cc96755db6ca2bef "" + "/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty" 1737590400 5319 48d7f3cfa322abd2788e3c09d624b922 "" + "/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty" 1737590400 5048 84b05796b49b69e2d4257d537721c960 "" + "/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo" 1737590400 8448 c33a4e1cb35cee9b33c2b21033b73e39 "" "/usr/share/texlive/texmf-dist/tex/latex/booktabs/booktabs.sty" 1579038678 6078 f1cb470c9199e7110a27851508ed7a5c "" "/usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty" 1678653221 55778 14d5c99aa26410e440820bb9ea5b8b3a "" "/usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty" 1678653221 71836 1a735454ad10692452eb2f2fc37f3865 "" @@ -126,18 +126,18 @@ "/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty" 1654720880 10214 de3e21cfc0eccc98ca7f8dac0ef263d2 "" "/usr/share/texlive/texmf-dist/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 "" "/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty" 1655066402 56148 51a9a8571c07b9921892ae11063ae853 "" - "/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1721433600 40900 887e0dc8cac988a9e9c574af364cf837 "" - "/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1760290233.68077 4602002 62dba5fc29055c16380d7393a2adb07a "" - "/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1760289849 7753794 892d611f76aecccd13eb485815d0543e "" - "CM_dt.png" 1761561428.73434 87433 ef7840e96e2e4e7d41f9d29d01517aa6 "" - "CM_rf.png" 1761561428.73495 88928 d3d0474bb68254ae0bba2e635ab99231 "" - "MLPproject.aux" 1761826833.91004 6260 0b50cad3e5dbdb87ae5a15918247acfb "pdflatex" - "MLPproject.out" 1761826833.91204 3758 71b69fe4b092934da11f6db2b9fc27bd "pdflatex" - "MLPproject.tex" 1761826831.67703 25484 b909380ef4186262cc37c215d1d67a9a "" - "MLPproject.toc" 1761826833.91325 1866 d9b68267ee2cdd579efd7907196d8c4b "pdflatex" - "SelfArx.cls" 1761123180.54708 7316 506603b27aab6da8087bc0f1ee693041 "" - "featureImportanceDT.png" 1761328898.24566 60078 4a2e56e2a45ae2ae5e41b9830c1bbcea "" - "featureImportanceRF.png" 1761328962.51602 61794 6b3eefc625dd3da8a3dbf302174c614c "" + "/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1737590400 40900 887e0dc8cac988a9e9c574af364cf837 "" + "/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1761127463.65456 4602601 5d02a5c5d52d7237566d144856366042 "" + "/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1761127067 7753793 c9f4d2c19ab997188c605d7179b0cdc0 "" + "CM_dt.png" 1761920482.34887 97023 ce9f07bdb4551ffd7f80782b99a54328 "" + "CM_rf.png" 1761920484.96582 98726 a24b8d53317f0e7e65e41ed83ef8fae5 "" + "MLPproject.aux" 1761920868.72356 6698 e699ab45a2056e84f281588212bdf2ec "pdflatex" + "MLPproject.out" 1761920868.72456 3113 d57c5f2b0e6699323b0a2645b9706cce "pdflatex" + "MLPproject.tex" 1761920867.50658 24533 58032bad0234d994ba6556d7acc5212e "" + "MLPproject.toc" 1761920868.72456 1587 d275c5e85ba45c005c3baf7931c510a7 "pdflatex" + "SelfArx.cls" 1761125830.98333 7316 506603b27aab6da8087bc0f1ee693041 "" + "featureImportanceDT.png" 1761403205.10917 60078 4a2e56e2a45ae2ae5e41b9830c1bbcea "" + "featureImportanceRF.png" 1761403205.11075 61794 6b3eefc625dd3da8a3dbf302174c614c "" (generated) "MLPproject.aux" "MLPproject.log" diff --git a/Report/MLPproject.fls b/Report/MLPproject.fls index 23a6cc68..5a035bdc 100644 --- a/Report/MLPproject.fls +++ b/Report/MLPproject.fls @@ -1,8 +1,8 @@ -PWD /home/jaknyst/Documents/MLPproject/Report +PWD /home/petrus/Documents/MLP/Projects/MLPproject/Report INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf INPUT /var/lib/texmf/web2c/pdftex/pdflatex.fmt -INPUT /home/jaknyst/Documents/MLPproject/Report/MLPproject.tex +INPUT /home/petrus/Documents/MLP/Projects/MLPproject/Report/MLPproject.tex OUTPUT MLPproject.log INPUT ./SelfArx.cls INPUT ./SelfArx.cls diff --git a/Report/MLPproject.log b/Report/MLPproject.log index 1e1e9950..62b93c2d 100644 --- a/Report/MLPproject.log +++ b/Report/MLPproject.log @@ -1,10 +1,10 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2025.10.12) 30 OCT 2025 13:20 +This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2025.10.22) 31 OCT 2025 15:27 entering extended mode restricted \write18 enabled. file:line:error style messages enabled. %&-line parsing enabled. -**/home/jaknyst/Documents/MLPproject/Report/MLPproject.tex -(/home/jaknyst/Documents/MLPproject/Report/MLPproject.tex +**/home/petrus/Documents/MLP/Projects/MLPproject/Report/MLPproject.tex +(/home/petrus/Documents/MLP/Projects/MLPproject/Report/MLPproject.tex LaTeX2e <2022-11-01> patch level 1 L3 programming layer <2023-02-22> (./SelfArx.cls Document Class: SelfArx 25/01/2012, v1.0 @@ -689,53 +689,49 @@ File: ts1ptm.fd 2001/06/04 font definitions for TS1/ptm. ] [2] - + File: CM_dt.png Graphic file (type png) -Package pdftex.def Info: CM_dt.png used on input line 112. +Package pdftex.def Info: CM_dt.png used on input line 123. (pdftex.def) Requested size: 230.29584pt x 172.7224pt. - + File: CM_rf.png Graphic file (type png) -Package pdftex.def Info: CM_rf.png used on input line 119. +Package pdftex.def Info: CM_rf.png used on input line 130. (pdftex.def) Requested size: 230.29584pt x 172.7224pt. - - -LaTeX Warning: `!h' float specifier changed to `!ht'. - -[3] [4 <./CM_dt.png> <./CM_rf.png>] - + [3 <./CM_dt.png> <./CM_rf.png>] + File: featureImportanceDT.png Graphic file (type png) -Package pdftex.def Info: featureImportanceDT.png used on input line 179. +Package pdftex.def Info: featureImportanceDT.png used on input line 209. (pdftex.def) Requested size: 206.0563pt x 194.96999pt. - + File: featureImportanceRF.png Graphic file (type png) -Package pdftex.def Info: featureImportanceRF.png used on input line 186. +Package pdftex.def Info: featureImportanceRF.png used on input line 216. (pdftex.def) Requested size: 206.0563pt x 192.29555pt. - [5 <./featureImportanceDT.png> <./featureImportanceRF.png>] + [4] [5 <./featureImportanceDT.png> <./featureImportanceRF.png>] enddocument/afterlastpage: lastpage setting LastPage. (./MLPproject.aux) LaTeX Warning: There were multiply-defined labels. Package rerunfilecheck Info: File `MLPproject.out' has not changed. -(rerunfilecheck) Checksum: 71B69FE4B092934DA11F6DB2B9FC27BD;3758. +(rerunfilecheck) Checksum: D57C5F2B0E6699323B0A2645B9706CCE;3113. ) Here is how much of TeX's memory you used: - 19063 strings out of 476041 - 322261 string characters out of 5793173 + 19066 strings out of 476041 + 322326 string characters out of 5793173 1878388 words of memory out of 6000000 - 38908 multiletter control sequences out of 15000+600000 - 569282 words of font info for 295 fonts, out of 8000000 for 9000 + 38909 multiletter control sequences out of 15000+600000 + 569401 words of font info for 297 fonts, out of 8000000 for 9000 1137 hyphenation exceptions out of 8191 - 75i,12n,77p,1644b,605s stack positions out of 10000i,1000n,20000p,200000b,200000s + 75i,12n,77p,1656b,605s stack positions out of 10000i,1000n,20000p,200000b,200000s -Output written on MLPproject.pdf (5 pages, 290735 bytes). +Output written on MLPproject.pdf (5 pages, 305630 bytes). PDF statistics: - 205 PDF objects out of 1000 (max. 8388607) - 159 compressed objects within 2 object streams - 31 named destinations out of 1000 (max. 500000) - 92349 words of extra memory for PDF output out of 106986 (max. 10000000) + 191 PDF objects out of 1000 (max. 8388607) + 148 compressed objects within 2 object streams + 30 named destinations out of 1000 (max. 500000) + 92325 words of extra memory for PDF output out of 106986 (max. 10000000) diff --git a/Report/MLPproject.out b/Report/MLPproject.out index e1026d13..545886dc 100644 --- a/Report/MLPproject.out +++ b/Report/MLPproject.out @@ -5,17 +5,14 @@ \BOOKMARK [2][-]{subsection.2.3}{\376\377\000H\000a\000n\000d\000l\000i\000n\000g\000\040\000m\000i\000s\000s\000i\000n\000g\000\040\000v\000a\000l\000u\000e\000s}{section.2}% 5 \BOOKMARK [2][-]{subsection.2.4}{\376\377\000T\000r\000a\000i\000n\000i\000n\000g\000,\000\040\000v\000a\000l\000i\000d\000a\000t\000i\000o\000n\000\040\000a\000n\000d\000\040\000t\000e\000s\000t\000\040\000s\000e\000t\000s}{section.2}% 6 \BOOKMARK [1][-]{section.3}{\376\377\000M\000o\000d\000e\000l\000\040\000s\000e\000l\000e\000c\000t\000i\000o\000n}{}% 7 -\BOOKMARK [2][-]{subsection.3.1}{\376\377\000D\000a\000t\000a\000\040\000c\000l\000e\000a\000n\000i\000n\000g\000\040\000a\000n\000d\000\040\000f\000e\000a\000t\000u\000r\000e\000\040\000e\000n\000g\000i\000n\000e\000e\000r\000i\000n\000g}{section.3}% 8 -\BOOKMARK [2][-]{subsection.3.2}{\376\377\000H\000a\000n\000d\000l\000i\000n\000g\000\040\000m\000i\000s\000s\000i\000n\000g\000\040\000v\000a\000l\000u\000e\000s}{section.3}% 9 -\BOOKMARK [2][-]{subsection.3.3}{\376\377\000T\000r\000a\000i\000n\000i\000n\000g\000,\000\040\000v\000a\000l\000i\000d\000a\000t\000i\000o\000n\000\040\000a\000n\000d\000\040\000t\000e\000s\000t\000\040\000s\000e\000t\000s}{section.3}% 10 -\BOOKMARK [1][-]{section.4}{\376\377\000M\000o\000d\000e\000l\000\040\000s\000e\000l\000e\000c\000t\000i\000o\000n}{}% 11 -\BOOKMARK [1][-]{section.5}{\376\377\000M\000o\000d\000e\000l\000\040\000T\000r\000a\000i\000n\000i\000n\000g\000\040\000a\000n\000d\000\040\000H\000y\000p\000e\000r\000p\000a\000r\000a\000m\000e\000t\000e\000r\000\040\000T\000u\000n\000i\000n\000g}{}% 12 -\BOOKMARK [2][-]{subsection.5.1}{\376\377\000M\000o\000d\000e\000l\000s\000\040\000a\000n\000d\000\040\000m\000e\000t\000h\000o\000d\000s\000\040\000u\000s\000e\000d}{section.5}% 13 -\BOOKMARK [2][-]{subsection.5.2}{\376\377\000C\000a\000v\000e\000a\000t\000s\000\040\000a\000n\000d\000\040\000r\000e\000s\000t\000r\000i\000c\000t\000i\000o\000n\000s}{section.5}% 14 -\BOOKMARK [1][-]{section.6}{\376\377\000M\000o\000d\000e\000l\000\040\000E\000v\000a\000l\000u\000a\000t\000i\000o\000n\000s}{}% 15 -\BOOKMARK [2][-]{subsection.6.1}{\376\377\000A\000n\000a\000l\000y\000z\000i\000n\000g\000\040\000t\000h\000e\000\040\000C\000o\000n\000f\000u\000s\000i\000o\000n\000\040\000M\000a\000t\000r\000i\000c\000i\000e\000s}{section.6}% 16 -\BOOKMARK [2][-]{subsection.6.2}{\376\377\000A\000n\000a\000l\000y\000z\000i\000n\000g\000\040\000W\000e\000i\000g\000h\000t\000e\000d\000\040\000P\000e\000r\000f\000o\000r\000m\000a\000n\000c\000e\000\040\000M\000e\000t\000r\000i\000c\000s}{section.6}% 17 -\BOOKMARK [2][-]{subsection.6.3}{\376\377\000A\000n\000a\000l\000y\000z\000i\000n\000g\000\040\000t\000h\000e\000\040\000P\000e\000r\000f\000o\000r\000m\000a\000n\000c\000e}{section.6}% 18 -\BOOKMARK [2][-]{subsection.6.4}{\376\377\000O\000v\000e\000r\000f\000i\000t\000t\000i\000n\000g\000\040\000a\000n\000d\000\040\000U\000n\000d\000e\000r\000f\000i\000t\000t\000i\000n\000g}{section.6}% 19 -\BOOKMARK [2][-]{subsection.6.5}{\376\377\000F\000e\000a\000t\000u\000r\000e\000\040\000I\000m\000p\000o\000r\000t\000a\000n\000c\000e}{section.6}% 20 -\BOOKMARK [1][-]{section.7}{\376\377\000S\000u\000m\000m\000a\000r\000y}{}% 21 +\BOOKMARK [1][-]{section.4}{\376\377\000M\000o\000d\000e\000l\000\040\000T\000r\000a\000i\000n\000i\000n\000g\000\040\000a\000n\000d\000\040\000H\000y\000p\000e\000r\000p\000a\000r\000a\000m\000e\000t\000e\000r\000\040\000T\000u\000n\000i\000n\000g}{}% 8 +\BOOKMARK [2][-]{subsection.4.1}{\376\377\000M\000o\000d\000e\000l\000s\000\040\000a\000n\000d\000\040\000m\000e\000t\000h\000o\000d\000s\000\040\000u\000s\000e\000d}{section.4}% 9 +\BOOKMARK [2][-]{subsection.4.2}{\376\377\000V\000a\000l\000i\000d\000a\000t\000i\000o\000n\000\040\000R\000e\000s\000u\000l\000t\000s}{section.4}% 10 +\BOOKMARK [2][-]{subsection.4.3}{\376\377\000C\000a\000v\000e\000a\000t\000s\000\040\000a\000n\000d\000\040\000r\000e\000s\000t\000r\000i\000c\000t\000i\000o\000n\000s}{section.4}% 11 +\BOOKMARK [1][-]{section.5}{\376\377\000M\000o\000d\000e\000l\000\040\000E\000v\000a\000l\000u\000a\000t\000i\000o\000n\000s}{}% 12 +\BOOKMARK [2][-]{subsection.5.1}{\376\377\000A\000n\000a\000l\000y\000z\000i\000n\000g\000\040\000t\000h\000e\000\040\000C\000o\000n\000f\000u\000s\000i\000o\000n\000\040\000M\000a\000t\000r\000i\000c\000i\000e\000s}{section.5}% 13 +\BOOKMARK [2][-]{subsection.5.2}{\376\377\000A\000n\000a\000l\000y\000z\000i\000n\000g\000\040\000W\000e\000i\000g\000h\000t\000e\000d\000\040\000P\000e\000r\000f\000o\000r\000m\000a\000n\000c\000e\000\040\000M\000e\000t\000r\000i\000c\000s}{section.5}% 14 +\BOOKMARK [2][-]{subsection.5.3}{\376\377\000A\000n\000a\000l\000y\000z\000i\000n\000g\000\040\000t\000h\000e\000\040\000P\000e\000r\000f\000o\000r\000m\000a\000n\000c\000e}{section.5}% 15 +\BOOKMARK [2][-]{subsection.5.4}{\376\377\000O\000v\000e\000r\000f\000i\000t\000t\000i\000n\000g\000\040\000a\000n\000d\000\040\000U\000n\000d\000e\000r\000f\000i\000t\000t\000i\000n\000g}{section.5}% 16 +\BOOKMARK [2][-]{subsection.5.5}{\376\377\000F\000e\000a\000t\000u\000r\000e\000\040\000I\000m\000p\000o\000r\000t\000a\000n\000c\000e}{section.5}% 17 +\BOOKMARK [1][-]{section.6}{\376\377\000S\000u\000m\000m\000a\000r\000y}{}% 18 diff --git a/Report/MLPproject.pdf b/Report/MLPproject.pdf index 4a6281b7..c3153b15 100644 Binary files a/Report/MLPproject.pdf and b/Report/MLPproject.pdf differ diff --git a/Report/MLPproject.synctex.gz b/Report/MLPproject.synctex.gz index 25aad570..c1faa1bc 100644 Binary files a/Report/MLPproject.synctex.gz and b/Report/MLPproject.synctex.gz differ diff --git a/Report/MLPproject.tex b/Report/MLPproject.tex index 8ed84864..b4f45360 100644 --- a/Report/MLPproject.tex +++ b/Report/MLPproject.tex @@ -39,16 +39,16 @@ \PaperTitle{Write the title of your report here} % Article title -\Authors{John Smith\textsuperscript{1}*, Jennie Smith\textsuperscript{1}} % Authors +\Authors{Petrus Einarsson\textsuperscript{1}*, Jakob Nyström\textsuperscript{1}*} % Authors \affiliation{\textsuperscript{1}\textit{Department of Physics, Umeå University, Umeå, Sweden}} % Author affiliation -\affiliation{*\textbf{Corresponding author}: john@smith.com} % Corresponding author -\affiliation{*\textbf{Supervisor}: joe@doe.com} -\Keywords{Optics --- Interference --- Diffraction} % Keywords - if you don't want any simply remove all the text between the curly brackets +\affiliation{*\textbf{Corresponding authors}: peei0011@student.umu.se, jany0047@student.umu.se} % Corresponding author +\affiliation{*\textbf{Supervisor}: shahab.fatemi@umu.se} +\Keywords{} % Keywords - if you don't want any simply remove all the text between the curly brackets \newcommand{\keywordname}{Keywords} % Defines the keywords heading name %---------------------------- % ABSTRACT %---------------------------- -\Abstract{We found a dataset that could be used for classification tasks. In order to be able to use this dataset we had to do some feature engineering, handle missing values and do some other data cleaning such as label encoding. We chose two applicable models, the Decision Tree and the Random Forst models. The dataset was divided into training, validation and testing. We tuned hyperparameters to get the best possible validation results and to avoid overfitting. When we were satisfied with our models we found that both models performed about tha same with the Random Forest having about on percentage point better results but with much higher training times. We argue that the weighted accuracies of about 85\% which at a glance might seem bad, actually are reasonable given the nature of our data sets and the choices we made.} +\Abstract{We found a dataset that could be used for classification tasks. In order to be able to use this dataset we had to do some feature engineering, handle missing values and do some other data cleaning such as label encoding. We chose two applicable models, the Decision Tree and the Random Forst models. The dataset was divided into training, validation and testing. We tuned hyperparameters to get the best possible validation results and to avoid overfitting. When we were satisfied with our models we found that both models performed about the same with the Random Forest having about on percentage point better results but with much higher training times. We argue that the weighted accuracies of about 85\% which at a glance might seem bad, actually are reasonable given the nature of our data sets and the choices we made.} %---------------------------- \begin{document} @@ -67,7 +67,7 @@ %---------------------------- \section{Introduction} -Machine learning techniques have plenty of practical use cases. In this report we find a real world, dataset and train two machine learning models on it to try and get the best results possible. +Machine learning techniques have plenty of practical use cases. An example of an application is using machine learning models to estimate the salary of individuals. This can not only be practical for commercial use such as recommending relevant products to potential customers. But it can also for example be used to better understand what factors are responsible for wealth gaps within societies. In this report we find a real world dataset covering salaries of adults and train two machine learning models on it to try and get the best results possible. \section{Data analysis} @@ -77,31 +77,42 @@ Machine learning techniques have plenty of practical use cases. In this report w The dataset we decided to study is a labeled income prediction dataset. This dataset includes 14 features with information about the people in the study and a label with the income as either more than \$50 000 per year or less than or equal to \$50 000 per year. This means that we are looking at a binary classification problem. A lot of the features are discrete where only a set number of options available. This includes features such as marital status, education and working class. The dataset features around 32500 data points. \subsection{Data cleaning and feature engineering} -There were a couple of things with our dataset that had to be modified in order for it to be usable in our ML application. We find that some of the features are redundant or not interesting in our project. We romove the redundant feature education since there is another already numerically encoded feature containing the same data. We also chose to remove the feature 'fnlwgt' since it is a already calculated number that is used by the Census Bureau to estimate population statistics. Since we want to estimate the population statistics based on the other features and not the already calculated weight we remove this feature. We have a mix of numerical and non-numerical features in our dataset. Since the machine learning models cannot use non-numerical data we have to encode the non-numercial data into corresponding numbers. This is with the label encoder built into sci-kit learn and used on all non-numerical data. -\subsection{Handling missing values} -With our numerical version of the dataset we found with the info function in pandas that around 2500 values were NaN values. We reasoned that filling these values with something as the mean of the category does not make very much sense for our application. Since there are many discrete categories a mean value means nothing. Especially since we gave many categories arbitrary numbers the mean means nothing. We therefore decided to only use complete data points. This resulted in removing about 6\% of the total amount of data points or about 2500 data points. -\subsection{Training, validation and test sets} -Before doing any sort of training or analysis on the data, se split it into training, test and validation data. We did this by first splitting a random 20\% of the data into test data. This data is reserved for the final testing of the model and will not be touched until the model is finished. Then we did a further split of the rest of the data were 25\% was designated as validation data. This data will be used for calibration of the model and hyperparameter tuning. The rest of the data which is 60\% of the total data or around 18000 data points will be used to train the model. -\section{Model selection} -When selecting the model to use for this project we have to limit us to using models that are appropriate to the type of problem that we are trying to solve. The problem is a classification task so all models that are used for regression are immediately invalid. There are plenty of different types of classification models left to choose from. Many of them however, are good for data that has non-discrete features. This includes models such as logistic regression, KNN and other similar types of classification models. Also since we have so many features that are non-numerical and converted into arbitrary numbers these types of models would not be optimal. What is left is the Gaussian Naïve Baye's and the different tree based models. Naïve Baye's can be a bit troublesome for this dataset since we have found that some parameters are slightly correlated. However, this does not necessarliy make in an inappropriate method as it has been found to perform well despite this strict assumption. Therefore we are left with the tree based models such as the decision tree and random forests. We decided to implement two different types of models. We first do a decision tree and see how good we can get that model to work. We then do a random forest which may not be the absolute best model but since it is a continuation on the decision tree it might be interesting to see if it performs better. We then do analysis on both methods and see if these models are good enough and if there is any meaningful difference between the two. +There were a couple of things with our dataset that had to be modified in order for it to be usable in our ML application. We find that some of the features are redundant or not interesting in our project. We remove the redundant feature 'education' since there is another already numerically encoded feature containing the same data. We also chose to remove the feature 'fnlwgt' since it is a already calculated number that is used by the Census Bureau to estimate population statistics. Since we want to estimate the population statistics based on the other features and not the already calculated weight we remove this feature. We have a mix of numerical and non-numerical features in our dataset. Since the machine learning models cannot use non-numerical data we have to encode the non-numercial data into corresponding numbers. This is with the label encoder built into sci-kit learn and used on all non-numerical data. -\subsection{Data cleaning and feature engineering} -There were a couple of things with our dataset that had to be modified in order for it to be usable in our ML application. We find that some of the features are redundant or not interesting in our project. We romove the redundant feature education since there is another already numerically encoded feature containing the same data. We also chose to remove the feature 'fnlwgt' since it is a already calculated number that is used by the Census Bureau to estimate population statistics. Since we want to estimate the population statistics based on the other features and not the already calculated weight we remove this feature. We have a mix of numerical and non-numerical features in our dataset. Since the machine learning models cannot use non-numerical data we have to encode the non-numercial data into corresponding numbers. This is with the label encoder built into sci-kit learn and used on all non-numerical data. \subsection{Handling missing values} -With our numerical version of the dataset we found with the info function in pandas that around 2500 values were NaN values. We reasoned that filling these values with something as the mean of the category does not make very much sense for our application. Since there are many discrete categories a mean value means nothing. Especially since we gave many categories arbitrary numbers the mean means nothing. We therefore decided to only use complete data points. This resulted in removing about 6\% of the total amount of data points or about 2500 data points. +With our numerical version of the dataset we found with the info function in pandas that around 2500 values were NaN values. We reasoned that filling these values with something as the mean of the category does not make very much sense for our application. Since there are many discrete categories a mean value means nothing. Especially since we gave many categories arbitrary numbers the mean means nothing. We therefore decided to only use complete data points. This resulted in removing about 6\% of the total amount of data points or about 2500 data points. + \subsection{Training, validation and test sets} Before doing any sort of training or analysis on the data, se split it into training, test and validation data. We did this by first splitting a random 20\% of the data into test data. This data is reserved for the final testing of the model and will not be touched until the model is finished. Then we did a further split of the rest of the data were 25\% was designated as validation data. This data will be used for calibration of the model and hyperparameter tuning. The rest of the data which is 60\% of the total data or around 18000 data points will be used to train the model. + \section{Model selection} When selecting the model to use for this project we have to limit us to using models that are appropriate to the type of problem that we are trying to solve. The problem is a classification task so all models that are used for regression are immediately invalid. There are plenty of different types of classification models left to choose from. Many of them however, are good for data that has non-discrete features. This includes models such as logistic regression, KNN and other similar types of classification models. Also since we have so many features that are non-numerical and converted into arbitrary numbers these types of models would not be optimal. At first glance, due to the many discrete features Naïve Baye's could be a possible contender. However, the dataset also includes some continious features which complicates things. The different versions of Naïve Baye's aren't really suitable to a mix of discrete and continuous features. Therefore we are left with the tree based models such as the decision tree and random forests. We decided to implement two different types of models. We first do a decision tree and see how good we can get that model to work. We then do a random forest which may not be the absolute best model but since it is a continuation on the decision tree it might be interesting to see if it performs better. We then do analysis on both methods and see if these models are good enough and if there is any meaningful difference between the two. \section{Model Training and Hyperparameter Tuning} \subsection{Models and methods used} -During the model training there are some important changes we can make to improve the accuracy of our model. One of the most fundemental procedures was hyperparameter tuning which was performed inside a custom class which performs model opitmization and comparison for different models. The class handles the full workflow of tuning the hyperparameters, training the models and recording evaluation metrics. More specifically the method used for hyperparameter tuning is Scikit Learn's GridSearchCV with accuracy as the scoring metric. This method tests different combinations of hyperparameters to establish the best one's. In addition it incorporates cross-validation to prevent overfitting and increase the reliability of the results. For the cross-validation, we used Scikit Learn's stratified k-fold. This type of cross validation is beneficial to use as it preserves the percentage of samples for the classes in each fold, making the model more robust. We used 10 folds for the cross validation, there is of course no "correct" number of folds to use as it's more of a trade off between performance and computational efficiency. +During the model training there are some important changes we can make to improve the accuracy of our model. One of the most fundemental procedures is hyperparameter tuning which was performed inside a custom class which performs model opitmization and comparison for different models. The class handles the full workflow of tuning the hyperparameters, training the models and recording evaluation metrics. More specifically the method used for hyperparameter tuning is Scikit Learn's GridSearchCV with accuracy as the scoring metric. This method tests different combinations of hyperparameters to establish the best one's. In addition it incorporates cross-validation to prevent overfitting and increase the reliability of the results. For the cross-validation, we used Scikit Learn's stratified k-fold. This type of cross validation is beneficial to use as it preserves the percentage of samples for the classes in each fold, making the model more robust. We used 10 folds for the cross validation, there is of course no "correct" number of folds to use as it's more of a trade off between performance and computational efficiency. -The hyperparameters included in the grid for the decision tree were the maximum depth and the minimum sample split. The maximum depth hyperparameter decides how deep the tree is allowed to go. If a tree is allowed to go very deep there is a high risk of overfitting, on the contrary, a shallow tree will instead risk underfitting. The minimum sample split states how many data points there has to be for a new split to be created. This is also a good measure against overfitting since if it is very low we risk training the noise of the data instead of the general trend and end up overfitting the data. It is also important that it is not to small since we then loose information and underfit instead. For Random Forest the hyperparameters in the grid were maximum depth, minimum sample split and number of estimators, which decides how many trees are used in the Random Forest algorithm. % Something about XGBoost as well +The hyperparameters included in the grid for the decision tree were the maximum depth and the minimum sample split. The maximum depth hyperparameter decides how deep the tree is allowed to go. If a tree is allowed to go very deep there is a high risk of overfitting, on the contrary, a shallow tree will instead risk underfitting. The minimum sample split states how many data points there has to be for a new split to be created. This is also a good measure against overfitting since if it is very low we risk training the noise of the data instead of the general trend and end up overfitting the data. It is also important that it is not too small since we then loose information and underfit instead. For Random Forest the hyperparameters in the grid were maximum depth, minimum sample split and number of estimators, which decides how many trees are used in the Random Forest algorithm. % Something about XGBoost as well When performing the hyperparameter tuning, we started out with a rough grid to get a decent estimate of the optimal configuration. From the resluts we then performed a finer grid around the optimal configuration. This way we where able to inspect both a wide range and a more precise range without severly increasing the computational load. +\subsection{Validation Results} +Table (\ref{perfmetric}) shows the weighted averages of the performance metrics of the validation data for both models. + +\begin{table}[!htbp] + \centering + \caption{The weighted averages of the performance metrics of the models on the validation data.} + \label{perfmetric} + \resizebox{\columnwidth}{!}{ + \begin{tabular}{c|c|c|c|c|c} + Model&Accuracy&Precision&Recall&F1 Score&Total Time\\ + \hline + RF &0.8589&0.8535&0.8589&0.8534&150.8154\\ + \hline + DT&0.8483&0.8449&0.8483&0.8462&6.7357 + \end{tabular}} +\end{table} + \subsection{Caveats and restrictions} Although the validation results produced from the script are quite promising there are a couple of important notes to make, not only to better understand the final models but also to avoid pitfalls in potential future projects. Firstly, in our script we decided to not use any standardization as this is a sort of unique case where the models used do not require it. However, it's extremely important to understand that if we were to introduce another model, we would need to standardize the data to ensure that the features contribute equally. Secondly, there are more hyperparameters that one might want to consider as we only used a few of them. The problem with expanding the number of hyperparameters in the grid is that it will exponentially increase the computational load. Therefore we picked a few that we thought were most important. Continuing, the scoring metric used is not always the best choice. We used accuracy, meaning the model tries to correctly label as many datapoints as possible and does not care about keeping a similiar precision for both labels. Our goal of this project is somewhat arbitrary, we mainly want to train and compare models. However if such a model were to be used in a real world application, one might want to change the scoring to better adapt the model to the problem at hand. % Elaborate... Secondly, there are more hyperparameters that one might want to consider... Continuing, the scoring metric used is not always the best choice. In fact, the scoring metric one should use is highly dependent on what one's goal is... @@ -131,43 +142,62 @@ There are two interesting parts to look at after our analysis. One part is to an -As we can see in the confusion matricies there is not that big of a difference between the models. Both did an overall good job at identifying the two classes. There is a difference in how well the models did in identifying the two different classes. Overall they performed a lot better at classifying the poor people than the rich. We can see that for the both models are pretty good at classifying the poor class and worse at the rich class. The Random forest model is slightly better than the Decision Tree. This is a very interesting result and maybe not so weird as it first seems. There were a lot more poor people in our training data set than rich people. This would of course train our model to be better at classifying the poor. As well as looking at the classification matricies it is interesting to look at the actual performance metrics that can be calculated from the matricies. +As we can see in the confusion matricies there is not that big of a difference between the models. Both did an overall good job at identifying the two classes. There is a difference in how well the models did in identifying the two different classes. Overall they performed a lot better at classifying the lower-earning people than the higher-earning. We can see that for the both models are pretty good at classifying the lower-earning class and worse at the higher-earning class. The Random forest model is slightly better than the Decision Tree. This is a very interesting result and maybe not so weird as it first seems. There were a lot more lower-earning people in our training data set than higher-earning people. This would of course train our model to be better at classifying the lower-earning individuals. As well as looking at the classification matricies it is interesting to look at the actual performance metrics that can be calculated from the matricies. \subsection{Analyzing Weighted Performance Metrics} - We want to analyze to sets of metrics. First we have the validaton Metrics. These metrics can be seen in table(\ref{perfmetric}). Then we have the actual test metrics which is the result from our model. These can be seen in table(\ref{perfmetrictest}). Of note is that all of these metrics are calculated as weighted metrics which means that they account for the class imbalances seen in the confusion matrcies. + We want to analyze to sets of metrics. First we have the validaton Metrics. These metrics can be seen in table (\ref{perfmetric}). Then we have the actual test metrics which is the result from our model. These can be seen in table (\ref{perfmetrictest}). Of note is that all of these metrics are calculated as weighted metrics which means that they account for the class imbalances seen in the confusion matrcies. + \begin{table}[!htbp] \centering - \caption{The performance metrics of the models on the validation data.} - \label{perfmetric} - \resizebox{\columnwidth}{!}{ - \begin{tabular}{c|c|c|c|c|c} - Model&Accuracy&Precision&Recall&F1 Score&Total Time\\ - \hline - RF &0.8589&0.8535&0.8589&0.8534&150.8154\\ - \hline - DT&0.8483&0.8449&0.8483&0.8462&6.7357 - \end{tabular}} -\end{table} -\begin{table}[!htbp] - \centering - \caption{The performance metrics of the models on the test data.} + \caption{The weighted averages of the performance metrics of the models on the test data.} \label{perfmetrictest} - \resizebox{0.6\columnwidth}{!}{ - \begin{tabular}{c|c|c|c} - Model&Precision&Recall&F1 Score\\ + \resizebox{0.8\columnwidth}{!}{ + \begin{tabular}{c|c|c|c|c} + Model&Accuracy&Precision&Recall&F1 Score\\ \hline - RF &0.86&0.86&0.86\\ + RF &0.86&0.86&0.86&0.86\\ \hline - DT&0.84&0.85&0.84 + DT &0.85&0.84&0.85&0.84 \end{tabular}} \end{table} Looking at the values we see that the difference between our models is not that large. The Random forest model is on average about 1 percentage point better than the Decision Tree. We can also see that all metrics are at about 0.85. This means that our models are not very accurate and that the differences between them is not that large at all. Which model that is better depends a lot on what is the priority. While it is clear that the Random Forest has the better performance, even by just a little bit, it is also significanty slower on the validation data. So for this dataset was it really worth 30x the computational time to get a slightly better result? We are not really sure. The extra computational time is a definite negative but at the size of this dataset we are only talking about a couple of minutes which is not too bad. For another dataset the results may be different and it might be clearer which is really the prefered model. -Another thing to consider is the interpretability of the models. Here, there is quite a big difference that could possibly outweigh one model over the other. Starting with the Decision Tree, because the model's prediction process is quite simple, it is also highly interpretable. We can even plot the decision tree to see how the model handles every feature for a datapoint. This can be beneficial if we want to better understand the model. In contrast, Random Forest uses a more complicated method for prediction as it takes the averages over numerous decision trees with random subsets of features. This means that the model is more or less a black box. The importance of model interpretability is difficult to define as it will vary between different applications and there is even a subjective element to its importance. % Elaborate. +Another thing to consider is the interpretability of the models. Here, there is quite a big difference that could possibly outweigh one model over the other. Starting with the Decision Tree, because the model's prediction process is quite simple, it is also highly interpretable. We can even plot the decision tree to see how the model handles every feature for a datapoint. This can be beneficial if we want to better understand the model. In contrast, Random Forest uses a more complicated method for prediction as it takes the averages over numerous decision trees with random subsets of features. This means that the model is more or less a black box. The importance of model interpretability is difficult to define as it will vary between different applications. Nevertheless, it's important to understand that for the better performance of Random Forest we are sacrificing a lot of interpretability. % Elaborate. \subsection{Analyzing the Performance} -At a first glance at both the confusion matricies and the performance metrics the models do not look to be that good. But what has to be considered is the data that we are analyzing. We are looking at what possible indicators there are for a person to earn more than a certain amount of money. This is real world data and in the real world there is a lot of unique ways of earning money. While there certainly are some indicators that will clearly tell that somebody is earning a lot of money, there are other factors that are not as telling. This means that some features are less important than others. This can be seen in our models int he feature importance graphs in figure(\ref{fig:featureImportanceDT}) and (\ref{fig:featureImportanceRF}). This also means that there will be plenty of outliers in the data. No matter how good the model is, it cannot possibly catch all of these outliers. If it did it would be overfitted. We simply cannot expect a model to have very good accuracy on this type of data set. +Table (\ref{dt_metrics}) and (\ref{rf_metrics}) shows the class-wise metrics of the Decision Tree and Random Forest, respectively. -An important thing to touch on is the poor fit on rich people by our model. We see that only 60-70\% where correctly identified which is quite bad. As we talked about above there may be many data reasons for this poor fit. Of note is that we have optimized this model to find the best accuracy on all data point. We therefore stride to classify as many total data points correctly as possible and not on getting the best average for the classes separetly. Since there are more poor people in our dataset it is very reasonable for the model to have optimised for that as well since it gives the best weighted accuracy. +\begin{table}[!htbp] + \centering + \caption{Class-wise performance metrics of the Decision Tree.} + \label{dt_metrics} + \resizebox{0.7\columnwidth}{!}{ + \begin{tabular}{c|c|c|c} + Class&Precision&Recall&F1 Score\\ + \hline + Lower-earning &0.87&0.95&0.90\\ + \hline + Higher-earning&0.77&0.56&0.65 + \end{tabular}} +\end{table} + +\begin{table}[!htbp] + \centering + \caption{Class-wise performance metrics of the Random Forest.} + \label{rf_metrics} + \resizebox{0.7\columnwidth}{!}{ + \begin{tabular}{c|c|c|c} + Class&Precision&Recall&F1 Score\\ + \hline + Lower-earning &0.89&0.94&0.91\\ + \hline + Higher-earning&0.77&0.63&0.70 + \end{tabular}} +\end{table} + + +At a first glance at both the confusion matricies and the performance metrics the models do not look to be that good. But what has to be considered is the data that we are analyzing. We are looking at what possible indicators there are for a person to earn more than a certain amount of money. This is real world data and in the real world there is a lot of unique ways of earning money. While there certainly are some indicators that will clearly tell that somebody is earning a lot of money, there are other factors that are not as telling. This means that some features are less important than others. This can be seen in our models in the feature importance graphs in figure(\ref{fig:featureImportanceDT}) and (\ref{fig:featureImportanceRF}). This also means that there will be plenty of outliers in the data. No matter how good the model is, it cannot possibly catch all of these outliers. If it did it would be overfitted. We simply cannot expect a model to have very good accuracy on this type of data set. + +An important thing to touch on is the poor fit on higher-earning people by our model. We see that both models produce a precision of 77\% on the lower-earning individuals, which is quite bad compared to the precision of 87\% and 89\% on the higher-earning individuals. This means that out of all individuals predicted as higher-earning, only 77\% are correctly predicted. Even more notably, there is a very big discrepancy on the recall between the two classes. Recalls of 56\% and 63\% for the higher-earning class compared to 95\% and 94\% shows that out of all the higher-earning individuals, the models are not good at correctly detecting them as higher-earning. As we talked about above there may be many reasons for this poor fit. Of note is that we have optimized this model to find the best accuracy on all data point. We therefore stride to classify as many total data points correctly as possible and not on getting the best average for the classes separetly. Since there are more lower-earning people in our dataset it is very reasonable for the model to have optimised for that as well since it gives the best weighted accuracy. As previosly stated, the scoring metrics used for training the models should be adapted based on the problem at hand. If the problem requires similiar metrics across the classes, one should instead consider using scoring metrics such as balanced accuracy score, which are adapted to produce such results. \subsection{Overfitting and Underfitting} We spent some time tuning the hyperparameters to ensure that we did not overfit. If we compare the validation results with the test results we see that the performance metrics do not change much at all. This is what we want to see as this means that we have avoidede overfitting the model. This means that our model could be used on other similar datasets and hopefully give similar perfomances. We also do not want our model to be underfit. This is a bit harder to validate as we want the errors to be as small as possible for both training and testing and as we stated before I believe that this is a difficult dataaset to get a great fit to. Therefore we believe that we have found a model that has a decent enough balance between bias and variance. @@ -187,16 +217,16 @@ We spent some time tuning the hyperparameters to ensure that we did not overfit. \caption{} \label{fig:featureImportanceRF} \end{subfigure} - \caption{The feature importance graphs for the Decision Tree model and the Random Forest model.} + \caption{The feature importance graphs for the Decision Tree model and the Random Forest model based on the validation data.} \label{fig:} \end{figure} \subsection{Feature Importance} -Taking a closer look at the feature importance graphs of the two models we notice an interesting difference. The Decision tree which is only one tree focuses has only a few main features where one is the most important. The rest are not used that much or almost not at all. The Random Forest uses a far wider range of features. They also rank the features a bit differently and the best feature for one model is not the best for the other. We considered removing the worst performing features to see if it would make a difference in the performanes. But since they have diffrent worst performing features we reasoned that to keep the comparison as fair as possible it would be more interesting to leave the features as is. +Taking a closer look at the feature importance graphs of the two models we notice an interesting difference. The Decision tree which is only one tree focuses has only a few main features where one is the most important. The rest are not used that much or almost not at all. The Random Forest uses a far wider range of features. They also rank the features a bit differently and the best feature for one model is not the best for the other. We considered removing the worst performing features to see if it would make a difference in the performacnes. But since they have different results for the worst performing features we reasoned that to keep the comparison as fair as possible it would be more interesting to leave the features as is. \section{Summary} -We have succesfully trained two different but similar machine learning models on classifying the monetary status of people based on a bunch of different features. While some trade offs where made in regards to which features where kept and to what we optimized the model for. We still managed to get a respectable result especially regarding the difficult type of data that we had to work with. +We have succesfully trained two different but similar machine learning models on classifying the monetary status of people based on a bunch of different features. To avoid help overfitting, find optimal hyperparameters and generally produce a more reliable performance estimate, we performed a grid search combined with cross-validation on our data. Optimizing the models to produce the best accuracies generated a decent result for that specific metric. However, we did find that our models instead performed worse for the other metrics. Since we did not consider a specific application for model, we argue that the scoring metric should instead be adapted based on one's specific goal. %--------- % REFERENCE LIST %---------------------------- diff --git a/Report/MLPproject.toc b/Report/MLPproject.toc index e766f209..f2b6eebd 100644 --- a/Report/MLPproject.toc +++ b/Report/MLPproject.toc @@ -6,18 +6,15 @@ \contentsline {subsection}{\numberline {2.3}Handling missing values}{2}{subsection.2.3}% \contentsline {subsection}{\numberline {2.4}Training, validation and test sets}{2}{subsection.2.4}% \contentsline {section}{\numberline {3}Model selection}{2}{section.3}% -\contentsline {subsection}{\numberline {3.1}Data cleaning and feature engineering}{2}{subsection.3.1}% -\contentsline {subsection}{\numberline {3.2}Handling missing values}{2}{subsection.3.2}% -\contentsline {subsection}{\numberline {3.3}Training, validation and test sets}{2}{subsection.3.3}% -\contentsline {section}{\numberline {4}Model selection}{2}{section.4}% -\contentsline {section}{\numberline {5}Model Training and Hyperparameter Tuning}{3}{section.5}% -\contentsline {subsection}{\numberline {5.1}Models and methods used}{3}{subsection.5.1}% -\contentsline {subsection}{\numberline {5.2}Caveats and restrictions}{3}{subsection.5.2}% -\contentsline {section}{\numberline {6}Model Evaluations}{3}{section.6}% -\contentsline {subsection}{\numberline {6.1}Analyzing the Confusion Matricies}{3}{subsection.6.1}% -\contentsline {subsection}{\numberline {6.2}Analyzing Weighted Performance Metrics}{4}{subsection.6.2}% -\contentsline {subsection}{\numberline {6.3}Analyzing the Performance}{4}{subsection.6.3}% -\contentsline {subsection}{\numberline {6.4}Overfitting and Underfitting}{5}{subsection.6.4}% -\contentsline {subsection}{\numberline {6.5}Feature Importance}{5}{subsection.6.5}% -\contentsline {section}{\numberline {7}Summary}{5}{section.7}% +\contentsline {section}{\numberline {4}Model Training and Hyperparameter Tuning}{2}{section.4}% +\contentsline {subsection}{\numberline {4.1}Models and methods used}{2}{subsection.4.1}% +\contentsline {subsection}{\numberline {4.2}Validation Results}{2}{subsection.4.2}% +\contentsline {subsection}{\numberline {4.3}Caveats and restrictions}{2}{subsection.4.3}% +\contentsline {section}{\numberline {5}Model Evaluations}{3}{section.5}% +\contentsline {subsection}{\numberline {5.1}Analyzing the Confusion Matricies}{3}{subsection.5.1}% +\contentsline {subsection}{\numberline {5.2}Analyzing Weighted Performance Metrics}{3}{subsection.5.2}% +\contentsline {subsection}{\numberline {5.3}Analyzing the Performance}{4}{subsection.5.3}% +\contentsline {subsection}{\numberline {5.4}Overfitting and Underfitting}{4}{subsection.5.4}% +\contentsline {subsection}{\numberline {5.5}Feature Importance}{4}{subsection.5.5}% +\contentsline {section}{\numberline {6}Summary}{4}{section.6}% \contentsfinish diff --git a/decision_tree.pdf b/decision_tree.pdf index 0f75a562..4d4188a7 100644 Binary files a/decision_tree.pdf and b/decision_tree.pdf differ